(精品)医学统计学课件:假设检验

合集下载

《假设检验》PPT课件

《假设检验》PPT课件
2008-2009
样本统计量 临界值
抽样分布
2008-2009
1 -
置信水平 拒绝H0
0
样本统计量
临界值
✓决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
2008-2009
➢提出假设
【例】一种零件的生产标准是直径应为10cm,为对生产过
程进行控制,质量监测人员定期对一台加工机床检查, 确定这台机床生产的零件是否符合标准要求。如果零件 的平均直径大于或小于10cm,则表明生产过程不正常, 必须进行调整。试陈述用来检验生产过程是否正常的原 假设和备择假设
2008-2009
❖利用P值进行决策
➢什么是P 值(P-value)
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率 双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
3. 被称为观察到的(或实测的)显著性水平 4. 决策规则:若p值<, 拒绝 H0
2008-2009
第6章 假设检验
统计研究目的
统计设计


客观



现象



数量


表现


描 述

医学统计学课件:假设检验

医学统计学课件:假设检验

统计推断基础
参数估计
用样本数据估计总体参数的方法。
显著性检验
理解显著性检验的基本原理和方法。
假设检验
根据样本数据对总体参数进行检验的方法。
置信区间
掌握置信区间的概念和计算方法。
03
参数假设检验
单参数假设检验
定义
单参数假设检验是当我们只有一个总 体参数需要检验时的假设检验。例如 ,我们可能需要确定一个药物是否对 一组患者的平均血压有降低作用。
应用场景:例如,检验某种新药的疗效是否显著优于安 慰剂。
案例二:两样本t检验
总结词:两样本t检验是一种常用的假设检验方 法,适用于比较两个独立样本的平均数是否存在 显著差异。
详细描述
1. 定义假设:通常包括零假设(H0,即两个样本的 平均数无差异)和对立假设(H1,即两个样本的平 均数存在差异)。
02
假设检验的数学基础
概率基础
概率定义
表示随机事件发生的可能性程度。
概率运算
掌握加法、乘法和条件概率等运算方法。
独立性和互斥性
理解事件之间的独立性和互斥性。
分布基础
分布定义
描述随机变量取值的概率规律。
连续型和离散型分布
理解连续型和离散型分布的概念和特点。
常用分布
掌握常用的分布及其性质,如正态分布、二项分布等。
假设检验步骤
根据符号分布,计算临界值和p值,判断假设是 否成立。
05
假设检验的注意事项与误用
假设检验的注意事项
明确研究目的和背 景
在假设检验前,需要明确研究目 的和背景,以便确定合适的假设 和检验方法。
合理选择样本量和 样本类型
样本量和样本类型的选择对假设 检验的结果具有重要影响。在确 定样本量时,需要考虑研究目的 、研究设计、误差概率等因素。

《假设检验》课件

《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。

《假设检验的概念》PPT课件

《假设检验的概念》PPT课件

假设检验实例及解读
• 生物统计学实例:比较两个药物治疗组的患者生存率是否存在显著差异。 • 社会调查实例:通过问卷调查数据,研究两个群体之间的收入差异是否显著。
总结与回顾
假设检验是一种重要的统计方法,帮助我们进行数据分析和科学决策。通过清晰的步骤和方法,我们可以对总体参 数进行有效推断。
3 方差分析
4 非参数检验
用于比较多个样本均值之间是否存在显著差异。
当数据不满足正态分布假设时,使用的一类假设 检验方法。
注意事项
1 假设检验的局限性
假设检验是概率性推断,结果并不能绝对确定总体参数,仅供参考。
2 防范与排除偏差
在实际研究中,要注意样本选择的随机性和可比性,以排除偏差对推断结果的影响。
p值判定
4
参数估计和假设检验。
根据计算出的统计量,计算p值,并与显著性
水平比较,判断是否拒绝原假设。
5
结论推断
根据p值的判定结果,得出对总体参数的推断 结论,并解释研究的统计显著性和实际意义。
常见假设检验方法
1 单样本t检验
2 双样本t检验
用于比较一个样本的均值与总体均值是否存在显 著差异。
用于比较两个独立样本的均值是否存在显著差异。
应用领域
假设检验广泛应用于医学、社会科学、经济学等领 域,帮助我们进行数据分析和做出科学决策。
假设检验的步骤
1
假设设立
首先,根据研究问题,明确原假设和备择假
ห้องสมุดไป่ตู้
显著性水平确定
2
设,以便进行后续统计推断。
确定假设检验的显著性水平,通常为0.05或
0.01,用于判断统计显著性。
3
统计量计算
计算适应研究问题的合适统计量,以便进行

假设检验PPT课件

假设检验PPT课件
假设检验
【学习目标】通过对本章的学习,掌握假设检验的概念和 类型、假设检验的两类错误和假设检验的一般步骤;重点掌握 单个总体均值的检验和比率的检验。
第一节 假设检验的基本问题 第二节 △ 假设检验的应用
假设检验
第一节 假设检验的基本问题
一、假设检验的概念 二、假设检验的两类错误 三、假设检验的类型 四、假设检验的类型一般步骤
假设检验
第一节 假设检验的基本问题
什么小概率?
1.在一次试验中,一个几乎不可能发生的事件发生的概率; 2.在一次试验中小概率事件一旦发生,我们就有理由拒绝原假 设; 3.小概率由研究者事先确定。
假设检验
第一节 假设检验的基本问题
二、假设检验的两类错误(决策风险)
(一) 第一类错误 第一类错误,亦称拒真(弃真)错误。是指当原假设为 真时,但由于样本的随机性使样本统计量的具体值落入 了拒绝区域,这时所作的判断是拒绝原假设。 犯第一类错误的概率亦称拒真概率,它实质上就是前面
t
986 1000 24
2.333>
t n 1 2.1315
16
2
所以接受 H1,即这天包装机工作不正常。
假设检验
第二节 假设检验的应用
二、单个总体比率(成数)的假设检验
比率P是平均数的一种特殊形式,因而前面讲的平均 数检验理论都适用于总体比率P的假设检验,只是估计量 的形式略有不同。
【例4】我国出口的参茸药酒畅销于某国市场。据以往调查, 购买此种酒的顾客中40岁以上的男子占50%。经营该药酒 的进出口公司经理关心这个比率是否发生了变化,于是, 委托一个咨询机构进行调查,这个咨询机构从众多购买该 药酒的顾客中随机抽取了400名进行调查,结果有210名为 40岁以上的男子。试问在0.05的显著水平上,能否认为购 买此种药酒的顾客中40岁以上男子所占比率变化了?

04_05假设检验-医学课件

04_05假设检验-医学课件

例4.4:
μ0 =4.6(mmol/L)
?=
μ
n=25 X 5.1(mmol / L) S 0.88(mmol / L)
已知总体
未知总体
手头样本
例4.4:
X05.14.60.5
手头样本对应的未知总体均数μ等于已知总体均 数μ0,差别仅仅是由于抽样误差所致
除抽样误差外,样本所来自的未知总体与已知 总体不同,存在本质差异
碰巧猜对吗?
一个统计学故事
假设:她没有这个本事,是碰巧猜对的! 连续猜对8个杯子的可能性 P 是多少? P=0.58=0.00390625 你认为原假设 H0 成立吗?
推断结论她真的有这个本事! (不是碰巧猜对的。)
依据:小概率原理。 P ≤ 0.05为小概率。
做个实验
总体A是100例正常成年男子血红蛋白(g/L,以
t X 0
sn
n1
统计量t表示,在标准误的尺度下,样本均数与总体均
数0的偏离。这种偏离称为标准t离差。
根据抽样误差理论,在H0假设前提下,统计 量t服从自由度为n-1的t分布,即t值在0的附近 的可能性大,远离0的可能性小,离0越远可能 性越小。
t值越小,越利于H0假设 t值越大,越不利于H0假设
假设检验(Hypothesis Test)
------ 统计推断内容之一
Outline
基本思想 基本步骤 均数的假设检验 假设检验中几个基本概念 假设检验中几个值得注意的问题
一个统计学实验
一位常饮牛奶加茶的女士声称,她能辨别先倒 进杯子里的是茶还是牛奶ຫໍສະໝຸດ 对此做了8次试验, 她都正确地说出了。
4.317 4.029 3.833 3.690 3.581

卫生统计学课件_第六章_假设检验

卫生统计学课件_第六章_假设检验
16
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。

第八章 假设检验 (《统计学》PPT课件)

第八章  假设检验  (《统计学》PPT课件)
与其,为选取“适当的”的而苦恼,不如干脆 把真正的(P值)算出来。
第二节 一个正态总体的假设检验
一、正态总体
设总体X ~ N(m, 2),抽取容量为n的样本 x1, x2, xn
样本均值 X 与方差S2 计算公式分别为:
2
1 n 1
n i1
(xi
X)
我们将利用上述信息,来检验关于未知参数均值 和方差的假设。
总体参数
均值
方差
总体方差已知
z 检验
(单尾和双尾)
总体方差已知
t 检验
(单尾和双尾)
2 检验
(单尾和双尾)
第二节 一个正态总体的假设检验
二、均值m的假设检验
1.H0:m=m0
2.选择检验统计量:
2已知: Z X m0 ~ N(0,1)
/ n
2未知:
小样本: t X m0 ~ t(n 1)
这个值不像我 们应该得到的 样本均值 ...
...因此我们拒绝 原假设μ=50
... 如果这是总 体的假设均值
60
μ=80
H0
样本均值
第一节 假设检验概述
三、假设检验的程序
一个完整的假设检验过程,通常包括以下几个步骤:
首先,设立原假设H0与备选假设H1; 第二步,构造检验统计量,并根据样本观察数据
小样本:当 t t
2
,则拒绝原假设,反之则接受H0;
5.得出结论。
二、均值m的假设检验
6.例题分析
[例8.3] 某广告公司在广播电台做流行歌曲磁带广告 ,它的插播广告是针对平均年龄为21岁的年轻人的,标 准差为16。这家广告公司经理想了解其节目是否为目标 听众所接受。假定听众的年龄服从正态分布,现随机抽 取400多位听众进行调查,得出的样本结果为x 25 岁S2,18 。以0.05的显著水平判断广告公司的广告策划是否符合 实际?

医学统计学-假设检验

医学统计学-假设检验
差别有统计学意义,可以认为病毒性肝炎患者的转 铁蛋白含量较低。
3.4 两组资料比较的u检验
➢当随机抽样的样本例数足够大时,t检验统计 量的自由度逐渐增大,t分布逐渐逼近于标准 正态分布,可以利用近似正态分布的原理进 行u检验。
u XA XB sX A X B
XA XB sA2 nA sB2 nB
1 假设检验的基本思想
➢提出一个假设 ➢如果假设成立,得到现有样本的可能性
➢可能性很小(小概率事件),在一次试验中本不 该得到,居然得到了,说明我们的假设有问题, 拒绝之。
➢有可能得到手头的结果,故根据现有的样本无法 拒绝事先的假设(没理由)
例1
样本:随机抽查25名男炊事员的血清总胆固 醇 , 求 得 其 均 数 为 5.1mmol/L , 标 准 差为0.88mmol/L。
假设检验的基本思想:女士和奶
➢ 女士说她可以辨认出加奶和水的顺序 ➢ 事先假设:她在耍我们,每次她都在瞎猜 ➢ 现在给她对十杯牛奶做出判断 ➢ 如果她是瞎猜的,却全部正确,几率为0.510≈0.001 ➢ 0.001是小概率,认为不会发生(即10次全猜对是
不可能的) ➢ 现在试验的结果是十杯全部说对了 ➢ 故断定假设不成立

F
s12 (大) s22 (小)
~ F( ,1 , 2 )
方差齐性检验
男性组
12=?
➢除抽样误差外,该单位食堂炊事员与健康男性存 在本质上的差异:偷东西吃?。(必然的、大于 随机误差)
➢两种情况只有一个是正确的,且二者必居其 一,需要我们作出推断。
假设检验的一般步骤
➢步骤1:建立假设 ➢在假设的前提下有规律可寻
➢零假设(null hypothesis),记为H0,表示目前的 差异是由于抽样误差引起的。

假设检验完整版PPT课件

假设检验完整版PPT课件
H0 : 335ml H1 : 335ml
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0

0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0

0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0

1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体

医学医学统计学南大医学院PPT课件

医学医学统计学南大医学院PPT课件

C. 资料取对数变换后再进行成组设计的 一般t检验或非参数检验;
D. 上述三种方法都不对。
第28页/共48页
表5 小鼠在不同时期 黄体内 FGF含量的测定
周期
动情前期 + 动情期 动情后期 动情间期 孕期
有无FGF的小鼠数
-
5
1
5
1
3
2
2
0
0
1
A. 配对设计的t检验或非参数检验;
B. 成组设计的一般t检验或非参数检验;
2
5.49 5.52
3
5.78 5.94
4
10.16 11.37
5
9.56 9.87
A. 配对设计的t检验或非参数检验;
B. 成组设计的一般t检验或非参数检验;
C. 资料取对数变换后再进行成组设计的 一般t检验或非参数检验;
D. 上述三种方法都不对。
第27页/共48页
表3 5只家兔在缺氧时
右心与左心组织ANF的测定
注2:与 是相互制约的, 越小, 越大;反之,越大,越小。若要同时减小与 ,则只有增加样本含量n。
注3: 两种不同类型的错误不是同时发生的。
第31页/共48页
第五节 假设检验应注意的问题
• 1.要有严密的研究设计
• 组间应具有可比性;样本要能代表总体。
• 2.要根据研究目的、设计类型和资料类型选用适当的检验方法。 • 3.正确理解“显著性”一词的含义。 • 4.结论不能绝对化。 • 5.注意统计“显著性”与专业“显著性”的区别。
第5页/共48页
第二节 假设检验的基本步骤
第6页/共48页
1.根据研究目的,建立检验假设,确定检验水准 。 H0:山区成年男子脉搏数与一般成年男子相同,即= 0(原假设) H1:山区成年男子脉搏数大于一般成年男子的,即>0(备择假设)

医学统计学(假设检验) ppt课件

医学统计学(假设检验)  ppt课件

了解:
置信区间与假设检验的关系
ppt课件 2
教学内容提要

重点讲解:
假设检验原理
单样本正态资料的假设检验 两样本正态资料的假设检验 Z检验 假设检验应注意的问题

介绍:
置信区间与假设检验的关系
ppt课件 3

假设检验的基本任务:事先对总体分布或总体 参数作出假设,利用样本信息判断原假设是否 合理,从而决定是否拒绝或接受原假设。 参数检验(parametric test):若总体分布类型已 知,需要对总体的未知参数进行假设检验。 非参数检验:若总体分布类型未知,需要对未 知分布函数的总体的分布类型或其中的某些未 知参数进行假设检验。
ppt课件 17
(3) 计算P值
P值:是在H0成立时,取得大于或等 于现有检验统计量值的概率。
ppt课件
18
(3)计算概率值(P) 将计算得到的Z值或 t值与查表得到Z或 t,ν ,比较,得到 P值的大小。根据u分布和 t分布我们知道,如果|Z|> Z或| t |> t , 则 P< ;如果|Z|< Z或| t | < t ,则P> 。
ppt课件 5
“小概率原理”

例如在2000粒中药丸中只有一粒是虫蛀过的,现从中随机取 一粒,则取得“虫蛀过的药丸”的概率是1/2000,这个概率 是很小的,因此也可以将这一事件看作在一次抽样中是不会 发生的。若从中随机抽取一粒,恰好是虫蛀过的,这种情况 发生了,我们自然可以认为“假设”有问题,即虫蛀率p不是 1/2000,从而否定了假设。否定假设的依据就是小概率事件 原理。由此我们得到一个推理方法:如果在某假设(记为H0) 成立的条件下,事件A是一个小概率事件,现在只进行一次 试验,事件A就发生了,我们就认为原来的假设(H0)是不 成立的。

医学统计学:假设检验

医学统计学:假设检验

THANKS
谢谢您的观看
04
假设检验的常见错误与注意 事项
第一类错误与第二类错误
第一类错误
当原假设为真时,拒绝原假设,即错误地认 为原假设是错误的。其概率通常用α表示, 也称为显著性水平。
第二类错误
当原假设为假时,不拒绝原假设,即错误地 认为原假设是正确的。其概率通常用β表示
。ห้องสมุดไป่ตู้
差异检验与趋势检验的注意事项
• 差异检验:主要用于比较两组或多组数据的均值是否存在显著差异。注意事项包括 • 确定样本是否独立:在进行t检验或方差分析时,样本应是独立取得的,否则将影响结果的准确性。 • 确定总体方差是否已知:在进行t检验时,如果总体方差未知,则应采用t'检验或Welch t检验。 • 正确理解p值:p值是假设检验的核心,它表示观察到的数据与原假设之间的矛盾程度。一般来说,如果p值
04 第四步
根据样本数据和临界值进行推断。 如果检验统计量大于临界值,则拒 绝原假设;如果检验统计量小于临 界值,则不拒绝原假设。
假设检验的意义与应用
意义
假设检验是统计学中最重要的方法之一,它可以帮助我们科 学地推断样本数据所反映的总体的性质,从而为科学研究提 供依据。
应用
假设检验广泛应用于各个领域,如医学、社会科学、自然科 学等。在医学领域中,假设检验被广泛应用于临床试验、流 行病学研究、病因学研究等方面。
要点三
多因素方差分析:这种检验方法用于 比较两个或更多个分类变量的均值是 否存在显著差异。多因素方差分析常 用于研究多个分类变量对连续变量的 影响,其中每个分类变量的取值均为 两个或更多水平。
回归分析
回归分析是一种常用的统计分析方法 ,主要用于研究连续变量与分类变量 之间的关系。在回归分析中,我们需 要确定回归系数以及它们的显著性水 平,以揭示自变量对因变量的影响程 度和方向。

医学统计学第三章 总体均数的估计与假设检验 PPT课件

医学统计学第三章 总体均数的估计与假设检验 PPT课件

抽样误差:样本统计量与参数之间的差异, 称抽样误差。
样本统计量是一个随机变量,在随机的原则 下从同一总体抽取不同的样本,即使每个样 本的样本含量n相同,它们的结果也会不同。
样本统计量与参数之间的差异有何特点呢?
二个特点:
A、其值互不相同,有些样本统计量与总 体参数之间差异大,有些小;有些为正 数,有些为负数。
差别对样本所代表的总体间是否存在着差别做出判断。
基本内容
计量资料 计数资料
统计描述
频数分布 集中趋势 离散趋势
统计图表
相对数
统计图表
统计推断(1)
抽样误差 标准误 t u F检验 秩和检验 u 、 2检验 秩和检验
统计推断(2)
直线相关与回归 偏相关 多元线性回归
Logistic回归
第一节 均数的抽样误差与标准误
x
100个
XX jj
Xj 100个
样本号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
xj
167.41 165.56 168.20 166.67 164.89 166.36 166.16 169.11 167.17 166.13 167.71 168.68 166.83 169.62 166.95 170.29 169.20 167.65 166.51 163.28
170.45
50
170.39
4.15
167.42
173.35
51
168.47
3.91
165.67
171.27
53
168.87
5.77
164.74
173.00
54
169.53

医学统计学课件)X检验

医学统计学课件)X检验
医学统计学课件 - X检验
X检验是一种假设检验方法,通常用于比较两个样本的平均数是否有显著差异。
它既可以用于研究药物的有效性,也可以用于分析基因表达等生物学数据。
为什么需要X检验?
1
探究数据背后的规

2
辨明治疗效果是否
显著
3
多场景应用
X检验不仅仅适用于医
通过X检验,我们可以
利用X检验,我们可以
于分析基因表达等生物学数据。通过深入了解X检验的原理和应用场景,我们
可以更好地应用它来分析和解释数据。
使用样本数据,计算出所需的统计量。
4. 计算t统计量
将所得的统计量代入公式计算t值。
4
如何解释X检验结果?
1. 获得P值
根据t值和自由度查找t分布
的表格,得出P值。
2. 判断P值是否小于
置信水平阈值
3. 结果解释
如果P值小于等于置信水平
本的平均数是否有显著差
阈值,拒绝零假设,反之
异。
则不拒绝。
根据所得结果说明两个样
如何避免X检验中的常见误区?
样本计算错误
数据处理问题
结果解释混淆
确保样本数量和标准差的计算
使用正确的统计软件和方法进
清晰明了地讲解结果,并避免
正确无误。
行数据处理。
过于简单或复杂。
如何评估X检验可靠性?
置信区间
样本数量
在置信区间内的元素,其真实参数是会被接受
样本数量越多,结果的可靠性也越高。
的, 置信程度越高,可靠性也相应越高。
学领域,也可以应用于
学习如何利用样本数据
判断某种治疗方法是否
商业、社会科学和其他
来推断总体的情况。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双侧 =0.05。
t d 5.0 3.923 sd n 4.03/ 10
按 = n-1=10-1=9,查t值表,得0.005>P>0.002。 按 = 0.05水准,拒绝H0,接受H1,差别有统计学意
义,可以认为高血压患者用药后舒张压降低。
例4.6 某医生研究脑缺氧对脑组织中生化指标的影响,将 乳猪按出生体重配成7对,一组为对照组,一组为脑缺氧 模型组。试比较两组猪脑组织钙泵的含量有无差别。
碰巧猜对吗?
一个统计学故事
假设:她没有这个本事,是碰巧猜对的! 连续猜对8个杯子的可能性 P 是多少? P=0.58=0.00390625 你认为原假设 H0 成立吗?
推断结论她真的有这个本事! (不是碰巧猜对的。)
依据:小概率原理。 P ≤ 0.05为小概率。
做个实验
总体A是100例正常成年男子血红蛋白(g/L,以
0.10
0.05
0.02
6.314 12.706 31.821
2.920 2.353 2.132 2.015
4.303 3.182 2.776 2.571
6.965 4.541 3.747 3.365
1.943 1.895 1.860 1.833 1.812
2.447 2.365 2.306 2.262 2.228
配对设计是研究者为了控制可能存在的主要的非处理 因素而采用的一种实验设计方法。
自身配对
同一对象接受两种处理,如同一标本用两种方法进行检验, 同一患者接受两种处理方法;
异体配对
将条件相近的实验对象配对,并分别给予两种处理。
配对t 检验
首先求出各对数据间的差值d
若两处理因素的效应无差别,差值d的总体均数 d应该为0,故可将该检验理解为样本均数 d 与总体均数d =0的比较。
例4.4:
μ0 =4.6(mmol/L)
?=
μ
n=25 X 5.1(mmol / L) S 0.88(mmol / L)
已知总体
未知总体
手头样本
例4.4:
X 0 5.1 4.6 0.5
手头样本对应的未知总体均数μ等于已知总体均 数μ0,差别仅仅是由于抽样误差所致
除抽样误差外,样本所来自的未知总体与已知 总体不同,存在本质差异
3.143 2.998 2.896 2.821 2.764
1.721 1.717 1.714 1.711 1.708
2.080 2.074 2.069 2.064 2.060
2.518 2.508 2.500 2.492 2.485
0.005 0.01 63.657
9.925 5.841 4.604 4.032
判断标准:
当P≤ 时,拒绝H0,接受H1 ; 当P> 时,不拒绝H0 。
本例P<0.05,按 =0.05的水准,拒绝H0,接受H1,
差别有统计学意义。可以认为该单位食堂成年男性炊 事员血清总胆固醇比健康成年男子高 。
假设检验的意义
得到关于总体的结论 如本例假设检验的意义在于分辨手头样
本所代表的未知总体和已知总体是否为 同一总体,换句话说,即分辨手头样本 是否为已知总体的一个随机样本。
0.0495
0.3050
0.2870
0.0180
0.3086
d2 0.006320 0.002970 0.017689 0.001600 0.001858 0.002450 0.000324 0.033211
H0:d=0,即两组乳猪脑组织钙泵含量相等; H1:d>0,即对照组乳猪脑组织钙泵含量高于实验组。 单侧 =0.05。
例4.5 为研究某新的降压药对高血压患者舒张压的影响,随机抽取了 10名高血压患者,分别在其用药前和用药后一个月测量其舒张压, 试问该降压药对高血压患者的舒张压是否有影响?
表4.2 10名高血压患者用药前后舒张压的测定值(mmHg)
患者号 (1)
1 2 3 4 5 6 7 8 9 10 合计
用药前 (2)
0.0025 0.001
0.005 0.002
127.321 318.309
14.089 7.453 5.598 4.773
22.327 10.215
7.173 5.893
0.0005 0.001 636.619
31.599 12.924
8.610 6.869
3.707 3.499 3.355 3.250 3.169
下省略)实测值的集合,从中随机抽取样本a1 和 样本 a2 ;总体B是另外100例正常成年男子血红 蛋白实测值的集合,从中随机抽取样本b1;a1 、 a2和b1三个样本的含量均为10例,有关数值如下:
µ
σ
a1/b1
a2
A 130.0 7.5 131.9 128.3
B 140.0 8.2 138.2
在知道A和B总体的参数时
从两个总体中随机地抽取一部分个体进行研究 。 例如手术组与非手术组、新药组与对照组等。
目的:推断 1 = 2?
两样本均数比较的t检验公式
t X1X2 sX1X 2
sX1X2
sc 2
1 n1
1 n2
= n1+ n2-2
sc 2
(n1
2
2
1)s1 (n2 1)s2
n1 n2 2
例4.7
假设检验的基本思想
提出一个假设(H0); 如果假设成立,会得到现在的结果吗?
两种: 1) 得到现在的结果可能性很小(小概率)
拒绝H0 2) 有可能得到现在的结果(不是小概率)
没有理由拒绝H0
例4.4
大规模调查表明健康成年男子血清总胆固醇的 均数为4.6mmol/L,今随机调查某单位食堂成 年男性炊事员25名,测得血清总胆固醇均数为 5.1mmol/L,标准差为0.88mmol/L,试问该单 位食堂成年男性炊事员血清总胆固醇的均数与 健康成年男子血清总胆固醇的均数有无差别?
假设检验的基本思想
“反证法”的思想
先根据研究目的建立假设,从H0假设出 发,先假设它是正确的,再分析样本提 供的信息是否与H0有较大矛盾,即是否 支持H0,若样本信息不支持H0,便拒绝 之并接受H1 ,否则不拒绝H0 。
假设检验的基本步骤
建立检验假设 确定检验水准 计算检验统计量,界定P值 推断性结论
t X 0 5.1 4.6 2.841
s n 0.88 25
计算概率P(与统计量t值对应的概率)
在H0成立的前提下,获得现有这么大的 标准t离差以及更大离差 的可能性。
P=P(|t|≥2.841) ?
按 =25-1=24查附表2的t界值表
-t
0
t
自由度
单侧 双侧
1
2 3 4 5
6 7 8 9 10
建立假设
零假设(null hypothesis),记为H0
H0:=0;
备择假设(alternative hypothesis),记为H1
H1:≠0。
确定检验水准 (Significance Level)
一般取=0.05
小概率事件的判断标准
选定检验方法计算检验统计量
(计算样本与总体的偏离)
4.317 4.029 3.833 3.690 3.581
5.208 4.785 4.501 4.297 4.144
5.959 5.408 5.041 4.781 4.587
2.831 2.819 2.807 2.797 2.787
3.135 3.119 3.104 3.091 3.078
3.527 3.505 3.485 3.467 3.450
3.819 3.792 3.768 3.745 3.725
理论基础:t 分布
t0.05,24=2.064 P =P ( |t| ≥2.064 )=0.05
v=24
-2.064
0
2.064
P=P(|t|≥2.841)<0.05
结论(根据小概率原理作出推断)
在H0成立的前提下出现现有差别或更大差别的可能性 P(| t | ≥2.841)小于0.05,是小概率事件,即现有样本 信息不支持H0。
t d 0.0441 2.0412 sd n 0.05716 7
按= n-1=7-1=6查t界值表,得P<0.05,按 = 0.05水准,
拒绝H0,接受H1,差别有统计学意义,可以认为脑缺氧 可造成钙泵含量的降低。
两样本均数比较的t检验
完全随机设计
受试对象被随机分配到两组中,分别接受不同的 处理。
乳猪号 1 2 3 4 5 6 7
合计
表 4.3 两组乳猪脑组织钙泵含量( g/g0
0.2755
0.0795
0.2000
0.2545
-0.0545
0.3130
0.1800
0.1330
0.3630
0.3230
0.0400
0.3544
0.3113
0.0431
0.3450
0.2955
94 102 110 100 102 106 114 98 108 104
用药后 (3)
88 92 106 94 106 96 108 96 102 100
差值d (4)=(2)-(3)
6 10 4 6 -4 10 6 2 6 4 50
H0:d=0,用药前后的舒张压相同; H1:d≠0,用药前后的舒张压不同。
t X 0
sn
n 1
统计量t表示,在标准误的尺度下,样本均数与总体均
数0的偏离。这种偏离称为标准t离差。
根据抽样误差理论,在H0假设前提下,统计 量t服从自由度为n-1的t分布,即t值在0的附近 的可能性大,远离0的可能性小,离0越远可能 性越小。
t值越小,越利于H0假设 t值越大,越不利于H0假设
相关文档
最新文档