《中心对称与中心对称图形》教学设计

合集下载

中心对称和中心对称图形优质课教案

中心对称和中心对称图形优质课教案

中心对称与中心对称图形【课时安排】4课时【第一课时】【教学目标】一、知识与技能:了解中心对称及其基本性质二、过程与方法:在探索的过程中培养学生有条理地表达及与人交流合作的能力;三、情感态度与价值观:培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力【教学重难点】1.重点:成中心对称图形概念及其基本性质。

2.难点:中心对称的性质,成中心对称的图形的画法【教学过程】一、课前预习与导学已知线段AB 与点O 的位置如图(1)所示,试画出线段AB 关于点O 的对称线段A′B′。

二、新课(一)情境创设1.几幅中心对称的图片AB(1)2.互动探究观察下面两个图形,怎样变换可以使它们重合?把一个图形绕某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

一个图形绕某一点旋转180°是一种特殊的旋转,因此成中心对称的两个图形具有图形旋转的一切性质。

观察上图,回答下列问题:问题一:四边形ABCD 与四边形EHFG 关于点O 成中心对称吗?问题二:分别连接关于点O 的对称点A 和E 、B 和H 、C 和F 、D 和G 。

你发现了什么?总结:中心对称的性质:成中心对称的两个图形具有旋转对称的一切性质问题三:中心对称与轴对称有什么区别?又有什么联系?图形沿对称轴翻折180°后重合,图形绕对称中心旋转180°后重合。

对称点的连线被对称轴垂直平分,对称点连线经过对称中心,且被对称中心平分。

(二)例题解析例1:如图,2块同样的三角尺,它们是否关于某点成中心对称?若是,请确定它的对称中心。

例2:如图,已知线段AB 和点O ,画出线段A’B’,使它与线段AB 关于点O 成中心对称。

例3:如图,已知△ABC 和点O ,画出△DEF ,使它与△ABC 关于点O 成中心对称。

O ABCD E F ●OBA三、随堂演练(一)下列说法错误的是 ( )A .关于中心对称的两个图形中,对应线段相等长度B .成中心对称的两个图形的对称点的连线段中点就是对称中心C .平行四边形一组对边关于对角线交点对称D .如果两点到某点的距离相等,则它们关于这点对称(二)如图,D 是△ABC 的边AC 上一点,画出△EFG ,使它与ABC 点D 成中心对称。

中心对称与中心对称图形教学设计

中心对称与中心对称图形教学设计

课题:中心对称与中心对称图形授课教师:扬州市邗江区实验学校周莉教材:苏科版数学八年级下教学目标:了解中心对称和中心对称图形的概念,掌握中心对称的性质并能根据中心对称的性质作图;经历观察、操作、思考、讨论、归纳、应用等数学活动,培养学生发现问题、提出问题、分析问题和解决问题的能力.通过观察思考、操作实验、交流讨论,培养积极主动的学习态度;在探索性质的过程中感悟特殊与一般的关系,渗透类比、对比、归纳等数学思想方法.教学重点、难点:重点:中心对称与中心对称图形的概念、中心对称的性质.难点:中心对称与中心对称图形概念、性质的理解.教学方法和教学手段:教学活动是师生积极参与、交往互动、共同发展的过程.因此,本节课采用以数学活动为载体的探索发现教学法,从学生已有的生活经验出发,启发引导学生通过观察思考、操作实验、交流讨论、归纳应用等数学活动,亲历知识的发生、发展过程,学会获取新知识的方法,获得广泛的数学活动经验.同时借助于现代教育技术,增强教学的互动性,提高学习效率,激发学习兴趣,调动学习积极性,体验数学学习的乐趣.教学过程:一、创设情境,引出课题1.看一看出示一幅图片,问:你看到了什么?用数学的眼光来看,你又看到了什么?(形状、大小、位置、旋转)2.做一做网格纸上已经画好一个风叶,其中点O是风车的旋转中心,利用提供的与网格纸上所画四边形形状大小相同的四边形纸片,请你在网格纸上摆上另一个风叶.3.想一想展示、思考画出来的叶片可以由图中原有的叶片通过怎样的图形运动得到?可以通过平移、翻折得到吗?(多媒体展示“平移”、“翻折”、“旋转”三种情况)【设计意图】本课从观察图片入手,让学生体验到“数学从生活中来”,用数学的眼光观察图形之美,美在哪里?使学生经历数学抽象的过程.回顾图形的旋转的相关内容,唤醒了已有的知识和经验,减少认知负荷,帮助学生建立了新知的“固着点”和“生长点”,也为有序地进行类比探究学习作好铺垫.二、动手操作,形成概念1.做一做(课本中的活动)(1)用透明纸覆盖在网格图上.(2)用大头针钉在点O处,把四边形ABCD绕点O旋转,你发现了什么?2.理一理从这活动中抽象出中心对称的概念:一个图形绕着某一点旋转180°,如果它能够与另外一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称.对照图形指出对称点、对称中心.3.想一想四个顶点的对应点在哪里?AB中点的对应点在哪里?四边形ABCD边上的任意一点都有对称点吗?在哪里?【设计意图】从学生身边的学具入手,进行实验探究并验证前面活动中风叶摆放的正确性.“观察——操作——思考”调动学生多种感官,逐步除去非本质属性,抽出本质属性,丰富概念学习过程,展开知识发生、发展的过程,对比“轴对称”概念,完善了“中心对称”概念的内涵.三、尝试探究,概括性质1.教师提出问题:老师的风车,有一片叶片,缺了一块,有方法补全吗?解决这个问题的关键是什么?对称点和对称中心之间有什么关系?2.学生思考、操作、小组讨论.3.师生交流讨论得出性质.性质:成中心对称的两个图形中,对应点连线经过对称中心,且被对称中心平分.【设计意图】抛给学生一个中心问题,激发学生探究的欲望,通过自主、合作、探究、思辨的学习方式主动探究中心对称的性质.在前面学习“轴对称”,已初步感受和体会几何的研究思路,这为学习“中心对称”奠定了教学基础.旨在将“轴对称”的研究方法迁移到“中心对称”的学习中,促进学生理解几何、生长经验.四、应用性质,解决问题1.师生合作补全上述图形.(1)思考:从哪里入手呢?从点开始.(2)教师示范:画点D关于点O的对称的点.(3)学生板演:画线段DC关于点O对称的线段.2.学生练习:画△ABC关于点O的对称图形.3.你能画出四边形关于一点对称的图形吗?五边形呢?N边形呢?复杂的几何图形呢?【设计意图】类比前面运用轴对称性质画图的学习经验,将中心对称的性质运用到现在的画图中,从“点”到“线”,再到“形”,逐步提升.让学生切实体会到研究几何“由简单到复杂”、“化繁为简”的研究策略,为今后的进一步学习积累经验.五、动态演示,拓展新知1.教师擦去对称中心,如图1,提问:如何找对称中心?2.学生试试改变对称中心的位置,画关于点O的对称图形.3.如图2,对称中心在AB边的中点,画关于点O的对称图形.去掉中间的线条,得到一个图形,如图3,绕点O旋转180°,你发现什么?(多媒体课件展示旋转)课本三个图案也有这样的特征吗?我们让它们转转看.4.归纳得出中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形与原来图形重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心.5.提问:我们熟悉的几何图形中,有哪些几何图形是中心对称图形?(线段,线段的对称中心在哪,正方形,截掉四个形状大小一样的小正方形后呢?准备好)(多媒体课件展示并旋转)【设计意图】(1)变换条件,学生在自主探究基础上合作讨论,最后展示交流,图1 图2 图3并且教师适时追问.在生生、师生等多维互动过程中,不断地明确中心对称的本质属性,加深中心对称概念和性质的理解;(2)适当放开学生手脚,由学生自主设置对称中心位置,并画出对称图形,让学生拾阶而上,步步为营,促进学生对中心对称的性质理解;(3)以一边中点为对称中心作图,起“承前启后”的作用,既让学生感受到对称中心的变化引起对称图形位置的改变,同时又顺势引出“中心对称图形”的研究课题;(4)通过对其他中心对称图形的探究,扩展概念的外延.六、比较异同,纳入系统1.理一理:出示剪纸双鱼图,观察并判断成中心对称还是中心对称图形.小组讨论成中心对称和中心对称图形联系和区别. (多媒体课件展示旋转)2.剪纸活动:银杏叶剪纸.(1)议一议:(课本习题)如图,直线L1⊥L2.垂足为O.点A1与点A关于直线L1对称,点A2与点A关于直线L2对称.点A1与点A2有怎么样的对称关系?你能说明理由吗?(2)做一做:剪纸要求:请同学们设计一种剪纸方案,使作品中银杏叶图案成中心对称.拿出纸、剪刀,按要求剪纸,打开剪纸用数学语言介绍你的作品.【设计意图】(1)通过理一理活动,对“中心对称”和“中心对称图形”作比较梳理,利用课本习题对“轴对称”与“中心对称”作对比,使得所学知识互相融合,形成知识系统,同时也是对本课以活动的方式进行课堂小结;(2)让学生运用所学知识进行剪纸方案的设计、操作,让学生再一次感受数学学习的价值所在——“问题来源于实际,又回到实际中去”,并用数学的思维思考问题,用数学的语言描述问题.同时置身于泰州、扬州特色文化交融的氛围中,进一步感受到数学学习的乐趣.教学设计说明:本节课是在学习了旋转的基础上,对旋转的特殊情形——中心对称做进一步学习研究,形成中心对称及中心对称图形的概念,探究中心对称的性质,让学生感受一般和特殊的关系.本节课分为六个教学环节,依次为“问题情境,引出课题”、“动手操作,形成概念”、“尝试探究,概括性质”、“应用性质,解决问题”、“动态演示,拓展新知”、“比较异同,纳入系统”.六个环节层层深入、环环相扣.“问题情境,引出课题”和“动手操作,形成概念”环节从欣赏风车图案开始,创设情境,引导学生用数学的眼光看问题,用数学的思维思考问题,用数学的语言描述问题,然后动手去做,教师则在学生操作的基础上,利用出现的图案,引领学生分析运动的方式,感受到中心对称是特殊的旋转,对比“轴对称”概念,从而引出研究课题,形成中心对称的概念.“尝试探究,概括性质”和“应用性质,解决问题”这两个环节围绕“残缺的图形如何补全?”这个中心问题,激发学生探究的欲望,通过自主、合作、探究、思辨的学习方式主动探究中心对称的性质,然后应用性质完成作图问题.“动态演示,拓展新知”和“比较异同,纳入系统”这两个环节由找对称中心入手,变化对称中心的位置,让学生感受两个图形和一个对称中心这三个元素之间的关系,当对称中心到三角形的一边中点时,两个三角形就合成了一个图形,从而引出中心对称图形的概念,通过学生举例、教师举例、进一步理解概念,了解中心对称和中心对称图形之间的区别和联系.让学生做剪纸活动,感受中心对称和轴对称之间的异同,把新知识纳入原有的知识体系之中.在活动中生成,在生成中发展《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流”.本着这样的思想,这节课通过设计数学实验活动,在活动中生成问题,引发学生主动探索研究,获取数学知识,发展学生“发现与提出问题、分析与解决问题的能力”.实验操作搭台,提升核心素养本节课的实验操作,有采用两种方式:(1)看一看——做一做——想一想;(2)想一想——做一做——议一议,这样安排始终把“数学思考”贯穿操作实验的始终,变“听”数学为“做”数学,变“被动接受”为“主动探究”.通过“做”数学体验发现的乐趣,感悟数学的真谛,发展思维和智慧,逐步积累数学活动经验.重视情境创设,经历知识发生发展的全过程重视情境的创设,让学生在情境中进行数学思考,完成中心对称和中心对称图形的知识建构,学生在观察、思考、探索、发现过程中经历知识产生、形成和发展的过程.采用自主、合作、探究等多种教学方式教学在教学过程中,努力营造和谐、平等的学习氛围,鼓励学生积极参与过程学习,给学生提供自主探索、互相交流的时间和空间,采用“生生互动”、“师生互动”的多种教学方式达成本课的学习目标.。

人教版九年级数学上册《中心对称图形》教学设计

人教版九年级数学上册《中心对称图形》教学设计

《中心对称图形》教学设计《中心对称图形》是初中几何第二册第四章的内容,在初中三年级上学期讲授。

下面我说明一下我是怎样组织第二课时《中心对称图形》这堂课的教学以及这样做的理由。

一.教材分析(一)教材的地位和作用中心对称包含在《四边形》一章中,是这章的难点之一。

困难的原因有两点:一是中心对称图形渗透了旋转变换思想,学生学习静态图形已成习惯,对运动变化不适应。

二是轴对称图形的干扰。

由于学习了轴对称图形,学生对“对称”概念形成定势,只承认轴对称为“对称”,不习惯中心对称。

虽然,义务教育初中数学教学大纲中只要求了解这一节的概念,并不要求运用本节定理证明问题。

但是,这一节的作用却不可小觑。

因为中心对称向学生渗透了旋转变换的思想方法。

学生掌握了这种思想,就会用动的观点研究问题,使学生的思维更加活跃,处理问题更加灵活(二)教学目标1.知识目标:(1)了解中心对称图形的概念(2)能找出线段、平行四边形的对称中心,能判断某一个图形是否是中心对称图形。

(3)明确哪些图形是轴对称图形,哪些图形是中心对称图形。

2.能力目标:通过猜想、实验、搜集分析、合作交流等一系列活动,培养学生的观察、推理、动手操作能力以及有条理的表达能力。

3.情感目标:通过本节的学习,让学生积累一定的审美体验,养成观察,探究事物的习惯。

(三)教学重点和难点教学重点:中心对称图形的概念教学难点:正确识别一个图形是否是中心对称图形,以及这些内容所渗透的变换思想。

(四)在教学中如何突破这个重点和难点为了突出重点,我利用课件连续三次播放动画,让学生通过观察“线段”和“平行四边形”分别绕某一点旋转180°后能与原图形重合的动画,进行深入的思考并最终引导学生自己归纳得出中心对称图形及对称中心的概念。

为了有效的突破难点,我指导学生采用了实践交流的学习方法。

由学生拿出课前准备好的几何图形,通过实践和互相的交流来研究它们是否为中心对称图形。

这里教师强调:射线,等边三角形,正五边形不是中心对称图形。

2024年《中心对称》教学设计

2024年《中心对称》教学设计

《中心对称》教学设计【学情分析】认知基础:学生在七年级下册和本章前面几节课中,已学习了轴对称、平移、旋转等概念,学生已初步了解了各种变换的基本性质,初步具备了分析、设计图案的基本技能。

但对图形的三种基本变换的掌握不够透彻,也缺乏理论高度,另外本节课在认知方式和思维深度上对学生有较高的要求。

活动经验:在前面学习轴对称、平移、旋转等知识的过程中,学生已经初步积累了一定的图形变换的数学活动经验,具备了一定的识图能力和主动参与、合作的意识。

本节课旨在让学生在进行观察、分析、欣赏等操作性活动中,丰富学生对图形变换的认识,并使他们正确理解和把握平移、旋转等内容,进一步深化对图形的三种基本变换的理解和认识。

【教学任务分析】《中心对称》是义务教育课程标准北师大版实验教科书八年级(下)第三章《图形的平移与旋转》第三节的内容。

本节课以图形的旋转为基础,通过活动认识中心对称与中心对称图形,探索成中心对称的基本性质,利用中心对称的基本性质研究中心对称的画图,认识并欣赏自然界和现实生活中的中心对称图形。

本节内容是在八年级知识的基础上,让学生继续考察图形的变换,初步掌握中心对称的概念和基本性质,感受图形之间的相互关系和变换规律,同时体会数形结合的思想和方法,为后续学习打下基础。

因此,本节课的教学目标定位为:教学目标:1.了解中心对称、中心对称图形的概念,能够说出中心对称图形的性质,感知简单图形中心对称的图形中对应元素的相等关系。

2. 学生通过观察、操作、对比、合作交流等多种方式展开自主学习,进一步积累对中心对称图形特征的数学体验。

3.学生通过有组织的讨论和交流,掌握中心对称的性质,形成科学严谨的求实态度,增强动手能力,发展空间观念。

目标解析:达成目标(1)的标志是:学生能够辨析图形是否为中心对称图形。

达成目标(2)的标志是:学生能够指出中心对称图形中的对应元素。

达成目标(3)的标志是:学生可以通过测量或证明等方式判断一个图形是否为中心对称图形,能够按要求制作一个图形关于某点的中心对称图形。

苏科版数学八年级下册9.2《中心对称与中心对称图形》教学设计

苏科版数学八年级下册9.2《中心对称与中心对称图形》教学设计

苏科版数学八年级下册9.2《中心对称与中心对称图形》教学设计一. 教材分析《中心对称与中心对称图形》是苏科版数学八年级下册第九章第二节的内容。

本节内容是在学生已经掌握了轴对称的概念和性质的基础上进行学习的,旨在让学生了解中心对称的概念和性质,以及中心对称图形的特点。

教材通过丰富的实例,引导学生探究中心对称图形的性质,从而培养学生的观察能力、操作能力和推理能力。

二. 学情分析学生在学习本节内容前,已经掌握了轴对称的相关知识,对对称性有一定的认识。

但由于中心对称与轴对称在概念和性质上有较大的区别,学生在理解和掌握上可能会有一定的难度。

因此,在教学过程中,教师需要关注学生的认知差异,针对不同学生的学习情况,采取合适的教学策略,引导学生逐步理解和掌握中心对称的概念和性质。

三. 教学目标1.了解中心对称的概念和性质,能识别中心对称图形。

2.能运用中心对称的性质解决一些简单的问题。

3.培养学生的观察能力、操作能力和推理能力。

四. 教学重难点1.中心对称的概念和性质。

2.中心对称图形的特点。

五. 教学方法1.情境教学法:通过丰富的实例,引导学生观察和操作,从而理解和掌握中心对称的概念和性质。

2.小组合作学习:学生在小组内进行讨论和探究,分享学习心得,培养团队合作精神。

3.启发式教学:教师提问引导学生思考,激发学生的学习兴趣,提高学生的解决问题的能力。

六. 教学准备1.教学课件:制作中心对称与中心对称图形的课件,包括图片、动画和例题等。

2.教学素材:准备一些中心对称图形的图片,用于课堂展示和练习。

3.学生活动用品:如剪刀、彩纸等,用于学生的操作活动。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的对称现象,如建筑、艺术作品等,引导学生关注对称性。

提问:你们认为这些现象是什么对称?引出中心对称的概念。

2.呈现(15分钟)展示一些中心对称图形的图片,如圆、平行四边形等,引导学生观察和思考:这些图形有什么特点?教师引导学生总结出中心对称图形的定义和性质。

《中心对称与中心对称图形》导学案教学设计与思路

《中心对称与中心对称图形》导学案教学设计与思路

《中心对称与中心对称图形》导学案教学设计与思路胥浦中学陈启忠我设计的导学案的内容是苏科版数学八年级上册第3章《中心对称图形》的第二节《中心对称与中心对称图形》的第一课时。

本节课是第3章第2节的内容,它是八年级几何重要内容之一,这一节课与图形的三种运动(平移、翻折、旋转)之一的“旋转”有着不可分割的联系,通过对这一节课的学习,既可以让学生认识图形的三种基本运动中“旋转”在几何知识中的重要体现,同时也完善了初中部分对“对称图形”(轴对称图形、中心对称图形)的知识讲授,它起到了承上启下的作用,它为后面学习“平行四边形”等内容做了充分准备。

我将本节课分为5个环节。

首先我通过导学案的第一个环节:《学生预习》部分让学生复习轴对称有关知识如:两条线段AB与A′B′之间的关系,通过复习旧知可以让学生更好地比照“轴对称”来认识“中心对称”和性质。

第一环节由学生课前完成,并在黑板上展示出来。

此环节不宜化过多的时间。

其次在第二个部分《教师导学》中由老师根据学生的实际情况,选择本节的重点:成中心对称图形概念及其基本性质,引导学生将预习的课本内容回顾一下,加深学生对所预习的知识的印象。

我将引导观察学生所给的两组图形,引出中心对称的概念。

这一部分可根据教师对学生的了解,对教材的分析灵活安排时间。

学生不易理解的多讲点,简单的就少讲或不讲。

原则上以教师精讲为主。

第三部分《小组合作例题》这个环节为学生以小组或学习对子为单位,通过多种形式的自主学习完成例题,并能上黑板展示出合作学习的成果。

这一环节的三道例题的选择,我遵循由易到难的原则,让学生一步一步的往上走。

使学生掌握中心对称的概念到会运用概念解决实际问题。

本环节为一堂课重点,教师应通过多种形式参与学生的自主学习中,引导学生完成学习任务。

第四部分为《总结》,由教师带领学生完成对本节课所学的内容进行梳理、复习能使学生巩固所学知识-成中心对称的性质和成中心对称的图形的画法。

总结也可由学生在教师的指导下自主完成。

人教版数学九年级上册23.2.2中心对称图形教案

人教版数学九年级上册23.2.2中心对称图形教案

《中心对称》教学设计一、教材分析《中心对称》是初中数学“几何与图形”中第二部分图形与变换的内容。

人教版教材把这部分内容放在九年级上册第二十三章《旋转》的第二节。

中心对称和中心对称图形初中数学的重要概念,是现实模型的直接反映,是图形的三种变化(平移、翻折、旋转)中的旋转的特殊情况。

在2011版课程标准中,要求如下:(1)了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。

(2)探索线段、平行四边形、正多边形、圆的中心对称性质。

(3)认识并欣赏自然界和现实生活中的中心对称图形。

因此,教材中列举了大量实例,让学生通过实例认识和感受中心对称图形的概念,欣赏自然界和现实生活的中心对称的图形,在此之后,进行概念的归纳和辨析,探索常见几何图形的中心对称性质,最后探索中心对称的性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。

教材注重联系实际,让学生感受数学和生活的密切联系,让学生在学习完新概念后,用中心对称的思想去回顾以前所学的知识,例如再去回顾平行四边形的性质,了解平行四边形性质的本质就是中心对称,也就是可以用中心对称去统领平行四边形所有的性质,让学生感受到知识的前后联系。

二、学情分析学生在七年级下册《相交线与平行线》学习了平移,在八年级上册《轴对称》学习了轴对称,对图形与变化的研究以及有了一定基础,而且在《旋转》这一章,学生先学习了旋转的概念和性质,有了一定的研究基础。

而且九年级学生已具备一定的操作、归纳、推理和论证能力,但在数学意识与应用能力方面尚需要进一步培养;大多数学生对数学学习有一定的兴趣,愿意积极参与动手操作与研究。

三、教学目标鉴于课程标准和学生的年龄特点,认知规律,这节课的教学目标为:1。

认识并欣赏自然界和现实生活中的中心对称图形,感受数学的对称美;2。

类比轴对称,了解中心对称图形、中心对称的概念,探索中心对称的性质;3。

湘教版八下数学2.3.1《中心对称和中心对称图形(一)》教学设计

湘教版八下数学2.3.1《中心对称和中心对称图形(一)》教学设计

湘教版八下数学2.3.1《中心对称和中心对称图形(一)》教学设计一. 教材分析《中心对称和中心对称图形(一)》是湘教版八年级下册数学第二单元第三节的内容。

本节内容主要介绍了中心对称和中心对称图形的概念,以及它们之间的联系和区别。

通过学习本节内容,学生能够理解中心对称和中心对称图形的定义,并能够运用这些知识解决实际问题。

二. 学情分析学生在学习本节内容之前,已经学习了平面几何的基本概念和性质,具备了一定的几何思维能力。

但是,对于中心对称和中心对称图形的概念,学生可能还比较陌生,需要通过具体的实例和操作来理解和掌握。

三. 教学目标1.知识与技能目标:学生能够理解中心对称和中心对称图形的概念,并能够运用这些知识解决实际问题。

2.过程与方法目标:通过观察、操作和思考,学生能够培养自己的几何思维能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,与老师和同学进行良好的互动,增强对数学学科的兴趣和自信心。

四. 教学重难点1.重点:中心对称和中心对称图形的概念及其性质。

2.难点:理解中心对称和中心对称图形之间的联系和区别,以及如何运用这些知识解决实际问题。

五. 教学方法1.引导发现法:通过问题和实例的引导,让学生主动发现中心对称和中心对称图形的性质和规律。

2.操作实践法:通过实际的操作和观察,让学生亲身体验和理解中心对称和中心对称图形的概念。

3.合作交流法:通过小组合作和讨论,让学生分享自己的理解和思路,培养合作和沟通能力。

六. 教学准备1.教具准备:几何画板、幻灯片等教学工具。

2.教材准备:湘教版八年级下册数学教材。

3.课件准备:制作相应的课件和教学素材。

七. 教学过程1.导入(5分钟)通过一个具体的实例,如一个圆形图案,引导学生观察和思考,引出中心对称和中心对称图形的概念。

2.呈现(10分钟)利用幻灯片或课件,呈现中心对称和中心对称图形的定义和性质,让学生直观地理解和掌握。

3.操练(10分钟)让学生通过实际的操作和观察,验证中心对称和中心对称图形的性质,加深对概念的理解。

《中心对称》—教学设计

《中心对称》—教学设计

《中心对称》—教学设计教学目标:1.学习了解中心对称的定义和性质。

2.掌握通过对称关系找对称中心的方法。

3.能够判断图形是否具有中心对称性,并能找到图形的中心对称轴。

教学重点:1.中心对称的定义和性质。

2.通过对称关系找对称中心的方法。

教学难点:1.确定图形的中心对称轴。

教学准备:1.教师准备教学用的中心对称的图形。

2.学生准备作业本、铅笔、直尺等。

教学过程:一、导入(10分钟)1.引发学生思考:是否知道什么是中心对称?在生活中有哪些具有中心对称性的事物?2.引导学生思考:中心对称图形有哪些特点?3.让学生观察和分析一个中心对称图形,学生发言交流。

二、学习中心对称的定义和性质(15分钟)1.教师出示中心对称图形,并解释中心对称的定义。

2.帮助学生理解中心对称的性质,并通过示例讲解。

3.学生回答问题:中心对称的图形具有哪些特点?是否能找到图形的中心?三、找中心对称的方法(20分钟)1.教师出示一些图形,帮助学生分析其中的对称关系。

2.引导学生思考:如何通过对称关系找到图形的中心?3.通过示例讲解,教师指导学生找寻对称中心的方法。

4.学生模仿教师的示范,找到其他图形的对称中心。

四、判断图形的中心对称性(25分钟)1.教师出示一些图形,要求学生判断其是否具有中心对称性。

2.学生分组讨论并给出答案,教师提问学生的理由。

3.教师指导学生找到图形的对称中心轴,并解释答案的正确与否。

五、巩固练习(20分钟)1.学生自主完成课堂练习题,并互相检查答案。

2.学生解答教师提出的问题,巩固所学知识。

3.教师纠正学生的错误回答,并进行解释。

六、拓展延伸(10分钟)1.引领学生思考:中心对称图形如何制作?2.鼓励学生设计中心对称图形,并分享给同学欣赏。

3.展示学生设计的中心对称图形,让其他同学发表评论。

七、总结与展望(10分钟)1.教师总结学生在本节课上学到的知识和技能。

2.引导学生思考:中心对称在生活中的应用有哪些?3.鼓励学生继续观察和思考中心对称的事物,并积极参与下一节课的学习。

《 中心对称图形》教案

《 中心对称图形》教案

中心对称图形教案一、教学内容1.关于中心对称图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称图形旋转后与原图形重合、中心对称与中心对称图形的区别与联系3、体验中心对称图形与现实生活的联系二、教学目标(知识与技能)理解中心对称图形的定义及特征,体会中心对称及中心对称图形之间的区别与联系(过程与方法)经历观察思考探索发现的过程,感受中心对称的特征,培养学生的观察能力与思考能力(情感态度)1、通过对中心对称图形的探究和认识,体验图形的变化规律,感受图形变换的美感。

享受学习数学的乐趣和积累一定的审美经验2、通过师生的共同活动,积累一定的审美体验,经历数学知识融于生活实际的学习过程,体验抽象的数学来源于生活,同时又服务于生活。

重点、难点1.重点:中心对称图形的概念及相关的性质.2.难点:中心对称与中心对称图形的区别与联系.教学过程1、复习引入问题1、中心对称的两个图形有什么样的特征?问题2、观察如图所示的图形归纳中心对称的概念与性质。

轴对称与中心对称的区别与联系二、探索新知活动1、出示一些具有旋转对称性的图形,观察哪些图形需要旋转180°才可重合,从而引出中心对称图形。

活动2 P66(思考)、(1)如图将线段AB绕它的中点旋转180°,有什么发现?(2)将平行四边形ABCD绕它的对角线的交点O旋转180°,有什么发现?概念:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.特性:中心对称图形对称点所连线段都经过旋转中心且被对称点平分活动3、合作探究:小组讨论一个图形是中心对称图形的关键是什么?,让学生判断平行四边形是否是中心对称图形及平行四边形有哪些性质?活动4、研学教材:中心对称图形的应用活动5、能力拓展完成练一练(幻灯片15至幻灯片28)活动6、对比归纳:中心对称和中心对称图形的联系与区别三、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称及中心对称图形的有关概念;2.能判断简单的几何图形是否是中心对称图形;了解中心对称图形的应用。

《中心对称与中心对称图形》教学设计——常熟市实验中学 吴静

《中心对称与中心对称图形》教学设计——常熟市实验中学 吴静

《中心对称与中心对称图形》教学设计
2.
连接任意一对对称点
6.几何画板演示平行四边形旋转180°和原来的图形重合
练习2:寻找中心对称图形平行四边形和长方形的对称中心。

练习:以平面内的任一点O为对称中心作出四边形ABCD的对称四边形。

练习1:有一块长方形的田地,上面有一口圆形的井,现在要用直线将这
练习2:有一个“L”型的钢板如图所示,现在要用一条直线把它分成两块,并且要满足分割后两块的面积相等,
让学生总结,谈自己的收获和活动经验。

1. 中心对称和中心对称图形概念,两者有什么区别和联系?。

中心对称与中心对称图形教案

中心对称与中心对称图形教案

中心对称与中心对称图形教案教案标题:中心对称与中心对称图形教学目标:1. 理解中心对称的概念,并能够辨别中心对称和非中心对称的图形。

2. 能够通过折叠纸张或使用镜子等工具,找出图形的中心对称轴。

3. 能够绘制出具有中心对称性质的图形。

教学准备:1. 中心对称图形的示例图片或实物。

2. 折纸或镜子等辅助工具。

3. 白板、黑板或投影仪等教学工具。

4. 学生练习用的纸张和铅笔。

教学过程:引入(5分钟)1. 通过展示中心对称图形的示例图片或实物,向学生介绍中心对称的概念。

2. 引导学生思考:什么是中心对称?中心对称图形有什么特点?探究(15分钟)1. 将学生分成小组,每个小组分发一张纸张。

2. 引导学生折叠纸张,使其具有中心对称性质。

3. 让学生观察纸张的折痕,找出中心对称轴,并用铅笔标出。

4. 鼓励学生交流并分享自己找到的中心对称轴。

讲解与练习(20分钟)1. 在黑板或白板上绘制一个简单的几何图形,如正方形或矩形。

2. 解释如何找出图形的中心对称轴,以及如何判断图形是否具有中心对称性质。

3. 让学生尝试找出图形的中心对称轴,并在纸上绘制出具有中心对称性质的图形。

4. 给予学生足够的练习时间,并提供必要的指导和帮助。

巩固与拓展(15分钟)1. 让学生互相交换绘制的图形,并判断其是否具有中心对称性质。

2. 引导学生思考:为什么某些图形具有中心对称性质,而某些图形则没有?3. 给予学生一些拓展练习,如绘制更复杂的中心对称图形或找出日常生活中具有中心对称性质的物体。

总结(5分钟)1. 回顾中心对称的概念和特点。

2. 强调学生在日常生活中发现和应用中心对称的重要性。

3. 鼓励学生继续探索和发现更多中心对称性质的图形和物体。

教学反思:本教案通过引入、探究、讲解与练习、巩固与拓展以及总结等环节,帮助学生理解中心对称的概念,并能够辨别中心对称和非中心对称的图形。

通过实际操作和练习,学生能够找出图形的中心对称轴,并绘制具有中心对称性质的图形。

中心对称及中心对称图形教案

中心对称及中心对称图形教案

中心对称第一课时主备课:陈平一、三维目标1.了解中心对称、中心对称图形的概念,了解中心对称的性质.能找出线段、平行四边形的对称中心.会画出与已知图形成中心对称的图形.2.通过本节的学习,进一步培养学生的尺规作图能力.3.通过本节的学习,引导学生体验几何美,提高学习兴趣.二、教学设计观察、感受、讲解、类比三、重点、难点解决办法1.教学重点:中心对称的概念和性质及中心对称图形的概念.2.教学难点:中心对称与中心对称图形的区别与联系.四、课时安排2课时五、教具学具准备投影仪、胶片、多媒体、常用画图工具六、师生互动活动设计教师复习引入,学生类比轴对称看书;教师讲解性质,示范画图,学生练习巩固七、教学过程:【复习提问】l .什么叫轴对称轴对称有什么性质2.关于某点旋转的两个图形的性质3.作出四边形ABCD 关于点O 的旋转180度的图形.【新课讲解】1、定义:把一个图形绕着某一点旋转1800,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.2、利用三角板画一个三角形ABC ∆绕点O 旋转1800后,得到另一个三角形111C B A ∆。

探究:(1)ABC ∆与111C B A ∆的关系(2)AA 1、BB 1、CC 1的连线是否过某点,这点与旋转中心有何关系(3)OA 与OA 1、OB 与OB 1、OC 与OC 1分别有怎样的关系归纳:关于中心对称的两个图形,对称点所连线段都经过对称中心,且被对称中心平分。

关于中心对称的两个图形是全等图形。

例1:课本70页巩固练习:课本70页练习。

总结:(1)、中心对称和旋转对称图形的关系:中心对称是特殊的旋转对称图形,因此中心对称都属于旋转对称图形,但旋转对称图形不一定是中心对称.(2)、识别中心对称的方法:如果两个图形的对应点连成的线段都经过某一点,并且被这一点平分,那么这两个图形一定关于这一点成中心对称.3、中心对称图形如果一个图形绕着它的中心点旋转180°后能与原来的图形重合,那么这个图形叫做中心对称图形,这个中心点叫做对称中心.4、识别一个图形是中心对称图形的方法要识别一个中心对称图形,只要看是否存在一点,把图形绕着它旋转180°后能与原图形重合.例2、判断下列图形是否为中心对称图形,如果是,请指出它们的对称中心.(1)线段;(2)等腰三角形;(3)平行四边形;(4)长方形;(5)圆;(6)角分析:判断一个图形是否是中心对称图形,关键是找到一个点,看绕着该点旋转180°后能否与自身重合.解:(1)结段是中心对称图形,它的对称中心是该线段的中点.(2)等腰三角形不是中心对称图形.(3)平行四边形是中心对称图形,它的对称中心是两条对角线的交点.(4)长方形是中心对称图形,它的对称中心是两对角线的交点.(5)圆是中心对称图形,它的对称中心是圆心.(6)角不是中心对称图形.巩固练习:课本74页练习。

初中数学_3.3中心对称教学设计学情分析教材分析课后反思

初中数学_3.3中心对称教学设计学情分析教材分析课后反思

八年级下册3.3《中心对称》教学设计一、教学目标:☆知识与技能:了解中心对称、中心对称图形的概念,探索它的基本性质.☆过程与方法经历有关中心对称的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.☆情感态度价值观发现生活中的数学美,欣赏自然界的中心对称图形;二、教学重点:了解中心对称、中心对称图形的概念,探索它的基本性质教学难点:在参与活动中发展学生观察问题、分析问题、解决问题的科学探究能力;三、教学时间:( 1学时)四、教学过程一、【复习引入】:[活动过程]:1.通过几何画板的动画演示,带领学生回顾旋转的定义以及性质;2.提出问题:当旋转哪些特殊角度会使旋转前后图形有特殊的位置关系?师生互动引出课题;[活动目的]:利用几何画板的演示,教师的提问、追问让学生体会中心对称与旋转之间的从属关系,为后续学习做铺垫;二、【探究新知】☞知识点1:两成中心对称★两图形成中心对称定义:关于这个点对称或中心对称[活动过程]:教师提问:图中两组图形通过怎样的图形变换能够重合?师生互动后利用几何画板演示总结定义,引导学生找出定义中的关键词;[活动目的]:引入定义以后,通过学生找关键词,体会成中心对称是旋转的一种特殊情况;☞知识点2:探索成中心对称两图形的性质★动手画图,探究中心对称的性质请自己画一个图形,选取一个旋转中心,把所画的图形绕旋转中心旋转180°,连接旋转前后一组对应点,你发现了什么?再选几组对应点试一试,并与同伴交流。

★中心对称的性质:[活动过程]:教师提出问题,引导学生通过小组合作画出旋转以后的图形,通过小组作品的展示,总结两图形成中心对称的性质,教师通过几何画板演示,以及学生说理进一步验证,最后学生动手画图;[活动目的]:通过学生的动手操作,经历探索性质的过程,通过几何画板直观演示,加深对性质的认识,最后通过推理证明,让学生感受数学的严谨性,在学生小组合作过程中,培养学生的团队意识.☞知识点3:中心对称图形先独立观察,再小组交流归纳:中心对称图形:[设计过程]:教师提出问题:通过怎样的变换图形能与原图形重合?师生互动总结定义,通过两组练习题进行训练,加深学生对中心对称图形的认识,并进一步举例我们所学过的平面图形中的中心对称图形.[活动目的]:通过几何画板直观演示认识定义,在总结定义关键词时,教师引导学生对比其与两图形成中心对称的区别与联系,发展学生类比学习的意识,通过练习、举例进一步加深学生对知识的理解.☞知识点4:旋转对称图形观看微视频,学习旋转对称图形定义[设计过程]:1.学生自主学习微课,了解旋转对称图形定义;2.举例说明旋转对称图形与中心对称图形之间的联系;[活动目的]:学习新知识的过程中,对比其与中心对称图形的联系,了解二者之间的从属关系,加深对中心对称图形的认识,发展类比学习的意识;三、【效果检测】1.下列图形中,中心对称图形有A. 个B. 个C. 个D. 个2.下列四个图形中,既是轴对称图形又是中心对称图形的是 ( )A. B. C. D.3.如图,与关于成中心对称,下列结论中不成立的是A. B. C. D.4.如图所示是一个中心对称图形,为对称中心,若,,,则的长为.5如图,在平面直角坐标系中,点,,,的坐标分别为,,,.Ⅰ请在图中画出,使得与关于点成中心对称;Ⅱ直接写出(1)中的三个顶点坐标.第3题第4题知者加速;我们把图(1)称作正六边形的基本图,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3),,如此进行下去,直至得图(n).(1)将图(n)放在直角坐标系中,设其中第一个基本图的对称中心的坐标为,则;(2)图(n)的对称中心的横坐标为.[活动过程]:学生学习完主要知识后是否达成了本节课的学习目标呢?教师通过效果检测来掌握.同时效果检测完成后教师应及时公布答案,组织学生通过“小组互帮进行对组内学习有困难的同学进行个别帮扶”,及时解决组内个别同学存在的问题.[活动目的]:通过学生自学、小组互帮、教师个别点拨等方式使学生养成独立思考、合作交流、反思质疑的学习习惯,再此过程中教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.四、【自主建网】★1.通过本节课的学习:你有哪些收获与感悟?2.展示两图形成轴对称实例,体会二者之间联系;[活动过程]:学生回答,教师引导,串联本节课所学知识点;类比轴对称,体会二者之间的联系与区别,发展学生类比学习的意识;【因人作业】必做题:课本84页----1,2,3选做题:课本84页-----4[设计说明]:通过因人作业的设置,让不同层次的学生都能学有所获,能享受到成功的喜悦.《中心对称》学情分析《中心对称》是八下年级数学第三章《图形的平移与旋转》的第三节;学生的知识与技能基础:学生在小学阶段已经学习过平移、旋转.按照课标要求,小学阶段学习平移、旋转应该达到的水平是:通过实例,在方格纸上认识图形的平移,能在方格纸上按水平或垂直方向将简单图形平移;通过实例,在方格纸上认识图形的旋转,能在方格纸上将简单图形旋转90°,升入初中之后,学生在七年级下学期已经学习了轴对称,积累了一定的图形变换的数学活动经验.本章在此基础上,让学生进行观察、分析、画图等活动丰富学生对图形变换的认识;在本节课学习之前,学生已经学习了图形的旋转,掌握了旋转的定义与基本性质,立足于小学的基础和已经有的生活经验,本节课将探索中心对称的相关性质因为学生的基础和学力是有差异的,所以在上课的过程中应该遵循“为了每个学生”的教育教学理念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《中心对称与中心对称图形》教学设计
(2).画出线段AB关于点O的中心对称线段A′B′
(3)、如图,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.
(4) 已知四边形ABCD和点O,画四边形A′B′C′D′,使它与已知四边形关于这一点对称.学行为验,
增强
动手

练。

作图
积累
活动
经验
力,和对知识
的迁移能力。

2、在学生看
过与简单做
过的基础上,
加深对作图
技能的掌握。

数学知识与
能力的生成
就是知识不
断循序渐进
发展的结果。

五、学以致
用,融会贯通
变式一:若点O是BC的中点呢?
∴四边形A`B`C`D是
所求的四边形。

变式二:若点O与点A重合呢?
如图既是轴对称又是中心对称的
是()问题1:其
他条件不
变,把
点:O放到
图形一边
中点处
呢?
问题2:其
他条件不
变,把
小组讨
论分析
点的位
置变化
是否影
响作图。

合作
动手操

通过
作图
的变
式训
练作
图能

拓展与提高,
使学有余力
的学生得到
更高的发展,
真正体现新
课改的理念
“让不同的
人在数学上
有不同的收
获”。

相关文档
最新文档