第8章:1智能仪器设计实例 设计原则与设计步骤

合集下载

智能仪器的设计与实现技术研究

智能仪器的设计与实现技术研究

智能仪器的设计与实现技术研究在当今科技飞速发展的时代,智能仪器已经成为了各个领域不可或缺的重要工具。

从工业生产中的质量检测,到医疗领域的疾病诊断,再到科研实验中的数据采集与分析,智能仪器以其高效、精确和智能化的特点,为人们的工作和生活带来了极大的便利。

那么,智能仪器是如何设计与实现的呢?这背后涉及到一系列复杂的技术和原理。

智能仪器的设计首先要明确其应用场景和功能需求。

例如,在工业自动化领域,可能需要一款能够实时监测生产线上温度、压力、流量等参数的智能仪器,并且能够在参数异常时及时发出警报;而在医疗领域,可能需要一款便携式的智能血糖仪,能够快速、准确地测量血糖值,并将数据传输到手机 APP 上供患者和医生查看。

因此,在设计之前,必须对用户的需求进行深入的调研和分析,以确定智能仪器的性能指标、测量范围、精度要求、操作方式等。

确定了需求之后,接下来就是硬件设计。

硬件是智能仪器的物理基础,其性能直接影响着仪器的稳定性和可靠性。

传感器是智能仪器获取外界信息的“眼睛”,它负责将各种物理量(如温度、压力、光强等)转换为电信号。

例如,温度传感器可以采用热电偶、热电阻或半导体温度传感器,根据测量范围和精度要求进行选择。

信号调理电路则对传感器输出的微弱电信号进行放大、滤波、线性化等处理,使其能够被后续的 ADC(模数转换器)准确转换为数字信号。

微控制器(MCU)是智能仪器的“大脑”,它负责控制整个仪器的运行。

常见的微控制器有单片机、ARM 处理器等。

在选择微控制器时,需要考虑其运算速度、存储容量、接口资源等因素。

此外,还需要为智能仪器配备合适的电源电路、通信接口(如USB、蓝牙、WiFi 等)、显示模块(如液晶显示屏、LED 数码管等)以及按键等输入设备。

软件设计是智能仪器实现智能化的关键。

软件通常包括底层驱动程序、操作系统(如果需要)和应用程序。

底层驱动程序负责与硬件进行通信,实现对传感器、ADC、通信接口等的控制和数据读取。

智能仪器设计基础

智能仪器设计基础

智能仪器设计基础第一章1、智能仪器的组成:答:由硬件和软件组成,硬件包括微处理器、存储器、输入通道、输出通道、人机接口电路、通信接口电路等部分。

微处理器是仪器的核心;存储器包括程序存储器和数据存储器,用来存储程序和数据;输入通道包括传感器、信号调理电路和A/D转换器等,完成信号的滤波、放大、模数转换等;输出通道包括D/A转换器、放大驱动电路和模拟执行器等,将微处理器处理后的数字信号转换为模拟信号;人机接口电路主要包括键盘和显示器。

1、智能仪器的特点答:操作自动化,具有自测功能,具有数据分析和处理功能,具有友好的人机对话功能,具有可程空操作能力。

2、模拟多路开关的性能指标答:通道数量、泄漏电流(开关断开时流过模拟开关的电流)、导通电阻(开关闭合时的电阻)、开关速度(开关接通或断开的速度)、电源电压范围。

电源电压越高,切换速度越快,导通电阻越小。

第二章1、采样/保持器的原理答:当控制信号S为高电平时,场效应管VT导通,输入模拟信号Vi对保持电容CH充电。

当S=1的持续时间Tw远大于电容CH的时间常数时,在Tw时间内,CH上的电压VC跟随输入电压VI的变化,使输出电压Vo=Vc=Vi,这段时间为采样时间。

当S为低电平时,场效应管VT截止,CH上的电压Vc保持不变,使输出电压Vo能保持采样结束瞬时的电压值,这段时间称为保持时间。

每经过一个采样周期Ts对输入信号Vi采样一次,在输出端得到输入信号一个采样值。

2、A/D转换器类型及各自特点答:并联比较型:转换速度快,但随输出位数增加,器件数增加很快,n为A/D转换器,则需要2n个电阻和2n-1个比较器,适合于转换速度快,分辨率低的场合。

逐次逼近型:抗干扰能力差,转换时间取决于输出数字的位数n 和时钟频率。

双积分型:输出取平均值,起到滤波作用,提高抗干扰能力,但是转换精度依赖于积分时间,因此转换速度较慢。

∑-Δ调制型:采用∑-Δ调制技术,元件匹配精度要求低,以数字电路为主。

智能仪器原理及设计

智能仪器原理及设计

一.设计目的及意义 (2)1.1 设计目的 (2)1.2 示意图 (2)二.设计内容及要求 (3)2.1设计题目 (3)2.2设计内容 (3)2.3设计要求 (3)三.设计步骤及设备 (4)3.1设计步骤 (4)3.2设计所需设备 (4)四.硬件电路设计 (5)4.1单片机电路 (5)4.2显示及键盘接口电路 (5)4.3 D/A转换电路 (6)4.4 USB串口模块 (7)4.5 复位电路 (7)4.6路LED (8)4.7 PCB原理图 (10)五.程序设计 (11)六.软硬件调试 (19)6.1在单片机编程中主要出现问题: (19)七.心得体会 (20)八.波形图 (21)一.设计目的及意义1.1设计目的(1)掌握动态LED显示及键盘设计原理,使学生对智能仪器中最基本的输入输出方法具有感性认识。

(2)熟练掌握HC6800开发板的使用。

(3)通过一个相对完整的程序编程,使学生能够将单片机知识和智能仪器的设计融会贯通,同时掌握对智能仪器的软件构成及“硬件软化”方法。

波形发生器作为一种常用的信号源,是现代测试领域内应用最广泛的通用仪器之一。

在研制、生产、测试和维修各种电子元件、部件及整机设备时,都需要用信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。

信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器、它可以产生多种波形信号,如正弦波、三角波、方波等,因而广泛用于通信、雷达、导航、宇航等领域。

此次课程设计使我们能够学以致用,将自己所学的理论知识用于实践,提高我们动手能力,也使我们初步掌握一些分析问题和解决问题的方法,使我们从中体会到理论问题转化为实际问题所要经过的过程和两者之间的差距。

1.2示意图二.设计内容及要求2.1设计题目输出上斜锯齿波、正弦波。

2.2设计内容(1)显示亮度大且均匀。

(2)按键需去斗抖。

智能仪器课件

智能仪器课件

三代仪器仪表: ●第一代为指针式(或模拟式)仪器仪表 ●第二代为数字式仪器仪表 ●第三代就是智能式仪器仪表
智能仪器是计算机技术与测量仪器相结合的产物,是含有微计算机或微处理器的测量(或检测)仪器,它拥有对数据的存储、运算、逻辑判断及自动化操作等功能,具有一定智能的作用(表现为智能的延伸或加强等) 。
一、从传统仪器仪表到智能仪器
2、八类测试计量仪器 ■几何量:长度、角度、形貌、相互位置、位移、距离测量仪器等 ■机械量:各种测力仪、硬度仪、加速度与速度测量仪、力矩测量仪、振动测量仪等 ■热工量:温度、湿度、流量测量仪器等 ▲光学参数:如光度计、光谱仪、色度计、激光参数测量仪、光学传递函数测量仪等。 ▲电离辐射:各种放射性、核素计量,X、γ射线及中子计量仪器等。
同学在学习和生活中,接触、使用或了解哪些仪器仪表?
★时间频率:各种计时仪器与钟表、铯原子钟、时 间频率测量仪等 ★电磁量:交、直流电流表、电压表、功率表、RLC测量仪、静电仪、磁参数测量仪等 ★无线电参数测量仪器 :如示波器、信号发生器、相位测量仪、频谱分析仪、动态信号分析仪等。 ★集成电路测试仪器:
软件
插件
接口
插件
仪器插件
电源
PC总线
GPIB总线
扩展底板或外部插件箱

PC 机
USB 设备
个人仪器结构图
普通台式PCI
工控机PCI
笔记本PCI
微机扩展式
◆测量过程的软件控制: CPU→ 软件控制测量过程 “以软代硬” →灵活性强、可靠性强 ◆数据处理 : 数字滤波、随机误、系统误差、非线性校准等处理→改善测量的精确度 相关、卷积、反卷积、幅度谱、相位谱、功率谱等信号分析→提供更多高质量的信息 ◆多功能化 :一机多用(智能化电力需求分析仪)

第8章:1智能仪器设计实例 设计原则与设计步骤

第8章:1智能仪器设计实例 设计原则与设计步骤
第二,软件:采用模块化设计方法,不仅易于编程和 调试,也可减小软件故障率和提高软件的可靠性。同 时,对软件进行全面测试也是检验错误排除故障的重 要手段。
3.便于操作和维护
在仪器设计过程中,应考虑操作方便,尽量 降低对操作人员的专业知识的要求,以便产品 的推广应用。仪器的控制开关或按钮不能太多、 太复杂,操作程序应简单明了,从而使操作者 无需专门训练,便能掌握仪器的使用方法。 智能仪器还应有很好的可维护性,为此, 仪器结构要规范化、模块化,并配有现场故障 诊断程序,一旦发生故障,能保证有效地对故 障进行定位,以便更换相应的模块,使仪器尽 快地恢复正常运行。
在技术上兼顾今天和明天,既从当前实 际可能出发,又留下容纳未来新技术机 会的余地;

向系统的不同配套档次开放,在经营上 兼顾设计周期和产品设计,并着眼于社 会的公共参与,为发挥各方面厂商的积 极性创造条件;
向用户不断变化的特殊要求开放,在服 务上兼顾通用的基本设计和用户的专用 要求等等。

开放式系统设计的具体方法
三、智能仪器的研制步骤
确定设计任务并拟定设计 方案
三 个 阶 段
软硬件综合调试 整机性能测试和评估
硬件和软件研制
1、确定设计任务、拟定设计方案
项目调研了解现状和动向, 明确任务、确定指标功能
写出设计任务书
拟定设计方案
《仪器设计任务书》
●主要作用:
a.研制单位设计仪器的立项基础 ; b.反映仪器的结构、规定仪器的功能指 标,是研制人员的设计目标; c.作为研制完毕进行项目验收的依据。 ●主要内容 : a.仪器名称、用途、特点及简要设计思想; b.主要技术指标 ; c. 仪器应具备的功能; d.仪器的设备规模;e.系统的操作规范。

智能仪器的设计与开发

智能仪器的设计与开发

3)信号控制功能块是单片机与控制对象相互联 系的重要部分。信号控制功能模块由单片机输出 的数字量、开关量或频率量转换(模数转换或频 率电压转换)后,再由各种驱动回路来驱动相应 执行器实现控制功能。 4)人机对话功能模块包括键盘、显示器(LED、 LCD或CRT)打印机及报警系统等部分。为实现它 与单片机的接口,采用专用接口芯片(如8279)或 通用串并行接口芯片。
下一页
什么是DSP?
DSP(digital singnal processor)是一种独特的 微处理器,是以数字信号来处理大量信息的器件。其工作 原理是接收模拟信号,转换为0或1的数字信号,再对数字
信号进行修改、删除、强化,并在其他系统芯片中把数字
数据解译回模拟数据或实际环境格式。它不仅具有可编程 性,而且其实时运行速度可达每秒数以千万条复杂指令
FPGA?
FPGA (现场可编程门阵列)是专用集成电 (ASIC)中集成度最高的一种,用户可对FPGA内 部的逻辑模块和I/O模块重新配置,以实现用户的 逻辑,因而也被用于对CPU的模拟。用户对FPGA的 编程数据放在Flash芯片中,通过上电加载到FPGA 中,对其进行初始化。也可在线对其编程,实现 系统在线重构,这一特性可以构建一个根据计算 任务不同而实时定制的CPU,这是当今研究的热门 领域。
求考虑,对于普通要求规模较小的应用系统,可
采用单机系统;对于高可靠性系统,即使系统规
模不大,但为了可靠,也常采用双机系统。
一、单机系统结构设计
用单片机进行适当扩充和接口,可满足一般智能 仪器的需要。单片机应用系统设计涉及单片机系 统、信号测量功能模块、信号功能控制模块、人 机对话功能模块和远程通讯功能模块。 1)单片机系统包括基本部分和扩展部分 包括存储器的扩展(RAM、ROM、EEPROM等) 接口的扩展(8255、8155、8279、8251等)

智能仪器仪表课程设计

智能仪器仪表课程设计

智能仪器仪表课程设计一、课程目标知识目标:1. 理解智能仪器仪表的基本原理,掌握其功能、分类及在工程领域的应用。

2. 学会分析智能仪器仪表的电路结构,了解其主要部件的工作原理及相互关系。

3. 掌握智能仪器仪表使用及维护的基本方法,具备解决实际问题的能力。

技能目标:1. 能够运用所学知识,对智能仪器仪表进行简单的操作与调试。

2. 能够分析并解决智能仪器仪表使用过程中出现的常见故障。

3. 培养学生的动手实践能力,提高团队协作和沟通能力。

情感态度价值观目标:1. 培养学生对智能仪器仪表的兴趣,激发他们探索科学技术的热情。

2. 增强学生的责任感,使其认识到智能仪器仪表在工程领域的重要作用。

3. 培养学生严谨、务实的科学态度,提高他们的创新意识和创新能力。

本课程针对高年级学生,结合学科特点和教学要求,旨在使学生掌握智能仪器仪表的基本知识,提高实践操作能力,培养他们的创新精神和团队协作能力。

课程目标具体、可衡量,便于教师进行教学设计和评估。

通过本课程的学习,学生将能够更好地适应未来工程领域的发展需求。

二、教学内容1. 智能仪器仪表概述- 了解智能仪器仪表的发展历程、功能特点及分类。

- 掌握智能仪器仪表在工程领域的应用。

2. 智能仪器仪表的原理与结构- 学习传感器、执行器、微处理器等主要部件的工作原理。

- 分析典型智能仪器仪表的电路结构及其相互关系。

3. 智能仪器仪表的使用与维护- 掌握智能仪器仪表的安装、调试、操作方法。

- 学会智能仪器仪表的日常维护及故障排除。

4. 智能仪器仪表实践操作- 设计并实施简单的智能仪器仪表操作实验。

- 分析实验结果,解决实际问题。

5. 智能仪器仪表案例分析- 研究典型智能仪器仪表在实际工程中的应用案例。

- 分析案例中智能仪器仪表的作用和价值。

教学内容依据课程目标进行选择和组织,确保科学性和系统性。

教学大纲明确教学内容安排和进度,与教材章节相对应。

通过本章节的学习,学生将全面了解智能仪器仪表的相关知识,为实际应用打下坚实基础。

《智能仪器设计》课件

《智能仪器设计》课件

技术更新
智能仪器技术不断发展,如何及时更新设 备和技术以保持其竞争力是一个挑战。
THANK YOU
通信技术
通信技术是智能仪器实现远程 控制和数据传输的关键技术之 一。
通信技术包括有线通信和无线 通信两种方式,能够实现仪器 与计算机、仪器与仪器之间的 数据传输和控制。
通信技术的性能指标包括传输 速率、传输距离、传输质量和 可靠性等,直接影响智能仪器 的远程控制和数据传输效果。
随着通信技术的不断发展,智 能仪器可以实现更快速、更稳 定、更可靠的数据传输和控制 。
04
智能仪器设计实例
智能温度计设计
总结词
实时监测、远程控制、高精度测量
详细描述
智能温度计采用高精度传感器和微处理器,能够实时监测环境温度,并通过无 线通信技术将数据传输到手机等设备上。用户可以通过手机应用程序远程查看 温度数据和控制温度计的开关,方便实用。
智能血压计设计
总结词
一键测量、自动分析、云端存储
智能仪器的发展历程
01
02
03
04
20世纪70年代
随着微处理器和计算机技术的 快速发展,智能仪器开始出现

20世纪80年代
智能仪器在工业生产中得到广 泛应用,成为工业自动化领域
的重要支柱。
20世纪90年代
随着计算机技术的不断进步, 智能仪器的功能越来越强大,
智能化程度越来越高。
21世纪
智能仪器已经成为工业自动化 领域不可或缺的重要部分,广
详细描述
智能血压计具备一键测量功能,用户只需将手臂放在血压计的感应区域内,血压计即可自动测量并记录数据。同 时,血压计内置的微处理器会对测量结果进行自动分析,并将数据上传至云端存储,方便用户随时查看和跟踪自 己的血压状况。

《智能仪器》课程设计指导书

《智能仪器》课程设计指导书

《智能仪器》课程设计指导书一.课程设计的目的:本课程是电子信息工程技术专业的专业基本能力训练课程,其目的是通过本课程设计,使学生掌握智能仪器的一般设计方法,熟悉系统硬件和软件的一般开发环境和开发流程,为设计和开发智能仪器打下坚实的基础。

培养学生基于单片机应用系统的分析和设计能力和专业知识综合应用能力,同时提高学生分析问题和解决问题的能力以及实际动手能力,为日后工作奠定良好的基础。

二.设计题目:1.智能型温度测量仪的设计2.智能型DVM的设计3.智能频率测试仪的设计三.内容和要求1.掌握运用有关知识①.智能仪器典型处理功能及实现方法;②.智能型温度测量仪电路结构以及各主要功能部件的电路原理、软件结构和各功能软件的作用、仪表误差处理的方法;③.智能型DVM的组成原理及实现的基本方法;④.通用计数器的测量原理,包括测频法、测周法、多周期同步测量技术等;智能仪器软、硬件抗干扰的基本原理及实用方法;⑤.智能仪器软、硬件抗干扰的基本原理及实用方法;学生应掌握上述第①、⑤项和②~④项中的一项。

2.基本操作技能①.对常用电子仪器的熟练操作能力;②.对智能仪器简单故障的诊断与调试能力;③.对单片机开发工具的熟练操作使用能力;④.电子CAD工具的操作能力四.组织方式学生2人一组,每组选择一设计题目。

每个课题组应根据课题的任务和功能,完成系统方案论证,系统硬件框图设计,并设计绘制电气原理图:系统程序设计(含程序流程图,源程序);面板设计,操作方法说明文档的编写等。

分组独立完成设计任务及文档资料,每个学生设计完成后交一份课程设计报告。

系统方案论证,系统硬件设计,原理图绘制:系统程序设计(含程序流程图,源程序);面板设计,操作方法说明文档的编写等在教室进行。

软、硬件调试在单片机实验室,每组一套设备单独进行。

五.课程设计报告书应包括的内容:1.设计题目2.设计任务和设计要求3.总体方案论证与选择(设计2~3个可以实现设计要求的总体方案,简要说明各方案的工作原理和优缺点,简要说明被选中方案的特点)。

智能仪器与测量系统的设计和实现

智能仪器与测量系统的设计和实现

智能仪器与测量系统的设计和实现一、引言智能仪器与测量系统的设计和实现是现代科学技术发展的重要组成部分。

随着科技的进步和工业生产的智能化需求,智能仪器和测量系统的技术研究和应用也日益受到重视。

本文将从设计思路、关键技术和应用实例三个方面,对智能仪器与测量系统进行详细探讨。

二、设计思路1. 系统整体设计思路智能仪器与测量系统的设计思路包括硬件设计和软件设计两个方面。

在硬件设计上,需要根据具体的测量任务和性能要求,选择适当的传感器、信号处理模块以及通信接口等组成系统。

在软件设计上,需要考虑系统的用户界面、数据处理算法和通信协议等。

整体设计思路应该以实现测量目标为核心,保证系统稳定、可靠、易用,并提供必要的扩展性和互操作性。

2. 设计流程和方法智能仪器与测量系统的设计过程通常包括需求分析、系统架构设计、硬件实现和软件开发等阶段。

在需求分析阶段,需要明确测量任务的具体要求,包括量程、精度、采样率等。

在系统架构设计阶段,需要选择适当的硬件平台和软件开发工具,确定系统的整体架构和功能模块。

在硬件实现阶段,需要进行电路设计、PCB布局、封装等工作。

在软件开发阶段,需要编写驱动程序、界面程序和数据处理算法等。

设计方法上,常用的有模块化设计、面向对象设计和协同设计等。

三、关键技术1. 传感技术传感器是智能仪器与测量系统的重要组成部分,其性能直接影响系统的测量精度和可靠性。

常见的传感技术包括电气传感、光学传感、声学传感、热传感等。

其中,电气传感技术应用广泛,包括压力传感、温度传感、流量传感等。

传感器的选择应考虑测量要求、环境适应性、可靠性和成本等因素。

2. 信号处理技术智能仪器与测量系统需要对传感器采集到的原始信号进行处理和分析,以获取所需的物理量信息。

信号处理技术包括滤波、数字化、频谱分析、数据采集和数据压缩等。

滤波是常用的信号处理方法,用于去除杂散噪声和提取有效信号。

频谱分析可通过傅里叶变换等方法将时域信号转换为频域信息。

智能仪器设计实例

智能仪器设计实例
2、直接数字合成法(2种直接数字合成结构) 1)、基于地址计数器的数字频率合成法 工作原理:将波形数据存储于存储器中,而后用可程控的时钟信号为存储器提供扫描地址,波形数据被送至DAC,经数模转换和低通滤波器后得到所需的模拟电压波形。 假定地址计数器的时钟频率为fosc,波形一周期内有n个采样值,那么合成的 波形频率为: 如果改变地址计数器的时钟频率或存储器的地址步进大小,合成波形的频率都会随着改变。而要改变波形,只要在只读存储器中写入不同的数据。
读时序
写时序
3.4 波形数据存取电路 采用RAM作为波形存储器是最方便的。波形存储器用来存储波形的量化 数据。512K×8的高速CMOS静态RAM,一片存储高8位数据,另一片存 储低8位数据,地址线共用。该存储器功耗低,单电源供电,读写时序 简单,易于程序控制。
波形数据存取电路
3.5 DA转换电路
四、整体方案设计及工作原理
1、整体设计方案:
采用虚拟仪器技术、直接数字合成技术和计算机技术设计并研制低成本、高精度、人机界面友好的函数信号发生器。此方案硬件实现电路简单,电路中省去了单片机、液晶显示以及按钮等,节省仪器成本。
四、整体方案设计及工作原理
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
根据公式1,正弦波在一个周期内的采样点值是: 再将f(i)按DAC的比特数取整,从而得到: 式中:n—数模转换器DAC的位数,n=16,INT— 取整函数 每个周期共有N个点, 式中:fosc是时钟发生器频率,fout是输出波形频率,由用户设定,是已知量。
五、波形数据的获取
双极性工作方式
五、波形数据的获取
DA转换电路
3.6 DAC的基准电源电路

智能化仪器的设计与开发研究

智能化仪器的设计与开发研究

智能化仪器的设计与开发研究在当今科技飞速发展的时代,智能化仪器已经成为各个领域不可或缺的重要工具。

从医疗保健到工业生产,从环境监测到科学研究,智能化仪器以其高效、精准和便捷的特点,为我们的生活和工作带来了巨大的改变。

本文将深入探讨智能化仪器的设计与开发,包括其基本原理、关键技术以及未来的发展趋势。

一、智能化仪器的基本概念智能化仪器是指将计算机技术、传感器技术、通信技术等多种先进技术融合在一起,能够自动采集、处理、分析和传输数据的仪器设备。

与传统仪器相比,智能化仪器具有更高的精度、更强的适应性和更便捷的操作方式。

它能够根据不同的测量任务自动调整测量参数,对测量数据进行实时处理和分析,并通过网络将数据传输到远程终端,实现远程监控和管理。

二、智能化仪器的设计原则1、准确性原则准确性是智能化仪器设计的首要原则。

仪器的测量结果必须准确可靠,能够满足实际应用的要求。

为了保证准确性,在设计过程中需要选择高精度的传感器、优化测量电路、采用先进的信号处理算法等。

2、可靠性原则可靠性是智能化仪器长期稳定运行的保障。

仪器应具备良好的抗干扰能力,能够在恶劣的环境条件下正常工作。

同时,仪器的硬件和软件应经过严格的测试和验证,确保其稳定性和可靠性。

3、便捷性原则便捷性是提高用户体验的关键。

智能化仪器应具有简洁直观的操作界面,方便用户进行操作和设置。

此外,仪器的维护和维修也应简单便捷,降低使用成本。

4、开放性原则开放性是指智能化仪器应具备良好的兼容性和扩展性。

能够与其他设备进行无缝连接,方便数据共享和系统集成。

同时,仪器的软件和硬件应支持升级和扩展,以满足不断变化的需求。

三、智能化仪器的关键技术1、传感器技术传感器是智能化仪器的核心部件,它负责将物理量、化学量等转换成电信号。

目前,各种新型传感器不断涌现,如微机电系统(MEMS)传感器、光纤传感器、生物传感器等,这些传感器具有体积小、精度高、响应快等优点,为智能化仪器的发展提供了有力支持。

智能仪器设计的课程设计

智能仪器设计的课程设计

智能仪器设计的课程设计一、教学目标本课程旨在通过智能仪器设计的学习,让学生掌握智能仪器的基本原理和设计方法,培养学生的创新意识和实践能力。

具体目标如下:知识目标:了解智能仪器的基本概念、工作原理和分类;掌握智能仪器的系统设计和调试方法。

技能目标:能够运用所学知识,分析和解决智能仪器设计中的实际问题;具备一定的动手能力和团队协作能力。

情感态度价值观目标:培养学生对智能仪器行业的兴趣和热情,增强社会责任感,提升创新精神和实践能力。

二、教学内容本课程的教学内容主要包括智能仪器的基本原理、设计方法和应用实践。

具体安排如下:1.智能仪器的基本原理:介绍智能仪器的定义、分类和工作原理。

2.智能仪器的设计方法:讲解智能仪器的系统设计流程,包括硬件选型、软件开发和系统调试。

3.智能仪器的应用实践:分析智能仪器在各个领域的应用案例,探讨智能仪器的未来发展。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。

具体方法如下:1.讲授法:通过讲解智能仪器的基本原理、设计方法和应用案例,使学生掌握相关知识。

2.讨论法:学生就智能仪器设计中的实际问题进行讨论,培养学生的创新思维和团队协作能力。

3.案例分析法:分析智能仪器在实际应用中的案例,使学生更好地理解智能仪器的设计和应用。

4.实验法:安排实验室实践环节,让学生亲自动手进行智能仪器的组装和调试,提高学生的实践能力。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用国内权威出版的智能仪器设计相关教材,为学生提供系统的理论知识。

2.参考书:推荐学生阅读相关领域的经典著作和最新研究论文,拓宽知识视野。

3.多媒体资料:制作课件、视频等多媒体资料,丰富教学手段,提高学生的学习兴趣。

4.实验设备:配置智能仪器设计实验室,提供各种实验设备和工具,让学生能够进行实际操作。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。

智能仪器设计

智能仪器设计

前言随着社会的进步和发展和人们生活水平的不断提高,智能化已经成为我们生活的一部分。

它是现代仪器仪表的发展趋势,许多嵌入式系统,电子技术和现场总线领域的新技术被应用于智能仪器仪表的设计,尤其是许多嵌入式系统的许多新理念极大的促进了智能仪器仪表技术的发展,近年来,智能仪器已开始从较为成熟的数据处理向知识处理发展。

使智能仪器的功能向更高的层次发展。

同时,人工智能的创始者之一,诺贝尔金奖者认为,人工智能的研究可以视为计算机科学技术的分支。

本次设计的总体设计方案共分为4个部分:(1)电子秤的设计方案(2)设计思路(3)部分电路设计(4)软件组成,这4个部分涵盖了本次设计的全部过程。

本系统采用单片机AT89S52为控制核心,实现电子秤的基本控制功能。

系统的硬件部分包括最小系统板,数据采集、人机交互界面三大部分。

最小系统部分主要是扩展了外部数据存储器,数据采集部分由压力传感器、信号的前级处理和A/D 转换部分组成。

人机界面部分为键盘输入和128 64点阵式液晶显示,可以直观的显示中文,使用方便。

设计过程中还有许多不足之处,望老师给予批评指正。

第一章几种软件的介绍1.1 MATLAB概述应用MATLAB的Simulink仿真实验方法可以建立仿真的实验环境。

直接应用MATLAB工具箱中的测量仪器或构建满足工作需要的测量仪器,既能提高仿真实验工作的效率,又使仿真实验丰富多彩。

本章介绍应用Simulink构建和使用测量仪器的方法。

1.2 电压测量1.2.1 正弦波示波器用计算机仿真的示波器应用的是数字技术,可以观测单次现象,正确设置参数后,可以保持结束时的波形。

如图1-1所示图1-1 正弦波仿真框图正弦波的示波显示如图1-2所示图1-2 正弦波示波显示1.2.2数字式电压表数字式电压表取自LED(自发光)二极管模块如图1-3所示图1-3数字式电压表仿真框图1.2.3 指针式电压表指针式仪表将输入的量值用图形化的指针与相应的刻度表示出来,并通过参数设置对话框来设置仪表的外观、量程、刻度、颜色及字型等。

最新第8章:智能仪器设计实例设计实例课件PPT

最新第8章:智能仪器设计实例设计实例课件PPT
1.简述智能仪器设计的基本要求。 2.智能仪器设计时一般应遵循的基 本原则。怎样理解“组合化与开放式 设计思想”。 3. 智能仪器中微机系统有哪几种构 成方式,分别适用于哪些场合? 4. 总结目前市场流行的单片机型号、 特点。
5.TMS320系列DSP中,有哪些芯片适合智能仪器, 概括其主要性能特点。 6.简述《仪器设计任务书》的主要内容、主要作用 和编写注意事项。 7.智能仪器设计时如何考虑硬件和软件之间的关系。 8.简述微处理器内嵌式智能仪器硬件设计时应注意 哪几方面的问题。 9.简述智能仪器软件调试、综合调试、整机性能测 试的一般方法。 10.画出相关处理的快速算法流程。概述相关检测 的主要应用。 11.自选仪器设计题目,能较充分体现你的设计能 力、综合所学知识、展示创新性构想,提出设计方 案,论证充分。
正数和负数(2)
用正负数表示相反意义的量
复习回顾: 1.什么叫做正数?什么叫做负数?
2.0有哪些含义?
3.高于标准水位5米记作+5米,那么-5米表 示___低__于__标__准__水__位_;5米
4.存入3万元记作+3万元,那么支取3万元 应记作__-3_万__元___。
例:(1)一个月内,小明体重增加2千克,
二、地下管道漏水检测仪设计
1.设计原理
L O A( t V 0L A)B /2
L O B(L AB t V 0)2
f 1.84V f1.8 4150H0z30H 00 z
2a 23.1 40.15
漏水声音信号与传感器
3.相关测漏仪硬件设计
(1).24位A/D CS5360与DSP的接口
意大利 0.2% , 中国 7.5% ,
注意:写出体重的增长值和进出口的增长率, 就暗示着用正数来表示增长的量。类似的还有 水位上升、收入等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于国际上流行的工业标准微机总线结 构,针对不同的用户系统要求,选用相 应的有关功能模块组合成最终用户的应 用系统。 系统设计者将主要精力放在分析设计目 标,确定总体结构,选择系统配件等方 面,而不是放在部件模块设计及用于解 决专用软件的开发设计上。

组合化设计方法及优点

开放式体系结构和总线系统技术发展,导致了 工业测控系统采用组合化设计方法的流行,即 针对不同的应用系统要求,选用成熟的现成硬 件模板和软件进行组合。
第一,硬件:仪器所用器件的质量和仪器结构工艺是 影响可靠性的重要因素,故应合理选择元器件和采用 在极限情况下进行试验的方法。所谓合理选择元器件 是指在设计时对元器件的负载、速度、功耗、工作环 境等技术参数应留有一定的余量,并对元器件进行老 化和筛选。而极限情况下的试验是指在研制过程中, 一台样机要承受低温、高温、冲击、振动、干扰、烟 雾等试验,以保证其对环境的适应性。
三、智能仪器的研制步骤
确定设计任务并拟定设计 方案
三 个 阶 段
软硬件综合调试 整机性能测试和评估
硬件和软件研制
1、确定设计任务、拟定设计方案
项目调研了解现状和动向, 明确任务、确定指标功能
写出设计任务书
拟定设计方案
《仪器设计任务书》
●主要作用:
a.研制单位设计仪器的立项基础 ; b.反映仪器的结构、规定仪器的功能指 标,是研制人员的设计目标; c.作为研制完毕进行项目验收的依据。 ●主要内容 : a.仪器名称、用途、特点及简要设计思想; b.主要技术指标 ; c. 仪器应具备的功能; d.仪器的设备规模;e.系统的操作规范。
2、较高的性能价格比原则
智能仪器的造价,取决于研制成本、生产成本、 使用成本。 设计时不应盲目追求复杂、高级的方案。在满 足性能指标的前提下,应尽可能采用简单成熟的方案, 意味着元器件少,开发、调试、生产方便,可靠性高。 就第一台样机而言,主要的花费在于系统设计、 调试和软件开发,样机的硬件成本不是考虑的主要因 素。当样机投入生产时,生产数量越大,每台产品的 平均研制费就越低,此时,生产成本就成为仪器造价 的主要因素。显然,仪器硬件成本对产品的生产成本 有很大影响。 使用成本,即仪器使用期间的维护费、备件费、 运转费、管理费、培训费等。必须在综合考虑后才能 看出真正的经济效果,从而做出选用方案的正确决策。
在技术上兼顾今天和明天,既从当前实 际可能出发,又留下容纳未来新技术机 会的余地;

向系统的不同配套档次开放,在经营上 兼顾设计周期和产品设计,并着眼于社 会的公共参与,为发挥各方面厂商的积 极性创造条件;
向用户不断变化的特殊要求开放,在服 务上兼顾通用的基本设计和用户的专用 要求等等。

开放式系统设计的具体方法
测试软件
测试软件
软件调试
初级子程序调试
模块程序调试
不需要调用其 它子程序
监控程序调试
性能测试 整机性能测试,需按照设计任务书规定的设 计要求拟定一个测试方案,对各项功能和指标进 行逐项测试。如果某项指标不符合要求,还得查 明原因,作相应调整;直至完全达到设计要求为 止。
二、智能仪器的设计原则
1、从整体到局部(自顶向下)的设计原则
在硬件或软件设计时,把复杂的、难处理的问题, 分为若干个较简单的、容易处理的问题,然后再一个 个地加以解决。 设计人员根据仪器功能和设计要求提出仪器设计 的总任务,并绘制硬件和软件总框图(总体设计)。然 后将任务分解成一批可独立表征的子任务,这些子任 务还可以再向下分,直到每个低级的子任务足够简单, 可以直接而且容易地实现为止。这些低级子任务可采 用某些通用模块,并可作为单独的实体进行设计和调 试,从而能够以最低的难度和最高的可靠性组成高一 级的模块。
4.仪器工艺结构与造型设计要求
仪器结构工艺是影响可靠性的重要因素, 首先要依据仪器工作环境条件,是否需要防 水、防尘、防爆密封,是否需要抗冲击、抗 振动、抗腐蚀等要求,设计工艺结构;仪器 的造型设计亦极为重要。总体结构的安排、 部件间的连接关系、面板的美化等都必须认 真考虑,最好由结构专业人员设计,使产品 造型优美、色泽柔和、外廓整齐、美观大方。
3.组合化与开放式设计原则
在科学技术飞速发展的今天,设计智能仪器系统面临 三个突出的问题: (1)产品更新换代太快; (2)市场竞争日趋激烈; (3)如何满足用户不同层次和不断变化的要求。
在电子工业和计算机工业中推 行一种不同于传统设计思想的所谓 “开放系统”的设计思想。
“开放系统”的设计思想

软件设计研制:
软件设计作一个总体规划
程序功能块划分 确定算法 分配系统资源和设计流程图 编写程序 程序调试和纠错以及各部分程序连接及系
统总调
3.仪器综合调试及整机性能测试 系统调试,以排除硬件故障和纠正软件错误, 并解决硬件和软件之间的协调问题。
硬件调试
静态调试
动态调试
查板、电源、 芯片
第八章 智能仪器设计
第一节
智能仪器的设计原则及研制
智能仪器的研制开发是一个较为复杂的过程。 为完成仪器的功能,实现仪器的指标,提高研 制效率,并能取得一定的研制效益,应遵循正 确的设计原则、按照科学的研制步骤来开发智 能仪器。
一、智能仪器设计的基本要求 二、智能仪器的设计原则 三、智能仪器的研制步骤
第二,软件:采用模块化设计方法,不仅易于编程和 调试,也可减小软件故障率和提高软件的可靠性。同 时,对软件进行全面测试也是检验错误排除故障的重 要手段。
3.便于操作和维护
在仪器设计过程中,应考虑操作方便,尽量 降低对操作人员的专业知识的要求,以便产品 的推广应用。仪器的控制开关或按钮不能太多、 太复杂,操作程序应简单明了,从而使操作者 无需专门训练,便能掌握仪器的使用方法。 智能仪器还应有很好的可维护性,为此, 仪器结构要规范化、模块化,并配有现场故障 诊断程序,一旦发生故障,能保证有效地对故 障进行定位,以便更换相应的模块,使仪器尽 快地恢复正常运行。

组合化设计的基础是模块化(又称积木化),硬、 软件功能模块化是实现最佳系统设计的关键。
组合化设计方法的优点
①将系统划分成若干硬、软件产品的模块,由专 门的研究机构根据积累的经验尽可能完善地设计,并 制定其规格系列,用这些现成的功能模块可以迅速配 套成各种用途的应用系统,简化设计并缩短设计周期。 ②结构灵活,便于扩充和更新,使系统的适应性 强。在使用中可根据需要通过更换一些模板或进行局 部结构改装以满足不断变化的特殊要求。 ③维修方便快捷。模块大量采用LSI和VLSI芯片, 在故障出现时,只需更换IC芯片或功能模板,修理时 间可以降低到最低限度。 ④功能模板可以组织批量生产,使质量稳定并降 低成本。
拟定设计方案
《仪器设计任务书》
确定微机系统的构成
硬件与软件的划分 、折衷 硬件设计方案 软件设计方案
2.硬件、软件研制阶段
硬件研制:

采用功能强的芯片以简化电路 修改和扩展,硬件资源需留有足够的余地
自诊断功能,需附加设计有关的监测报警电路
硬件抗于扰措施

线路板注意与机箱、面板的配合,接插件安排 等问题,必须考虑到安装、调试和维修的方便。
一、智能仪器设Biblioteka 的基本要求无论仪器的规模多大,其基本设计要求大 体上是相同的,在设计和研制智能仪器时必须 予以认真考虑。
1、功能及技术指标应满足要求
主要技术指标:精度、测量范围、工作环境条
件、稳定性。
应具备的功能:输出、人机对话、通信、
报警提示、仪器状态的自 动调整等功能。
2.可靠性要求
仪器可靠性是最突出也是最重要的,因为 仪器能否正常可靠地工作,将直接影响测量结 果的正确与否,也将影响工作效率和仪器信誉, 在线检测与控制类仪器更是如此,由于仪器的 故障造成整个生产过程的混乱,甚至引起严重 后果。应采取各种措施提高仪器的可靠性,从 而保证仪器能长时间稳定工作。
相关文档
最新文档