运筹学-线性规划模型及其解法.

合集下载

线性规划

线性规划

• 4.2 两阶段法
• 两阶段法是处理人工变量的另一种方法。其具体做 法是在原约束条件中增加人工变量,构造一个新的 目标函数,其中人工变量的系数为-1,其余变量的 系数为0,这样就产生了如下的最优解有三种情形。 (1)这说明在辅助问题的最优解中,还有人工变量是基变量, 且取值不为0,此时原问题无可行解。 (2)且最优解中人工变量均为非基变量,则把它们划去后就得 到了原问题的一个基本可行解。 (3)但最优解中还有人工变量是基变量,其取值为0。这时, 只要选某个不是人工变量的非基变量进基,把在基中的人工 变量替换出来,则情形同(2)。 第二阶段:对于第一阶段的后两种情形,在第一阶段的最优单 纯形表中划去人工变量所在的列,并把检验数行换成原问题 目标函数(消去基变量以后)的系数,从而得到原问题的初 始单纯形表,再继续迭代求解。
2014-6-19 3
例2(运输问题)
• 设有某种物资要从A1,A2,A3三个仓库运往四个 销售点B1,B2,B3,B4。各发点(仓库)的发货 量、各收点(销售点)的收货量以及 到 的单位运 费如表1-2。问如何组织运输才能使总运费最少?
例3(配料问题)
• 在现代化的大型畜牧业中,经常使用工业生产的饲料。 设某种饲料由四种原料B1,B2,B3 ,B4混合而成,要 求它含有三种成份(如维生素、抗菌素等)A1,A2, A3的數量分別不少于25、36、40个单位(这些单位可 以互不相同),各种原料的每百公斤中含三种成份的数 量及各种原料的单价如表1-3.
1.2 线性规划的数学模型
一、一般形式 上述各例具有下列共同特征: 1.存在一组变量 ,称为决策变量,表示某一方案。通 常要求这些变量的取值是非负的。 2.存在若干个约束条件,可以用一组线性等式或线性 不等式来描述。 3.存在一个线性目标函数,按实际问题求最大值或最 小值。

运筹学第3章:运输问题-数学模型及其解法

运筹学第3章:运输问题-数学模型及其解法

整数规划模型
01
整数规划模型是线性规划模型 的扩展,它要求所有变量都是 整数。
02
整数规划模型适用于解决离散 变量问题,例如车辆路径问题 、排班问题等。
03
在运输问题中,整数规划模型 可以用于解决车辆调度、装载 等问题,以确保运输过程中的 成本和时间效益达到最优。
混合整数规划模型
混合整数规划模型是整数规划和线性规划的结合,它同时包含整数变量和 连续变量。
运筹学第3章:运输问题-数学模 型及其解法
目录
• 引言 • 运输问题的数学模型 • 运输问题的解法 • 运输问题的应用案例 • 结论
01 引言
运输问题的定义与重要性
定义
运输问题是一种线性规划问题,主要 解决如何将一定数量的资源(如货物 、人员等)从起始地点运送到目标地 点,以最小化总运输成本。
总结词
资源分配优化是运输问题在资源管理 领域的应用,主要解决如何将有限的 资源合理地分配到各个部门或项目, 以最大化整体效益。
详细描述
资源分配优化需要考虑资源的数量、 质量、成本等多个因素,通过建立运 输问题的数学模型,可以找到最优的 资源分配方案,提高资源利用效率, 最大化整体效益。
05 结论
运输问题的发展趋势与挑战
生产计划优化
总结词
生产计划优化是运输问题在生产领域的应用,主要解决如何合理安排生产计划, 满足市场需求的同时降低生产成本。
详细描述
生产计划优化需要考虑原材料的采购、产品的生产、成品的销售等多个环节,通 过建立运输问题的数学模型,可以找到最优的生产计划和调度方案,提高生产效 率,降低生产成本。
资源分配优化
发展趋势
随着物流行业的快速发展,运输问题变得越来越复杂,需要更高级的数学模型和算法来 解决。同时,随着大数据和人工智能技术的应用,运输问题的解决方案将更加智能化和

管理运筹学_第二章_线性规划的图解法

管理运筹学_第二章_线性规划的图解法

线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的

运筹学线性规划

运筹学线性规划
主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
4
例1.1:(计划安排问题) I 设备A(h) 0 设备B(h) 4 原材料(公斤) 2 利润(万元) 2 II 资源总量 3x2 15 3 15 0 12 s.t. 4x1 12 2 14 2x1+2x2 14 3 x1,x2 0 I,II生产多少, 可获最大利润?
s.t. x1 -x2 +x4 -x5 -x7 =2
x1 , x2 , x4 ,

, x7 0
12
第二节 线性规划问题的图解法及几何意义
一、线性规划问题的解的概念
0 3 1 0 0 15 4 0 0 1 0 X= 12 2 2 0 0 1 14
5
max Z= 2x1 +3x2
解:设 计划期内生产产品I、II的数量x1、x2 则该问题的数学模型为:
例1.2 成本问题
某炼油厂根据每季度需供应给合同单位汽油15万吨、煤油 12万吨、重油12万吨。该厂计划从A,B两处运回原油 提炼,已知两处的原油成分含量见表1-2;又已知从A 处采购的原油价格为每吨(包括运费)200元,B处采购 的原油价格为每吨(包括运费)290元, 问:该炼油厂该 如何从A,B两处采购原油,在满足供应合同的条件下, 使购买成本最小。 油品来源 A B min S 200x1 290x 2
解:(1) 确定可行域 x1 0 x1 =0 (横)
30
x2 0 x2=0 (纵) x1+2x2 30 x1+2x2 =30

运筹学第1章-线性规划

运筹学第1章-线性规划
凸集的数学定义:设K为n维欧氏空间的一个点集,若K中任意两个 点X1和X2连线上的所有点都属于K,即“X =αX1+(1-α) X2 ∈ K(0≤a ≤ 1)”,则称K为凸集。设X(x1,x2,…,xn),X1(u1, u2,...,un),X2(v1,v2,…,vn),如图1一5所示,“X =αX1+(1α) X2 ∈ K(0≤a ≤ 1)”的证明思路如下:
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。

第1章-线性规划模型-宋

第1章-线性规划模型-宋

第一章 线性规划模型线性规划(Linear Programming )是数学规划的一个重要组成部分,是最优化与运筹学理论中的一个重要分支和常用的方法,是最优化理论的基础性内容。

第一节 线性规划问题及其数学模型一、问题的提出在生产管理和经营活动中经常提出一类问题,即如何利用有限的人力、物力、财力等资源,以便得到最好的经济效果。

例1 生产计划问题某工厂在计划期内要安排生产Ⅰ、Ⅱ的两种产品,已知生产单位产品所需的设备台时,A 、B 两种原材料的消耗以及每件产品可获得的利润如下表所示。

问应如何安排生产计划使该工厂获利最多?解:设12,x x 分别表示在计划期内生产产品Ⅰ、Ⅱ的产量。

由于资源的限制,所以有:机器设备的限制条件: 1228x x +≤原材料A 的限制条件: 1416x ≤(称为资源约束条件) 原材料B 的限制条件: 2412x ≤同时,产品Ⅰ、Ⅱ的产量不能是负数,所以有120,0x x ≥≥(称为变量的非负约束)。

显然,在满足上述约束条件下的变量取值,均能构成可行方案,且有许许多多。

而工厂的目标是在不超过所有资源限量的条件下,如何确定产量12,x x 以得到最大的利润,即使目标函数1223z x x =+的值达到最大。

综上所述,该生产计划安排问题可用以下数学模型表示:例2 运输问题某公司经销某种产品,三个产地和四个销地的产量、销量、单位运价如下表所示。

问在保证产销平衡的条解:(1)决策变量:设(1,2,3;1,2,3,4)ij x i j ==为从产地i 运到销地j 的运量(2)目标函数:总运费最小3411min ij iji j z c x===∑∑(3)约束条件: 产量约束 销量约束 非负约束 模型为:二、线性规划问题的模型上述几例所提出的问题,可归结为在变量满足线性约束条件下,求使线性目标函数值最大或最小的问题。

它们具有以下共同的特征。

(1)每个问题都可用一组决策变量12(,,,)n x x x 表示某一方案,其具体的值就代表一个具体方案。

运筹学-1、线性规划

运筹学-1、线性规划

则:
x1 x2 100
x1 ( x3 ) x4 x2 2
设x3为第二年新的投资; x4为第二年的保留资金;
则:
18
•设x5为第三年新的投资;x6为第三年的保留资金;
则:
x3 ( x5 ) x6 x4 2 x1 2
•设x7为第四年新的投资;第四年的保留资金为x8;
max Z 2 x7 x9 x1 x2 100 x 2x 2x 2x 0 2 3 4 1 4 x1 x3 2 x4 2 x5 2 x6 0 s.t 4 x3 x5 2 x6 2 x7 2 x8 0 4 x5 x7 2 x 8 2 x9 0 x 0, j 1, 2, , 9 j
13
例3:(运输问题)设有两个砖厂A1 、A2 ,产 量分别为23万块、27万块,现将其产品联合供应三 个施工现场B1 、 B2 、 B3 ,其需要量分别为17万 块、18万块、15万块。各产地到各施工现场的单位 运价如下表: 现场 砖厂 B1 B2 B3
A1 A2
5 6
14 18
7 9
问如何调运才能使总运费最省?
20
例5:(下料问题) 某一机床需要用甲、乙、 丙三种规格的钢轴各一根,这些轴的规格分别是 2.9,2.1, 1.5(m),这些钢轴需要用同一种圆钢来做,圆 钢长度为7.4m。现在要制造100台机床,最少要用多 少根圆钢来生产这些钢轴?
解:第一步:设一根圆钢切割成甲、乙、丙三 种钢轴的根数分别为y1,y2,y3,则切割方式可用不等 式2.9y1+2.1y2+1.5y3≤7.4 表示,求这个不等式的有实 际意义的非负整数解共有8组,也就是有8种不同的 下料方式,如下表所示:

运筹学第二章

运筹学第二章

例2.4:将以下线性规划问题转化为 标准形式
Max s.t. Z = 3 x1 - 5 x2 + 8 x3 2x1 + 2x2 - x3 = 15.7
4 x1
+ 3x3 = 8.9
x1 + x2 + x3 = 38 x2 , x3 ≥ 0
4.右端项有负值的问题:
在标准形式中,要求右端项 必须每一个分量非负。当某一个 右端项系数为负时,如 bi<0,则 把该等式约束两端同时乘以-1, 得到:
产品甲 设备A 3 产品乙 2 设备能力 (h) 65
设备B
设备C 利润(元/件)
2
0 1500
1
3 2500
40
75
问:如何安排生产计划,才能使制药厂利润最大?
解:设变量 xi为第i种(甲、乙)产品的生 产件数(i=1,2)。根据前面分析,可 以建立如下的线性规划模型: Max
z = 1500 x1 + 2500 x2
MinZ=∑xi
i=1
X6 +
x1 x1 + x2 x2 + x3 x3 + x4 x4 + x5 x5 + x6
≥ 8 ≥ 12
≥ 10
≥ 8 ≥ 6 ≥ 4
二、线性规划模型的一般形式
目标函数 s.t.
产品对资源的 单位消耗量
利润系数
Max(Min)z=c1x1+c2x2+……+cnxn
a11x1+a12x2+……+a1nxn≥(=、≤)b1 a21x1+a22x2+……+a2nxn≥(=、≤)b2 …… am1x1+am2x2+……+amnxn≥(=、≤)bm

《物流运筹学》郝海.熊德国chap2线性规划22.1 线性规划模型与图解法

《物流运筹学》郝海.熊德国chap2线性规划22.1  线性规划模型与图解法
源自2.1 线性规划模型与图解法
生产计划资源表
定额(工时/件)
产品型号
1
2
3
每周可利用 的有效工时
A
1.2 1.0 1.1
5400
工序 B
0.7 0.9 0.6
2800
C
0.9 0.8 1.0
3600
利润(元/件) 10 15 12
【分析】该问题主要是要把有限的工时资源合理地分配到三 种产品的生产活动上去,以期望获得最多的利润。根据问题的 要求,旨在获得最大利润,也就是说,在资源约束的条件下, 尽可能生产更多的产品,以获得最大的利润,实现工厂利润最 大化的目标,
2.1 线性规划模型与图解法
线性规划的研究内容可归纳为两个方面:一是资源的数量 已定,如何合理利用、调配,使任务完成的最多,才能更有效 地运用有限的资源以更高水平达到目标;二是系统的任务已定 ,如何合理筹划,精细安排,用最少的资源(人力、物力和财 力)去实现这个任务; 2.1.1 问题的引入
【例2.1】 (生产计划问题)某企业生产l、2和3三种产品, 每种产品需经过三道工序,每件产品在每道工序中的工时定额 、每道工序在每周可利用的有效工时和每件产品的利润见下表 。问每种产品各生产多少,可使这一周内生产的产品所获利润最 大?
食品的营养构成表
序号 食品名称 热量(卡路里) 蛋白质(g) 钙(mg) 价格(元)
1 猪肉
1000
50
400
10
2 鸡蛋
800
60
200
6
3 大米
900
20
300
3
4 白菜
200
10
500
2
2.1 线性规划模型与图解法

《管理运筹学》02-1线性规划的数学模型及相关概念

《管理运筹学》02-1线性规划的数学模型及相关概念

03 线性规划的求解方法
单纯形法
1
单纯形法是一种求解线性规划问题的经典算法, 其基本思想是通过不断迭代来寻找最优解。
2
单纯形法的基本步骤包括:建立初始单纯形表格、 确定主元、进行基变换、更新单纯形表格和判断 是否达到最优解。
3
单纯形法在处理大规模线性规划问题时,由于其 迭代次数与问题规模呈指数关系,因此计算量较 大。
06 线性规划的案例分析
生产计划问题
总结词
生产计划问题是一个常见的线性规划应用场景,通过合理安排生产计划,企业可以优化资源利用,降低成本并提 高利润。
详细描述
生产计划问题通常涉及确定不同产品组合、生产数量、生产批次等,以满足市场需求、资源限制和利润目标。线 性规划模型可以帮助企业找到最优的生产计划,使得总成本最低或总利润最大。
最优性条件由单纯形法推导得出,是判断线性规划问题是否达到最优解的 重要依据。
解的稳定性
解的稳定性是指最优解在参数变化时保持相对稳定的能力。
在实际应用中,由于数据的不确定性或误差,参数可能会发生变化。因此,解的稳 定性对于线性规划问题的实际应用非常重要。
解的稳定性取决于目标函数和约束条件的性质,以及求解算法的鲁棒性。在某些情 况下,可以通过敏感性分析来评估解对参数变化的敏感性。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
目标函数是需要最大或最小化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是问题中给定的限制条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$ 或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。

运筹学课件1-1线性规划问题及其数学模型

运筹学课件1-1线性规划问题及其数学模型
上页 下页 返回
• 第三步:确定目标函数 第三步: 以 Z 表示生产甲和乙两种产品各为x1 表示生产甲和乙两种产品各为x 时产生的经济价值, 和x2(吨)时产生的经济价值,总经济价值 最高的目标可表示为: 最高的目标可表示为:
max z=7 x1十5 x2 z=
这就是该问题的目标函数 这就是该问题的目标函数。 目标函数。
上页
下页
返回
• 第1步 -确定决策变量
•设 ——I x1——I的产量 ——II x2 ——II的产量
是问题中要确定的未知量, 是问题中要确定的未知量, 表明规划中的用数量表示的 方案、措施,可由决策者决 方案、措施, 定和控制。 定和控制。
x1
x2
上页
下页
返回
第2步 --定义目标函数
利润
Max Z =
x1 +
x2
上页
下页
返回
第2步 --定义目标函数
Max Z = 2 x1 + 3 x2
上页
下页
返回
对我们有 何限制?
上页
下页
返回
第3步 --表示约束条件
x1 + 2 x2 ≤ 8 4 x1 ≤ 16 4 x2 ≤ 12 x1、 x2 ≥ 0
设备 原材料A 原材料 原材料B 原材料 利润 I 1 4 0 2 II 2 0 4 3 资源限量 8 台时 16kg 12kg
上页 下页 返回
– 用向量表示
m Z = CX ax n ∑Pj xj = b i=1 x ≥ 0 j =1 2,...n , j 其 : 中 x1 x 2 X= ... xn C = (c1, c2 , ) a1 j a2 j Pj = ... amj b 1 b 2 b= ... bm

运筹学第一章

运筹学第一章
OR1
30
1.1.3解的概念
概念: 1、可行解:满足所有约束条件的解。 2、可行域:即可行解的集合。所有约束条件的交 集,也就是各半平面的公共部分。满足所有约 束条件的解的集合,称为可行域。 3、凸集:集合内任意两点的连线上的点均属于这 个集合。如:实心球、三角形。线性规划的可 行域是凸集。
OR1
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
请问该 医院至 少需要 多少名 护士?
5
例题2建模
目标函数:min Z=x1+x2+x3+x4+x5+x6 约束条件: x1+x2 ≥70
x2+x3 ≥60 x3+x4 ≥ 50 x4+x5 ≥20 x5+x6 ≥30 非负性约束:xj ≥0,j=1,2,…6
OR1
6
例题3:运输问题
三个加工棉花的加工厂,并且有三个仓库供应棉花,各 供应点到各工厂的单位运费以及各点的供应量与需求量 分别如下表所示:问如何运输才能使总的运费最小?
OR1
14


从以上 5 个例子可以看出,它们都属于优化问题,它们 的共同特征: 1 、每个问题都用一组决策变量表示某一方案;这组决 策变量的值就代表一个具体方案,一般这些变量取值是 非负的。 2 、存在一定的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示。 3 、都有一个要求达到的目标,它可用决策变量的线性 函数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。

运筹学课件——第2讲 线性规划模型(1)

运筹学课件——第2讲  线性规划模型(1)
第1章 线性规划
本章要求: 本章要求: 1.掌握并熟练应用线性规划的模型处理实际问 1.掌握并熟练应用线性规划的模型处理实际问 题 2.掌握线性规划的图解法 2.掌握线性规划的图解法 3.掌握软件求解线性规划 3.掌握软件求解线性规划 4.了解线性规划对偶问题的基本性质 4.了解线性规划对偶问题的基本性质 5.理解有关灵敏度分析内容 5.理解有关灵敏度分析内容
+ = x 1 x 3 4 x 12 2x 2 + 4 = s.t. + 3x 1 + 2 x 2 x 5 = 18 x j ≥ 0( j = 1,2,3,4,5)
max Z = 70 x1 + 120 x 2 9 x1 + 4 x 2 ≤ 360 4 x + 5 x ≤ 200 1 2 s.t . 3 x1 + 10 x 2 ≤ 300 x1 ≥ 0, x 2 ≥ 0
例4:饮料配制计划
大众酒吧自行配制生产甲,乙两种饮料,管 大众酒吧自行配制生产甲,乙两种饮料, 理层决定下月总产量至少达到350 350升 理层决定下月总产量至少达到350升。甲饮料每 升的制造成本为2 制造时间需2小时, 升的制造成本为2元,制造时间需2小时,乙饮 料每升的制造成本为3 制造时间需1小时, 料每升的制造成本为3元,制造时间需1小时, 下月总生产时间为600小时。此外, 600小时 下月总生产时间为600小时。此外,下月有一位 客户已预定甲饮料125升。试为管理层制定满足 客户已预定甲饮料125升 125 客户要求且制作成本最小的生产计划。 客户要求且制作成本最小的生产计划。 线性规划模型? 线性规划模型?
显然,上述活动所引起的问题是一类有约束的 显然,上述活动所引起的问题是一类有约束的 最优化问题( 最优化问题(Constrained Optimization)。 ) 线性规划正是解决有约束的最优化问题的一种 线性规划正是解决有约束的最优化问题的一种 常用的方法,其涉及的主要概念包括: 常用的方法,其涉及的主要概念包括: ◆目标(Objective):所要达到的最优结果(最 所要达到的最优结果( 目标( ) 所要达到的最优结果 大或最小); 大或最小); ◆约束条件(Constraints):对所能产生结果的 约束条件( ) 对所能产生结果的 限制。 限制。

线性规划问题及其数学模型

线性规划问题及其数学模型
就代表一个具体方案一般这些变量取值是非负 且连续的;
2要有各种资源和使用有关资源的技术数据 创造新价值的数据;
a i; jcj(i1 , m ;j1 , n)
共同的特征继续
3 存在可以量化的约束条件这些约束条件可 以用一组线性等式或线性不等式来表示;
4 要有一个达到目标的要求它可用决策变量 的线性函数称为目标函数来表示按问题的 不同要求目标函数实现最大化或最小化
约束条件:
a
21
x1
a22
x
2
a2n xn
b2
a
m
1
x1
am 2 x2
a mn xn
bn
x1 , x2 , , xn 0
线性规划问题的几种表示形式
M
' 1
:
n
目标函数:max z c j x j
j 1
约束条件:
n
aij x j
j 1
bi ,
i 1,2, ,m
x
j
0,
j 1,2, ,n
弛变量x6; 3 在第二个约束不等式≥号的左端减去剩
余变量x7; 4 令z′= -z把求min z 改为求max z′即可得到
该问题的标准型
例4的标准型
max z ' x1 2 x 2 3( x 4 x5 ) 0 x6 0 x7
x1 x2 ( x4 x5 ) x6
7
x1 x2 ( x4 x5 )
经第2工厂后的水质要求:
[0.8(2x1)(1.4x2 )] 2
700
1000
数学模型
目标函数 约束条件
min z 1000 x1 800 x2 x1 1
0.8 x1 x2 1.6 x1 2 x2 1.4 x1 , x2 0

运筹学 第01章 线性规划问题

运筹学 第01章 线性规划问题

线性规划建模步骤
设定决策变量 明确约束条件并用决策变量的线性等式或 不等式表示 用变量的线性函数表示要达到的目标,并 确定是求极小还是求极大 根据变量的物理性质确定变量是否具有非 负性 注:其中最关键是设定决策变量这一步
生产计划问题(1)
某工厂用三种原料生产三种产品,已知的 条件如下表所示,试制订总利润最大的日 生产计划
线性规划问题解的有关概念(2)
基本解:令模型中所有非基变量的值等于零后,由 模型的约束方程组得到的一组解。 基本可行解:满足非负条件的基本解称为基本可行 解。 可行基:对应于基本可行解的基称为可行基。 退化解:基本可行解的非零分量个数小于m时,称 为退化解。 最优基:若对应于基B的基本可行解X是线性规划的 最优解,则称B为线性规划的最优基
人员安排问题(1)
医院护士24小时值班,不同时段需要的护 士人数不等(见下表)。每个护士每天连 续值班8小时,在各时段开始时上班。问最 少需要多少护士?
序号 1 2 3 4 时段 06—10 10—14 14—18 18—22 最少人数 60 70 60 50
5 6
22—02 02—06
20 30
人员安排问题(2)
设xj为第j时段开始值班的护士人数
目标函数为:使人数最少,则有
min f ( X ) x1 x2 x3 x4 x5 x6 x6 x1 60 x x 70 1 2 x2 x3 60 s.t. x3 x4 50 x x 20 5 4 x5 x6 30 x1 , x2 , x3 , x4 , x5 , x6 0且为整数
运筹学
第一章 线性规划问题
本章重点
线性规划建模 线性规划的图解法 线性规划的标准形式 单纯形法 两阶段法 大M法

运筹学:线性规划模型、线性规划的解法习题与答案

运筹学:线性规划模型、线性规划的解法习题与答案

1、图解法适用于含有()个变量的线性规划问题。

正确答案:两或22、线性规划问题的可行解是指满足()的解。

正确答案:所有约束条件3、在线性规划问题的基本解中,所有的非基变量等于()。

正确答案:零或04、若线性规划问题有最优解,则最优解一定可以在可行域的()达到。

正确答案:顶点或极点5、线性规划问题有可行解,则必有()。

正确答案:基可行解6、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其()的集合中进行搜索即可得到最优解。

正确答案:基可行解7、满足()条件的基本解称为基本可行解。

正确答案:非负8、求解线性规划问题可能的结果有四种,分别是()。

正确答案:无解,有唯一最优解,有无穷多个最优解和退化解9、求一个线性函数在一组()约束条件下的最大化或最小化问题,称为线性规划问题。

正确答案:线性1、若x、y满足约束条件{x≤2 y≤2x+y≥2则z=x+2y的取值范围是()。

A. [2,6]B. [2,5]C. [3,6]D. [3,5]正确答案:A2、为化为标准形式而引入的松弛变量在目标函数中的系数应为()。

A.0B.1C.2D.3正确答案:A3、若线性规划问题没有可行解,可行解集是空集,则此问题()。

A.没有无穷多最优解B.没有最优解C.有无界解D.没有无界解正确答案:B4、在单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中()。

A.不影响解的可行性B.至少有一个基变量的值为负C.找不到出基变量D.找不到进基变量正确答案:B5、用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部<0,则说明本问题()。

A.有惟一最优解B.有多重最优解C.无界D.无解正确答案:B6、单纯形法当中,入基变量的确定应选择检验数()。

A.绝对值最大B.绝对值最小C.正值最大D.负值最小正确答案:C7、在单纯形表的终表中,若非基变量的检验数有0,那么最优解()。

A.不存在B.唯一C.无穷多D.无穷大正确答案:A8、线性规划模型不包括下列()要素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 李践:“非常漂亮”
❖ 李践朋友:“我花了357万,而且是纯成本。 要是我有半句假话,我从这里跳下去。”
❖ 李践:“这8楼跳下去会摔死人。你们这个行 业的平均利润是多少?我按这个加给你。但 我们公司的规矩是在付款前要经过审计部的 审查。”
❖ 一个星期以后,审计结果出来了。
❖ 审计部经理:“157万”,200万之差!
❖第二章 线性规划模型及解法
❖ Chapter TWO:Linear Programming
❖ Disscuss:兰州拉面最红火的时候,在闹市区 开拉面馆.可后来,怎么不做了?
❖ “开始为了调动大师傅的积极性,我一碗面给 他提成5角.后来他发现客人越多他收入越多, 每碗面的牛肉有四片增加到六七八片,销量越 来越大,可我却亏损了.
200
10
500
2
3000
55
800
Linear Optimization Model for Example 1.3
min z 14x1 6x2 3x3 2x4 s.t. 1000x1 800x2 900x3 200x4 3000
50x1 60x2 20x3 10x4 55 400x1 200x2 300x3 500x4 800 x1, x2, x3, x4 0
❖ D.大师傅的工资提成不能只和销量挂钩,应和 老板的利润挂钩,比如一碗面中30%的利润给 大师傅;
❖ E.有效的沟通、激励,给大师傅精神奖励, 让大师傅认为自己也是面馆的主人。
❖ 老板收入

利润
(-)成本 (+)

(+)销量 (-)劳动
❖ 师傅收入
❖ 明确量之间的关系,建立公共目标,实现 公共选择
Max P=300D+500W
D
3D+2W D>=0,
<=4 2w<=12 <=18 W>=0
❖ 削减成本的第十三把砍刀---运筹工具 ❖ 李践博士削减成本的十二把砍刀: ❖ 设立砍价专家;砍人手;砍机构; ❖ 砍固定资产;砍采购成本;砍预算; ❖ 砍库存;砍客户;砍日常开支; ❖ 砍会议聚会;砍面子、排场;封刀。
媒体受众 目标群体
❖ 例:医学科研试剂的广告打应在电视上还 是医疗学术杂志上?
❖ 儿童食品广告应打在电视上还是报纸上? ❖ 医院广告为什么爱打在路边?
例2 营养配餐问题
成年人每天需要从食物中摄取的营养以及四种食品所含营
养和价格见下表。问如何选择食品才能在满足营养的前提
下使购买食品的费用最小?
食品名称 猪肉 鸡蛋 大米 白菜 营养需求量
热量(kcal) 蛋白质(g) 钙(mg) 价格(元)
1000
50
400
14
800
60
200
6
900
20
300
3
❖ 原来李践公司规定,新到员工到公司,若承 担营销工作,第一个月5万,第二个月10万, 第三个月15万。若达不到这个线的60%,则 自动离职。
❖ 李践母亲说:她达不到你们规定的营销额, 你手里有这么多大客户,你给她一个不就行 了吗?
❖ 李践耐心的说服妈妈:应该教她捕鱼还是给 她吃鱼。结果妹妹通过自己的努力,达到了 公司的标准。
❖ 后来我换了一种方式,每月给他发较高的固定 工资,他就在每碗面里放很少的牛肉,客人越 来越少,他才不管,他拿固定工资巴不得你天 天没客人,他才清闲.
❖ 一些朋友给老板提出了以下方案:
❖ A.对大师傅实行底薪家加提成,提高积极;
❖ B. 不能把全线流程的权利下放给大师傅,比 如加牛肉.
❖ C. 建立有效的制度,包括奖励与惩罚,制度根 据顾客满意程度和利润来建立;
❖ 女员工说:你暂时别上去了。等李践和部 门经理回到车上,部门经理对那位女员工 说:怎么穿凉鞋?可这位女员工却说:客 户要的是服务,又不是要看我的脚。李践 说:客户要的是服务,但服务包括你的脚。 回到公司,李践从人事经理那里了解到, 那位女员工多次穿凉鞋,要把她开除掉。 人事经理说:她可是大学生,联系的又是 大客户。可是李践还是坚持把她开除掉。 在遴选干部时,李践对那些在裁员上悠悠 郁郁的人从来都不会重用。
❖ 李践不敢给他朋友打电话,让审计部经 理打。对方接到电话后暴跳如雷。接下 来是请第三方,请监理公司。一个月以 后,校核结果仍然是:157万。
❖ 李践的朋友给他打电话说:“我服了。 这200万给我上了一堂课。今后在外包时 要注意成本控制。”
❖ 砍人手:多一个人不仅要多1000元的工资, 而且占用了办公桌、电脑、占用房屋、占用 处长、医务室的时间、交通车的坐位,要花 5000元的费用。
❖ 企业管理的Biblioteka 学公式:❖ 10-9=1,即 ❖ 收入-成本=利润,全世界500强的利润率在
11%-15%左右。提高收入非常之难。
❖ 10-8=2 ❖ 降低成本10%,利润上升50%。说明了降低
成本的必要性和有效性。
❖ 设立砍价专家:
❖ 李践的好朋友帮李践公司装修办公楼。
❖ 李践朋友装完后对李践说:“怎么样?”
❖ 李践的妹妹是李践公司的股东之一,在国营 企业下岗后,来到李践的公司,第一年是看 自行车,第二年应聘营销部。有一天,李践 接到他母亲的电话,母亲对他破口大骂。晚 上回到家,母亲对他说:自从你妹妹到了你 公司后,人瘦了黑了,但就是这样一个认真 工作的好职工,马上就要被你们淘汰了。我 辛辛苦苦把你拉扯大,你现在能干了,出息 了,会开除你妹妹了。
例3 P44 利博公司广告组合
❖ 利博公司生产家用清洁用品, 准备采用电视、印 刷媒体进行广告,宣传喷雾去污剂、液体洗涤剂、 洗衣粉,以增加市场份额。
产品
电视
喷雾去污剂 液体洗涤剂 洗衣粉
成本
0% 3% -1%
100万
印刷媒体
1% 2% 4%
200万
增加市场份 额
3% 18% 4%
❖ 广告媒体的选择原则: ❖ 媒体受众与目标群体最大限度重合
❖ 第四年,李践的妹妹竞争上岗了部门经理。 部门经理每月的绩效是每月800万。但是, 李践妹妹的连续三个月没有达到指标的60%。 按规定下岗。下岗后到另外的部门,就要增 加那个部门的指标。
❖ 接触点管理。如果接触点上出现三次错误, 自动离职。有一次,一位女员工对李践说: 有一个大客户需要他亲自去谈。他同那位女 员工一起坐车去。下车时,李践看见那位女 员工穿的是凉鞋。公司规定,接触客户,女 员工必须穿皮鞋。他对这位
相关文档
最新文档