第五章孔口、管嘴及有压管路

合集下载

流体力学 水力学 第五章

流体力学 水力学 第五章

7 H [H0 ] 9m 0.75
§5.3 有压管道恒定流 5.3.1 短管水力计算(Q、d、H) 有压流:水沿管道满管流动的水力现象。 特点:水流充满管道过水断面,管道内不存在自 由水面,管壁上各点承受的压强一般不等于大 气压强。
短管:局部水头损失和 速度水头在总水头损失 中占有相当的比重,计 算时不能忽略的管道. (一般局部损失和速度 水头大于沿程损失 的5% ~ 10%)。一般L/d 1000
1 vc c 0
v
2 0 0
2 gH 0 2 gH 0
v hw h j 2g p c pa
2 c
1 1 流速系数: c 0 1 0
1 1 流速系数: c 0 1 0
实验得: 0.97 ~ 0.98 1 推求: 0 2 1 1 0.06 2 0.97 1
2
d2
5.126m 2g
例5 3:如图所示圆形有压涵管,管长50m, 上下游水位差3m 沿程阻力系数为0.03,局部阻力系数:进口 1=0.5。 第一个转弯 2=0.71,第二个转弯 3=0.65,出口
4=1.0,要求涵管通过流量大约3m 3 / s, 试设计管径d。
2 1 1
2g

v


v
2 2 2
2 2 2
2g
hw
2g
hw
H0 H
v
2 1 1
2g

v
2 2 2
2g
hw
hw h f h j (
l v
v d 2g 2g
2
2
l
v ) d 2g

流体力学 第5章孔口管嘴出流与管路水力计算

流体力学 第5章孔口管嘴出流与管路水力计算

5.2.3 其他类型管嘴出流
对于其他类型的管嘴出流,其流速、流量的计算公式与圆柱形管嘴公式形式相似。但 流速系数及流量系数各不相同,下面是几种常用的管嘴。
1. 流线形管嘴 如图 5.4(a)所示,流速系数ϕ = μ = 0.97 ,适用于水头损失小,流量大,出口断面上速 度分布均匀的情况。
2. 扩大圆锥形管嘴 如图 5.4(b)所示,当θ = 5°~7°时,μ=ϕ=0.42~0.50 。适合于将部分动能恢复为压能的 情况,如引射器的扩压管。
流体力学
收缩产生的局部损失和断面 C―C 与 B―B 间水流扩大所产生的局部损失,相当于一般锐缘
管道进口的局部损失,可表示为 hw

VB 2 2g
。将
hw 代入上式可得到:
H0
=


) VB2 2g
其中, H 0
=
H
+
α
AV
2 A
2g
,则可解得:
V=
1 α + ζ 2gH 0

2gH 0
(5-8)
1. 自由出流 流体经孔口流入大气的出流称为自由出流。薄壁孔口的自由出流如图 5.1 所示。孔口 出流经过容器壁的锐缘后,变成具有自由面周界的流股。当孔口内的容器边缘不是锐缘状 时,出流状态会与边缘形状有关。
图 5.1 薄壁孔口自由出流
由于质点惯性的作用,当水流绕过孔口边缘时,流线不能成直角地突然改变方向,只 能以圆滑曲线逐渐弯曲,流出孔口后会继续弯曲并向中心收敛,直至离孔口约 0.5d 处。流
5.3.1 短管计算
1. 自由出流
流 体 经 管 路 流 入 大 气 , 称 为 自 由 出 流 ( 图 5.5) 。 设 断 面 A ― A 的 总 水 头 为

孔口,管嘴出流和有压管路

孔口,管嘴出流和有压管路
相同点
流量计算公式的形式以及流量系数的数值均相同
不同点
两者的作用水头在计量时有所不同,自由出流时是指上游水 池液面至下游出口中心的高度,而淹没出流时则指得是上下 游水位差。
出口位置处的总水头线和测压管水头线的画法不同
短管水力计算的内容
四类问题 已知水头H、管径d,计算通过流量Q;
校核输水 能力
已知流量Q、管径d,计算作用水头H,以确定水箱、水塔水位 标高或水泵扬程H值;
经济流速——在选用时应使得给水的总成本(包括铺设水管的 建筑费、泵站建筑费、水塔建筑费及抽水经常运转费之总和) 最小的流速。
一般的中、小直径的管路大致为:
——当直径 d=100-400mm,经济流速 v =0.6~1.0m/s ——当直径 d400mm,经济流速 v =1.0~1.4m/s
3
2g
(H下3 2

H
32 上
)
b为宽 d为高
如果用孔口中心高度H作为孔口作用水头,将孔口断面 各点的压强水头视为相等,按小孔口计算的流量为
Q bd 2gH
大孔口的流量系数
孔口形状和水流收缩情况
全部不完善收缩 底部无收缩,侧向收缩较大 底部无收缩,侧向收缩较小 底部无收缩,侧向收缩极小
流量系数
圆柱形短管内形成收缩,然后又逐渐扩大
H 0 0v02 0 0 v 2 v 2 ,
2g
2g 2g
H0

1
vB2
2g
流速
vB
1
1
2gH0 2gH0
对锐缘进口的管嘴,ζ=0.5, 1 0.82
1 0.5
流量
Q vB A A 2gH0 n A 2gH0

第五章 孔口、管嘴出流和有压管路

第五章 孔口、管嘴出流和有压管路

(2)管嘴长度l=(3~4)d。
5.2.4 其他形式管嘴

工程上为了增加孔口的泄水能力或为了增加(减少)出 口的速度,常采用不同的管嘴形式


(1)圆锥形扩张管嘴 (θ=5~7° ) (2)圆锥形收敛管嘴 (较大的出口流速 ) (3)流线形管嘴 (阻力系数最小 )
孔口、管嘴的水力特性
5.3 有压管路恒定流计算
1
从 1→2 建立伯努利方程,有
v2 H 0 00 n 2g 2g 2g
l (3 ~ 4)d
0v0 2
v 2
H
c
0 d
2
0
1 v n
2 gH0 n 2 gH0
c
2
n 0.5
式中:
1 n n
1
n 为管咀流速系数, n 0.82
pc

0.75H 0

对圆柱形外管嘴:
α=1, ε=0.64, φ=0.82
5.2.3 圆柱形外管嘴的正常工作条件

收缩断面的真空是有限制的,如长江中下游地区, 当真空度达7米水柱以上时,由于液体在低于饱和蒸汽 压时会发生汽化 。 圆柱形外管嘴的正常工作条件是: (1)作用水头H0≤9米;

5.2 管嘴出流
一、圆柱形外伸管嘴的恒定出流

计算特点: 出流特点:
hf 0
在C-C断面形成收缩,然后再扩大,逐步充满 整个断面。 1
l (3 ~ 4)d
H
c
0 d
2
0
c
2
1

在孔口接一段长l=(3~4)d的 短管,液流经过短管并充满出口 断面流出的水力现象成为管嘴出 流。 根据实际需要管嘴可设计成: 1)圆柱形:内管嘴和外管嘴 2)非圆柱形:扩张管嘴和收缩 管嘴。

工程流体力学 第5章 管路管嘴

工程流体力学 第5章 管路管嘴

以0-0作为基准面,写出1-1和2-2断面的总流 伯努利方程 2 2 p a 1 v1 pa 2 v2 H 0 hl 2g 2g 上式中, v1

0
因为是长管,忽略局部阻力
2 2
2v h r 和速度水头 , 则 hl h f ,故 2g H hf (5.1)
5.1.2 长管的水力计算

对于一般输水管道,常取y =1/6,即曼宁公 式 1 1 c R6 (5.5) n 管壁的粗糙系数值随管壁材料、内壁加工 情况以及铺设方法的不同而异。一般工程 初步估算时可采用表5.1数值。

5.1.2 长管的水力计算
序号 1 壁面种类及状况 安装及联接良好的新制清洁铸铁 管及钢管;精刨木板
5.1.1 短管的水力计算
水泵的吸水管、虹吸管、液压传动系统的输油管 等,都属于短管,它们的局部阻力在水力计算时 不能忽略。短管的水力计算没有什么特殊的原则, 主要是如何运用前一章的公式和图表。
[例题5.1] 水泵管路如图5.1所示, 铸铁管直径d=150mm,管长 l=180m ,管路上装有吸水网(无 底阀)一个,全开截止阀一个,管 半径与曲率半径之比为 r/R=0.5 的 弯头三个,高程h=100m,流量 Q=225m3/h,水温为20℃。试求水 泵的输出功率。
5.2.2 并联管路
根据连续性方程,有 Q Q1 Q2 Q3 (5.11) 根据式(5.10)和式(5.11)可以解决并联管路水 力计算的各种问题。 强调 :虽然各并联管路的水头损失相等,但这只说 明各管段上单位重量的液体机械能损失相等。由 于并联各管段的流量并不相等,所以各管段上全 部液体重量的总机械能损失并不相等,流量大的 管段,其总机械能损失也大。

第5章 孔口、管嘴出流和有压管路 121页PPT文档

第5章 孔口、管嘴出流和有压管路 121页PPT文档
(1)虹吸管的水力计算
虹吸管是一种压力输水管道,顶部弯曲且其高程高 于上游供水水面。在虹吸管内造成真空,使水流则能通 过虹吸管最高处引向其他处。
虹吸管的优点在于能跨越高地,减少挖方。 虹吸管 长度一般不长,故按照短管计算。
1 pa
1
虹吸管顶部 zs
2z
2
虹吸管顶部的真空的理论值不能大于最大真空值 (10mH2O)。
孔口、管嘴的水力特性
§5.3 简单短管中的恒定有压流
简单管道的水力计算可分为自由出流 和淹没出流两种情况。
1.自由出流
管道出口水流流入大气,水股四周都受 大气压强的作用,称为自由出流管道。
图5-1中,列断 面1-1、2-2的能量方
程z1p 12 1 g1 2z2p 22 2 g2 2hw 12
小孔口:H/d>10
1)小孔口的自由出流
pc=pa=0
hw
hj
0
v22 2g
H
0v02
2g
( c


0
)
vc2 2g
vc
1 c 0
2gH0 2gH0
Q vc Ac A 2gH0 A 2gH0

薄壁小孔口自由出流的基本公式
薄壁小孔口出流的各项系数
当虹吸管内压强接近该温度下的汽化压强时,液体 将产生汽化,破坏水流连续性,可能产生空蚀破坏, 故一般虹吸管中的真空值7~8mH2O。
例 有一渠道用两根直径为1.0m的混凝土虹吸管来跨 越山丘, 渠道上游水位为▽1=100.0m,下游水位为▽2 =99.0m,虹吸管长度l1 = 8m l2= 15m;l3 = 15m,中间 有60°的折弯两个,每个弯头的局部水头损失系数为 0.365,若进口局部水头损失系数为0.5;出口局部水头 损失系数为1.0。试确定:

《流体力学》第五章孔口管嘴管路流动

《流体力学》第五章孔口管嘴管路流动

2g
A
C O
C
(C
1)
vc2 2g

(ZA
ZC )
pA


pC


Av
2 A
2g

H0

(Z A
ZC )
pA


pC
AvA2
2g
§5.1孔口自由出流
1
则有
vc

c 1
2gH0
H0

(Z A
ZC )
pA


pC
AvA2
2g
H0称为作用水头,是促使
力系数是不变的。
§5.4 简单管路
SH、Sp对已给定的管路是一个定数,它综合 反映了管路上的沿程和局部阻力情况,称为 管路阻抗。
H SHQ2
p SpQ2
简单管路中,总阻力损失与体积流量平方成 正比。
§5.4 简单管路
例5-5:某矿渣混凝土板风道,断面积为1m*1.2m, 长为50m,局部阻力系数Σζ=2.5,流量为14m3/s, 空气温度为20℃,求压强损失。

2v22
2g
1
vc2 2g
2
vc2 2g
令 H0 (H1 ζH12:局)液部体p阻1 经力p孔2系口数处1v的122g1 2v22
1
H1 H
H2
2
2
H0 (1 2 ) 2vcg2突ζ然2:液扩体大在的收局缩部断阻面力之系后数 C
C
§5.2 孔口淹没出流
1
c 1
2gH0
Q A 2gH0 A 2gH0
出流
H0

5.孔口、管嘴出流和有压管流

5.孔口、管嘴出流和有压管流
2
v2 n 2 gH0
2
A2 1 2 1 1 A c
2 2 2 a c pv p a pc a c 1 v2 1 2 2 a 1 2 a 1 n H 0 g g 2 g
A.Q1=Q2;
B.Q1>Q2;
C.Q1<Q2; D.关系不定。
四、应用
1.虹吸管的水力计算 (略)
管道轴线的一部分高出无压的上游供水水面,
这样的管道称为虹吸管。因为虹吸管输水,具有能
跨越高地,减少挖方,以及便于自动操作等优点, 在工程中广为应用。
虹吸现象
流速 v 2 gH0
1 l1 l2 d 1 2
3、分析:
水击现象只发生在液体中,因气体的压缩性很大,而 液体的较小,故当液体的受压急剧升高时就会产生水击; 管壁 具有足够的刚性才可能产生水击; 如果液体是不可 压缩的,管壁是完全刚性的,则水击压强可达到无限大。
二、水击的传播过程 以较简单的阀门突然关闭为例 1、分析:
与自由出流一致
结论 1、流量公式:
Q A 2 gH 0
2、自由式与淹没式对比: 1> 公式形式相同; 2> φ、μ基本相同,但 H0不同; 3> 自由出流与孔口的淹没深度有关,
淹没出流与上、下游水位差有关。
z H v0 v0 v2
自由式: H0 = H + v02 2g
淹没式: v02 2g v22 2g
2F
A
H H' 2g
解得
H ' 2.44
一昼夜的漏水量
V ( H H ' ) F 8.16m3

有压管流与孔口管嘴出流

有压管流与孔口管嘴出流

得:
vc
1
1
2g(H1H2)2gH
Q vcA cA 2gH A2gH
孔口淹没出流的流速和流量均与
孔口的淹没深度无关,也无
“大”、“小”孔口的区别。 .
26
5.4管嘴出流
• 在孔口接一段长l=(3~4)d的短管,液流经过短管 并充满出口断面流出的水力现象。
• 根据实际需要管嘴可设计成: • 1)圆柱形:内管嘴和外管嘴 • 2)非圆柱形:扩张管嘴和 收缩管嘴。
∴ vc 2gH
.
24
• 小孔口自由出流流量:
Q vcA cA 2gH A2gH
• ——薄壁小孔口自由出流的基本公式
• 系数说明:
• μ:流量系数, μ=ε μ=0.58~0.62
• ε:孔口的收缩系数 0.60~0.64
Ac / A • :流速系数,0.97~0.98
1 1 c 0 10
• ζ0:孔口局部阻力系数
0
12 10.1972
10.06 .
25
2、淹没出流
• 孔口出流淹没在下游水面之下。
• 由hl 伯hr努利s 2v方cg2 程:H s 1 p 112 1 淹v g1 2没孔H 口2 局p部2 阻力2 2g v系2 2 数hl
整理后得:
H1
H2
(1)
vc2 2g
比很小,以至于可以忽略不计的管道。 • (局部水头损失和流速水头所占比重小于5%-10%) • 短管:局部损失与速度水头的总和超过沿程损失或与
沿程损失相差不大,计算水头损失时不能忽略的管道。
.
2
• 4、管路的特性曲线: • 定义:水头损失与流量的关系曲线。
hl d L2 vg 2 d L(4d 2Q g 2)2 g82L d5Q2SQ 2

孔口,管嘴恒定出流和有压管道恒定流

孔口,管嘴恒定出流和有压管道恒定流

解: 有压涵管出流相当于短管淹没出流问题。
QA 2gH
Q
1
2gH 1d2
l
4
d1
2
3
4
代入已知数据,化简得:
d 5 0 .70 d 0 8 .39 7 0 18 用试算法得: d1.01m8
取标准值: d1m
虹吸管和水泵装置的水力计算
例5-4,如图,虹吸管越过山丘输水。虹吸管
l=lAB+lBC=20+30=50m,d=200mm。两水池水位差 H=1.2m,已知沿程阻力系数λ =0.03,局部水头 损失系数:进口ζe=0.5 ,出口ζs=1.0 ,弯头1的 ζ1 =0.2。弯头2、3的ζ2 = ζ3 =0.4,弯头ζ4 =0.3,B点高出上游水面4.5m,试求流经虹吸管的 流量Q和虹吸管顶点B的真空度。
c
4
0.42m 2 5 /s4
已知流量Q,管道长度l,管径d,沿程阻力系数 λ ,局部水头损失的组成,求作用水头H。
例5-2 水箱供水,l=20m,d=40mm, λ=0.03 ,
总局部水头损失系数为15。求流量Q=2.75L/s时 的作用水头H。
解:
Q 2.7 51 03
vd2 0.0242.18m8/s
同的两个弯头局部水头损失系数为0.25,闸门 全开的局部水头损失系数为0.12,沿程阻力系
数λ=0.03 ,求闸门全开时通过管道的流量Q。
解:先计算流量系数
1
c 1 l
d
1
0.2417
c 10.0 3200 0.520.2 50.12
0.4
忽略行近水头,则
Q A2gH 0.241 17 0.4229.810
2g

孔口、管嘴出流和有压管流

孔口、管嘴出流和有压管流

H0
2v2 2
2g
hw
1 v l d
由此得到管道的流量为
2 gH o
A Q l d
2 gH o
由该式 看出,管道的流量取决于H0、A和Hw。A由管径
的大小决定,Hw按第四章水头损失计算方法求得。


1 1.0 代入式 v l d
hw h f h j
1
pa
该式说明短管水流在 自由出流的情况下, 其作用水头H0 一部分 消耗于水流的沿程水 1 头损失和局部水头损 失,另一部分转化为 管道2-2断面的流速水头。
v1
H HP v 2 H
v2
闸门
2
对于等直径管 , 管中流速为常数v, 所以v2=v,代入上式 ,取α2=α,得
1)短管自由出流
液体经短管流动流入大气后,流束四周受到大气压的 作用,称这种流动为短管自由出流,图示为一短管自由出流。
液流从水箱 进入管径为d, 装有一个阀门并 带有两个弯头的 管路,管路总长 度为 l。
1 pa
v1
1
H HP v 2 H
v2
闸门
2
取出口中心高程的水平面为基准面 0-0,断面1-1 取在 管道入口上游水流满足渐变流条件处,2-2断面则取在管流 出口处,对断面1-1至断面2-2 的水流建立能量方程:
可见, 同一短管在自由出流和淹没出流的情况下,
其流量计算公式的形式及μc的数值均相同,但作用水头
H0 的计量基准不同,淹没出流时作用水头是以下游水面 为基准 ,自由出流时是以通过管道出口断面中心点的水
平面为基准。
3)、短管的水力计算问题
短管的水力计算包括以下几类问题: ①已知作用水头、断面尺寸和局部阻碍的组成,计算 管道输水能力,求流量; ② 已知管线的布置和必需输送的流量(设计 流量), 求所需水头(例如:设计水箱、 水塔的水位标高H、水泵 的扬程H等); ③ 已知管线布置,设计流量及作用水头,求管径d; ④ 分析计算沿管道各过水断面的压强。

第5章 有压管道恒定流动和孔口、管嘴出流 复习思考题

第5章 有压管道恒定流动和孔口、管嘴出流 复习思考题

第5章 有压管道恒定流动和孔口、管嘴出流 复习思考题1. 圆管层流流动的沿程水头损失与速度的 次方成正比。

(A) 0.5 (B) 1.0 (C) 1.75 (D)2.02. 恒定均匀流动的壁面切应力0τ等于 。

(A) 8λ(B) 82v ρλ (C) λ8v (D) 22v ρ3. 水力半径是 。

(A) 湿周除以过流断面面积 (B) 过流断面面积除以湿周的平方 (C) 过流断面面积的平方根 (D) 过流断面面积除以湿周 (E) 这些回答都不是 4. 半圆形明渠,半径r 0=4m ,水力半径R 为 。

(A) 4m (B) 3m (C) 2m (D) 1m5. 恒定均匀流公式 RJ γτ=0 。

(A) 仅适用于层流 (B) 仅适用于紊流 (C) 层流、紊流均适用 (D) 层流、紊流均不适用 6. 输送流体的管道,长度和管径不变,层流流态,若两端的压差增大一倍,则流量为原来的 倍。

(A) 2 (B) 4 (C) 8 (D) 167. 输送流体的管道,长度和管径不变,层流流态,欲使流量增大一倍,两端压差应为原来的 倍。

(A)2 (B)42 (C) 2 (D) 4 (E) 168. 输送流体的管道,长度和两端的压差不变,层流流态,若管径增大一倍,则流量为原来的 倍。

(A) 2 (B) 4 (C) 8 (D) 169. 输送流体的管道,长度和两端压差不变,层流流态,欲使流量增大一倍,管径应为原来的 倍。

(A)2 (B)42 (C) 2 (D) 4 (E) 1610. 输水管道,水在层流流态下流动,管道长度和管中流量及水的粘性系数都不变,只将管径缩小为原来的一半,则两端的压差应为原来的 倍。

(A) 2 (B) 4 (C) 8 (D) 1611. 输水管道长度和沿程阻力系数一定,均匀流动,试问:管道两端压差保持不变,而直径减小1%,会引起流量减小百份之几?12. 输水管道长度和沿程阻力系数一定,均匀流动,试问:流量保持不变,而直径减小1%,会引起管道两端压差增加百份之几? 13. 圆管层流流量变化 。

水力学教程 第5章

水力学教程 第5章

第五章孔口、管嘴出流和有压管流从本章开始,将在前面各章的理论基础上,具体研究各类典型流动。

孔口、管嘴出流和有压管流就是水力学基本理论的应用。

容器壁上开孔,水经孔口流出的水力现象称为孔口出流(Orifice Flow);在孔口上连接长为3~4倍孔径的短管,水经过短管并在出口断面满管流出的水力现象称为管嘴出流(Spout Flow);水沿管道满管流动的水力现象称为有压管流(Flow in Pressure Conduits)。

给排水工程中各类取水、泄水闸孔,以及某些量测流量设备均属孔口;水流经过路基下的有压涵管、水坝中泄水管等水力现象与管嘴出流类似,此外,还有消防水枪和水力机械化施工用水枪都是管嘴的应用;有压管道则是一切生产、生活输水系统的重要组成部分。

孔口、管嘴出流和有压管流的水力计算,是连续性方程、能量方程以及流动阻力和水头损失规律的具体应用。

§5-1 液体经薄壁孔口的恒定出流在容器壁上开一孔口,若孔壁的厚度对水流现象没有影响,孔壁与水流仅在一条周线上接触,这种孔口称为薄壁孔口,如图5-1-1所示。

图5-1-1一般说,孔口上下缘在水面下深度不同,经过孔口上部和下部的出流情况也不相同。

但是,当孔口直径d(或开度e)与孔口形心以上的水头高H相比较很小时,就认为孔口断面上各点水头相等,而忽略其差异。

因此,根据d/H的比值大小将孔口分为大孔口与小孔口两类:若d ≤H /10,这种孔口称为小孔口,可认为孔口断面上各点的水头都相等。

若d ≥H /10,称为大孔口。

当孔口出流时,水箱中水量如能得到源源不断的补充,从而使孔口的水头H 不变,这种情况称为恒定出流。

本节将着重讨论薄壁小孔口恒定出流。

1.小孔口的自由出流从孔口流出的水流进入大气,称自由出流(Free Efflux),如图5-1-1所示,箱中水流的流线从各个方向趋近孔口,由于水流运动的惯性,流线不能成折角地改变方向,只能光滑、连续地弯曲,因此在孔口断面上各流线并不平行,使水流在出孔后继续收缩,直至距孔口约为d /2处收缩完毕,形成断面最小的收缩断面,流线在此趋于平行,然后扩散,如图5-1-1所示的c -c 断面称为孔口出流的收缩断面。

流体力学5

流体力学5

1 1
如果在图示密闭的管道内, 可有:
H0
C
vC
1 11
2 p1


2 p1

0
p1 H0 g d
C
vC 0
Q vC AC A
2 p1

同理也适合孔口淹没出流时的情况
6
1
例1. 如图示, 在 = 860kg/m3 、 = 8.4 10--6 m2/s 的油管中, 加装一小阻尼器以降 低油的流速.已知D = 25.4mm , d = 5mm, 阻尼器两边的油压差p = 0.11105 Pa.
2. 孔口的边缘情况
孔口的边缘情况对出流的收缩会产生较大的 影响, 壁薄的孔口出流收缩较强烈, 收缩系数 较大, 如图(a)所示.而较圆滑的孔口出流收 缩不明显, 甚至接近1.0, 如图(b)所示.
a
b
8
3. 孔口相对容器边界的位置 按孔口相对容器边界的位置, 可将孔口分为全部收缩孔口和部分收缩孔口. 全部周界都离开容器的边界的孔口为全部收缩孔口, 否则称为部分收缩孔口. 图示中, 1、2两孔是全部收缩孔, 3、4两孔是部分收缩孔.
0.0052
4
4.9 6.158 10 5 m 3 / s


7
Q 6.158 105 4 v 0.1215 m / s 2 AD 0.0254
四. 小孔口的流动参数 小孔口的流量系数 取决于流速系数 和断面收缩系数 , 由实验可知在自 由出流和淹没出流的条件下这些系数都是相同的. 那么, 哪些因素可影响和 的大小? 1. 小孔的形状 不同形状的孔口, 其出流时的局部阻力和断面收缩情况有所不同, 从而影响流量 系数 的大小. 但是对于小孔口,实验表明, 孔口的形状对流量系数的影响并不 大, 自然也有小孔口的形状对流速系数和收缩系数的影响也是不大的.

孔口、管嘴出流和有压管流

孔口、管嘴出流和有压管流
对于同样的作用水头 H0,圆柱形外管嘴的流量是孔口 流量的1.32 倍。当作用水头相同、直径相同时 ,管嘴出流 中阻力较之孔口出流时要大,但是管嘴出流流量反而比孔口 出流流量要大,这是由于在收缩断面处出现真空的原因。
以图示管嘴出流为例,讨论管嘴水流在收缩断面处的真空
值的大小 ,为此以通过管嘴轴线的水平面为基准面,对收缩断
其他形式的管嘴,如扩散管嘴、收缩管嘴和流线形管嘴 等,不再一一讨论。
例5. 一薄壁锐缘圆形孔口,直径d=10mm,水头H=2m,自由
出流,如图所示。行近流速水头很小,可略去不计。现测得收
缩断面处流束直径dC=8mm;在32.8s时间内经孔口流出的水量
为Q=10×10-3m3/s。试求该孔口的收缩系数ε,流速系数φ,流
Q A
2 gH o
0.62
4
104
2 9.8 5
4.82 103 m3 / s
②δ=40mm时
v n 2gHo 0.82 29.85 8.15 m/s
Q n A
2 gH o
0.82
4
104
2 9.8 5
0.638103 m3 / s
假设:①若池壁厚度δ=40mm;②若池壁厚度δ=3mm。
解 首先分析壁厚δ对出流的影响: 若δ=l=(3-4)d=(30-40)mm ,则为管嘴出流,若δ=<l
便为孔口出流,当δ=3mm时为薄壁孔口出流,当δ=40mm 时为圆柱形外管嘴出流。
①δ=3mm时
v 2gHo 0.97 29.85 9.61 m/s
其次 ,对管嘴长度l也有一定限制。 若l>(3~4)d,则沿程阻力变大,沿程水头损失不容忽略, 应视为有压管流; 若l过短,水流收缩后来不及扩大到整个管口断面便出流, 收缩断面不能形成真空,而不能发挥管嘴作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c 1
2
v
1
2 gH 0 n 2 gH 0
Q vA n A 2 gH 0 n A 2 gH 0
其中ζ 为管嘴的局部阻力系数,取0.5;则
流速系数 流量系数
n
1 1 0.82<孔口 0.97 ~ 0.98 1 0.5
n n 0.82 >孔口 0.60 ~ 0.62
图1:Q1
Q2;图2:Q1
Q2。(填>、< 或=)
第五章 有压管流
问题:水位恒定的上、下游水箱,如图,箱内水深为
H 和h。三个直径相等的薄壁孔口1,2,3位于隔板上的
不同位置,均为完全收缩。 问:三孔口的流量是否相等?为什么? 若下游水箱无水,情况又如何?
答案
1=2,3不等;三孔不等
第五章 有压管流
v孔口 孔口 2 gH孔口 孔口 0.97 1 vn n 0.82 n 2 gHn
2.流量比较
Q孔口 孔口 A孔口 2 gH孔口 孔口 0.62 1 Qn n 0.82 n An 2 gHn
第五章 有压管流
【例】为使水流均匀地进入混凝沉淀池,通常在进口处 建一道穿孔墙如图,通过穿孔墙流量为125L/s,设若干 个15cmⅹ15cm的孔口,按规范要求通过孔口断面平均流速 在0.08~1.0m/s,试计算需若干孔口?
容器放空(即H2=0)时间 t0
2 A0 H1
2 A0 H1 2V A g A 2 gH1 Qmax
结论:在变水头情况下,等横截面的柱形容器放空(或充满)所需的时间
等于在起始水头H1下按恒定情况流出液体所需时间的两倍。
第五章 有压管流
第二节、管嘴岀流
在孔口周边连接一长为3~4倍孔径的短管,水经过短管并在出口 断面满管流出的水力现象,称为管嘴出流。
( )
v2 2g
1
自由出流 H v O 1 2 2 O
1
淹没出流
H
2 3 h O
v
O 1
2
( z1 p1
3
hj


1v12
2g
) ( z2
p2

)
2 2 v2
2g
h f 1 2
作用 水头 H
=
=

0

=
H+h
=
2 v l d 2g
h
v2 2g
( )
孔口、管嘴: hf 与 hj 相比很小,可忽略不计 短管: hf 与 hj 均较大,不能忽略不计(hj>5%hf)
长管: hf 很大,不能忽略,而hj可忽略不计( hj ≤5%hf)
第五章 有压管流
注意: 长管和短管不是按管道绝对长度判断
当管道存在较大局部损失的管件,如,部分 开启闸门、喷嘴、底阀等。即使管道很长,局部损失 也不能略去,必须按短管计算。 对于长管,略去局部水头损失和流速水头(沿程损 失不能略去)后,计算工作大大简化。同时,对 计算结果又没有多大影响。
2 0 0 2 2 2
av av H0 (H1 ) (H 2 ) e 收缩断面突扩的局部阻力系数 2g 2g 1 H0 作用总水头 vc 2 gH 0 2 gH 0 0 e 孔口流速系数 0.97 0.98 Q vc Ac A 2 gH 0 A 2 gH 0 孔口流量系数
v2 2g
( v 2 v3 ) 2 v 2 2g 2g
1 离心泵管路系统的水力计算 已知 流量Q,吸水管长L1,压水管长L2, 管径d,提水高度z ,各局部水头 损失系数,沿程水头损失系数 2 l1 2 计算 水泵扬程
4 5
3
l2 要求 水泵最大真 空度不超过6m 确定 水泵允许安装高度
v2 2g
1
用3-3断面作 下游断面 O 1 2 3
( z1 p1 p3
2 3 v3
H v 2 3
h
O
出口水头损失 按突扩计算


1v12
2g
) ( z3

)
2g
h f 1 2
h j1 2 h j 2 3
=
=
=

0

H+h
=
=
2 l v d 2g
h
0
( )
3.大孔口恒定出流
当液体通过大孔口出流时, 可看成是由许多小孔口出流 组成,而后予以积分求其流 量总和,如图
注意:(1)大孔口的收缩系数较小孔口大,故流量系数μ亦
较小孔口大。但在工程中,仍采用μ=0.62。 (2)小孔口出流的流量计算公式仍可用于估算大孔口出流的 流量,式中H 应为大孔口形心C处的水头H c。
1
l (3 ~ 4)d
H
0 d
c
计算特点: h f 0
出流特点:
在C-C断面形成收缩,然后再扩大, 逐步充满整个断面。
第五章 有压管流
2
0
c
2
1
一、圆柱形外管嘴恒定出流
1
对1-1,2-2 列能量方程
H
H
2 0v0
2g

v 2
2g
hw
2
H0
c
2 v2
忽略沿程损失,且令 H H 0v0 0 2g 则管嘴出口速度
作用 水头 H
v
( z1
p1


1v12
2g
) ( z2
p2

)
2 2 v2
2g
h f 1 2
hj
=
1 l 1 d
Q vA c A 2 gH
管系 流量 系数
c
1 l 1 d
=
H
=
=

0
2 gH

v2 2g
0
2 l v d 2g
0

说明管嘴过流 能力更强
结论:在相同水头H
的作用下,同样断面面积的管嘴的过流能力是孔口的1.32倍。
二、管嘴真空度
A
对 B-B,c-c 列能量方程
pc c vc2 pB v 2 hw g 2 g g 2 g
H
H0
取真空压强和真空高度值,得 c B v2
pvc c vc2 v 2 hvc h jc B g 2g 2g
流体力学电子教案
第5章 孔口、管嘴及有压管流
前几章介绍了液体运动的基本规律,给出了 水力学三个基本方程:连续方程、 能量方程、 动量方程, 以及水头损失的计算方法。 应用这些基本方程,可解决工程中常见的水力学问题,如有压 管道中的恒定流、明渠恒定流以及水工建筑物的水力计算等。 本章重点介绍是有压管道中恒定流的水力计算, 实质内容就是能量方程在管道中的应用。
' 【解】 按规范要求取 v 0.1m / s 则所需孔口总面积为
Q A ' 1.25m 2 v
每个孔口面积
A' 0.15 0.15 0.0225m2
所需孔口数 需56个孔口,孔口总面积
A
A n0 ' 55.6 A
56 0.0225 1.26m2
孔口流速 v ' Q 0.099符合规范v '在0.08 ~ 0.1m/s 的要求
C D C 3~4D
实验测得,当液流为水流,管嘴长度 l =(3~4)d 时,管嘴正常 工作的最大真空度为7.0m,则作用水头 7m
H 0
0.75
9m
说明圆柱形外管嘴正常工作条件是:
l = (3 ~ 4) d [H0]≤9m
第五章 有压管流
[例] 在 H 孔口 H n , d 孔口 d n 条件下,试分 别比较孔口和管嘴出流的流速及流量。 [解]1.流速比较
第五章 有压管流
4. 孔口自由非恒定出流、容器放水时间的计算
在 dt 时段内
dh
H1 H2
A 2 ghdt A0dh
dt
A0
h
A0 dh A 2 g h
则液面从 H1 降至 H2 所需时间
t
H2 H1
A0 dh 2 A0 ( H1 H 2 ) A 2 g h A 2 g
2 3
3
z
1
1
z2
1
【解】 水泵允许安装高度 Q,d
p2 v2
v
5 1 .0
l1 v2 0 z2 [ ( 1 2 )] 2g d 2g
O
一 .孔口出流的计算
薄壁出流、厚壁出流。
计算特点: h f 0 Ac 出流特点: 收缩现象 c-c为收缩断面,收缩系数: A

影响孔口收缩的因素:
孔口形状、孔口位置
第五章 有压管流
1.薄壁小孔口自由出流
O
v
2 0 0
管道出口流入到大气之中,水股四周受大气作用
对0-0,c-c 列能量方程
第三节、短管水力计算 一、短管水力计算 1 、计算特点 2 、计算类型
hw hf hj
1.验算管道的输水能力: 在给定作用水头、管线布置和断面尺寸的情况下,确定输送的流量。
2.确定水头: 已知管线布置和必需输送的流量,确定相应的水头。
3.绘制测压管水头线和总水头线: 确定了流量、作用水头和断面尺寸(或管线)后,计算沿管线各 断面的压强、总比能,即绘制沿管线的测压管水头线和总水头线。
2g
H
H0
2 0v0
2g

c vc2
2g
hw
vc2 其中 hw h j 0 C 2g 2 d AC v A vC 设 H0 H 0 0 v0 C 2g 1 2 gH 0 2 gH 0 则 vc c 0 O 1 1 其中 c 0 1 0 ——流速系数 0.97 ~ 0.98
相关文档
最新文档