一维无限深势阱

合集下载

第八节一维无限深势阱

第八节一维无限深势阱

《大学物理》2教师:胡炳全d ( x ) 2m 2 ( E V ( x)) ( x) 0 2 dx
由于势能是分段函数,波函数和薛定谔方程也应 该分段写出。
在x 0的区域, d 21 ( x) 2m 2 ( E )1 ( x) 0 2 dx 在x a的区域, d 23 ( x) 2m 1 ( x) 3 ( x) 0 2 ( E )3 ( x) 0 2 dx
三、讨论: 1、粒子在一维无限深势阱中运动的能级: V 2 ∞ ∞
E
2m a
2
n 2 , n 1,2,3
n=3
n=2
2、粒子在一维无限深势阱中运 动的波函数:
o
a
n=1
x
《大学物理》
教师:
胡炳全
2 n sin x, 0 x a ( x) a a 0 x 0, x a
《大学物理》
教师:
胡炳全
在0 x a的区域, d 2 ( x ) 2m 2 ( E 0) 2 ( x) 0 2 dx
2
2 ( x)的通解为:
2m E 2m E 2 ( x) A sin x B cos x 2 2
根据波函数的连续性,在x=0和x=a处φ2应该为零。所 以有:
《大学物理》
教师:
胡炳全
四、势垒与隧道效应
由薛定谔方程求解可知:即使入射粒子的能量比势垒 高度还小,穿过势垒的波函数也不为零,这表明在势垒后 面发现粒子的几率不为零。即入射粒子也有一定的几率穿 过势垒。这种现象叫做隧道效应。
2 ( x) x0 0 B 0
2m E 2 ( x) A sin x 2
《大学物理》

量子力学2.6一维无限深势阱

量子力学2.6一维无限深势阱

2008.5
Quantum Mechanics
a、偶宇称态 由于这里内外解
(
2 (x)
x)和 '(
~ cos kx
x)在 | x | a
| x | a 2
处是连续的,
2
更方便的方法是取 ' 连续或 (ln )' 连续。
因此在x
a 处,有 2
ln(cos
kx)
' x a
2
ln(
ex
)
' x
a
,得
2
k tan ka
2
(5)
在x a 处,结果同上。 2
2008.5
Quantum Mechanics
令 则(5)式化为
ka, a
2
2
tan
(6)
(7)

2m(V0
E)
,
k
2mE

2mV0 2k 2
再利用(6)式,有
2
2
mV0 a 2 2 2
2008.5
(8)
2008.5
Quantum Mechanics
写出分区定态方程 在阱外(经典禁介区)
d2 dx 2
1
2m 2
(V0
E ) 1
0
(1)

方程(1)变为
其解为
2m(V0 E)
(2)
1'' 21 0
1 ~ ex
都是方程的解?
2008.5
Quantum Mechanics
考虑到束缚态边界条件:| x | 时 0,有
2008.5
Quantum Mechanics

163一维势阱和势垒问题

163一维势阱和势垒问题
mn
0,
mn mn
克罗内克符号
二、势垒穿透和隧道效应
有限高的方形势垒
数学形式:
U
(
x)
0,
U 0 ,
图形形式:
x 0(P区),x a(S区) 0 x a(Q区)
U
考虑粒子的动能 E小于势垒高
U0
度 U0的情况。( E < U0 )
E
PQ S
o ax
U (x) 0, x 0和x a
1
(0 x a)
(x 0及x a)
2
势阱内 0 < x < a
d 2 1
dx2
2E
2
1
0
势阱外 x ≤ 0 ;x ≥a
2 0
理由:因为势壁无限高,所以粒子不能穿透势壁,故势 阱外的 波函数为零
定态薛定谔方程为
d 2
d x2
2E
2
0
E是粒子的总能量,E > 0,令 k
定态薛定谔方程变为
d 2
一维无限深方势阱的图形表达形式 :
∞∞
U(x)
粒子只能在宽为 a 的两个无限 高势壁间运动,这种势称为一 维无限深方势阱。
0
ax
因为系统的势能与时间无关,因此这是一个定 态问题,可以用定态薛定谔方程进行求解。
2
2
2
U
(r)
(r )
E
(r )
————定态薛定谔方程
①列出各区域的定态薛定谔方程
若在样品与针尖之间
加一微小电压Ub电子 就会穿过电极间的势
垒形成隧道电流。
隧道电流对针尖与样品间的距离十分敏感。 若控制隧道电流不变,则探针在垂直于样品 方向上的高度变化就能反映样品表面的起伏。

2.6一维无限深势阱

2.6一维无限深势阱
2 2
O
a
x
第二章 波函数和薛定谔方程
2/33
Quantum mechanics
2
§2.6 一维无限深势阱
d 2 E 0, (a x a) U 0 , (| x | a) 2 2 dx U ( x) 2 2 d 0, (| x | a) ( E U ) 0, ( x a , x a ) 0 2 dx 2 2 (U 0 E ) 1/ 2 2 E 1/ 2 令: ( 2 ) , [ ] 2
第二章 波函数和薛定谔方程
4/33
Quantum mechanics
§2.6 一维无限深势阱
A sin( x ),(| x | a) 1 x x Be ,( x a), Ce ,( x a) 当x=±a处波函数连续可得: ctg( a ) ,( x a) ctg( a ) ,( x a)
Quantum mechanics
§2.9 例题
例1,设一维无限深方势阱宽度为a,求处于基态的 粒子的动量分布(P39). U(x) 0,(0 x a) 解:U ( x) ,( x 0),( x a)
2 d 2 ( x) E ( x) 0, (0 x a) 2 2 dx ( x) 0, (0 x, x a)
d ctg( x ),(| x | a) dx ,( x a), ,( x a) 0, ctg a , / 2, tg a ,
a A sin a Be ,( x a) A sin x,(| x | a) 0, 0, x a x A sin a Ce ,( x a) Be ,( x a), Ce ,( x a)

一维无限深势阱

一维无限深势阱

n*dx
=
a −a
A sin ⎢⎣⎡
nπ 2a
(x
+
a)⎥⎦⎤dx
= aA2 = 1
A= 1 a
ψn =
1 a
sin
⎡ ⎢⎣
nπ 2a
(
x
+
a)⎥⎦⎤
ψ
n
( x, t )
=
ψ
− i Et
ne h
=
1 a
sin
⎡ ⎢⎣
nπ 2a
(x
+
a)⎥⎦⎤

−i
eh
Et
En
=
n2π 2h 2 8μA2
ΔEn
=
En +1
§2.6 一维无限深势阱 (1) 序
一维运动 相互作用用势函数 U 表示
势场
⎧散射场 ⎩⎨束缚态
势垒
方形势阱
⎧方形势阱 ⎪⎪谐振子势阱 ⎪⎨δ 阱 ⎪⎩周期阱
一维无限深势阱,图 2.1 所示
Fig 2.1 一维无限深势阱
(2) 一维无限深势阱 在一维空间中运动的粒子,粒子在一定区域内(x=-a 到 x=a)为零,而在此区域外,势能为无
a −a
⎢⎣⎡cos
n
+ n′ 2a
(
x
+
a)

cos
n
− n′ 2a
(
x
+
a)⎥⎦⎤
dx
=0
——此即为波函数的正交条件。
8.波函数可视为两波波函数的迭加
ψ = c e + c e i h
(
nπh 2a

Ent
)

一维无限深势阱

一维无限深势阱

A e ikx B e ikx , ( x ) F e k3 x G e k3 x , C e ikx ,
2 2
x0 0 xa xa
(k k3 ) sh k3a B 2 , 2 A (k k3 ) shk3a 2ikk3chk3a
1 x x 1 x x shx (e e ), chx (e e ). 2 2
ik1 x
2
x0 0 xa xa
2 Beik x B e ik x
ik1 x 3 Ce C e (C 0) ik1 x
这里 k1 因子
ikx e 波数为K的平面波, 则是向左运动的平面波。在I、II两
x 0,
2mE ,k 2 2m( E V0 ) 。考虑到时间 ikx iEt / i t ,因此 代表向右运动的 e e
2
1 2
所以几率密度与 (1
2
/a )
2

1 2
成比例。
一、方势垒
1.方势垒是:
§3.3势垒贯穿 U(x)
U0
x 0 or 0, U ( x) U 0 0 0 x a
xa
0 a x
其特点是: (1)对于势阱,波函数在无穷远处趋于零,能谱是分立的。但 对于势垒,波函数在无穷远处不为零。下面将看到,粒子能量 可取任意值。 (2)按照经典力学观点,若E<U0 ,则粒子不能进入势垒,在x=0处 全被弹回;若 E> U0, 则粒子将穿过势垒运动。 但从量子力学的观点,由于粒子的波动性,此问题将与波 透过一层介质相似,总有一部分波穿过势垒,而有一部分波被 反射回去。因此,讨论的重点是反射和透射系数。

量子力学 一维无限深势阱

量子力学 一维无限深势阱

55§2.6一维无限深势阱(Potential Well )(理想模型)重点:一维无限深势阱中粒子运动的求解难点:对结果的理解实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。

一、写出本征问题 势场为:⎩⎨⎧≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 222ψ=ψμ−h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dxd 2()III (II )III (II 0222ψ=ψ+μ−h (2) 其中∞=0U 。

波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ (3)二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h−μ=α (4) 则:)x (E )x (dx d 2I I 222ψ=ψμ−h 的解为: x i x i I Be Ae )x (αα−+=ψ a x <(5)56 )x (E )x ()U dx d 2()III (II )III (II 0222ψ=ψ+μ−h 的解为:x 'x'II e 'B e 'A )x (αα−+=ψ a x ≥ (6)x 'x 'III e ''B e ''A )x (αα−+=ψ a x −≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即:x 'II e 'A )x (α−=ψ a x ≥x 'III e ''B )x (α=ψ a x −≤又由于∞=0U ,则:∞=−μ=α20)E U (2'h于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ;x i xi I Be Ae )x (αα−+=ψ则:⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i ai a i (9)于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i ai ai =α−ααα−, 即:0)a 2sin(=α 解之得:a 2n π=α,,....2,1,0n ±±= (10)将其代入到⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i a i ai ,得:0Be Ae 2/in 2/in =+ππ−即:B )1(A 1n +−=代入x i x i I Be Ae )x (αα−+=ψ中,得:57 ⎪⎪⎩⎪⎪⎨⎧=π=π=ψ,..5,3,1n ,x a 2n cos D ,...6,4,2n ,x a 2n sin C )x (I a x < (11)其中0n =,()0x =Ψ为平凡解,无意义;,...2,1n −−=不给出新的解。

一维无限深势阱

一维无限深势阱

一维无限深势阱无限深阱假设粒子不能离开势阱,也就是有一个势为无穷大的壁。

势可以写成()⎪⎪⎩⎪⎪⎨⎧>≤≤-∞=2022a x a x a x V(注:也可以选用坐标形如第二个图,这样的解简单,且容易推广到三维,但是对称性不如第一个图明显。

)注意,这个势是有奇异性的,我们分别有势阱内和势阱外的方程:⎪⎪⎩⎪⎪⎨⎧>=≤=+外)(阱外,粒子不能到阱(阱内)2020222a x a x E m dx d ψψψ 考虑势阱内,定义: 22mE k ≡ 定态方程为:0222=+ψψk dxd 此方程的通解为:kx B kx A cos sin +=ψ或:()δψ+=kx A sin连续性条件:02=±=ax ψ(单值、有限自动满足) 于是:⎪⎪⎩⎪⎪⎨⎧-+-+)2(cos )2(sin )2(cos )2(sin a k B a k A a k B a k A (注意:由于势在边界上有奇异性(无限深 ), ψ不连续,有跃变。

)这是关于 A 、B 的齐次方程,有非零解的条件是系数行列式为零,即:02cos 2sin 2cos 2sin =-a k a k a kak因此, 02cos 2sin 2=a k a k 即:0sin =ka故:() 3,2,1==n n ka π(注意:n 不能取 0 ,否则就出现了不振动的“波”。

)an k k n π== 22222ma n E n π= n maE 222π ≈∆ 可见势阱中能级是分立的,(与用德布罗意驻波直接计算一样)。

需要注意的是,n ma E 222π ≈∆,即能级越高越稀疏,但大量子数情况下02~→∆nE E n n ,即n n E E <<∆,所以在经典情况下(大量子数)感受不到能级的间隔,便认为能量是连续的,与对应原理相符。

下面求波函数,我们有:n 为奇数(偶宇称):002sin =⇒=A a k A n ⎪⎪⎩⎪⎪⎨⎧>≤=∴202cos a x a x x k B n n ψ n 为偶数(奇宇称):002cos =⇒=B a k B n ⎪⎪⎩⎪⎪⎨⎧>≤=∴202sin a x a x x k A n n ψ其实上述结果可以直接看出来,因为态应该取确定的宇称,因此只能是sin 或者cos ,不可能是它们的组合。

一维无限深势阱

一维无限深势阱
因而,
(at x a) (at x a)
Acos ka 0,
B sin
ka
0.
有两种情形的解:
(1) B 0, coska 0, 所以,
(n 1 )
k 2 , a
(n 0,1,2, )
E
2 2 2a 2
n
12
2
,
(
x)
A cos
n
12
x
a
.
(偶宇称)
(2) A 0,sin ka 0 所以,
0
显然E必须>0,所以记
(a x a)
2E
k
那么方程变成: d 2
dx 2
k 2 (x)
0.
它的一般解是:
(x) Acos kx Bsin kx.
(a x a)
这三段的解必须在 x=±a 处衔接起来。在势能有无限
大跳跃的地方,衔接条件只有 本身的连续性。所以
现在
Acos ka Bsin ka 0, Acos ka Bsin ka 0,
n
k , a
(n 1,2,3, )
E
2 2 2a 2
n2,
( x) B sin nx .
a
(奇宇称)
二者合起来可写为:
n
kn 2a ,
(n 1,2,3, )
En
2 2 8a 2
n2,
n n (x) An sin 2a (x a).
波函数的归一化是:
所以,
a | (x) |2dx 1 a
R
B2 A2
(k 2
(k 2 k32 )2 sh 2k3a k32 )2 sh 2k3a 4k 2k32
,

一维定态问题无限深方势阱

一维定态问题无限深方势阱

u(x)
2
=
2
sin 2

a a
0
x, ,
0≤ x≤a x < 0,or, x > a
n = 1, 2,3,
概率分布不均匀,存在概率为零的节点。 但:概率分布不随时间变化!
§2.4 一维定态问题–无限深方势阱
结论:
(3) 束缚在势阱中的粒子的能量是量子化的
=E
E=n
π2 2
2ma2
n2 ,
平均值
∫ = E
+∞
ψ
−∞
*
(r
,
t
)

2
2m
∇2
+V
(r,t) ψ
(r , t )dτ
总能能算符:

=−
2
∇2
+V
(r,t)
pˆ 2 =
+V (r,t)
2m
2m
称为粒子的哈密顿算符。
§2.5 力学量的平均值、算符表示—平均值
含时薛定谔方程:
i
∂ψ
∂t
=

2
2m
∇2
+ V (r,t) ψ
(1) 粒子的位置 r
例如:一维无限深方势阱
粒子的位置是不确定的,取值在[0, a]之间。 但粒子的概率分布是确定的,是
u(x)
2
=
2 sin2 nπ a a 0
x, ,
0≤ x≤a x < 0,or, x > a
n = 1, 2,3,
所以,可以得到粒子位置的平均值 (假设粒子处在基态 n =1 态):
2
∇2 2m
+ V (r,t)ψ

2.6一维无限深势阱

2.6一维无限深势阱

A sin a B cosa 0, A sin a B cosa 0,
由此得到
B cosa 0,
A sin a 0,
A,B不能同时为零,所以
(1)A=0, (2)B=0,
(2.6.7)
cosa 0,
sin a 0,
(2.6.8) (2.6.9)
n 所以 a , n 1,2,3 2
把在无限远处为零的波函数所描写 的状态称为束缚态。 一般来说,束缚态的能级是分立的。
能量最低的状态,称为基态。
§2.6一维无限深势阱
一.一维无限深势阱 考虑粒子在一维空间中运动,它的势能在一定 区域内(-a<x<a)为零,而在此区域以外,势 能为无限大,即
U x 0, x a, U x , x a.
(2.6.1)
这种势阱称为一维无限深势阱。 在阱内( x a, )体系所满足的定态薛定谔方程为
和有限性的要求,只有当 0 时。(2.6.3)式才 能成立,所以有
0


x a
1 2
(2.6.4)
2m E 2
(2.6.5)
则(2.6.2)式简化为
d 2 ( x) 2 ( x) 0 2 dx

x a,
其通解为 ( x) A sin x B cosx , x a, ( 2.6.6 ) 因为 ( a) 0 ,代入(2.6.6),有
n ( x, t ) n x e
i
i En t
En t n x a e A sin 2a
e e 由 sin 2i
i
得,
n ( x, t ) C1e

一维无限深势阱

一维无限深势阱

6.ξ一维无限深势阱考虑一维空间中运动的粒子,它的势能在一定区域内:0,,x x aU x a⎧<⎪=⎨∞≥⎪⎩ 如右图这种势叫一维无限深势阱 因x U 不含 t ,属于定态问题。

体系所满足的定态薛定谔方程是:()2222dE x a dx ψψμ-=<①()22022dU E x a dxψψψμ-+=≥②②中,0U →∞由波函数应满足的连续性和有限性条件,只有当ψ=0时,②式才能成立,所以,有:ψ=0,x a ≥现求解①式,改写为:2221222222020sin cos ,dE dxE d x a dx A x B x x aψψμψμααψψαα+=⎛⎫=+=< ⎪⎝⎭=+<令:则:,其解为: (本身上方说的解可表为如下振荡函数形式:sin x α,cos ,i x x e αα±,但因现在势阱具有空间反射不变性,()()x x U U -=能量本征函数必定有确定的宇称曾书——P49——所以,只能取sin x α,或cos x α的形式。

根据ψ的连续性,因②式得ψ=0,x a ≥,于是:,sin cos 0sin cos 0sin 0cos 0x a A a B a x a a B a a B a αααααα=+==-+===时时,A 两式相减,得:A 两式相加,得:因A,B 不能同时为0,否则,sin cos A x B x ψαα=+处也为0,这在物理上无意义。

(物理问题对ψ的要求)所以,得到两组解:⑴0,cos 0A a α== ⑵0,sin 0A a α==对第⑴组解,有,1,3,5 (2)n a n απ==对第⑵组解有:,2,4,6 (2)n a n απ==合并,即有:,1,2,3,4,5 (2)n a n απ==其中对⑴组,n 取奇数,对第⑵组n 取偶数,注意,n 不能取0,否则ψ=0,将2na απ=代回1222E μα⎛⎫= ⎪⎝⎭,得体系的能量本征值为:2222,8n n E n aπμ=为整数这说明,并非任何E 值所相应的波函数都能满足本问题所要求的边条件,而只能取上式给出的那些分立值n E ,此时的波函数在物理上才是可接受的。

一维无限深势阱

一维无限深势阱

2008.5
25
对奇宇称态则不同,只当
2 2 mV0a2 / 22 2 / 4

V0a2
2h2
2m
,或
V0
2h2
2ma2

才可能出现最低的奇宇称能级。
2008.5
26
3、束缚态与分立谱的讨论
由以上分析可知,束缚态能量是分立的。
相应动量也是分立的。 这是在束缚态边界条件下求解定态方程的结果。
En
π 22 2ma 2
n2
(n 1,2,3, )
2008.5
8
❖ 由波函数的归一性质定常数 B
a
(x) *(x)dx 1
0
a
B2sin 2kxdx 1
0

B 2 a
本征函数
n(x)
2 sin nπ x aa
( n 1,2,3,)
这组函数构成本征函数系。
2008.5
9
⑥定态波函数
n
n
2008.5
16
写出分区定态方程 在阱外(经典禁介区)
d2 dx 2
1
2m 2
(V0
E) 1
0
(1)

方程(1)变为
其解为
2m(V0 E)
(2)
1'' 21 0
1 ~ ex
都是方程的解?
2008.5
17
考虑到束缚态边界条件:| x | 时 0,有
Be
x
1(x)
Aex
A, B为待定常数.
0时, ' ' 0,
取极小值 向上弯曲
0时, ' ' 0,
取极大值 向下弯曲(见右图)

2.5-2.6 一维无限深势阱

2.5-2.6  一维无限深势阱

| x | a / 2 | x | a / 2
束缚态 无限远处为零的波函数所描述的状态
lim (r , t ) 0
r
存在束缚态条件
E lim V (r , t )
r
特点:
(1)处于束缚态粒子能量是离散的 (2)波函数一般可以用实函数描述 (3)束缚态能量所对应本征函数不简并
(0) 2 (0) 0 A 0 ( x) B sin kx
( a ) 2 ( a ) 0
在 x=0处,波函数要连续,即

在x=a 处,波函数要连续,即
Bsin ka 0
2008.5
Quantum Mechanics
B sin ka 0
A 已经为零了,B 不能再为零了。即 只能 sin(ka)等于零 要求
§6 定态Schrodinger方程
• (一)定态Schrodinger方程 (二)Hamilton算符和能量本征值方程 (三)求解定态问题的步骤 (四)定态的性质
(一)定态Schrodinger方程
V(r)与t无关时,可以 分离变量
讨有外场情况下的定态Schrodinger 方程:
2 2 i ( r , t ) [ V ( r )]( r , t ) t 2
二方程的特点:都是以一个算符作用于Ψ(r, t)等于EΨ(r, t)。所以这两个算 符是完全相当的(作用于波函数上的效果一样)。
再由 Schrodinger 方程:
2 2 i ( r , t ) [ V ( r )]( r , t ) t 2
与经典力学相同, ˆ 称为Hamilton量, H 亦称Hamilton算符。

量子力学 一维无限深势阱

量子力学 一维无限深势阱

55§2.6一维无限深势阱(Potential Well )(理想模型)重点:一维无限深势阱中粒子运动的求解难点:对结果的理解实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。

一、写出本征问题 势场为:⎩⎨⎧≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 222ψ=ψμ−h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dxd 2()III (II )III (II 0222ψ=ψ+μ−h (2) 其中∞=0U 。

波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ (3)二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h−μ=α (4) 则:)x (E )x (dx d 2I I 222ψ=ψμ−h 的解为: x i x i I Be Ae )x (αα−+=ψ a x <(5)56 )x (E )x ()U dx d 2()III (II )III (II 0222ψ=ψ+μ−h 的解为:x 'x'II e 'B e 'A )x (αα−+=ψ a x ≥ (6)x 'x 'III e ''B e ''A )x (αα−+=ψ a x −≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即:x 'II e 'A )x (α−=ψ a x ≥x 'III e ''B )x (α=ψ a x −≤又由于∞=0U ,则:∞=−μ=α20)E U (2'h于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ;x i xi I Be Ae )x (αα−+=ψ则:⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i ai a i (9)于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i ai ai =α−ααα−, 即:0)a 2sin(=α 解之得:a 2n π=α,,....2,1,0n ±±= (10)将其代入到⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i a i ai ,得:0Be Ae 2/in 2/in =+ππ−即:B )1(A 1n +−=代入x i x i I Be Ae )x (αα−+=ψ中,得:57 ⎪⎪⎩⎪⎪⎨⎧=π=π=ψ,..5,3,1n ,x a 2n cos D ,...6,4,2n ,x a 2n sin C )x (I a x < (11)其中0n =,()0x =Ψ为平凡解,无意义;,...2,1n −−=不给出新的解。

第二章 -.6一维无限深势阱

第二章 -.6一维无限深势阱

可见, 取负整数与正整数描写同一状态。 可见,n取负整数与正整数描写同一状态。
(3)n = 0 , E = 0, ψ = 0,态不存在,无意义。 ) ,态不存在,无意义。 而n = ± k, k=1,2,...
(4)波函数宇称
ψ ψ n(−x) = − n(x) ψ ψ n(−x) = + n(x)
I
( − a ) = li m C 1 e − β a = 0
β → ∞
I
所 以
ψ
= 0
ψ ψ ψ
I II III
= C 1e
βx
+ C 2e − βx + B 2e − βx
ψI =0
ψ III = 0
=0。 B1=0。
− E )
= A sin( α x + δ ) = B 1e
βx
βx
+ C 2e − βx + B 2e − βx
= A sin( α x + δ ) = B 1e
βx
考虑波函数三个标准条件 1。单值 2。有限 3、连续
有限的条件, 当x → - ∞ , ψ 有限的条件,要求
=0。 C2=0。
ψ
I
= C 1e βx
2
又 由 于 β
=
2 µ (V h 2
ψ
− E )
U0 → ∞
边界条件
ψ 根据波函数连续、有限的条件。 = 0
证明见附录I, 令
x ≥a
2mE α= h2
d 2ψ ∴由(1) + α 2ψ = 0 dx 2 ψ = A sin αx + B cos αx
x <a x <a

21-6一维无限深势阱

21-6一维无限深势阱

x
n 1,2,3,
将上式对x求导一次,并令它等于零
d n ( x ) dx
2

x 0
4 m a2
sin na x cos na x 0
0 x a , sin na x 0 cos na x 0
因为在阱内,即 只有
于是
n a
x (2 N 1) 2
a
0
A2 Sin 2 xdx
a A 1 A 2
三、求解结果
2
a
波函数: ( x) 0.( x 0, x a)
( x)
能级:
2 nx sin , (0 x a) a a
k 2 2m E
ka n

2
n2h2 En , (n 1,2, ) 2 8m a
量子论观点:
Ψ (x)
当 n 很大时, 量子概率分 布就接近经 典分布 0
2 2 n Ψ( x) sin ( x) a a
2
Ψ (x)
2
n =4 n =3 n =2
a n =1
0
a
例题1、 试求在一维无限深势阱中粒子概率密度的最大值 的位置。 解:一维无限深势阱中粒子的概率密度为
2 n ( n) a sin 2 2 n a
它的通解为:
( x) A sin(kx )
由波函数的标准条件得: 在x=0处:
A sin 0 0
A sin(ka ) 0 ka n , (n 1, 2,)
在x=a处:
由波函数的归一化条件得:
1
2



A sin xdx
2 2

一维无限势阱

一维无限势阱

一维无限深势阱定义编辑粒子在一种简单外力场中做一维运动,其势能函数为U(X)=0 (-a<x<a);U(x)=∞ (x≥a或x≤-a)。

由于其函数图形像阱,且势能在一定区域为0,而在此区域外势能为无穷大,所以这种势能分布叫做一维无限深势阱。

实际模型编辑自由电子在一块金属中的运动相当于在势阱中的运动。

在阱内,由于势能为零,粒子受到的总的力为零,其运动是自由的。

在边界上x=0或x=a处,由于势能突然增加到无限大,粒子受到无限大指向阱内的力。

因此,粒子的位置不可能到达0<x<a的范围以外。

一维无限深势阱中粒子运动的波函数编辑一维无限深势阱中粒子运动的波函数为Ψ(x)=√(2/a)·sin(nπx/a) (0<x<a)。

三、一维势阱3.1 一维无限深势阱要使电子脱离金属,需要对它做功,这相当于电子在金属表面处势能突然增大,自由电子在金属内部的运动,可近似比作在无限深势阱的运动。

由于金属是各向同性的,便可简化为电子在一维无限深势阱中的运动。

势能曲线如右图,势能表达式为电子在一维无限深势阱中运动,用经典力学描述和量子力学描述得到了完全不同的结果。

按照经典概念,当外界向它提供能量时,电子可获得此能量而自身能量发生连续变化。

电子在阱内任何位置出现的概率也是相等的。

然而,按照量子力学观点,它的行为却不是这样的。

(1) 定态薛定谔方程的解电子所受的保守力,在边界处电子所受的力无限大,指向阱内,意味着电子不可能越出阱外,由波函数物理意义可知势阱外波函数。

电子在势阱内势能为零,受力为零。

势阱内定态薛定谔方程为令方程变为其解为根据波函数应满足的标准化条件,波函数应在边界x=0和x=a上连续得应用归一化条件求得于是定态波函数为(2) 能量量子化因,合并(23.3.3)式,即得到一维无限深势阱中的电子能量上式表明:电子的能量不能连续地取任意值,只能取分立值,即能量是量子化的,可形象地称为处于相应的能级(如右图所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.ξ一维无限深势阱
考虑一维空间中运动的粒子,它的势能在一定区域内:
0,,x x a U x a
⎧<⎪=⎨∞≥⎪⎩ 如右图
这种势叫一维无限深势阱
因x U 不含 t ,属于定态问题。

体系所满足的定态薛定谔方程是:
()2
222d E x a dx ψ
ψμ-=<① ()2
2022d U E x a dx ψ
ψψμ-+=≥② ②中,0U →∞由波函数应满足的连续性和有限性条件,只有当ψ=0时,②式才能成立,所以,有:ψ=0,x a ≥现求解①式,改写为:222122
2222020sin cos ,d E dx
E d x a dx A x B x x a
ψψμψμααψψαα+=⎛⎫=+=< ⎪⎝⎭
=+<令:则:,其解为: (本身上方说的解可表为如下振荡函数形式:sin x α,cos ,i x x e αα±,
但因现在势阱具有空间反射不变性,()()x x U U -=能量本征函数必定有确定的宇称曾书——P49——所以,只能取sin x α,或cos x α的形式。

根据ψ的连续性,因②式得ψ=0,x a ≥,于是:
,sin cos 0
sin cos 0
sin 0
cos 0
x a A a B a x a a B a a B a αααααα=+==-+===时时,A 两式相减,得:A 两式相加,得: 因A,B 不能同时为0,否则,sin cos A x B x ψαα=+处也为0,这在物理上无意义。

(物理问题对ψ的要求)
所以,得到两组解:⑴0,cos 0A a α== ⑵0,sin 0A a α==对第⑴组解,有,1,3,5.......2n a n απ==对第⑵组解有:,2,4,6 (2)
n a n απ== 合并,即有:,1,2,3,4,5 (2)
n a n απ==其中对⑴组,n 取奇数,对第⑵组n 取偶数,注意,n 不能取0,否则ψ=0,将2n a απ=代回12
22E μα⎛⎫= ⎪⎝⎭,得体系的能量本征值为:222
2
,8n n E n a πμ=为整数这说明,并非任何E 值所相应的波函数都能满足本问题所要求的边条件,而只能取上式给出的那些分立值n E ,此时的波函数在物理上才是可接受的。

这样,我们得到:体系的能量是量子化的,即能谱是分立的。

n E 称为体系的能量本征值。

相应的本征波函数为:P36
第一组n ψ为偶函数,即波函数具有偶宇称
第二组n ψ为奇函数,即波函数具有奇宇称
两式合并,得n ψ
的表达式,进行归一化,得'A =
子的定态波函数为:()()(),sin 2n n iE iE t t n n x n x t e x a e a a πψ--ψ==+(n ψ,与n E 对
应关系,粒子处于1ψ态时,E 有确定值2E )
讨论:①粒子最低能级22
1208E a
πμ=≠,这与经典粒子不同,是微观粒子波
动性的表现,因为“静止的波”是没有意义的,从测不准关系也可得出定性的结论,因粒子限制在无限保势阱中,位置不确定度x a ∆,按测不准关系,2p x a ∆∆所以,粒子的能量()22
220228p p E a μμμ∆≠
②应用公式s i n 2i i e e i
θθθ--=将上述定态波函数写成指数形式,有()221212,...(,n n i n i n x E t x E t a a n x t C e C e C C ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ψ=+为两个常数)所以,(),n x t ψ是由两个沿相反方向传播的平面波迭加而成的驻波,各能量本征值对应的本征函数及对应的粒子位置几率密度分布见P37,图8,图9
从图8知,除端点(x a =±)外,基态波函数1ψ无节点,第11激发态(n =2)有一个节点,第k 激发态(n=k+1)有k 个节点。

③由上述讨论知00x ψ≥=,即粒子波束缚在势阱内部,通常把∞处为0的波函数所描述的状态叫束缚态。

一般地,束缚态的能级是分立的(在势阱为[]02a ,的情况?)。

相关文档
最新文档