高三数学数列的概念测试题 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.已知数列{}n a 的通项公式为2
n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实
数λ的取值范围是( ) A .(),3-∞
B .(),2-∞
C .(),1-∞
D .(),0-∞
2.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1
B .3
C .2
D .3-
3.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若11
02
a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+
D .71089a a a a +>+
4.已知数列{}n a 的前n 项和为(
)*
22n
n S n =+∈N ,则3
a
=( )
A .10
B .8
C .6
D .4
5.数列1,3,6,10,…的一个通项公式是( )
A .()2
1n a n n =-- B .2
1n a n =-
C .()
12
n n n a +=
D .()
12
n n n a -=
6.若数列的前4项分别是
1111,,,2345
--,则此数列的一个通项公式为( ) A .1(1)n n --
B .(1)n n
-
C .1
(1)1
n n +-+
D .(1)1
n n -+
7.在数列{}n a 中,11
4
a =-,1
1
1(1)n n a n a -=-
>,则2019a 的值为( ) A .
45
B .14
-
C .5
D .以上都不对
8.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30
B .20
C .40
D .50
9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有
()()()f x f y f x y ⋅=+,若112
a =
,()()
*
n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( )
A .
1324n S ≤< B .314n S ≤< C .102
n S <≤
D .
1
12
n S ≤< 10.数列1,3,5,7,9,--的一个通项公式为( )
A .21n a n =-
B .()1(21)n
n a n =--
C .()
1
1(21)n n a n +=--
D .()
1
1(21)n n a n +=-+
11.数列{}n a 满足:12a =,111n
n n
a a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-
B .1
6-
C .
16
D .6
12.已知数列{}n a 的首项为2,且数列{}n a 满足11
1
n n n a a a +-=+,数列{}n a 的前n 项的和为n S ,则1008S 等于( ) A .504
B .294
C .294-
D .504-
13.已知数列{a n }满足112,0,2
121, 1.
2n n n n n a a a a a +⎧
≤<⎪⎪=⎨⎪-≤<⎪⎩
若a 1=35,则a 2019 = ( )
A .
1
5
B .
25
C .
35
D .
45
14.
函数()2cos 2f x x x =-{}n a ,则3a =( ) A .
1312
π
B .
54
π C .
1712
π
D .
76
π 15.数列{}n a 满足12a =,111
1
n n n a a a ++-=+,则2019a =( ) A .3-
B .12-
C .
13
D .2
16.定义:在数列{}n a 中,若满足
21
1n n n n
a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则2020
2018
a a 等于( )
A .4×20162-1
B .4×20172-1
C .4×20182-1
D .4×20182
17.已知数列{}n a 满足111n n n n a a a a ++-=+,且11
3
a =,则{}n a 的前2021项之积为( ) A .
23
B .
13
C .2-
D .3-
18.在数列{}n a 中,11
(1)1,2(2)n
n n a a n a --==+≥,则3a =( ) A .0
B .
53
C .
73
D .3