极化恒等式

合集下载

极化恒等式课件-2025届高三数学一轮复习

极化恒等式课件-2025届高三数学一轮复习
极化恒等式
磨尖点一 求向量数量积的定值
磨尖点二 求向量数量积的最值(范围)
磨尖点三 求参数及其他问题
磨尖课04 极化恒等式
1
4
1. 极化恒等式: ⋅ = [ +
2
2
− − 2 ].
(1)公式推导:
+
2
+ ሻ2 −
=
2
+ 2 ⋅ +
2 ,

2
=
2
− 2 ⋅
(3)记忆规律:向量的数量积等于第三边的中线长与第三边边长的一半的平方差.
磨尖课04 极化恒等式
4
磨尖点一 求向量数量积的定值
磨尖课04 极化恒等式
6
典例1 (2023 ·全国乙卷)正方形的边长是2,是的中点,则 ⋅ =
( B ) .
A. 5
B.3
C.2 5
解析 设的中点为,由极化恒等式可得 ⋅ =
为△ 所在平面内的动点,且 = 1,则 ⋅ 的取值范围是( D ) .
A.[−5,3]
B.[−3,5]
C.[−6,4]
D.[−4,6]
磨尖课04 极化恒等式
11
解析 (法一)依题意建立如图所示的平面直角坐标系,则 0,0 , 3,0 , 0,4 ,
磨尖课04 极化恒等式
4sin +
sin2
= 1 − 3cos − 4sin = 1 − 5sin + ,其中tan =
因为−1 ≤ sin + ≤ 1,所以−4 ≤ 1 − 5sin + ≤ 6,
3

4
磨尖课04 极化恒等式
13

中线定理和极化恒等式

中线定理和极化恒等式

中线定理和极化恒等式中线定理和极化恒等式是数学中的两个重要定理,它们在不同的领域中都有着广泛的应用。

本文将分别介绍这两个定理的概念、证明和应用。

一、中线定理中线定理是指在一个三角形中,连接三角形两边中点的线段被称为中线,三条中线交于一点,这个点被称为三角形的重心。

中线定理指出,三角形的重心到三角形三个顶点的距离之和等于三角形三边长之和的三分之一。

证明:设三角形ABC的三边长分别为a、b、c,三角形的重心为G,连接AG、BG、CG,分别交BC、AC、AB于D、E、F。

由于AD=BD=BC/2,BE=CE=AC/2,CF=AF=AB/2,所以三角形DEF是三角形ABC的中心三角形,且DEF的周长等于ABC的周长的一半。

因此,AG+BG+CG=2(GD+GE+GF)=2(DE+EF+FD)=3(AD+BE+CF)=3(a+b+c)/ 2。

应用:中线定理可以用于计算三角形的重心坐标,以及求解三角形的面积和周长等问题。

二、极化恒等式极化恒等式是指任意两个向量的内积可以表示为它们的模长和夹角的三角函数的乘积之和。

具体地,设向量a和b的模长分别为|a|和|b|,夹角为θ,则有a·b=|a||b|cosθ。

证明:设向量a和b的坐标分别为(a1,a2,a3)和(b1,b2,b3),则有a·b=a1b1+a2b2+a3b3=|a||b|(a1/|a|b1/|b|+a2/|a|b2/|b|+a3/|a|b3/|b|)cosθ=|a||b|cosθ。

应用:极化恒等式可以用于计算向量的内积、向量的模长和夹角等问题,也可以用于证明向量的正交性和判断向量的方向等问题。

中线定理和极化恒等式是数学中的两个重要定理,它们在不同的领域中都有着广泛的应用。

熟练掌握这两个定理的概念、证明和应用,对于提高数学水平和解决实际问题都有着重要的意义。

极化恒等式的应用

极化恒等式的应用

极化恒等式的应用引言极化恒等式是数学中一条重要的关系式,它在各个领域中都有着广泛的应用。

本文将介绍极化恒等式的定义和性质,并给出一些具体的应用案例。

极化恒等式的定义极化恒等式是指在内积空间中,通过使用内积运算将双线性函数转化为一个向量上的光滑函数。

具体地,对于一个内积空间 V,其内积运算为 \< , \>,则对于任意两个向量v, w ∈ V,极化恒等式可以表示为:\< v, w \> = \frac{1}{4} \left(\|v + w\|^2 - \|v - w\|^2\right)其中,\|v\| 表示向量 v 的范数。

极化恒等式的性质极化恒等式具有以下一些重要的性质:1.对称性:对于任意的v, w ∈ V,极化恒等式成立。

2.线性性:极化恒等式中的向量 v 和 w 可以是任意的线性组合,对应的恒等式仍然成立。

3.正定性:当且仅当 V 是一个欧几里得空间时,极化恒等式成立。

极化恒等式在向量分析中的应用极化恒等式在向量分析中起着重要的作用,以下是一些常见的应用案例:1. 向量正交性证明假设有两个向量 v 和 w,在证明它们正交性时,可以利用极化恒等式。

通过计算 \< v, w \>,若等式右侧的值为 0,则可以得到 v 和 w 的正交性。

2. 向量长度计算对于一个给定的向量 v,可以利用极化恒等式计算其长度。

通过令 w = v,代入极化恒等式并求解,即可得到向量 v 的长度,即 \|v\|。

3. 向量夹角计算给定两个向量 v 和 w,可以利用极化恒等式计算它们之间的夹角。

通过令 w = v - w,代入极化恒等式并求解,即可得到向量 v 和 w 之间的夹角。

极化恒等式在物理学中的应用极化恒等式在物理学中也有广泛的应用,以下是一些常见的应用案例:1. 电场的计算对于一个给定的电场分布,利用极化恒等式可以计算电场的能量密度。

通过令v 和 w 分别为电场和电位移向量,在极化恒等式中代入并求解,即可得到电场的能量密度。

有道数学关旭极化恒等式

有道数学关旭极化恒等式

关旭:极化恒等式
1极化恒等式的推导:
(如图,有向量OA与向量OB,两向量之和为OD,其中E为AB,OD的中点)
2使用条件:共起点内积
3适用于:平面向量,空间向量
3使用方法:找斜边中点,再使用公式代入
4
例1:
解析:取BC的中点E,AD的中点为F
=
−→


−→

OC
OB
2
2−→

-
−→

EC
OE
=2
−→

OE
-
2
2
1





由三角形两边和大于第三边可以得到:
OE ≤OF+EF
OF 为直角三角形OAD 的中线,所以OF=2
1 EF=1
所以:−→−⋅−→−OC
OB 的最大值为2
例2:
我们在此题的基础上增加一点难度:求−→−⋅−→−PD
PC 的最小值和最大值 解答:根据“极化恒等式”的方法,我们找到斜边CD 的中点O 点,则
−→−⋅−→−PD
PC =22−→−-−→−OD PO 其中OD=1 故我们只需要判断PO 的最大值与最小值
根据三角形两边和大于第三边,我们得到:
1)PO ≤AP+AO
2)PO+AO ≥AO
(其中AP=1,AO=5)
所以PO 的最大值为(5+1),最小值为(5-1)
故:−→−⋅−→−PD
PC 的最大值为(5+25),最小值为(5+25)。

第2讲 极化恒等式

第2讲  极化恒等式

第2讲极化恒等式结论:设a b、是两个平面向量,则有恒等式()()2214a b a b a b ⎡⎤=+--⎢⎥⎣⎦ ,在三角形中,也可以用三角形的中线来表示,22AB AC AM MB =- 。

极化恒等式的作用主要在于,它可以将两个向量的数量积转化为这两个向量之和或之差,因此,当两个向量之和或之差为定值时,常常可以考虑利用极化恒等式进行转化求解。

典型例题1.(2012浙江15)在ABC ∆中,M 是BC 的中点,3AM =,10BC =,则AB AC =.法1解:设AMB θ∠=,则AMC πθ∠=-.又AB MB MA =- ,AC MC MA =- ,∴(AB AC = )(MB MA - 2)MC MA MB MC MB MA MA MC MA -=--+,2553cos 35cos()916θπθ=--⨯-⨯-+=-,故答案为16-.法2:极化恒等式22223516AB AC AM MB =-=-=-2.如图,在ABC ∆中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BA CA =,1BF CF =- ,则BE CE的值是.法1解:D 是BC 的中点,E ,F 是AD 上的两个三等分点,∴BF BD DF =+ ,CF BD DF =-+ ,3BA BD DF =+ ,3CA BD DF =-+ ,∴221BF CF DF BD =-=- ,2294BA CA DF BD =-= ,∴258DF = ,2138BD = ,又 2BE BD DF =+ ,2CE BD DF =-+,∴22748BE CE DF BD =-= ,故答案为:78法2:极化恒等式FDAD BD FD CF BF BD AD CA BA 3142222=-=-=∙=-=∙分别解出FD ²和BD ²的值,即可求解CMDG O3.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,8AB =,6CD =,则MA MB的取值范围是.法1解:以AB 所在的直线为x 轴,以线段AB 的垂直平分线为y 轴建立平面直角坐标系,如图所示;且圆O 的直径为AB ,设(,)M x y ,则(4,0)A ,(4,0)B -,(4,)MA x y =-- ,(4,)MB x y =--- ,222(4)(4)()16MA MB x x y x y =---+-=+-,又M 是圆O 的弦CD 上一动点,且6CD =,所以2216916x y -+ ,即22716x y + ,其中最小值在CD 的中点时取得,所以MA MB的取值范围是[9-,0].故答案为:[9-,0].法2直接使用极化恒等式22MA MB MO OA=-4MO ≤≤ ,4OA =[]9,0MA MB ∴∈-一课一练1.(2013•浙江二模)如图放置的边长为1的正方形ABCD 的顶点A 、D 分别在x 轴、y 轴正半轴上(含原点)上滑动,则OB OC的最大值是.2.(2018•天津)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则AE BE的最小值为()A .2116B .32C .2516D .33、(2017•新课标Ⅱ)已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-参考答案1)法1解:如图令OAD θ∠=,由于1AD =故0cos A θ=,sin OD θ=,如图2BAX πθ∠=-,1AB =,故cos cos()cos sin 2Bx πθθθθ=+-=+,sin()cos 2B y πθθ=-=故(cos sin ,cos )OB θθθ=+同理可求得(sin ,cos sin )C θθθ+,即(sin ,cos sin )OC θθθ=+,∴(cos sin OB OC θθ=+,cos )(sin θθ ,cos sin )1sin 2θθθ+=+,OB OC的最大值是2故答案是2法2:极化恒等式如图,取BC ,AD 中点E ,F ,22214OB OC OE EB OE =-=-根据极化恒等式13122OE OF EF ≤+=+=所以有最大值22)法1解:如图所示,以D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,过点B 做BN x ⊥轴,过点B 做BM y ⊥轴,AB BC ⊥ ,AD CD ⊥,120BAD ∠=︒,1AB AD ==,1cos602AN AB ∴=︒=,3sin 602BN AB =︒=,13122DN ∴=+=,32BM ∴=,3tan 302CM MB ∴=︒=,3DC DM MC ∴=+=,(1,0)A ∴,3(2B ,32,C ,设(0,)E m ,∴(1,)AE m =- ,3(2BE =- ,32m -,0m ,∴22233321(()224216416AE BE m m m =+-=-+-=-+ ,当m =2116.故选:A .法2:极化恒等式22214EA EB EF FA EF =-=-当EF CD ⊥时,15144EF EK KF =+=+=251214416EA EB ⎛⎫=-=⎪⎝⎭最小3)法1解:建立如图所示的坐标系,以BC 中点为坐标原点,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,则()PA x y =-- ,(1,)PB x y =--- ,(1,)PC x y =--,则22223()222[(]4PA PB PC x y x y +=-+=+--∴当0x =,y =时,取得最小值332(42⨯-=-,故选:B .法2:极化恒等式222222()()()2PA PB PC PE EA PF FA PE PF +=-+-=+- 当P 位于EF 中点时,有最小值。

极化恒等式(教师版)

极化恒等式(教师版)

巧用极化恒等式秒杀向量高考题一、极化恒等式:1.极化恒等式:设b a ,是两个平面向量,则有恒等式])()[(4122b a b a b a --+=⋅ (1) 2.极化恒等式的几何意义:向量a 和b 的数量积b a ⋅等于以a 和b 为邻边的平行四边形的“和对角线”的平方减去“差对角线”的平方的41,即 ][41])[(41])()[(41222222BC AD BC AD b a b a b a -=-=--+=⋅在三角形中,也可以用三角形的中线来表示,即22222241])2[(41])()[(41BC AM BC AM b a b a b a -=-=--+=⋅极化恒等式的作用主要在于,它可以将两个向量的数量积转化为这两个向量的“和向量”与“差向量”的平方差的四分之一,因此,当两个向量的“和向量”与“差向量”为定向量时,常常可以考虑极化恒等式进行转化求解 二、极化恒等式的应用1.(2012年浙江高考15题)在ABC ∆中,M 是BC 的中点,3=AM ,10=BC ,则=⋅AC AB解法1:(基底法))()()()(MA MB MA MB MA MC MA MB AC AB --⋅-=-⋅-=⋅1625922-=-=-=MB MA解法2:(坐标法)以点M 为原点,BC 为x 轴建立平面直角坐标系,则)0,5(),0,5(C B -,设)sin 3,cos 3(θθA ,则)sin 3,cos 35(),sin 3,cos 35(θθθθ--=---=AC AB16259sin 925cos 9)sin 3()cos 35)(cos 35(222-=-=+-=-+---=⋅θθθθθAC AB 解法3:(极化恒等式)=⋅AC AB 161004194122-=⨯-=-BC AM2.(2011年上海高考11题)在正ABC ∆中,D 是BC 上的点,3=AB ,1=BD ,则=⋅AD AB解法1:(基底法))3132(AC AB AB AD AB +⋅=⋅ AC AB AB ⋅+=313222152********=⨯⨯⨯+⨯= 解法2:(基底法))(BA BD BA AD AB -⋅-=⋅215921132=+⨯⨯-=+⋅-=BA BD BA解法3:(坐标法)以BC 的中点O 为原点,BC 为x 轴建立平面直角坐标系,则)0,23(-B , )233,0(),0,21(A D -,所以)233,21(),233,23(--=--=AD AB所以21542743=+=⋅AD AB 解法4:(转化为其它向量的数量积)取BC 的中点E ,则BD AE ⊥所以=⋅AD AB ED EB AE EB ED AE AE ED AE EB AE ⋅+⋅+⋅+=+⋅+2)()(2152123)233(22=⨯+=⋅+=ED EB AE 解法5:(极化恒等式)取BD 的中点M ,则由极化恒等式知215411)233(412222=-+=-=⋅BD AM AD AB 3.(2016年江苏高考13题)在ABC ∆中,D 是BC 上的点,F E ,是AD 上两个三等分点,4=⋅CA BA ,1-=⋅CF BF ,则=⋅CE BE解法1:(基底法)设b AC a AB ==,,则4=⋅=⋅=⋅b a AC AB CA BA ①)32()32()()(AC AD AB AD AC AF AB AF CF BF -⋅-=-⋅-=⋅1)22(91)3231()3231()3131()3131(22-=--⋅=-⋅-=-+⋅-+=b a b a b a a b b b a a b a ② 联立①②得229,2=+b a所以))(61[])(61[)()(b b a a b a AC AE AB AE CE BE -+⋅-+=-⋅-=⋅87)5526(36122=--⋅=b a b a解法2:(基底法)设a DF b BD ==,,则49)3()3()()(22=-=+⋅-=-⋅-=⋅b a b a b a DC DA DB DA CA BA ① 1)()()()(22-=-=+⋅-=-⋅-=⋅b a b a b a DC DF DB DF CF BF ②联立①②得813,852==b a 所以874)2()2()()(22=-=+⋅-=-⋅-=⋅b a b a b a DC DE DB DE CE BE 解法3:(坐标法)以BC 为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系,设)0,(a B -, ),(),2,2(),3,3(),0,(y x F y x E y x A a C ,则4)(9)3,3()3,3(222=-+=-⋅+=⋅a y x y a x y a x CA BA ① 4)(),(),(222=-+=-⋅+=⋅a y x y a x y a x CF BF ②联立①②得813,85222==+a y x 所以813)(4)2,2()2,2(222=-+=-⋅+=⋅a y x y a x y a x CE BE 解法4:(极化恒等式)设a FD EF AE ===,则4419412222=-=-=⋅=⋅BC a BC AD AC AB CA BA ①141412222-=-=-=⋅=⋅BC a BC FD FC FB CF BF ②联立①②得81341,8522==BC a所以=⋅CE BE 87813820414412222=-=-=-=⋅=BC a BC ED EC EB4.若AB 是圆O 的直径,M 是圆O 的弦CD 上的一个动点,8=AB ,6=CD ,则MB MA ⋅的取值范围为解法1:(坐标法)设点)0,4(),0,4(B A -,设),(y x M ,则由OC OM OG ≤≤知16722≤+≤y x所以]0,9[1622-∈-+=⋅y x MB MA解法2:(极化恒等式)1641222-=-=⋅MO BC MO MB MA又OC OM OG ≤≤,即]4,7[∈OM ,所以]0,9[-∈⋅MB MA5.已知正ABC ∆内接于半径为2的圆O ,E 为线段BC 上一动点,延长AE 交圆O 与点F ,则FB FA ⋅的取值范围为解法1:(坐标法)建系如图,)1,3(),1,3(B A --, 设]2,6[),sin 2,cos 2(ππθθθ-∈F ,所以 ]6,0[sin 42)sin 21,cos 23()sin 21,cos 23(∈+=---⋅----=⋅θθθθθFB FA解法2:(极化恒等式)341222-=-=⋅FD BC FD FB FA 因为CD FD BD ≤≤,即]3,3[∈FD ,所以FB FA ⋅]6,0[∈ 6.如图,放置的边长为1的正方形ABCD ,顶点D A ,分别在x 轴,y 轴正半轴(含原点)滑动,则OC OB ⋅的最大值为解法1:(坐标法)设)90,0(0∈=∠θODA ,则)0,(sin θA ,)cos ,0(θD ,)sin cos ,(cos ),sin ,cos (sin θθθθθθ++C B所以22sin 1)cos (sin cos cos )cos (sin ≤+=+++=⋅θθθθθθθOC OB 当且仅当045=θ时等号成立,所以OC OB ⋅的最大值为2 解法2:(极化恒等式)取AD BC ,的中点N M ,,则4141222-=-=⋅OM BC OM OC OB ,又23121=+=+≤MN ON OM所以241)23(2=-≤⋅OC OB ,即OC OB ⋅的最大值为27.(2012年南京模拟)在ABC ∆中,点F E ,分别为线段AC AB ,的中点,点P 在直线EF 上,若ABC ∆的面积为2,则2BC PC PB +⋅的最小值是 解析:(极化恒等式)由题意知4221=⋅⇒=⋅=∆h BC h BC S ABC 2222224341BC PO BC BC PO BC PC PB +=+-=+⋅322343)2(22≥⋅≥+≥h BC BC h8.(2012年安徽高考题)平面向量b a ,满足32≤-b a ,则b a ⋅的最小值为 解法1:222249494432b a b a b a b a b a +=+⋅⇒≤⋅-+⇒≤- 由基本不等式得894449422-≥⋅⇒⋅-≥≥+=+⋅b a b a b a b a b a ,当且仅当略 所以b a ⋅的最小值为89-解法2:(极化恒等式)]92[81]22[81)2(21222-+≥--+=⋅=⋅b a b a b a b a b a89)90(81-=-≥,当且仅当⎪⎩⎪⎨⎧=-=+3202b a b a 即b a ,反向共线且43=a 时等号成立, 所以b a ⋅的最小值为89-巩固练习:1.(2007年天津高考15题)在ABC ∆中,2=AB ,3=AC ,D 是边BC 的中点,则=⋅BC AD解析:=⋅BC AD 25)49(21)(21)(222=-=-=-⋅+AB AC AB AC AC AB 2.已知正ABC ∆内接于半径为2的圆O ,点P 是圆O 上的动点,则PB PA ⋅的取值范围为 解析:过点C 作AB CD ⊥于点D ,则点D 为AB 的中点,32===BC AC AB ,PB PA ⋅341222-=-=PD AB PD因为31≤≤PD ,所以PB PA ⋅]6,2[-∈3.设正方形ABCD 的边长为4,动点P 在以AB 为直径的圆弧APB 上(如图所示),则PC PD ⋅的取值范围为解析:取CD 的中点E ,则441222-=-=⋅PE CD PE PC PD因为522≤≤PE ,所以]160[ ∈⋅PC PD4.(2015年南通三调)如图,已知正方形ABCD 的边长为2,E 为AB 的中点,以A 为圆心,AE 为半径作圆交AD 于点F ,若P 为劣弧EF 上的动点,则PD PC ⋅的最小值为解法1:(坐标法)解法2:(极化恒等式)取CD 的中点G ,则141222-=-=⋅PG CD PG PD PC又215≤≤-PG ,所以PD PC ⋅]3,525[-∈,所以PD PC ⋅的最小值为525- 5.已知AB 是圆O 的直径,2=AB ,C 是圆O 上异于,点B A ,的一点,P 是圆O 所在的平面上任意一点,则PC PB PA ⋅+)(的最小值为解析:取OC 的中点D ,则21212)41(22)(222-≥-=-⨯=⋅=⋅+PD OC PD PC PO PC PB PA6.(2017年南通二模)如图,在平面四边形ABCD 中,O 为BD 的中点,且3=OA ,5=OC ,若7-=⋅AD AB ,则=⋅DC BC解析:16417419412222=⇒-=-=-=⋅BD BD BD AO AD AB916254122=-=-=⋅=⋅BD CO CD CB DC BC7.如图,在ABC ∆中,已知4=AB ,6=AC ,060=∠BAC ,点E D ,分别在边AC AB ,上,且AD AB 2=,AE AC 3=,若F 为DE 的中点,则DE BF ⋅的值为 解法1:(极化恒等式)取BD 的中点N ,连接EB NF ,,则AE BE ⊥,所以32=BE 因为NF 是DBE ∆的中位线,所以3=FN4)1(2)41(22222=-=-=⋅=⋅FN DB FN FD FB DE BF解法2:(基底法)略 解法3:(坐标法)略备选题:1.(2008年浙江高考9题)已知b a ,是平面内两个互相垂直的单位向量,若向量0)()(=-⋅-c b c a ,则c 的最大值为( )A.1B.2C.2D.22 解法1:(代数法)c b a c b a c b a c c b c a ⋅+=⇒=⋅+⋅+-=-⋅-)(0)()()(22所以2cos 2cos 2≤=⇒+=θθc c b a c ,故选C解法2:(坐标法)设),(),1,0(),0,1(y x OC c b a ====,则)1,(),,1(y x c b y x c a --=---=-所以21)21()21(0)1()1()()(22=-+-⇒=----=-⋅-y x y y x x c b c a所以点C 在以点)21,21(为圆心,222≤解法3:(几何法)设b a OD c OC b OB a OA +====,,,2==所以0)()(=-⋅-c b c a CB CA CB CA OC OB OC OA ⊥⇒=⋅⇒=-⋅-⇒00)()(所以点C 在以AB 的最大值为22.(2013年浙江高考7题)设点0P 是ABC ∆的边AB 上一定点,满足AB B P 410=,且对于AB 上任一点P ,恒有C P B P PC PB 00⋅≥⋅,则( )A.090=∠ABC B.090=∠BAC C.AC AB = D.BC AC = 解析:取BC 的中点M ,则22022004141BC M P BC PM C P B P PC PB -≥-⇒⋅≥⋅ 所以M P PM 0≥,所以AB MP ⊥0,所以BC AC =,故选D3.在平面直角坐标系xOy 中,B A ,分别在y x ,正半轴上移动,2=AB ,若点P 满足2=⋅PB PA ,则OP 解析1:(坐标法)设),0(),0,(b B a A ,),(y x P ,则422=+b a2),(),(22=--+=-⋅-=⋅=⋅by ax y x b y x y a x BP AP PB PA by ax y x +=-+⇒222324324)(4))(()()2(222222222222+≤+≤-⇒+=++≤+=-+⇒y x y x y x b a by ax y x]13,13[22+-∈+=y x解析2:(极化恒等式)取AB 的中点Q ,则121==AB OQ⇒=-=-=⋅∴2141222PQ AB PQ PB PA 3=,1313+≤+≤=≤=-∴4.梯形ABCD 中,满足AD // BC ,1=AD ,3=BC ,2=⋅DC AB ,则=⋅BD AC 解析:取BC 的两个三等分点F E ,,G 在CB 的延长线上,且1==AD BG ,则321412222=⇒=-=-=⋅=⋅AE AE BF AE AF AB DC AB=⋅BD AC 1)43()41(22=--=--=⋅-GC AE AG AC5.(2016年南京三模)在半径为1的扇形AOB 中,060=∠AOB ,C 为弧上的动点,AB 与OC 交于点P ,则BP OP ⋅的最小值为 解析:取OB 的中点D ,则41)43(41412222-≥-=-=⋅=⋅PD OB PD PB PO BP OP 161-=6.在等腰直角ABC ∆中,1==AC AB ,点E 为斜边BC 的中点,点M 在线段AB 上运动,则)()(AM AC AM AE -⋅-的取值范围为解析:取CE 中点D ,则]42343[,∈MD]1167[8141)()(222,∈-=-=⋅=-⋅-MD CE MD MC ME AM AC AM AE7.已知B A ,是圆O :122=+y x 上的两个点,P 是线段AB 上的动点,当AOB ∆的面积最大时,2AP AP AO -⋅的最大值为 解析:当AOB ∆的面积最大时,OB OA ⊥,所以PO PA PO AP AP AO AP AP AP AO ⋅-=⋅=-⋅=-⋅)(2取OA 的中点,则222241)41(PM OA PM PO PA AP AP AO -=--=⋅-=-⋅81)42(412=-≤。

极化恒等式

极化恒等式

极化恒等式
1极化恒等式的推导:
(如图,有向量OA与向量OB,两向量之和为OD,其中E为AB,OD的中点) 2使用条件:共起点内积
3适用于:平面向量,空间向量
3使用方法:找斜边中点,再使用公式代入
4
例1:
解析:取BC的中点E,AD的中点为F
=
−→


−→

OC
OB
2
2−→

-
−→

EC
OE
=2
−→

OE
-
2
2
1





由三角形两边和大于第三边可以得到:
OE ≤OF+EF
OF 为直角三角形OAD 的中线,所以OF=2
1 EF=1
所以:−→−⋅−→−OC OB 的最大值为2
例2:
我们在此题的基础上增加一点难度:求−→−⋅−→−PD
PC 的最小值和最大值 解答:根据“极化恒等式”的方法,我们找到斜边CD 的中点O 点,则 −→−⋅−→−PD PC =22−→−-−→−OD
PO 其中OD=1
故我们只需要判断PO 的最大值与最小值
根据三角形两边和大于第三边,我们得到:
1)PO ≤AP+AO 2)PO+AO ≥AO
(其中AP=1,AO=5)
所以PO 的最大值为(5+1),最小值为(5-1)
故:−→−⋅−→−PD
PC 的最大值为(5+25),最小值为(5+25)。

极化恒等式平行四边形

极化恒等式平行四边形

极化恒等式平行四边形
极化恒等式是解析几何中的一个基本概念,它描述了一个点关于一个圆的极坐标与该点到圆心的距离的平方之间的关系。

在平面直角坐标系中,极化恒等式可以表示为:$x^2+y^2=r^2 cdot cos^2 theta$。

平行四边形是几何学中的一个重要概念,它是由两组平行线所夹的四边形。

一个平行四边形的两对相邻边互相平行,且对角线相交于其中心点。

在解析几何中,我们可以利用极化恒等式来推导平行四边形的性质。

具体地,对于一个平行四边形ABCD,我们可以选择其中一个角
点作为圆心O,以该点到不相邻的两条边所在直线的距离作为半径r,再利用极化恒等式可以得到ABCD的对角线相交于圆心O,且对角线
的长度相等,即AC=BD。

此外,我们还可以利用极化恒等式证明平行四边形的两条对角线平分彼此,即AO=CO,BO=DO。

具体来说,我们可以选择其中一条对
角线所在的直线作为极轴,根据极化恒等式可以得到另一条对角线上的点关于该极轴的极坐标相等,从而证明两条对角线平分彼此。

总之,极化恒等式是解析几何中一个非常重要的基本概念,它不仅可以用来描述点和圆之间的关系,还可以应用于证明平行四边形的性质。

- 1 -。

专题一 平面向量的极化恒等式(含解析)

专题一 平面向量的极化恒等式(含解析)

专题八 平面向量的极化恒等式利用向量的极化恒等式可以快速对共起点(终点)的两向量的数量积问题数量积进行转化,体现了向量的几何属性,让“秒杀”向量数量积问题成为一种可能,此恒等式的精妙之处在于建立了向量的数量积与几何长度(数量)之间的桥梁,实现向量与几何、代数的巧妙结合.对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积问题,从而用极化恒等式解决.1.极化恒等式:a ·b =14[(a +b )2-(a -b )2]几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.2.平行四边形模式:如图(1),平行四边形ABCD ,O 是对角线交点.则:(1)AB →·AD →=14[|AC |2-|BD |2].3.三角形模式:如图(2),在△ABC 中,设D 为BC 的中点,则AB →·AC →=|AD |2-|BD |2. 三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决. 记忆:向量的数量积等于第三边的中线长与第三边长的一半的平方差. 考点一 平面向量数量积的定值问题 【方法总结】利用极化恒等式求数量积的定值问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转化为中线长与第三边长的一半的平方差; (3)求中线及第三边的长度,从而求出数量积的值.积化恒等式适用于求对共起点(终点)的两向量的数量积,对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积,从而用极化恒等式解决.在运用极化恒等式求数量积时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式,难点在于求中线及第三边的长度,通常用平面几何方法或用正余弦定理求解,从而得到数量的值.【例题选讲】[例1] (1)(2014·全国Ⅱ)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( ) A .1 B .2 C .3 D .5答案 A 解析 通法 由条件可得,(a +b )2=10,(a -b )2=6,两式相减得4a·b =4,所以a ·b =1.极化恒等式 a ·b =14[(a +b )2-(a -b )2]=14(10-6)=1.(2) (2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________.AABC图(2)答案 -16 解析 因为M 是BC 的中点,由极化恒等式得:AB →·AC →=|AM |2-14|BC |2=9-14×100=-16.(3)如图所示,AB 是圆O 的直径,P 是AB 上的点,M ,N 是直径AB 上关于点O 对称的两点,且AB =6,MN =4,则PM →·PN →=( )A .13B .7C .5D .3答案 C 解析 连接AP ,BP ,则PM →=P A →+AM →,PN →=PB →+BN →=PB →-AM →,所以PM →·PN →=(P A →+AM →)·(PB →-AM →)=P A →·PB →-P A →·AM →+AM →·PB →-|AM →|2=-P A →·AM →+AM →·PB →-|AM →|2=AM →·AB →-|AM →|2=1×6-1=5.(4)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF →·FG →+GH →·HE →=________.答案 32 解析 连结EG ,FH ,交于点O ,则EF →·FG →=EF →·EH →=EO →2-OH →2=1-⎝⎛⎭⎫122=34,GH →·HE →=GH →·GF →=GO →2-OH →2=1-⎝⎛⎭⎫122=34,因此EF →·FG →+GH →·HE →=32.(5) (2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值为________.答案 78 解析 极化恒等式法 设BD =DC =m ,AE =EF =FD =n ,则AD =3n .根据向量的极化恒等式,有AB →·AC →=AD →2-DB →2=9n 2-m 2=4, FB →·FC →=FD →2-DB →2=n 2-m 2=-1.联立解得n 2=58,m 2=138.因此EB →·EC →=ED →2-DB →2=4n 2-m 2=78.即BE →·CE →=78.坐标法 以直线BC 为x 轴,过点D 且垂直于BC 的直线为y 轴,建立如图所示的平面直角坐标系xoy ,如图:设A (3a ,3b ),B (-c ,0),C (-c ,0),则有E (2a ,2b ),F (a ,b ) BA →·CA →=(3a +c ,3b )·(3a -c ,3b )=9a 2-c 2+9b 2=4 BF →·CF →=(a +c ,b )·(a -c ,b )=a 2-c 2+b 2=-1,则a 2+b 2=58,c 2=138BE →·CE →=()2a -c ,2b ·()2a -c ,2b =4a 2-c 2+4b 2=78.基向量 BA →·CA →=(DA →-DB →)(DA →-DC →)=4AD →2-BC →24=36FD →2-BC →24=4,BF →·CF →=(DF →-DB →)(DF →-DC →)=4FD →2-BC →24=-1,因此FD →2=58,BC →=132,BE →·CE →=(DE →-DB →)(DE →-DC →)=4ED →2-BC →24=16FD →2-BC →24=78.(6)在梯形ABCD 中,满足AD ∥BC ,AD =1,BC =3,AB →·DC →=2,则AC →·BD →的值为________.BC答案 4 解析 过A 点作AE 平行于DC ,交BC 于E ,取BE 中点F ,连接AF ,过D 点作DH 平行于AC ,交BC 延长线于H ,E 为BH 中点,连接DE ,22212AB DC AB AE AF BF AF ⋅=⋅=-=-=,AC ⋅ 2224BD DB DH BE DE DE =-⋅=-=-,又1FE BE BF =-=,AD ∥BC ,则四边形ADEF 为平行四边形,AF DE =,1AC BD ∴⋅=.B【对点训练】1.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·DA →的值为________.1.答案 1 解析 取AE 中点O ,设|AE |=x (0≤x ≤1),则|AO |=12x ,∴DE →·DA →=|DO |2-|AO |2=12+⎝⎛⎭⎫12x 2 -14x 2=1. 2.如图,△AOB 为直角三角形,OA =1,OB =2,C 为斜边AB 的中点,P 为线段OC 的中点,则AP →·OP →= ( )A .1B .116C .14D .-122.答案 B 解析 取AO 中点Q ,连接PQ ,AP →·OP →=P A →·PO →=PQ 2-AQ 2=516-14=116.3.如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5,若AB →·AD →=-7,则BC →·DC →的值 是________.3.答案 9 解析 因为AB →·AD →=AO →2-OD →2=9-OD →2=-7⇒OD →2=16,所以BC →·DC →=CO →2-OD →2=25 -16=9.4.已知点A ,B 分别在直线x =3,x =1上,|OA →-OB →|=4,当|OA →+OB →|取最小值时,OA →·OB →的值是_____. A .0 B .2 C .3 D .64.答案 C 解析 如图,点A ,B 分别在直线x =1,x =3上,|AB →|=4,当|OA →+OB →|取最小值时,AB 的 中点在x 轴上,OA →·OB →=OM →2-BM →2=4-4=0.5.在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于( ) A .16 B .29 C .1318 D .135.答案 C 解析 解法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos60°=⎝⎛⎭⎫132+12-2×13×1×12=79,即AD =73,同理可得AE =73,在△ADE 中,由余弦定理得cos ∠DAE =AD 2+AE 2-DE 22AD ·AE =79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD →·AE →=|AD →|·|AE →|cos ∠DAE =73×73×1314=1318. 解法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=(-16,-32),AE →=⎝⎛⎭⎫16,-32,所以AD →·AE →=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.极化恒等式法 取DE 中点F ,连接AF ,则AD →·AE →=|AF |2-|DF |2=34-136=1318.6.在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →等于( )A .89B .109C .259D .2696.答案 B 解析 坐标法 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两 条边,它们的长不可能为0,所以AB 与AC 垂直,所以△ABC 为直角三角形.以A 为原点,以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝⎛⎭⎫23,23,F ⎝⎛⎭⎫13,43,所以AE →=⎝⎛⎭⎫23,23,AF →=⎝⎛⎭⎫13,43,所以AE →·AF →=23×13+23×43=109.极化恒等式法 取EF 中点M ,连接AM ,则AE →·AF →=|AM |2-|EM |2=54-536=109.7.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是( )A .44B .22C .24D .727.答案 B 解析 如图,取AB 中点E ,连接EP 并延长,交AD 延长线于F ,AP →·BP →=EP 2-AE 2=EP 2-16=2,∴EP =32,又∵CP →=3PD →,AE →=EB →,AB →=DC →,∴AE =2DP ,即△F AE 中,DP 为中位线,AF =2AD =10,AE =12AB =4,FE =2PE =62,AP 2=40,AD →·AB →=AF →·AE →=AP 2-EP 2=40-(32)2=22.8.如图,在△ABC 中,已知AB =4,AC =6,∠A =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=2AE →,若F 为DE 的中点,则BF →·DE →的值为________.A BD CE F8.答案 4 解析 取BD 的中点N ,连接NF ,EB ,则BE ⊥AE ,∴BE =23.在△DEB 中.FN ∥12EB .∴FN=3.BF →·DE →=2FB →·FD →=2(FN 2-DN 2)=4.AB DCE FN9.如图,在△ABC 中,已知AB =3,AC =2,∠BAC =120°,D 为边BC 的中点,若CD ⊥AD ,垂足为E , 则EB →·EC →=________.9.答案 -277 解析 由余弦定理得,BC 2=AB 2+AC 2-2 AB ·AC ·cos120°=19,即BC =19,因为AB →·AC →AD 2-CD 2=|AB |·|AC |·cos120°=-3,所以|AD |=72,因为S △ABC =2S △ADC ,则12|AB |·|AC |·sin120°=2·12|AD ||CE |,解得|CE |=3217,在Rt △DEC 中,|DE |=CD 2-CE 2=5714,所以EB →·EC →=|ED |2-|CD |2=-277.B10.在平面四边形ABCD 中,点E ,F 分别是边AD ,BC 的中点,且AB =1,EF =2,CD =5,若AD →·BC →=15.则AC →·BD →的值为________.10.答案 解析 极化恒等式 如图,取, , , AB AC CD BD 中点, , , H I J K ,四边形ABCD 中,易知, , EF KI HJ 三线共点于O ,2215154AD BC HK HI HO IO ⋅=⇒⋅==-,又4AC BD HE HF ⋅=⋅=()224HO FO -,在EFI ∆中,12,2EF EI FI ===,由中线长公式知214IO =,从而24HO =,AC BD ⋅=14(4)142-=.基向量法2EF AB DC =+,22242EF AB DC AB DC ∴=++⋅, AB DC EF =又=1,1AB DC ∴⋅=,15 ()()15AD BC AC CD BD DC ⋅=∴+⋅+=,,则2AC BD AC DC CD BD DC ⋅+⋅+⋅-15=,可化为()()515AC BD AB BC DC CD BC CD ⋅++⋅+⋅+-=,15, AC BD AB DC ⋅+⋅= AC BD ⋅故=14.BCADE OF考点二 平面向量数量积的最值(范围)问题 【方法总结】利用极化恒等式求数量积的最值(范围)问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转化为中线长与第三边长的一半的平方差; (3)求中线长的最值(范围),从而得到数量的最值(范围).积化恒等式适用于求对共起点(终点)的两向量的数量积的最值(范围)问题,利用极化恒等式将多变量转变为单变量,再用数形结合等方法求出单变量的范围.对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积的最值(范围)问题,从而用极化恒等式解决.在运用极化恒等式求数量积的最值(范围)时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式,难点在于求中线长的最值(范围),通过观察或用点到直线的距离最小或用三角形两边之和大于等于第三边,两边之差小于第三边或用基本不等式等求得中线长的最值(范围),从而得到数量的最值(范围).【例题选讲】[例1](1)若平面向量a ,b 满足|2a -b |≤3,则a ·b 的最小值为________.答案 -98 解析 a ·b =18[(2a +b )2-(2a -b )2]=18[|2a +b |2-|2a -b |2]≥02-328=-98.当且仅当|2a +b |=0,|2a -b |=3,即|a |=34,|b |=32,< a ,b >=π时,a ·b 取最小值-98.(2)如图,在同一平面内,点A 位于两平行直线m ,n 的同侧,且A 到m ,n 的距离分别为1,3,点B ,C 分别在m ,n 上,|AB →+AC →|=5,则AB →·AC →的最大值是________.答案214解析 坐标法 以直线n 为x 轴,过点A 且垂直于n 的直线为y 轴,建立如图所示的平面直角坐标系xOy ,如图:则A ()0,3,C ()c ,0,B ()b ,2,则AB →=()b ,-1,AC →=()c ,-3,从而()b +c 2+()-42=52,即()b +c 2=9,又AC →·AB →=bc +3≤()b +c 24+3=214,当且仅当b =c 时,等号成立.极化恒等式 连接BC ,取BC 的中点D ,AB →·AC →=AD 2-BD 2,又AD =12||AB →+AC →=52,故AB →·AC →=254-BD 2=254-14BC 2,又因为BC min =3-1=2,所以(AB →·AC →) max =214.(3)(2017·全国Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1答案 B 解析 方法一 (解析法) 建立坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),图①则P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2⎣⎡⎦⎤x 2+⎝⎛⎭⎫y -322-34≥2×⎝⎛⎭⎫-34=-32.当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32.故选B .方法二 (几何法) 如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.图②要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值.又当点P 在线段AD 上时,|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝ ⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34,∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32.故选B .极化恒等式法 设BC 的中点为D ,AD 的中点为M ,连接DP ,PM ,∴P A →·(PB →+PC →)=2PD →·P A →=2|PM→|2-12|AD →|2=2|PM →|2-32≥-32.当且仅当M 与P 重合时取等号.BC(4)已知正三角形ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,则P A →·PB →的取值范围是________.答案 [-2,6] 解析 取AB 的中点D ,连接CD ,因为三角形ABC 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =23.又由极化恒等式得:P A →·PB →=|PD |2-14|AB |2=|PD |2-3,因为P 在圆O 上,所以当P 在点C 处时,|PD |max =3,当P 在CO 的延长线与圆O 的交点处时,|PD |min =1,所以P A →·PB →∈[-2,6].(5)如图,已知P 是半径为2,圆心角为π3的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为_____.答案 5-213 解析 通法 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),设P (2cos θ,2sin θ)⎝⎛⎭⎫π3≤θ≤2π3,则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ),其中0<tan φ=36<33,所以0<φ<π6,当θ=π2-φ时,PC →·P A →取得最小值,为5-213. 极化恒等式法 设圆心为O ,由题得AB =2,∴AC =3.取AC 的中点M ,由极化恒等式得PC →·P A →=PM →2-AM →2=PM →2-94,要使PC →·P A →取最小值,则需PM 最小,当圆弧AB ︵的圆心与点P ,M 共线时,PM 最小.易知DM =12,∴OM =⎝⎛⎭⎫122+(3)2=132,所以PM 有最小值为2-132,代入求得PC →·P A →的最小值为5-213.(6)在面积为2的△ABC 中,E ,F 分别是AB ,AC 的中点,点P 在直线EF上,则PC →·PB →+BC →2的最小值是________.答案 23 解析 取BC 的中点为D ,连接PD ,则由极化恒等式得PC →·PB →+BC →2=PD →2-BC →24+BC→2=PD →2+3BC →24≥AD →24+3BC →24,此时当且仅当AD →⊥BC →时取等号,PC →·PB →+BC →2≥AD →24+3BC →24≥2AD →24·3BC →24=23.另解 取BC 边的中点M ,连接PM ,设点P 到BC 边的距离为h .则S △ABC =12·||BC →·2h =2⇒||BC→=2h,PM ≥h ,所以PB →·PC →+BC →2=⎝⎛⎭⎫PM →2-14BC →2+BC →2=PM →2+34BC →2=PM →2+3h 2≥h 2+3h2≥23(当且仅当||PM →=h ,h 2=3时,等号成立)【对点训练】1.已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于A ,B 的一点,P 是圆O 所在平面上任意一点, 则(P A →+PB →)·PC →的最小值为( )A .-14B .-13C .-12D .-11.答案 C 解析 P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →,取OC 中点D ,由极化恒等式得,PO →·PC →=|PD |2-|CD |2=|PD |2-14,又|PD |2min =0,∴(P A →+PB →)·PC →的最小值为-12.2.如图,设A ,B 是半径为2的圆O 上的两个动点,点C 为AO 中点,则CO →·CB →的取值范围是( )A .[-1,3]B .[1,3]C .[-3,-1]D .[-3,1]2.答案 A 解析 建立平面直角坐标系如图所示,可得O (0,0),A (-2,0),C (-1,0),设B (2cos θ, 2sin θ).θ∈[0,2π).则CO →·CB →=(1,0)·(2cos θ+1,2sin θ)=2cos θ+1∈[-1,3].故选A .极化恒等式法 连接OB ,取OB 的中D ,连接CD ,则CO →·CB →=|CD |2-|BD |2=CD 2-1,又|CD |2min =0,∴CO →·CB →的最小值为-1.|CD |2max =2,∴CO →·CB →的最大值为3.3.如图,在半径为1的扇形AOB 中,∠AOB =π3,C 为弧上的动点,AB 与OC 交于点P ,则OP →·BP →的最小值为________.3.答案 -116 解析 取OB 的中点D ,连接PD ,则OP →·BP →=|PD →|2-|OD →|2=|PD →|2-14,于是只要求求PD 的最小值即可,由图可知,当PD ⊥AB ,时,PD =34,即所求最小值为-116.4.(2020·天津)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.4.答案 16 132 解析 第1空 因为AD →=λBC →,所以AD ∥BC ,则∠BAD =120°,所以AD →·AB →=|AD →|·|AB →|·cos 120°=-32,解得|AD →|=1.因为AD →,BC →同向,且BC =6,所以AD →=16BC →,即λ=16.第2空 通法 在四边形ABCD 中,作AO ⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系.如图,设M (a ,0),不妨设点N 在点M 右侧,则N (a +1,0),且-32≤a ≤72.又D ⎝⎛⎭⎫1,332,所以DM →=⎝⎛⎭⎫a -1,-332,DN →=⎝⎛⎭⎫a ,-332,所以DM →·DN→=a 2-a +274=⎝⎛⎭⎫a -122+132.所以当a =12时,DM →·DN →取得最小值132. 极化恒等式法 如图,取MN 的中点P ,连接PD ,则DM →·DN →=PD →2-MP →2=PD →2-14,当PD →⊥BC →时,|PD→|2取最小值274,所以DM →·DN →的最小值为132.BC5.在△ABC 中,AC =2BC =4,∠ACB 为钝角,M ,N 是边AB 上的两个动点,且MN =1,若CM CN ⋅的最小值为34,则cos ∠ACB =________.5.答案解析 取MN 的中点P ,则由极化恒等式得2221144CM CN CP MN CP ⋅=-=-,∵ CM CN ⋅的最小值为34,∴min 1CP =,由平几知识知:当CP ⊥AB 时,CP 最小,如图,作CH ⊥AB ,H 为垂足,则CH =1,又AC =2BC =4,所以∠B =30o ,sin A =14,所以cos ∠ACB =cos (150o -A ).6.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,AB =8,CD =6,则MA →·MB →的取值范围是________. 6.答案 [-9,0] 解析 如图,MA →·MB →=MO →2-AO →2=MO →2-16,∵|OG →|≤|OM →|≤|OC →|,∴7≤|OM →|≤4,∴MA →·MB →的取值范围是[-9,0].7.如图,设正方形ABCD 的边长为4,动点P 在以AB 为直径的弧APB 上,则PC →·PD →的取值范围为______. 7.答案 [0,16] 解析 如图取CD 的中点E ,连接PE ,PC →·PD →=PE →2-DE →2=OE →2-2,2≤|PE →|≤25, 所以PC →·PD →的取值范围为[0,16].8.已知正△ABC 内接于半径为2的圆O ,AE 交圆O 于点F ,则F A →·FB →的取值范围是________.8.答案 [0,6] 解析 取AB 的中点D 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =23.又由极化恒等式得:F A →·FB →=|FD |2-|AD |2=|FD |2-3,因为F 在劣弧BC 上,所以当F 在点C 处时,|FD |max =3,当F 在点B 处时, |PD |min =3,所以P A →·PB →∈[0,6].9.已知AB 是半径为4的圆O 的一条弦,圆心O 到弦AB 的距离为1,P 是圆O 上的动点,则P A →·PB →的取 值范围为_________.9.答案 [-6,10] 解析 极化恒等式法 设AB 的中点为C ,连接CP ,则P A →·PB →=|PC →|2-|AC →|2=|PC →|2-15.|PC →|2-15≥25-15=10,|PC →|2-15≤9-15=-6.10.矩形ABCD 中,AB =3,BC =4,点M ,N 分别为边BC ,CD 上的动点,且MN =2,则AM →·AN →的最小值为________.10.答案 15 解析 取K 为MN 中点,由极化恒等式,AM →·AN →=|AK |2-1,显然K 的轨迹是以点C 为圆心,1为半径的圆周在矩形内部的圆弧,所以|AK |min =5-1=4,所以AM →·AN →的最小值为15.AD11.在△ABC 中,已知AB =3,C =π3,则CA →·CB →的最大值为________.11.答案 32解析 设D 是AB 的中点,连接CD ,点O 是△ABC 的外心,连接DO 并延长交圆O 于C ´,由△ABC ´是等边三角形,∵AD =32,∴C ´D =32,则CA →·CB →=|CD →|2-|DA →|2=|CD →|2-(32)2≤|C ´D →|2-34=(32)2-34=32.∴(CA →·CB →)max =32.12.已知在△ABC 中,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( )A .∠ABC =90°B .∠BAC =90° C .AB =ACD .AC =BC12.答案 D 解析 如图所示,取AB 的中点E ,因为P 0B =14AB ,所以P 0为EB 的中点,取BC 的中点D ,则DP 0为△CEB 的中位线,DP 0∥CE .根据向量的极化恒等式,有PB →·PC →=PD →2-DB →2,P 0B →·P 0C →=P 0D →2-DB →2.又PB →·PC →≥P 0B →·P 0C →,则|PD →|≥|P 0D →|恒成立,必有DP 0⊥AB .因此CE ⊥AB ,又E 为AB 的中点,所以AC =BC .13.在正方形ABCD 中,AB =1,A ,D 分别在x ,y 轴的非负半轴上滑动,则OC →·OB →的最大值为______.13.答案 2 解析 如图取BC 的中点E ,取AD 的中点F ,OC →·OB →=OE →2-BE →2=OE →2-14,而|OE →|≤|OF →|+|FE →|=12||AD →|+|FE →||=12+1=32,当且仅当O ,F ,E 三点共线时取等号.,所以OC →·OB →的最大值为2.14.在三角形ABC 中,D 为AB 中点,∠C =90°,AC =4,BC =3,E ,F 分别为BC ,AC 上的动点,且EF =1,则DE →·DF →最小值为________. 14.答案154 解析 设EF 的中点为M ,连接CM ,则|CM →|=12,即点M 在如图所示的圆弧上,则DE →·DF → =|DM →|2-|EM →|2=|DM →|2-14≥||CD |-12|2-14=154.ABC DE M15.在Rt ABC 中,∠C =90°,AC =3,AB =5,若点A ,B 分别在x ,y 轴的非负半轴上滑动,则OA →·OC →的最大值为________.15.答案 18 解析 如图取AC 的中点M ,取AB 的中点N ,则OA →·OC →=OM →2-AM →2=OM →2-(32)2≤(ON →2-NM →2)-(32)2=(2+52)2-(32)2=18.16.已知正方形ABCD 的边长为2,点F 为AB 的中点,以A 为圆心,AF 为半径作弧交AD 于E ,若P 为劣弧EF 上的动点,则PC →·PD →的最小值为______.16.答案 5-25 解析 如图取CD 的中点M ,PC →·PD →=PM 2-DM 2=PM 2-1,而|PM |+1=|PM |+|AP |≥|AM |=5,当且仅当P ,Q 重合时等号成立,所以PC →·PD →的最小值为(5-1)2-1=5-25.C17.如图,已知B ,D 是直角C 两边上的动点,AD ⊥BD ,|AD →|=3,∠BAD =π6,CM →=12(CA →+CB →),CN →=12(CD →+CA →),则CM →·CN →的最大值为________.ABCDMN17.答案13+44 解析 设MN 的中点为G ,BD 的中点为H ,CM →·CN →=|CG →|2-|GN →|2=|CG →|2-116, ∵|CG →|≤|CH →|+|HG →|=12+134,∴CM →·CN →≤(12+134)2-116=13+44.所以CM →·CN →的最大值为13+44.AB CD MNG H18.如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BCD =60°,CB =CD =23.若点M 为边BC上的动点,则AM →·DM →的最小值为________.B C18.答案214解析 设E 是AD 的中点,作EN ⊥BC 于N ,延长CB 交DA 的延长线于F ,由题意可得: FD =3CD =6,FC =2CD =43,∴BF =23,∴AB =2,F A =4,∴AD =2,EN AB =EF F A =54,EN =52.则AM →·DM →=MA →·MD →=|ME →|2-|EA →|2=|ME →|2-1≥EN 2-1=(52)2-1=214.∴AM →·DM →=214.另解 设E 是AD 的中点,作EF ⊥BC 于F ,作AG ⊥EF 于G ,∵AB ⊥BC ,AD ⊥CD ,∴四边形ABCD 共圆,如图,由圆的对称性及∠BCD =60°,CB =CD =23,可知∠BCA =∠DCA =30°,∴AB =2,∵∠GAE =30°,∴GE =12,∴EF =2+12=52,则AM →·DM →=MA →·MD →=|ME →|2-|EA →|2=|ME →|2-1≥EN 2-1=(52)2-1=214.∴AM →·DM →=214.C19.(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E为边CD 上的动点,则AE →·BE →的最小值为________.19.答案2116解析 通法 如图,以D 为坐标原点建立直角坐标系.连接AC ,由题意知∠CAD =∠CAB =60°,∠ACD =∠ACB =30°,则D (0,0),A (1,0),B ⎝⎛⎭⎫32,32,C (0,3).设E (0,y )(0≤y ≤3),则AE →=(-1,y ),BE →=⎝⎛⎭⎫-32,y -32,所以AE →·BE →=32+y 2-32y =⎝⎛⎭⎫y -342+2116,所以当y =34时,AE →·BE→有最小值2116.极化恒等式法 如图,取AB 的中点P ,连接PE ,则AE →·BE →=PE →2-AP →2=PE →2-14,当PE →⊥CD →时,|PE→|取最小值,由几何关系可知,此时,PE →2=2516,所以DM →·DN →的最小值为2116.20.如图,圆O 为Rt △ABC 的内切圆,已知AC =3,BC =4,C =π2,过圆心O 的直线l 交圆于P ,Q 两点,则BP →·CQ →的取值范围为________.20.答案 [-7,1] 解析 易知,圆的半径为1,BP →·CQ →=(BC →+CP →)·CQ →=BC →·CQ →+CP →·CQ →=CP →·CQ →-CB →·CQ →,CP →·CQ →=CO →2-OP →2=2-1=1.CB →·CQ →=|CB →||CQ →|cos ∠BCQ =2|CQ →|cos ∠BCQ ,(|CQ →|cos ∠BCQ )min =0,(|CQ →|cos ∠BCQ )max =4.所以BP →·CQ →的取值范围为[-7,1].21.在三棱锥S -ABC 中,SA ,SB ,SC 两两垂直,且SA =SB =SC =2,点M 为三棱锥S -ABC 的外接球面上任意一点,则MA →·MB →的最大值为________.21.答案 23+2 解析 如图,MA →·MB →=MO 1→2-2.当M ,A ,B 在同一个大圆上且MO 1⊥AB ,点M 与线段AB 在球心的异侧时,|MO 1→|最大,又2R =22+22+22=23,所以R =3.|MO 1→|max =3+1,MO 1→2-2的最大值为23+2.A22.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,MN 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P 为正方体表面上的动点,当弦MN 的长度最大时,PM →·PN →的取值范围是________.22.答案 [0,2] 解析 由正方体的棱长为2,得内切球的半径为1,正方体的体对角线长为23.当弦MN 的长度最大时,MN 为球的直径.设内切球的球心为O ,则PM →·PN →=PO →2-ON →2=PO →2-1.由于P 为正方体表面上的动点,故OP ∈[1,3],所以PM →·PN →∈[0,2].23.已知线段AB 的长为2,动点C 满足CA →·CB →=λ(λ为常数),且点C 总不在以点B 为圆心,12为半径的圆内,则负数λ的最大值为________.23.答案 -34解析 如图取AB 的中点为D ,连接CD ,则CA →·CB →=|CD →|2-1=λ,|CD →|=1+λ,()-1≤λ<0, 又由点C 总不在以点B 为圆心,12为半径的圆内,故1+λ≤12,则负数λ的最大值为-34.24.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .824.答案 C 解析 如图,由已知|OF |=1,取FO 中点E ,连接PE ,由极化恒等式得:OP →·FP →=|PE |2-14|OF |2=|PE |2-14,∵|PE |2max =254,∴OP →·FP →的最大值为6.。

极化恒等式在数量积中的应用

极化恒等式在数量积中的应用

极化恒等式在数量积求值中的应用1. 极化恒等式的概念:极化恒等式最初出现于高等数学中的泛函分析,它表示数量积可以由它诱导出的范数来表示,把这个极化恒等式降维至二维平面即得:极化恒等式:设b a ,是平面内的两个向量,则有()()2214a b a b a b ⎡⎤⋅=+--⎢⎥⎣⎦极化恒等式的几何意义:在ABC ∆中,AD 是BC 边上的中线,22AB AC AD BD ⋅=-. 我们从极化恒等式看到向量的数量积可转化为中线长与半底边长的平方差,此恒等式的精妙之处在于建立向量与几何长度(数量)之间的桥梁,实现向量与几何、代数的巧妙结合.2.极化恒等式在数量积求值中的应用:极化恒等式对研究数量积问题有着怎样的帮助呢?我们通过对比几道例题的解题思路来思考这个问题.例1. (2016年江苏数学高考第13题)如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BA CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 .法一:(坐标法)解:以直线BC 为x 轴,过点D 且垂直于BC 的直线为y 轴,建立如图所示的平面直角坐标系xOy ,如图:设(3,3),(,0)A a b B c -,(,0)C c ,则有(2,2),(,)E a b F a b ()()2223,33,3994BA CA a c b a c b a c b ⋅=+⋅-=-+=222(,)(,)1BF CF a c b a c b a c b ⋅=+-=-+=-,则222513,88a b c +==AE FCD xyB()()22272,22,2448BE CE a c b a c b a c b ⋅=+⋅-=-+=法二:(基向量)()()2222436444AD BC FD BCBA CA DA DB DA DC --⋅=-⋅-===解:()()22414FD BCBF CF DF DB DF DC -⋅=-⋅-==-, 因此22513,82FD BC ==,()()22224167448ED BC FD BC BE CE DE DB DE DC --⋅=-⋅-===.上面的解法采用基向量的思想,将平面内向量用BC FD ,表示.而这样一个转化的过程可以用“极化恒等式”直接描述.如下: 设,BD x DF y ==2294BA CA y x ⋅=-=,221BF CF y x ⋅=-=-,则有22513,88y x ==22748BE CE y x ⋅=-=我们看到极化恒等式其实是一种基向量思想的公式化表达,当题目需要从中线与底边这两个方向寻找基向量时,运用极化恒等式可以更好,更快的达到解题的目的.从前面的题目,我们看到极化恒等式对研究共起点(终点)向量数量积问题有很大的帮助,但是对于有些不共起点(终点)向量数量积问题,我们是否可以用极化恒等式来探索呢?比如:例2(南通、泰州、扬州、连云港、淮安五市2013届高三三模第13题改编)15AD BC ⋅=,则AC BD ⋅的值为法一:(坐标法)解:建立如图所示的平面直角坐标系设11(0,0),(1,0),(,),(A B D x y C x 2(BC OC OB x =-=112212121(,)(1,)15AD BC x y x y x x y y x ∴⋅=-=+-=11(1,)BD OD OB x y =-=-22111212212(,)(1,)15AC BD x y x y x x y y x x x ∴⋅=-=+-=+-22212121()()22222x x y y EF +=-+-=, 则221212(1)()8x x y y --+-=,22121212()()2()18x x y y x x -+---+= 又2221212()()5CD x x y y =-+-=,121514AC BD x x ∴⋅=+-=法二:(基向量) 解:2EF AB DC =+22242EF AB DC AB DC ∴=++⋅AB DC EF =又=1,1AB DC ⋅= 15()()15AD BC AC CD BD DC ⋅=∴++=则215AC BD AC DC CD BD DC +⋅+-=可化为()()515AC BD AB BC DC CD BC CD ++⋅++-= 15,=14AC BD AB DC AC BD +⋅=故法三(极化恒等式)解:如图,取,,,AB AC CD BD 中点,,,H I J K . 四边形ABCD 中,易知,,EF KI HJ 三线共点于O2215154AD BC HK HI HO IO ⋅=⇒⋅==-又()2244AC BD HE HF HO FO⋅=⋅=-在EFI ∆中,12,2EF EI FI === 由中线长公式知214IO =,从而24HO = AC BD ⋅=14(4)142-=.本题对于学生来说思路较难发现,但从极化恒等式的角度对条件、目标进行探索,思路清晰,过程自然,很轻松就解决了问题。

极化恒等式向量

极化恒等式向量

极化恒等式向量一、引言在数学领域,极化恒等式向量是一个重要的概念。

它在向量空间的研究中扮演着关键角色,被广泛应用于线性代数、函数分析等领域。

本文将深入探讨极化恒等式向量的性质、公式以及应用。

二、极化恒等式的定义极化恒等式是指在向量空间中,通过对向量之间的运算进行分解和组合,可以得到一个等于原向量的表达式。

具体而言,对于任意向量x和y,存在唯一的两个向量u和v,使得以下恒等式成立:x = (u + v)/2y = (u - v)/2其中u被称为x和y的极化向量,v被称为x和y的反极化向量。

三、极化向量的性质极化向量具有以下几个重要的性质:1. 唯一性对于给定的向量x和y,极化向量u和反极化向量v是唯一确定的。

这意味着通过极化恒等式可以唯一地确定原向量的分解。

2. 直交性极化向量和反极化向量是相互垂直的,即u和v的内积为零。

这一性质使得极化向量在许多应用中非常有用,例如在正交变换和傅里叶变换中。

3. 平均性质极化向量可以看作是两个向量平均的结果。

通过将两个向量相加再除以2,可以得到极化向量。

这一性质在向量平均、中心化等问题中起到重要作用。

4. 线性性质极化向量具有线性性质,即对于任意的标量a和b,有:a(x + y) = ax + ayb(x + y) = bx + by这一性质使得极化恒等式在向量空间的运算中非常方便。

四、极化向量的计算方法为了计算极化向量u和反极化向量v,可以利用极化恒等式中的等式关系进行求解。

具体步骤如下:1.根据极化恒等式,将等式两边分别乘以2,得到:2x = u + v2y = u - v2.将上述两个等式相加和相减,得到关于u和v的方程组:2x + 2y = 2u (1)2x - 2y = 2v (2)3.解方程组(1)和(2),得到u和v的数值解。

这可以通过矩阵求解方法,例如高斯消元法或矩阵逆的计算。

通过以上步骤,我们可以求得给定向量x和y的极化向量u和反极化向量v。

五、极化恒等式的应用极化恒等式在许多数学和工程问题中都有着重要的应用。

极化恒等式

极化恒等式
3、 三角形模式:
如图,在△ABC中,设D为BC的中点,
则 · =|AD|2-|BD|2.
(1)推导过程:由 .
(2)三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决.
(3)记忆规律:向量的数量积等于第三边的中线长与第三边长的一半的平方差.
二、极化恒等式的作用和使用范围
1、极化恒等式的作用:
极化恒等式
一、极化恒等式及其推论:
1、极化恒等式:a·b= [(a+b)2-(a-b)2]
(1)公式推导:
(2)几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的 .
2、 平行四边形模式:
如图,平行四边形ABCD,O是对角线交点.
则 · = [|AC|2-|BD|2].
第一步:取第三边的中点,连接向量的起点与中点;
第二步:利用极化恒等式公式,将数量积转化为中线长与第三边长的一半的平方差;
第三步:利用平面几何方法或用正余弦定理求中线及第三边的长度,从而求出数量积,
如需进一步求数量积范围,可以用点到直线或用基本不等式等求得中线长的最值(范围)。
建立了向量的数量积与几何长度(数量)之间的桥梁,实现向量与几何、代数之间的互相转化。
2、极化恒等式的适用范围:
(1)共起点或共终点的两向量的数量积问题可直接进行转化;
(2)不共起点和不共终点的数量积问题可通过向量的平移,
等价转化为共起点或共终点的两向量的数量积问题。
三、极化恒等式使用方法
在确定求数量积的两个向量共起点或共终点的情况下,极化恒等式的一般步骤如下:

高中数学课件-向量极化恒等式

高中数学课件-向量极化恒等式
以·的最大值为 2.
答案:(2)2




(3)如图,在△ABC 中,D 是 BC 的中点,E,F 是 AD 上的两个三等分点.·=4,·=-1,


则·的值为
.



解析:(3)设 BD=DC=m,AE=EF=FD=n,则 AD=3n.根据向量的极化恒等式,有·=||2→


答案:(1)C
C.
(2)如图所示,正方形 ABCD 的边长为 1,A,D 分别在 x 轴、y 轴的正半轴(含原点)上滑


动,则·的最大值是
.
解析:(2)如图,取 BC 的中点 M,AD 的中点 N,连接 MN,ON,





2



则·=|| -.因为 OM≤ON+NM=AD+AB=,当且仅当 O,N,M 三点共线时取等号,所
2
2
2










|| =9n -m =4,·=|| -|| =n2-m2=-1.联立解得 n2= ,m2= ,






2
2




因此·=|| -|| =4n -m =,即·=.

答案:(3)





cos ∠BAD=-||=-,得||=1,因此λ=


依题意得 AD∥BC,∠BAD=120°,由 · =| || |·





2025年新人教版高考数学一轮复习讲义 第五章 培优点7 极化恒等式

2025年新人教版高考数学一轮复习讲义  第五章 培优点7 极化恒等式

跟踪训练 2 (1)已知正方形 ABCD 的边长为 2,MN 是它的内切圆的一条
弦,点 P 为正方形四条边上的动点,当弦 MN 的长度最大时,P→M·P→N的取
值范围是
√A.[0,1]
C.[1,2]
B.[0, 2] D.[-1,1]
如图所示,设P是线段AB上的任意一点, P→M=P→O+O→M,P→N=P→O+O→N=P→O-O→M,圆 O
方法一(极化恒等式法)
设BD=DC=m,AE=EF=FD=n,则AD=3n.
由向量的极化恒等式,知 A→B·A→C=|A→D|2-|D→B|2=9n2-m2=4, F→B·F→C=|F→D|2-|D→B|2=n2-m2=-1,
联立解得 n2=58,m2=183,
因此E→B·E→C=|E→D|2-|D→B|2=4n2-m2=78, 即B→E·C→E=78. 方法二(坐标法)以直线BC为x轴,过点D且垂 直于BC的直线为y轴,建立如图所示的平面直 角 坐 标 系 . 设 A(3a,3b) , B( - c,0) , C(c,0) , 则 E(2a,2b),F(a,b),
连接 HF,EG,交于点 O,则 O 为 HF,GE 的中 点,则E→F·F→G=E→F·E→H=E→O2-O→F2=1-122=34, G→H·H→E=G→H·G→F=G→O2-O→H2=1-122=34,因此 E→F·F→G+G→H·H→E=32.
题型二 利用极化恒等式求最值(范围)
例 2 (1)已知△OAB 的面积为 1,AB=2,动点 P,Q 在线段 AB 上滑动, 且 PQ=1,则O→P·O→Q的最小值为____34____.
1 2 3 4 5 6 7 8 9 10
所以P→A·P→O+P→B·P→C=2|P→E|2-4. 因为 P 是圆 O 内一点,所以 0≤|P→E|<3, 所以-4≤2|P→E|2-4<14, 即-4≤P→A·P→O+P→B·P→C<14.

高考数学复习:向量极化恒等式

高考数学复习:向量极化恒等式
因此E→B·E→C=E→D2-D→B2=4n2-m2=78.
即B→E·C→E=78.
(2)如图所示,正方体ABCD-A1B1C1D1的棱长为2, MN是它的内切球的一条弦(我们把球面上任意两点之 间的线段称为球的弦),P为正方体表面上的动点,当
弦MN的长度最大时,P→M·P→N 的取值范围是__[_0_,2_]___.
跟踪演练
1.已知在△ABC 中,P0 是边 AB 上一定点,满足 P0B=14AB,且对于边 AB
上任一点 P,恒有P→B·P→C≥P→0B·P→0C,则
A.∠ABC=90°
B.∠BAC=90°
C.AB=AC
√D.AC=BC
12
解析 如图所示,取AB的中点E, 因为 P0B=14AB,所以 P0 为 EB 的中点, 取BC的中点D,则DP0为△CEB的中位线,DP0∥CE. 根据向量的极化恒等式,
有P→B·P→C=P→D2-D→B2,P→0B·P→0C=P→0D2-D→B2. 又P→B·P→C≥P→0B·P→0C,则| P→D|≥|P→0D|恒成立,
必有DP0⊥AB.因此CE⊥AB,又E为AB的中点,所以AC=BC.
12
2.如图所示,正方形 ABCD 的边长为 1,A,D 分别在 x 轴,y 轴的正半轴
分点. B→A·C→A=4, B→F·C→F=-1,则B→E·C→E的值为___78_____.
解析 设BD=DC=m,AE=EF=FD=n,则AD=3n.
根据向量的极化恒等式,有A→B·A→C=A→D2-D→B2=9n2-m2=4, F→B·F→C=F→D2-D→B2=n2-m2=-1.
联立解得 n2=58,m2=183.
极化恒等式:a·b=a+b2-a-b2. 2 2

专题2 极化恒等式与向量隐圆

专题2 极化恒等式与向量隐圆

专题2 极化恒等式与向量隐圆知识点1 极化恒等式极化恒等式:2214a ba b a b,我们再之前提到两个向量的数量积,有两个方案,一是知道模和夹角,二是知道两个向量的坐标,极化恒等式的出现,使得向量的数量积有了第三种方案,就是利用中线的平方差,这样无需任何角度和坐标,完全靠长度平方差来解决,向量完全靠模长化解决数量积问题,联想我们学习的极坐标,所谓“极化”,就是完全模长化,这个完全模长化的恒等式就叫极化恒等式.在ABC △中,若AM 是ABC △的BC 边中线,有以下两个重要的向量关系:()()1212AM AC AB BM AC AB ⎧=+⎪⎪⎨⎪=-⎪⎩ 定理1 平行四边形两条对角线的平分和等于两条邻边平分和的两倍.以此类推到三角形,若AM 是ABC ∆的中线,则()22222AB AC AM BM +=+.定理2 在ABC ∆中,若M 是BC 的中点,则有22221.4AB AC AM BC AM BM ⋅=-=- 【例1】(2014•新课标II )设向量a ,b 满足a b +=a b -=a b ⋅等于( ) A .1B . 2C .3D .5【例2】(2020•新课标Ⅰ)设a ,b 为单位向量,且||1a b +=,则||a b -= .【例3】(2022•北京)在△ABC 中,3AC =,4BC =,90C ∠=︒.P 为△ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是( ) A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]【例4】(2020•天津)如图,在四边形ABCD 中,60B ∠=︒,3AB =,6BC =,且AD BC λ=,32AD AB =-,则实数λ的值为 ,若M ,N 是线段BC 上的动点,且||1MN =,则DM DN 的最小值为 .【例5】(2016•江苏卷)如图,在ABC △中,D 是BC 的中点E ,F 是AD 的两个三等分点,4BA CA ⋅=,1BF CF ⋅=-则BE CE ⋅= .【例6】(2018•天津)如图,在平面四边形ABCD 中,BC AB ⊥,CD AD ⊥,︒=∠120BAD ,1==AD AB .若点E 为边CD 上的动点,则AE BE ⋅的最小值为( ) A .2116B .32C .2516D .3【例7】(2016•浙江卷)已知向量,2,1,,==b a b a 若对任意单位向量e ,均有a e b e ⋅+⋅≤则a b ⋅的最大值是 .【例8】(2017•全国II 卷)已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC⋅+的最小值是( ) A .2-B .23-C .34-D .1-【例9】(2022•重庆期末)如图,正六边形的边长为2,半径为1的圆O 的圆心为正六边形的中心,若点M 在正六边形的边上运动,动点A ,B 在圆O 上运动且关于圆心O 对称,则MA MB ⋅的值可能为( )A .32B .52C .3D .72【例10】(2022•淮安月考)如图,在ABC ∆中,6BC =,D ,E 是BC 的三等分点,且4AD AE ⋅=,则()A .2133AE AB AC =+B .1122AD AB AE =+ C .4AB AC ⋅=- D .2228AB AC +=同步训练1.(2022•雨花区开学)已知正方形ABCD 的对角线长为2,EF 是它的内切圆一条弦,点P 为正方形ABCD 四条边上的一个动点,当弦EF 的长度最大时,PE PF ⋅不可能为( ) A .0B .13C .12D .232.(2022•房山区开学)已知ABC ∆是边长为2的等边三角形,AB 为圆M 的直径,若点P 为圆M 上一动点,则PA PC ⋅的取值范围为( ) A .[0,4]B .[1-,3]C .[2-,4]D .[3-,1]3.(2022•南关区期末)在等腰梯形ABCD 中,//AB CD ,24AB CD ==,AD BC ==E 为CD 的中点,F 为线段BC 上的点,则EF BF ⋅的最小值是( )A .0B .95-C .45-D .14.(2022•思明区月考)如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE EA =,2CF FB =.点P 在正方形ABCD 的边上,且16PE PF ⋅=,则满足条件的点P 的个数是( )A .0B .2C .4D .65.(2022•资阳期末)如图,在等腰直角ABC ∆中,斜边为4BC =,M ,N 为BC 上的动点,且1MN =,则AM AN ⋅取值范围为( )A .15[4B .C .15[,6]4D .[4,6]6.(2022•万州区开学)在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是 .7.(2022•黄浦区开学)如图,ABC ∆中,4AC =,2BC =,ACB ∠为钝角,M 、N 是边AB 上的两个动点,且1MN =,若CM CN ⋅的最小值为34,则cos ACB ∠= .8.(2022•青岛期末)设点P 是边长为2的ABC △三边上的一动点,则()PA PB PC ⋅+的取值范围是 . 9.(2018•浙江联考)如图,在等腰梯形ABCD 中,2=AB ,4=CD ,5=BC ,点E ,F 分别为AD ,BC 的中点.如果对于常数λ,在等腰梯形ABCD 的四条边上,有且只有8个不同的点P ,使得PE PF λ⋅=成立,那么λ的取值范围是( ) A .⎪⎭⎫⎝⎛--209,45B .⎪⎭⎫ ⎝⎛-411,209C .⎪⎭⎫ ⎝⎛--41,209D .511,44⎛⎫- ⎪⎝⎭知识点2 向量的隐圆问题第一类 极化恒等式向量乘积型:PA PB λ=定理 平面内,若B A ,为定点,且PA PB λ=,则P 的轨迹是以AB 中点M 为圆心,241AB +λ为半径的圆. 证明 由PA PB λ=,根据极化恒等式可知,λ=-2241AB PM ,所以λ+=241AB PM ,P 的轨迹是以M 为圆心241AB +λ为半径的圆. 【例11】(2017•江苏)在平面直角坐标系xOy 中,)012(,-A ,)60(,B ,点P 在圆O :5022=+y x 上,若20PA PB ≤,则P 的横坐标范围是 .【例12】已知)32(,A ,)36(-,B ,P 在0343=+-y x 上,若满足20AP BP λ+=的P 有2个,则λ的取值范围是 .第二类 与向量模和矩形相关构成隐圆如图,在矩形ABCD 中,若对角线AC 和BD 交于点O ,P 为平面内任意一点,有以下两个重要的向量关系:①2222PA PC PB PD ;① .PA PCPB PD4⎭根据极化恒等式2a b a b +⎛⎫⋅= ⎪⎝,可得224AC PA PC PO PB PD ⋅=-=⋅ 推广到空间,得到的结论就是:底面是矩形的四棱锥相对侧棱长的平方和以及向量乘积均相等.【例13】(2008•浙江卷)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则||c 的最大值是( )A .1B .2C .2D .【例14】(2013•重庆卷)在平面内,12AB AB ⊥,121OB OB ==,12AP AB AB =+若12OP ,则OA 的取值范围是( )A .0,⎡⎢⎣⎭B. ,⎝⎦C. ,⎝D. ,⎝【例15】(2012•江西卷)在Rt ABC △中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则222PA PB PC +等于( ) A .2B .4C . 5D . 10【例16】(2022•岳麓区月考)已知向量a 、b 、c 满足3a ,2b ,1c ,且(c)(c)0a b ,则a b-的取值范围是 _ .【例16】(2022•安徽模拟)已知||||2a b ==,||1c =,()()0a c b c --=,则||a b -的取值范围是( )A .11]B .C .11]D .第三类 与向量模和向量数量积构成隐圆【例17】(2022•绍兴期中)已知平面向量a ,b ,c 满足对任意x R ∈都有||||a xb a b -≥-,||||a xc a c -≥-成立,||||1a c b c -=-=,||3a b -=,则||a 的值为( )A .1B C .2D .7 【例18】(2022•山东月考)已知向量a ,b ,c ,其中||2a b -=,||1a c -=,b 与c 夹角为60︒,且()()1a b a c --=-.则||a 的最大值为 .【例19】(2018•浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -⋅+=,则||a b -的最小值是( )A 1B 1C .2D .2【例20】(2016•四川)在平面内,定点A ,B ,C ,D 满足||||||DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点P ,M 满足||1AP =,PM MC =,则2||BM 的最大值是( )A .434B .494C D同步训练10.(2022•海淀开学)已知a ,b 是单位向量,0a b ⋅=,若||1a b c ++=,则||b c -的取值范围是( )A .[0,2]B .[11]C .1-1]D .11]+11.(2022•浙江月考)已知向量,,a b c 满足||1,20,2||||a a b c a c b =+=-=-,则向量c b -与a 夹角的最大值是( ) A .12πB .6π C .4π D .3π 12.(2022•沙坪坝区期末)已知圆22(1)4C x y ++=,过点(0,)M m 的直线交圆于A ,B 两点,下列说法正确的是( )A .当1m =时,||AB 的最小值是 B .当m 时,||AM 的取值范围是[22+C .当2m =时,MA MB ⋅为定值D .当m =-||2||AB AM =时,120ACB ∠=︒13.(2016•四川)已知正三角形ABC 的边长为ABC 内的动点P ,M 满足||1AP =,PM MC =,则2||BM 的最大值是( )A .434B .494C D 14.(2022•祁东县期末)已知向量a ,b ,c 满足||3a =,||1b =,||7a b -=,||2||c c a =-.设()m tb t R =∈,则( )A .||m c -B .||m c -的最小值为2C .||m c -的最大值为2D .||m c -无最大值15.(2022•南京模拟)已知O 为坐标原点,向量,,OA OB OC ,满足||||||1OA OB OC ===,()()0OA OB OB OC -⋅-=,若||4OP =,则||PA PB PC ++的取值范围是( )A .[11,13]B .[8,11]C .[8,13]D .[5,11]16.(2022•仙游期中)已知向量,,a b c 满足:||1,()(),(2)a a c b c a a b =-⊥-⊥-,若37||2b =,||c 的最大值和最小值分别为m ,n ,则m n +等于( )A .32B C D 17.(2022•宝山区开学)已知a ,b 为单位向量,且a b ⊥,向量c 满足||2c a b --=,则||c 的范围为( )A .[1,1B .[2,2C .D .[3-,3+18.(2022•礼泉县开学)已知ABC ∆是边长为2的正三角形,点P 为平面内一点,且||3CP =,则()PC PA PB ⋅+的取值范围为 .19(2022•门头沟期末)已知向量,,a b c ,满足||2a =,||3b a b =⋅=,若2(2)()03c a c b -⋅-=,则||b c -的最小值是( )A .2B .23+C .1D .220.(2022•长沙月考)在平面上,12OB OB ⊥,12|||2MB MB ==12OP OB OB =+.若||1MP <,则||OM 的取值范围是 .21.(2022•浙江期中)已知a ,b 是两个单位向量,与a ,b 共面的向量c 满足2()0c a b c a b -+⋅+⋅=,则||c 的最大值为( )A .B .2CD .122.(2022•余姚期中)设平面向量,,a b c 满足||1a =,||2b =,1a b ⋅=,()()0a c b c -⋅-=,则|2|a c -的最大值为( )A B C D .223.(2022•浙江模拟)设a b c ,,为平面向量,||||2a b ==,若(2)()0c a c b -⋅-=,则c b ⋅的最大值为( )A .2B .94C .174D .524.(2022•苏州月考)已知平面向量a ,b ,c 满足||3a =,||2b =,a ,b 的夹角等于6π,且()()0a c b c --=,则||c 的取值范围是 .25.(2022•昆山月考)已知平面向量a ,b ,c 满足||||1a b ==,(2)a a b ⊥-,(2)()0c a c b --=,则||c 的最大值与最小值的和为 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活跃在高考中的一个恒等式——极化恒等式
01何谓极化恒等式
()()
14⎡
⎤⋅=
+--⎢
⎥⎣⎦22a b a b a b
三角形模型:

ABC 中,D 为BC 的中点:
.⋅=-=-=-2
2
2
2
2
21
4
AB AC AD BD AD CD AD BC
平行四边形模型
在平行四边形ABCD 中:()
⋅=-221
4
AB AD AC BD
02极化恒等式应用
例1,(2017全国II ,理12)已知
ABC 是边长为2的等边三角形,P 为平面ABC 内一点,
则()
⋅+PA PB PC 的最小值是( )
A. 2-
B. 32-
C. 4
3
- D. 1- 解法1(坐标法):
以BC 所在直线为x 轴,BC 的中垂线y 轴建立平面直角坐标系,()()(1,0,1,0,3C A B -,设(),P x y ,则()
3,x y =-PA ()1,x y =---PB ,()1,x y =--PC
()()
()32,2x y x y ⋅+=-⋅--=PA PB PC ∴
2
222
332+23222x y x y ⎡⎤⎛⎢⎥=+-- ⎢⎥⎝⎭⎣⎦

当且仅当30,x y ==30,2P ⎛ ⎝⎭
,()
⋅+PA PB PC 取得最小值32-.
解法2(极化恒等式):
设BC 的重点为O ,OC 的中点为M ,连接OP ,PM ,
()
22⋅+=⋅=-=2
212PA PB PC PO PA PM AO ∴33
222
-≥-2PM , 当且仅当M 与P 重合始去等号.
例2在ABC 中,已知90,4,3,C AC BC D ∠===是AB 的中点,E ,F 分别是BC ,AC 上的动
点,且EF = 1,则⋅DE DF 的最小值为( ) A.
5154 C. 17
4
17 解法1(坐标法)
以AC 所在直线为x 轴,BC 所在直线为y 轴建立平面直角坐标系,则()()34,0,0,3,2,,2A B D ⎛⎫
⎪⎝⎭
设()()0,,,0,E b F a 则221a b +=,332,,2,22b a ⎛⎫⎛
⎫=--=-- ⎪ ⎪⎝⎭⎝
⎭DE DF ,
()2532512434242
b DE DF a a b ∴⋅=
--=-+, 由柯西不等式可得:()()()2
22224343a b a b ++≥+,即435a b +≤,当且仅当43,55a b ==时取
等号,()25125515
4342424
DE DF a b ∴⋅=
-+≥-=,故选B
解法2(极化恒等式)
设EF 的中点为M ,连接CM ,则1
2
=
CM ,即点M 在如图所示的圆弧上,则 2
2
2
2
11115
4244
DE DF DM EM DM CD ⋅=-=-≥--=,故选B
本题也可用三角换元法解决
例3,(2013浙江)设
ABC ,0P 是边AB 上的一定点,满足01
4
P B AB =
,且对于边AB 上任一点P ,恒有00
PB PC P B PC ⋅≥⋅,则( ) A. 90ABC ∠= B. AB AC = C. 90BAC ∠= D. AC BC =
解法1(坐标法)
以AB 为x 轴,AB 的中垂线为y 轴,建立如图所示的直角坐标系,设()()4,,,,0AB C a b P x =,则()()()()()()()000
1,0,2,0,2,0,2,0,,,1,0,1,P A B PB x PC a x b P B PC a b -=-=--==-, ()()00,21PB PC P B PC x a x a ⋅≥⋅∴--≥-恒成立,即:()()110x a x ---≥恒成立,
11,a ∴-=即:0a =,∴点C 在y 轴上,AC BC ∴=,故选D
解法2(基地法)
解法3(极化恒等式)
例4、(2016江苏)如图,在ABC中,D是BC的中点,E,F
是AD上的两个三等分点,4,1
⋅=⋅=-,则
BA CA BF CF
⋅值为
BE CE
解法1(坐标法)
以BC为x,D为坐标原点,建立如图所示的直角坐标系
解法2(基底法)
解法3(极化恒等式)
例5、(2018宝鸡一模)直线0ax by c ++=与圆22:16O x y +=相交于两点M ,N ,若222c a b =+,
P 为圆O 上任意一点,则PM PN ⋅的取值范围为 解法1(坐标法)
以O 为坐标原点,MN 的平行线为x 轴,建立如图所示的直角坐标系,
解法2(基底法)
解法3(极化恒等式)

6,如图,已知
B ,D
是直角
C
两边上的动点,
,3,6
AD BD AD BAD π
⊥=∠=
,()()
11
,22
CM CA CB CN CD CA =
+=+,则CM CN ⋅的最大值为
解法1(坐标法)
以C为坐标原点,BC为x轴,建立如图所示的直角坐标系,
解法2(基底法)
解法3(极化恒等式):。

相关文档
最新文档