第十三章轴对称测试题.doc
第13章《轴对称》测试题
第十三章 轴对称测试一、选择题(每题2分,共24分)1、下列图案中,不是轴对称图形的是( )A B C D 2、下列长度的三线段,能组成等腰三角形的是 ( ) A . 1 1 2 B. 2 2 5 C. 3 3 5 D. 3 4 5 3.如图,已知AC ∥BD ,OA=OC ,则下列结论不一定成立的是 ( ) A . ∠B=∠D B. ∠A=∠B C. AD=BC D. OA=OB 4.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形一边不可以是另一边的二倍D .等腰三角形的两个底角相等5、如图,ABC △与A B C '''△关于直线l 对称,且7848A C '∠=∠=°,°,则∠B 的度数( ) A .48° B .54° C .74° D .78°6、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 A. 70° B. 65° C. 50° D. 25°7、已知M (a,3)和N (4,b )关于y 轴对称,则2010)(b a +的值为( ) A.1 B 、-1 C.20077 D.20077-8、如图,∠BAC=110°若MP 和NQ 分别垂直平分AB 和AC,则∠PAQ 的度数是( ) A.20° B. 40° C. 50° D. 60°9、下列轴对称图形中,对称轴条数最少的是()A.等腰直角三角形B.等边三角形C.正方形D.长方形10、若等腰三角形的底角比顶角大15︒,那么顶角为()A.45︒ B.40︒ C.55︒ D.50︒11、下列说法正确的是( )A等腰三角形的高、中线、角平分线互相重合 B顶角相等的两个等腰三角形全等C:等腰三角形的两个底角相等 D:等腰三角形一边不可以是另一边的二倍12点M(1,2)关于x轴对称的点的坐标为()A:(-1,-2) B:(-1,2) C:(1,-2) D:(2,-1)二、填空题(每题3分,共18分)13、等腰三角形一个底角是30°,则它的顶角是__________度;14、已知点P到x轴、y轴的距离分别是2和3,且点P关于y轴对称的点在第四象限,则点P的坐标是_________.15、在△A BC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于_____________度.16.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB•的对称点,线段MN交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是___________.17、等腰三角形的一内角等于50°,则其它两个内角各为18、到三角形三个顶点距离相等的点是___________的交点。
第13章 轴对称(单元测试培优卷)(学生版) 2024-2025学年八年级数学上册基础知识专项突破
第13章轴对称(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列图形中是轴对称图形的是()A .B .C .D .2.如图,点A 在直线l 上,△ABC 与AB C '' 关于直线l 对称,连接BB ',分别交AC ,AC '于点D ,D ¢,连接CC ',下列结论不一定正确的是()A .BACB AC ∠=∠''B .CC BB '' C .BD B D =''D .AD DD ='3.我们知道光的反射是一种常见的物理现象.如图,某V 型路口放置如图所示的两个平面镜1l ,2l ,两个平面镜所成的夹角为1∠,位于点D 处的甲同学在平面镜2l 中看到位于点A 处的乙同学的像,其中光的路径为入射光线AB 经过平面镜1l 反射后,又沿BC 射向平面镜2l ,在点C 处再次反射,反射光线为CD ,已知入射光线2AB l ∥,反射光线1CD l ∥,则1∠等于()A .40︒B .50︒C .60︒D .70︒4.如图,已知a b ∥,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交直线a ,b 于点D 、C ,连接AC ,若135∠=︒,则BAD ∠的度数是()A .35︒B .55︒C .65︒D .70︒5.如图,在等腰Rt ABC △,90BAC ∠=︒,AB AC =,BD 为ABC V 的角平分线,过点C 作CE BD ⊥交BD 的延长线与点E ,若2CE =,则BD 的长为()A .3B .4C .5D .66.如图,90ACB AED ∠=∠=︒,CAE BAD ∠=∠,BC DE =,若BD AC ∥,则ABC ∠与CAE ∠间的数量关系为()A .2ABC CAE∠=∠B .ABC CAE ∠=∠C .290ABC CAE ∠+∠=︒D .2180ABC CAE ∠+∠=︒7.某平板电脑支架如图所示,其中AB CD =,EA ED =,为了使用的舒适性,可调整AEC ∠的大小.若AEC ∠增大16︒,则BDE ∠的变化情况是()A .增大16︒B .减小16︒C .增大8︒D .减小8︒8.如图,在ABC V 中,80BAC ∠=︒,边A 的垂直平分线交BC 于点E ,边AC 的垂直平分线交AC 于点F ,连接AE ,AG .则EAG ∠的度数为()A .35︒B .30︒C .25︒D .20︒9.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AD 是△ABC 的角平分线,若P ,Q 分别是AD 和AC 边上的动点,则PC +PQ 的最小值是()A .65B .2C .125D .5210.如图,在ABC V 中,90BAC ∠=︒,A 是高,BE 是中线,C 是角平分线,C 交A 于G ,交BE 于H ,下面说法:①ACF BCF S S = ;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =.其中正确的是()A .①②③④B .①③C .②③D .①③④二、填空题(本大题共8小题,每小题4分,共32分)11.如图,在ABC V 中,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交AB 于点D ,连接CD ,若ABC V 的周长为24,9BC =,则ADC △的周长为.12.如图,直线m n ∥,点A 是直线m 上一点,点B 是直线n 上一点,AB 与直线m ,n 均不垂直,点P为线段AB 的中点,直线l 分别与m ,n 相交于点C ,D ,若90,CPD CD ∠=︒=m ,n 之间的距离为2,则PC PD ⋅的值为.13.如图,A EGF ∠=∠,F 为BE CG ,的中点,58DB DE ==,,则AD 的长为.14.如图所示,在平面直角坐标系中,ABC V 满足45,90BAC CBA ∠=︒∠=︒,点A ,C 的坐标分别是()()2,0,3,5--,点B 在y 轴上,在坐标平面内存在一点D (不与点C 重合),使ABC ABD △≌△,且AC 与AD 是对应边,请写出点D 的坐标.15.如图,60AOB ∠=︒,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t =s 时,MON △是等腰三角形.16.如图,锐角ABC 中,30A ∠=︒,72BC =,ABC 的面积是6,D ,E ,F 分别是三边上的动点,则DEF 周长的最小值是.17.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ,…在x 轴正半轴上,点1B ,2B ,3B ,…在直线()0y x =≥上,若()11,0A ,且112A B A △,223A B A △,334A B A △,…均为等边三角形,则线段20212022A A 的长度为.18.如图,将长方形纸片ABCD 沿EF 折叠(折线EF 交AD 于E ,交BC 于F ),点C D 、的对应点分别是1C 、1D ,1ED 交BC 于G ,再将四边形11C D GF 沿FG 折叠,点1C 、1D 的对应点分别是2C 、2D ,2GD 交EF 于H ,给出下列结论:①2EGD EFG∠=∠②2180EFC EGC ∠=∠+︒③若26FEG ∠=︒,则2102EFC ∠=︒④23FHD EFB∠=∠上述正确的结论是.三、解答题(本大题共6小题,共58分)19.(8分)在ABC V 中,90ACB ∠=︒,AC BC BE ==,AD EC ⊥,交EC 延长线于点D .求证:2CE AD =.20.(8分)如图,点P 是AOB ∠外的一点,点E 与点P 关于OA 对称,点F 与点P 关于OB 对称,直线FE 分别交OA OB 、于C 、D 两点,连接PC PD PE PF 、、、.(1)若20OCP F ∠=∠=︒,求CPD ∠的度数;(2)若求=CP DP ,13CF =,3DE =,求CP 的长.21.(10分)如图,在ABC V 中,AD 平分BAC ∠,点E 为AC 中点,AD 与BE 相交于点F .(1)若38,82ABC ACB ∠=︒∠=︒,求ADB ∠的度数;(2)过点B 作BH AD ⊥交AD 延长线于点H ,作ABH 关于AH 对称的AGH ,设BFH △,AEF △的面积分别为12,S S ,若6BCG S V =,试求12S S -的值.22.(10分)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠+∠=︒.(1)如图1,当BP OM ∥时,求证:OB PB =.(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:2OA OB AC -=.23.(10分)已知,在ABC V 中,90CAB ∠=︒,AD BC ⊥于点D ,点E 在线段BD 上,且CD DE =,点F 在线段AB 上,且45BEF ∠=︒(1)如图1,求证:DAE B∠=∠(2)如图1,若2AC =,且2AF BF =,求ABC V 的面积(3)如图2,若点F 是AB 的中点,求AEF ABCS S的值.24.(12分)如图,在ABC V 中,90ACB ∠=︒,30ABC ∠=︒,CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE EB=(2)如图2,当点E 在ABC V 内部时,猜想ED 和EB 数量关系,并加以证明;(3)如图3,当点E 在ABC V 外部时,EH AB ⊥于点H ,过点E 作GE AB ,交线段AC 的延长线于点G ,5AG CG =,3BH =,求CG 的长.。
第13章《轴对称》全章检测题(含答案)
第十三章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2015·遵义)观察下列图形,是轴对称图形的是( A )2.点P(5,-4)关于y 轴的对称点是( D )A .(5,4)B .(5,-4)C .(4,-5)D .(-5,-4)3.如图,△ABC 与△ADC 关于AC 所在的直线对称,∠BCD =70°,∠B =80°,则∠DAC 的度数为( B )A .55°B .65°C .75°D .85°,第3题图) ,第4题图),第5题图) ,第6题图)4.如图,在Rt △ABC 中,∠C =90°,∠B =15°,DE 垂直平分AB 交BC 于点E ,BE =4,则AC 长为( A )A .2B .3C .4D .以上都不对5.如图,AB =AC =AD ,若∠BAD =80°,则∠BCD =( C )A .80°B .100°C .140°D .160°6.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( A )A .①B .②C .⑤D .⑥7.(2015·玉林)如图,在△ABC 中,AB =AC ,DE ∥BC ,则下列结论中不正确的是( D )A .AD =AEB .DB =EC C .∠ADE =∠CD .DE =12BC,第7题图) ,第8题图) ,第9题图) ,第10题图)8.如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A =∠ABE ,AC =5,BC =3,则BD 的长为( A )A .1B .1.5C .2D .2.59.如图,已知S △ABC =12,AD 平分∠BAC ,且AD ⊥BD 于点D ,则S △ADC 的值是( C )A.10 B.8 C.6 D.410.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC 和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正确的结论的个数是( C )A.2个B.3个C.4个D.5个二、填空题(每小题3分,共24分)11.正方形是轴对称图形,它共有__4__条对称轴.12.如图,D,E为△ABC两边AB,AC的中点,将△ABC沿线段DE折叠,使点A 落在点F处,若∠B=55°,则∠BDF等于__70°__.,第12题图),第13题图),第14题图)13.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有__5__种.14.如图,在△ABC中,AB=AC,AB的垂直平分线交BC于点D,垂足为E.若∠B =35°,则∠DAC的度数为__75°__.15.在△ABC中,AC=BC,过点A作△ABC的高AD,若∠ACD=30°,则∠B=__75°或15°__.16.如图,△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):__①③或②③__.,第16题图),第17题图),第18题图)17.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是__60__.18.如图,已知∠AOB=30°,OC平分∠AOB,在OA上有一点M,OM=10 cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为__5_cm__.三、解答题(共66分)19.(7分)如图,某校准备在校内一块四边形草坪内栽上一棵银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等.请用尺规作图作出银杏树的位置点P.(不写作法,保留作图痕迹)解:作∠B的平分线与线段AD的垂直平分线,它们的交点即为点P20.(9分)如图,在平面直角坐标系中,A(-2,2),B(-3,-2).(1)若点D 与点A 关于y 轴对称,则点D 的坐标为__(2,2)__;(2)将点B 先向右平移5个单位再向上平移1个单位得到点C ,则点C 的坐标为__(2,-1)__;(3)求A ,B ,C ,D 组成的四边形ABCD 的面积.解:(3)31221.(9分)如图,在△ABC 中,AB =AC ,D 为BC 为上一点,∠B =30°,∠DAB =45°.(1)求∠DAC 的度数;(2)求证:DC =AB.解:(1)∠DAC =120°-45°=75°(2)∵∠ADC =180°-75°-30°=75°,∴∠DAC =∠ADC ,∴DC =AC ,又AB =AC ,∴DC =AB22.(9分)(2015·潜江)我们把两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AB =CB ,AD =CD ,请你写出与筝形ABCD 的角或者对角线有关的一个结论,并证明你的结论.解:(答案不唯一)AC ⊥BD.理由:证△ABD ≌△CBD (SSS ),∴∠ABO =∠CBO ,∵AB=CB ,∴BD ⊥AC23.(10分)如图,△ABC ,△ADE 是等边三角形,B ,C ,D 在同一直线上.求证:(1)CE=AC+DC;(2)∠ECD=60°.解:(1)∵△ABC,△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE =60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC.∵BD=BC+CD=AC +CD,∴CE=BD=AC+CD(2)由(1)知△BAD≌△CAE,∴∠ACE=∠ABD=60°,∴∠ECD=180°-∠ACB-∠ACE=60°24.(10分)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.解:(1)∵BF∥AC,∠ACB=90°,∴∠CBF=90°,∵∠ABC=45°,DE⊥AB,∴∠BDF=45°,从而∠BFD=45°=∠BDF,∴BD=BF=CD,又AC=BC,∴△ACD≌△CBF(SAS),∴∠CAD=∠BCF,∴∠CGD=∠CAD+∠ACF=∠BCF+∠ACF=90°,∴AD⊥CF(2)△ACF是等腰三角形.理由:由(1)知BD=BF,又DE⊥AB,∴AB是DF的垂直平分线,∴AD=AF,由(1)知△ACD≌△CBF,∴AD=CF,∴AF=CF,∴△ACF是等腰三角形25.(12分)如图,已知AE⊥FE,垂足为E,且E是DC的中点.(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C,D,且AD=DC,判断AE是∠FAD 的角平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件“AD=DC”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;(3)如图③,如果(1)的条件改为“AD∥FC”,(1)中的结论仍成立吗?请说明理由.解:(1)AE是∠FAD的角平分线(2)成立.理由如下:延长FE交AD的延长线于G.∵E为CD的中点,∴CE=DE.证△CEF≌△DEG(ASA),∴EF=EG.∵AE⊥FG,∴AF=AG,∴AE是∠FAD的平分线(3)结论仍成立,证明方法同(2)。
八年级数学第13章《轴对称》测试题(附参考答案)
八年级数学第13章《轴对称》测试题〔附参考答案〕一、填空题1、几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的,再这些对应点,就可得到原图形的轴对称图形;对于一些由直线、•线段或射线组成的图形,只要作出图形中的一些〔如线段端点〕的对应点,连结这些对应点,就可以得到原图形的轴对称图形.2、点M(-2,3)关于直线x=1的对称点M'的坐标为.3、已知点P1(a-1,5)与点P2(2,b+2)关于x 轴对称,则a-b =。
4、已知两点A(x 1,y 1),B(x 2,y 2),如果x 1+x 2=0,y 1-y 2=0,那么以A 和B 关于对称。
5、如图,在△ABC 中,AC=BC=2,∠ACB=90º,D 是BC 边的中点, E 是AB 边上一动点,则EC+ED 的最小值是。
6、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为。
7、如图,Rt △ABC ,∠C =90°,∠B =30°,BC =8,D 为AB 中点,P 为BC 上一动点,连接AP 、DP,则AP +DP 的最小值是 8、如图,∠BAC =30°,P 是∠BAC 平分线上一点,PM ∥AC ,PD ⊥AC ,PD =30 , 则AM =9、如图,AB =AC ,DE ⊥AB 于E ,DF ⊥AC 于F ,∠BAC =120o ,BC =6,则DE +DF =10、点(x ,y)关于x 轴对称的点的坐标为,即横坐标相等,纵坐标互为相反数;点(x ,y)关于y 轴对称的点的坐标为,即横坐标互为相反数,纵坐标相等.利用点关于x 轴、y 轴对称的点的坐标规律,我们可以很容易地在平面直角坐标系中作出与一个图形关于x 轴、y 轴对称的图形.11、〔1〕在图3所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为;关于坐标原点O 对称的两个三角形的编号为;〔(4)(3)(2)(1)yx -1-2-4-3-1-2-4-5-31243512435O y x-1-2-4-3-1-2-4-5-31243512435BAOD ECBAP 2P 1N MOPB AMDP B CA(B)〔B图 1DCB A 折叠2〕在图4中,画出与△ABC 关于x 轴对称的△A 1B 1C 1二、选择题:1、右边图形中,是轴对称图形的有〔 〕 (A) 1个 (B) 2个 (C) 3个 (D) 4个2、下列图形中,为轴对称图形的是〔 〕3、如图1,将矩形沿对称轴折叠,在对称轴处剪下一块,余下部分的展开图为 ( )4、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是〔〕.A .75°或15°B .75°C .15°D .75°和30°5、将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后B E B A ''与与在同一条直线上,则∠CBD 的度数〔 〕A. 大于90°B.等于90°C. 小于90°D.不能确定6、在直角坐标系中,A 〔1,2〕点的横坐标乘以-1,纵坐标不变,得到A ’点,则A 与A ′的关系是〔 〕A 、关于x 轴对称B 、关于y 轴对称C 、关于原点对称D 、将A 点向x 轴负方向平移一个单位7、如图,在矩形ABCD 中,68AB BC ==,,若将矩形折叠,使B 点与D 点重合,则折痕EF 的长为〔 〕A .152B .154C .5D .6(A)(C)x(D)EF8、下列说法正确的是〔 〕.A .轴对称涉与两个图形,轴对称图形涉与一个图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形D .有两个内角相等的三角形不是轴对称图形 9、下列图形中对称轴最多的是( ) .A .等腰三角形B .正方形C .圆D .线段10、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为〔〕.A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对11、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为〔〕厘米.A .16B .18C .26D .28 三、求证题1、某班举行文艺晚会,桌子摆成两直条〔如图中的AO ,BO 〕,AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?〔尺规作图,并写出作法〕2、如图5,AC 、BC 是两条交叉的街道,P 为邮局,现在要在AC ,BC 街上各安装一个邮筒,使得邮递员从邮局出发,先去AC 街取信件,再到BC 街取信件后,最后回到邮局P 所走的路径最短,试确定安装的地点.·PCAE DCBABCA3、某地有两所大学和两条相交叉的公路,如图12-32所示〔点M ,N 表示大学,AO ,BO 表示公路〕.现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.〔1〕你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;〔2〕阐述你设计的理由.4、一面镜子MN 竖直悬挂在墙壁上,人眼O 的位置.如图所示,•有三个物体A 、B 、C 放在镜子前面,人眼能从镜子看见哪个物体?5、已知:如图,已知△ABC ,〔1〕分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2 ; 〔2〕写出△A 1B 1C 1和△A 2B 2C 2各顶点坐标; 〔3〕求△ABC 的面积.ADEF BCF6、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.7、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .8、在ABC △中,120AB AC A =∠=︒,,AB 的垂直平分线交BC 于点D ,交AB 于点E .如果1DE =,求BC 的长9、如图,已知:在△ABC 中,AB =AC ,∠BAC =120°,AB 的垂直平分线交AB 于E ,交BC 于F. 求证:CF =2BF.OEDCBA10如图,点P 是等边△ABC 内一点,点P 到三边的距离分别为PE 、PF 、PG ,等边△ABC 的高为AD ,求证:PE +PF +PG =AD11、如图,等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
第十三章轴对称练习题
第十三章轴对称练习题一、选择题1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 正方形C. 长方形D. 等边三角形2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 垂直轴C. 旋转轴D. 反射轴3. 轴对称图形的两个对称部分在对称轴上的距离是相等的,这种说法正确吗?A. 正确B. 错误4. 一个图形经过轴对称变换后,其面积大小会发生变化吗?A. 会B. 不会5. 轴对称图形的对称轴可以是曲线吗?A. 可以B. 不可以二、填空题6. 轴对称图形的对称轴可以是一条直线,也可以是一条________。
7. 如果一个图形沿着对称轴对折,两侧的图形完全重合,那么这个图形被称为________图形。
8. 在轴对称图形中,对称轴两侧的对应点到对称轴的距离是________的。
9. 一个等腰三角形的底边和两腰相等,那么它的底边中点与顶点的连线是该三角形的________。
10. 轴对称图形在数学中有着广泛的应用,例如在________几何中,轴对称可以帮助简化问题。
三、简答题11. 请简述轴对称图形的基本性质。
12. 举例说明如何判断一个图形是否是轴对称图形。
13. 解释为什么轴对称图形的对称轴两侧的图形可以完全重合。
四、计算题14. 已知一个轴对称图形的对称轴是垂直于x轴的直线,该图形在x轴上的投影是一个长为10,宽为5的矩形。
求该图形的面积。
15. 如果一个图形关于y轴对称,并且该图形的上半部分是一个半径为3的半圆,求该图形的周长。
五、应用题16. 在一个平面直角坐标系中,点A(-3,4)和点B(1,-2)关于y轴对称。
求点B关于y轴对称的点B'的坐标。
17. 一个等腰梯形的上底长为6,下底长为10,高为4。
求该等腰梯形的面积。
18. 如果一个矩形的长是宽的两倍,且矩形的面积为48平方厘米,求该矩形的长和宽。
六、证明题19. 证明:如果一个三角形是轴对称的,那么它的对称轴是其中一条中线。
《第13章轴对称》测试卷(含答案)
《第13章轴对称》测试卷一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF 垂直平分AD.其中正确的有()A.1个 B.2个 C.3个 D.4个3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.54.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个 B.3个 C.4个 D.6个5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.47.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC 上,则线段AP的长是()A.4 B.5 C.6 D.8二、耐心填一填9.请写出4个是轴对称图形的汉字:.10.若等腰三角形的一个外角为130°,则它的底角为度.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC=°;(2)若BC=21cm,则△BCE的周长是.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM=,理由是:.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长cm.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.四.精心解一解(本题有4小题,共30分)21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB 的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是.猜想:EF与BE、CF之间的关系是.理由:(2)如图②,若AB≠AC,图中等腰三角形是.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.五、附加题:25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?《第13章轴对称图形》测试题参考答案一、细心选一选1.A;2.C;3.B;4.D;5.D;6.B;7.C;8.C;二、耐心填一填9.如中、日、土、甲等;10.65°或50°;11.10:51;12.40cm;13.15;53cm;14.3;15.5;直角三角形斜边上的中线等于斜边的一半;16.5;17.45°或135°;18.8;三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.解:如图.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∴在△ABD和△ACD中,∴△ABD≌△ACD,∴BD=CD,∴∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.解:∵AB=AD=CD∴∠ABD=∠ADB∵AD∥BC∴∠ADB=∠DBC∴∠ABD=∠DBC∴BD为∠B的平分线∵AD∥BC,AB=AD=CD∴梯形ABCD为等腰梯形∴∠B=∠C∵BD⊥CD∴∠C+∠C=90°∴∠C=60°23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB 的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是△AEF、△OEB、△OFC、△OBC、△ABC.猜想:EF 与BE、CF之间的关系是EF=BE+CF.理由:(2)如图②,若AB≠AC,图中等腰三角形是△EOB、△FOC.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF.(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.(证明过程同(1))(3)△EOB和△FOC仍是等腰三角形,EF=BE﹣FC.理由如下:同(1)可证得△EOB是等腰三角形;∵EO∥BC,∴∠FOC=∠OCG;∵OC平分∠ACG,∴∠ACO=∠FOC=∠OCG,∴FO=FC,故△FOC是等腰三角形;∴EF=EO﹣FO=BE﹣FC.五、附加题:25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.。
人教版八年级数学上测第十三章《轴对称》检测题(含答案)
人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)
人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)一、单选题1.下列润滑油1ogo标志图标中,不是..轴对称图形的是()A.B.C.D.2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.ABC的三条中线的交点B.ABC三边的垂直平分线的交点C.ABC三条角平分线的交点D.ABC三条高所在直线的交点3.三角形的外心是三角形的()A.三条中线的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三条高所在直线的交点4.下列条件中,不能判定直线CD是线段AB(C,D不在线段AB上)的垂直平分线的是()A.CA=CB,DA=DB B.CA=CB,CD⊥ABC.CA=DA,CB=DB D.CA=CB,CD平分AB5.如图,在⊥ABC中,AB=AC,⊥A=36°,BD平分⊥ABC交AC于点D,则图中的等腰三角形共有()A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC 中,90,6,10,8BAC AC BC AB ∠=︒===,过点A 的直线//,DE BC ABC ∠与ACB ∠的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC 中,AD 是它的角平分线,DE AB ⊥于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC ∠=︒,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A.20m B 203m3C403m3D.203m11.如图,△ABC是边长为4的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC至点Q,使CQ=P A,连接PQ交AC于点D,则DE的长为()A.1B.1.8C.2D.2.512.如图,等边三角形ABC的三条角平分线相交于点O,//OD AB交BC于点D,//OE AC交BC于点E,那么这个图形中的等腰三角形共有()个A.4B.5C.6D.7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC中,10cmAB AC==,AB的垂直平分线交AC于点D,且BCD△的周长为17cm,则BC=________cm.15.如图,在ABC ∆中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ 的周长为 __________.16.ABC ∆中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50︒,则底角B 的大小为_________.17.如图,⊥AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分⊥BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA ∠=∠;(2)//DF AC ;(3)EAC B ∠=∠.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在⊥ABC 中,⊥BAC =90°,E 为边BC 上的任意点,D 为线段BE 的中点,AB =AE ,EF ⊥AE ,AF BC ∥.(1)求证:⊥DAE=⊥C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在ABC中,⊥A=2⊥B,CD平分⊥ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分⊥ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到DEC⊥DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知ABC中,AB=AC,⊥A=20°,BD平分⊥ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:⊥⊥⊥ABC为等边三角形,⊥AB=AC,⊥⊥ABC为等腰三角形;⊥⊥BO,CO,AO分别是三个角的角平分线,⊥⊥ABO=⊥CBO=⊥BAO=⊥CAO=⊥ACO=⊥BCO,⊥AO=BO,AO=CO,BO=CO,⊥⊥AOB为等腰三角形;⊥⊥AOC为等腰三角形;⊥⊥BOC为等腰三角形;⊥⊥OD⊥AB,OE⊥AC,⊥⊥ABC=⊥ODE,⊥ACB=⊥OED,⊥⊥ABC=⊥ACB,⊥⊥ODE=⊥OED,⊥⊥DOE为等腰三角形;⊥⊥OD⊥AB,OE⊥AC,⊥⊥BOD=⊥ABO,⊥COE=⊥ACO,⊥⊥DBO=⊥ABO,⊥ECO=⊥ACO,⊥⊥BOD=⊥DBO,⊥COE=⊥ECO,⊥⊥BOD为等腰三角形;⊥⊥COE为等腰三角形.故选:D.13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或10 18.证明:AD 平分⊥BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF ∴∠=∠=又AD AD =∴AED AFD ≌∴AE AF =∴,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ⊥BCE 的周长为8,⊥8BE EC BC ++=⊥AB 的垂直平分线交AB 于点D ,交AC 于点E ,⊥AE BE =,⊥8AE EC BC ++=,即8AC BC +=,⊥2AC BC -=,⊥5AC =,3BC =,⊥AB AC =,⊥5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA ∠=∠;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF ∠=∠,再利用角平分线的性质可得到BAD CAD ∠=∠,利用等量代换可得ADF CAD ∠=∠,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,⊥EF 是AD 的垂直平分线,⊥AE DE =,AQ DQ =,在AEQ △和DEQ 中,⊥,,,AQ DQ EQ EQ AE DE =⎧⎪=⎨⎪=⎩⊥AEQ DEQ ≌(SSS ),⊥EAD EDA ∠=∠;(2)⊥EF 是AD 的垂直平分线,⊥AF DF =,在AFQ △和DFQ 中,⊥,,,AQ DQ FQ FQ AF DF =⎧⎪=⎨⎪=⎩⊥AFQ DFQ ≌(SSS ),⊥BAD ADF ∠=∠,⊥AD 是ABC 的角平分线,⊥BAD CAD ∠=∠,⊥ADF CAD ∠=∠,⊥//DF AC ;(3)由(1)知EAD EDA ∠=∠,EAD CAD EAC ∠=∠+∠,⊥EDA CAD EAC ∠=∠+∠,又⊥EDA BAD B ∠=∠+∠,⊥CAD EAC BAD B ∠+∠=∠+∠,⊥BAD CAD ∠=∠,⊥EAC B ∠=∠.易错:证明:(1)⊥EF 是AD 的垂直平分线,⊥AE DE =,在AEQ △和DEQ 中,,,,AQ DQ AEQ DEQ AE DE =⎧⎪∠=∠⎨⎪=⎩⊥AEQ DEQ ≌(SAS ),⊥EAD EDA ∠=∠.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC ,,F DAE ECF D ∴∠=∠∠=∠,点E 是CD 的中点,CE DE ∴=,在CEF △和DEA △中,F DAE ECF D CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEF DEA AAS ∴≅,FC AD ∴=;(2)由(1)已证:CEF DEA ≅,FE AE ∴=,又BE AE ⊥,BE ∴是线段AF 的垂直平分线,AB FB BC FC ∴==+,由(1)可知,FC AD =,AB BC AD ∴=+.22.(1)证明:⊥AB =AE ,D 为线段BE 的中点,⊥AD ⊥BC ,⊥⊥C +⊥DAC =90°,⊥⊥BAC =90°,⊥⊥BAD +⊥DAC =90°,⊥⊥C =⊥BAD ,⊥AB =AE ,AD ⊥BE ,⊥⊥BAD =⊥DAE ,⊥⊥DAE =⊥C ;(2)证明:⊥AF ⊥BC ,⊥⊥F AE =⊥AEB ,⊥AB =AE ,⊥⊥B =⊥AEB ,⊥⊥B =⊥F AE ,又⊥AEF =⊥BAC =90°,AB =AE ,⊥⊥ABC ⊥⊥EAF (ASA ),⊥AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,⊥⊥ACD ⊥⊥ECD (SAS ),⊥AD =DE ,⊥A =⊥DEC ,⊥⊥A =2⊥B ,⊥⊥DEC =2⊥B ,⊥⊥B =⊥EDB ,⊥⊥BDE 是等腰三角形;⊥BE =DE =AD =2.2,AC =EC =3.6, ⊥BC 的长为5.8;(2)⊥⊥ABC 中,AB =AC ,⊥A =20°, ⊥⊥ABC =⊥C =80°,⊥BD 平分⊥B ,⊥⊥1=⊥2=40°,⊥BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,⊥⊥DEB ⊥⊥DBC (SAS ),⊥⊥BED =⊥C =80°,⊥⊥4=60°,⊥⊥3=60°,在DA 边上取点F ,使DF =DB ,连接FE , 同理可得△BDE ⊥⊥FDE ,⊥⊥5=⊥1=40°,BE =EF =2,⊥⊥A =20°,⊥⊥6=20°,⊥AF =EF =2,⊥BD =DF =2.3,⊥AD =BD +BC =4.3.。
第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)
第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。
(必考题)初中八年级数学上册第十三章《轴对称》经典测试题(含答案解析)
一、选择题1.若a ,b 是等腰ABC 的两边长,且满足()2370a b -+-=,此三角形的周长是( )A .13B .13或17C .17D .202.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个 3.如图,AD 是ABC 的角平分线,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠,2AE BF =.下列四个结论中:①DE DF =;②DB DC =;③AD BC ⊥;④3AB BF =.其中正确的结论共有( )A .4个B .3个C .2个D .1个 4.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 5.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…,在射线ON 上,点B ,1B ,2B ,3B ,…,在射线OM 上,112A B B ,223A B B △,334A B B △,…,均为等边三角形.若11OB =,则202020202021A B B △的边长为( )A .20192B .20202C .20212D .20222 6.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒7.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 8.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .129.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2019=( )A .22017B .22018C .22019D .2202010.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .10311.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②BP 垂直平分CE ;③PG =AG ;④CP 平分∠DCB ;其中,其中说法正确的有( )A .1个B .2个C .3个D .4个12.下列图案中,是轴对称图形的是( )A .B .C .D .13.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm 14.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒15.已知等边△ABC 的边长为6,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( )A .1B .2C .3D .4二、填空题16.如图,点C 在线段AB 上(不与点A ,B 重合),在AB 的上方分别作△ACD 和△BCE ,且AC =DC ,BC=EC ,∠ACD =∠BCE =α,连接AE ,BD 交于点P .下列结论:①AE=DB ;②当α=60°时,AD =BE ;③∠APB =2∠ADC ;④连接PC ,则PC 平分∠APB .其中正确的是__________.(把你认为正确结论的序号都填上)17.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.18.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.19.如图,线段AB ,BC 的垂直平分线1l ,2l 相交于点O .若135∠=︒,则A C ∠+∠的度数为______.20.如图:已知在ABC 中,90ACB ︒∠=,36BAC ︒∠=,在直线AC 上找点P ,使ABP △是等腰三角形,则APB ∠的度数为________.21.如图,等腰ABC 底边BC 的长为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则BDM 的周长最小值为_____cm .22.等腰三角形的周长为24,其中一边为6,则另两边的长分别为__________. 23.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.24.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.25.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.26.如图,在四边形ABCD 中,130DAB ∠=︒,90D B ∠=∠=︒,点M ,N 分别是CD ,BC 上两个动点,当AMN 的周长最小时,AMN ANM ∠+∠的度数为_________.三、解答题27.在等边ABC ∆中,(1)如图1,P ,Q 是BC 边上两点,AP AQ =,20BAP ∠=︒,求AQB ∠的度数; (2)点P ,Q 是BC 边上的两个动点(不与B ,C 重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接AM ,PM .①依题意将图2补全;②求证:PA PM =.28.如图,点A ,C ,D ,B 四点共线,且AC BD =,A B ∠=∠,ADE BCF ∠=∠.(1)求证:ADE BCF ≌;(2)若9DE =,CG 4=,求线段EG 的长.29.如图,在ABC 中,AB AC =,D 为AC 的中点,DE AB ⊥于点E ,DF BC⊥于点F ,且DE DF =,连接BD ,点G 在BC 的延长线上,且CD CG =. (1)求证:ABC 是等边三角形;(2)若2CG =,求BC 的长.30.如图,在8×8的网格中,每个小正方形的边长为1,每个小正方形的顶点称为格点,Rt △ABC 的每个顶点都在格点上,利用网格点,只用无刻度的直尺,在给定的网格中按要求画图.(1)画△ABC 的角平分线CD 交AB 于点D ;(2)画AB 边的垂直平分线l 交直线CD 于点P .。
八年级数学上册第十三章《轴对称》测试-人教版(含答案)
八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。
第13章《轴对称》单元测试卷及答案(精编文档).doc
【最新整理,下载后即可编辑】第十三章 《轴对称》单元测试卷班级 考号 姓名 得分一、选择题(本大题共有10小题,每空3分,共30分). 1.下列各时刻是轴对称图形的为( ).A 、B 、C 、D 、 2.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( ).A 、21:10B 、10:21C 、10:51D 、12:013.如图是屋架设计图的一部分,其中∠A=30°,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁AC ,AB=16m ,则DE 的长为( ). A 、8 m B 、4 m C 、2 m D 、6 m4.如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ).A 、90°B 、 75°C 、70°D 、 60° 5.把一张长方形的纸沿对角线折叠,则重合部分是( ).A 、直角三角形B 、长方形C 、等边三角形D 、等腰三角形6.已知等腰三角形的两条边长分别为2和5,则它的周长为( ).A . 9B . 12C . 9或12D . 57.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ).A 、4B 、5C 、6D 、78.如图,∠BAC=110°若MP 和NQ 分别垂直平分AB 和AC,则∠PAQ 的度数是( ) .A 、20°B 、 40°C 、50°D 、 60°9.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH剪下,这样剪得的三角形中( ).A 、AD DH AH ≠=B 、AD DH AH ==C 、DH AD AH ≠=D 、AD DH AH ≠≠10.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;第2题图第3题图第4题图FEDCBABMN P 1A P 2OP 第7题图 第8题图 第9题图M ANCQPBNM D CH EBA④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ).A .①②③B .①②④C .①③D .①②③④ 二、填空题(本大题共有8小题,每空3分,共24分).11.等腰三角形是轴对称图形,其对称轴是_______________________________.12.已知点A (x , -4)与点B (3,y )关于x 轴对称,那么x +y 的值为____________.13.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 __ .14.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD的三等分点,若△ABC 的面积为12cm 2,则图中阴影部分的面积是 ___ cm 2.15.如图,在△ABC 中, AB=AC, D 为BC 上一点,且,AB=BD,AD=DC,则∠C= ____ 度..16.如图,在等边ABC △中,D E ,分别是AB AC ,上的点,且AD CE =,则BCD CBE ∠+∠=度.17.如图:在△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点F ,则DF 的长为 ;18.在直角坐标系内,已知A 、B 两点的坐标分别为A (-1,1)、B (3,3),若M 为x 轴上一点,且MA +MB 最小,则M 的坐标是___________.三、解答题(本大题共有7小题,共19.(8分)如图,已知点M 、N 和∠求作一点P ,使P 到点M 、N 且到∠AOB 的两边的距离相等.20.(9分)(1)请画出ABC △关于y (其中A B C ''',,分别是A B C ,,(2)直接写出A B C ''',,三点的坐标:(_____)(_____)(_____)A B C ''',,.(3)求△ABC 的面积是多少?D C第14题图第15题图第16题图第17题图BCE DAB FEDCABE A21.(9分)在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE.求∠CDE的度数.22. (10分)已知AB=AC,BD=DC,AE平分∠FAB,问:AE与AD 是否垂直?为什么?23.(10分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE= DF,并说明理由.解:需添加条件是.理由是:24.(10分)如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE。
八年级数学上册第13章《轴对称》全章测试.doc
一、填空题(每小题 3 分,共33 分)1. 在 ABC 中, AB AC , A C ,则 B =____。
2. 如果点 P(4, 5) 和点Q(a,b)关于 y 轴对称,则 a =_____, b =____。
3. 等腰三角形中的一个角等于70°,则另外两个内角的度数分别为____________ 。
4. 小丽在镜子里看到对面墙上电子钟示数为,则此时实际时刻为 _________ 。
5. 已知ABC中 ACB 90 ,CD AB于D, A 30 , BC 2cm ,则AD =____。
6.已知等腰三角形中的一边长为 5,另一边长为 9,则它的周长为 ______________ 。
7. 如图,BD是ABC的角平分线,DE AB 于 E ,ABC 的面积是30cm2,AB 18cm ,BC 12cm ,则DE= 。
8. 如图,Rt ABC 中,ACB 90 , B 50, D , F 分别是BC, AC上的点, DE AB ,垂足为 E ,CF BE, DF DB ,则ADE 的度数为。
9. 如图,在ABC 中,ACB 90 , BAC 30 ,在直线 BC 或AC 上取一点 P ,使得PAB 为等腰三角形,则符合条件的点P 共有____个。
10. ABC 中,AB AC ,AB 的中垂线与 AC 所在的直线相交所得到锐角为50°,则 B =___。
11. 已知:点 P 为AOB 内一点,分别作出 P 点关于 OA、OB 的对称点1、2,连接 1 2 , 分别P P P P交 OA、 OB 于 M、 N , 1 2 15 ,则PMN的周长为.P P二、选择题(每小题 3 分,共 30 分)12. 如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是()A. B. C. D.13. 下列长度的三线段, 能组成等腰三角形的是()A. 1 , 1 , 2B. 2, 2 ,5C. 3, 3, 5D. 3, 4, 514. 已知 P(a,3) 和 Q(4, b) 关于x轴对称,则(a b)2014的值为()A. 1B. - 1C. 72014D. 7201415. 等腰三角形一腰上的高与另一腰的夹角为30o,则顶角的度数为()A. 60 oB. 120 oC. 60 o或 150oD.60 o或 120o16.下列三角形:①有两个角等于60°;②有一个角等于 60°的等腰三角形; ?③三个外角(每个顶点处各取一个外角)都相等的三角形;?④一腰上的中线也是这条腰上的高的等腰三角形。
八年级上册数学第十三章 轴对称 测试卷(含答案)
八年级上册数学第十三章轴对称测试卷一、选择题。
(每小题3分,共24分)1.以下四个图形中,对称轴条数最多的是()A B C D2.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击中(球可以经过多次反弹),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋第2题图第3题图3.如图所示,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B.36°C.45°D.70°4.小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A B C D5.下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可以是另一边的二倍D.等腰三角形的两个底角相等6.小朋友文文把一张长方形的纸对折了两次(如图所示),使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为()A. 60 °B.75°C.90°D.120°第6题图第8题图7.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数是()A. 60°B. 120°C. 60°或150°D.60°或120°8.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A. 3B. 2.5C. 2D. 1二、填空题(每小题3分,共24分)1.仔细观察如图所示的图案,并按规律在横线上画出合适的图形.______2,则该汽车的车牌号是______.3.已知么MON= 45°,其内部有一点P,它关于OM的对称点是A,关于ON的对称点是B,且OP =2cm,则S△AOB=______4.如图所示,DE是AB的垂直平分线,D是垂足,DE交BC于E,若BC=32cm,AC=18cm,则△AEC的周长为______cm.第4题图第6题图第7题图5.在直角坐标系中,点A,B,C,D的坐标分别为(-1,3),(-2,-4),(1,3),(2,-4),则线段AB与CD的位置关系是______.6.如图,在△ABC中,∠ACB = 90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点B',连接B'A,则B’A长度的最小值是______.7.如图所示,△ABD、△ACE是正三角形,BE和CD交于O点,则∠BOC =______.8.如图所示,有一块形状为等边△ABC的空地,DE,EF为空地中的两条路,且D为AB的中点,DE⊥AC于E,EF∥AB,现已知AE=5m,则地块△EFC的周长为______.三、解答题(共72分)1.如图所示,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.2.用围棋棋子可以在棋盘中摆出许多有趣的图案,如图甲,在棋盘上建立平面直角坐标系,以直线y=x为对称轴,我们可以摆出一个轴对称图形(其中A与A’是对称点),你看它像不像一条美丽的鱼?(1)请你在图乙中,也用10枚以上的棋子摆出一个以直线y=x为对称轴的轴对称图案,并在所摆的图形中找出两组对称点,分别标为B—B',C—C'(注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B,B',C,C'的坐标分别是:B( ),B'( ),C( ),C'( ).根据以上对称点的坐标规律,写出点P(a,b)关于对称轴y=x对称点p’的坐标是( ).甲乙3.如图所示,△ABC和△A’B’C’关于直线MN对称,△A’B’C'和△A’’B’’C’’关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB’’与直线MN, EF所夹锐角α的数量关系.4.如图所示,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB +BD与DE的长度有什么关系?并加以证明.5.如图所示,在等边三角形ABC中,∠B,∠C的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.6.元旦联欢会上,同学们在礼堂四周摆了一圈条桌,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间放一把椅子B.游戏规则是这样的:甲、乙二人从A 处同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.小张和小李比赛,比赛一开始,只见小张直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见小李已经手捧苹果和香蕉稳稳地坐在B处的椅子上了,如果小李不比小张跑得快,那他是不是有捷径呢?如果有,请把捷径画出来,并说明理由.参考答案一、1.B 2.B 3.B 4.D 5.D 6.C 7.D 8.C 二、1. 2.M645379 3.2cm ² 4. 50 5.关于y 轴对称 6.2 7. 120° 8. 45m三、1.连接AF. ∵AB=AC,∴∠B= ∠C=︒=︒-︒=∠-︒3021201802A 180.又∵EF 垂直平分AC ,∴AF = CF ∴∠CAF =∠C= 30°. ∴∠BAF= ∠BAC- ∠CAF=120°-30°=90°.在Rt △BAF 中,∵∠B=30°,∴BF =2AF.叉∵AF= CF,∴BF=2CF .2.(1)按要求摆出图形并标出两组对称点B-B ’,C-C';(2)答案不唯一,只要满足点B 的横坐标等于点B ’的纵坐标,点B 的纵坐标等于点B ’的横坐标,点C 的横坐标等于点C ’的纵坐标,点C 的纵坐标等于点C ’的横坐标即可;根据以上对称点坐标的规律,可以发现P(a ,b)关于对称轴y=x 的对称点P ’的坐标为(b ,a).3.(1)如图所示,连接B'B ’’,作线段B'B ’’的垂直平分线EF,则直线EF 是△A ’B ’C ’和△A ’’B ’’C ’’的对称轴.(2)连接BO .因为△ABC 和△A'B'C'关于MN 对称,所以∠BOM=∠B 'OM.又因为△A ’B ’C ’和△A ’’B ’’C ’’关于EF 对称,所以∠B 'OE= ∠B ''OE.所以∠BOB''=∠BOM+ ∠B 'OM+∠B'OE+ ∠B ‘’OE =2(∠B'OM+∠B 'OE) =2a .即∠BOB ’’= 2a.4. AB+BD= DE ,证明略.5.同意,连接OE ,OF.由题意可知:BE= OE,CF= OF,∠OBC=∠OCB= 30°, ∴∠BOE=∠OBC=30°,∠COF=∠OCB=30°,∴∠BOC=120°,∴∠EOF=60°, ∠OEF=60°, ∠OFE=60°.∴△OEF 是等边三角形,∴OE = OF= EF= BE=CF.∴E ,F 是BC 的三等分点.6.分别以北条桌和东条桌为对称轴,作A ,B 的对称点A ’,B ’,连接A'B ’,交两长条桌于C ,D 两点,则折线ACDB 就是捷径.连接A'M 和B'M 因为A ,A ’于CM 对称,B ,B ’关于DM 对称,所以AC=A'C ,AM=A'M ,BD=B'D,BM=B'M.所以折线ACDB 的长=AC+CD+DB=A'C+CD+DB'=A'CDB'=A'B ’,而AM+BM=A'M+B'M> A'B',所以拆线ACDB 是捷径.。
第十三章轴对称测试题
1第十三章 轴对称测试题一、选择题(每小题4分,共40分)1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( ) A : B : C : D :2、一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像是( )3、已知A 、B 两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A 、B 关于x 轴对称;②A 、B 关于y 轴对称;③A 、B 关于原点对称;④若A 、B 之间的距离为4,其中正确的有( )A :1个B :2个C :3个D :4个 4、如图2把一个正方形三次对折后沿虚线 剪下,则所得图形大致是( )5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A :11cmB :7.5cmC :11cm 或7.5cmD : 以上都不对 6、如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ) A :90° B : 75° C :70° D : 60°7、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ) A :75°或15° B :75° C :15° D :75°和30° 8、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ) A :1个 B :2个 C :3个 D :4个9、如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕MN 上, 折痕为AE,点B 在MN 上的对应点为H,沿AH 和DH 剪下,这样剪得的 △ADH 中 ( )A :AH=DH ≠ADB :AH=DH=ADC :AH=AD ≠DH D :AH ≠DH ≠AD 10、如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米, 则∆EBC 的周长为( )厘米A :16B :18C :26D :28 二、填空题(每小题4分,共40分)11、如图:在Rt △ABC 中,∠C=90°,∠A=30°,AB +BC=12㎝, 则AB= ㎝;CA F El O C B D AAB C D M NHECEBDACBA212、如图:从镜子中看到一钟表的时针和分针,此时的实际时刻是________; 13、等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 ;14、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的 对称点P1,P2,连接P1P2交OA 于M ,交OB 于N ,P1P2=15,则 △PMN 的周长为 ; 15、点P (2,-3)关于直线y=1的对称点的坐标是 ; 16、等腰三角形一腰上的高若等于这个三角形某一边的长度的一半,则其顶角等于;17、如图:在△ABC 中,AB=AC=9,∠ABD=120°,AD 是 △ABC 的中线,AE 是∠BAD的角平分线,DF ∥AB 交AE的延长线于点F ,则DF 的长为 ;18、如图:AC=AD=DE=EA=BD ,∠BDC=28°∠ADB=42°, 则∠BEC= ;19、如图:在△ABC 中,AB=AC ,BC=BD ,DA=DE=EB ,则∠A= 度;20、如图:△ABC 的三边AB 、BC 、AC 的长分别为20、30、40,其三条角平分 线将△ABC 分成三个三角形,则=∆∆∆O AC O BC O AB S S S :: ;三、解答题(共70分) 21、(10分)如图:△ABC 和△ADE 是等边三角形,AD 是BC 边上的中线。
人教版八年级数学上册试题 第十三章 轴对称章节测试卷(含详解)
第十三章《轴对称》章节测试卷一.选择题(共12小题,每小题4分,共48分)1.下列交通安全标志中,是轴对称图形的是( )A.B.C.D.2.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为( )A.30°B.50°C.90°D.100°3.到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点4.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是( )A.20°B.40°C.50°D.60°5.若等腰三角形有两条边的长度为5和8,则此等腰三角形的周长为( )A.18或21B.21C.24或18D.186.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m于点D 和点E,且DB=DE,若∠1=65°,则∠BDE的度数为( )A.115°B.120°C.130°D.145°7.在下列结论中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④有一个角是60°,且是轴对称的三角形是等边三角形.其中正确的个数是( )A.4个B.3个C.2个D.1个8.已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( )A.70°B.70°或55°C.40°或55°D.70°或40°9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是( )A.a<﹣1B.﹣1<a<32C.−32<a<1D.a>3210.如图,在△ABC中,∠C=60°,AD是BC边上的高,点E为AD的中点,连接BE并延长交AC于点F.若∠AFB=90°,EF=2,则BF长为( )A.4B.6C.8D.1011.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是( )A.10B.8C.6D.412.如图,点C、D在线段AB的同侧,CA=4,AB=12,BD=9,M是AB的中点,∠CMD=120°,则CD长的最大值是( )A.16B.19C.20D.21二.填空题(共4小题,每小题4分,共16分)13.若点A(m,﹣3),B(﹣2,n)关于y轴对称,则2m+3n的值为 .14.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为 .15.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为 .16.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为 .三.解答题(共8小题,共86分)17.如图,在Rt△ABC中,∠ACB=90°,∠CAB=2∠B,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DB=DE.18.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为 ;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)20.如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.21.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.22.已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3,△ABC 的高为h.(1)若点P在一边BC上[如图①],此时h3=0,求证:h1+h2+h3=h;(2)当点P在△ABC内[如图②],以及点P在△ABC外[如图③]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3与h之间又有怎样的关系,请说出你的猜想,并说明理由.23.如图,在等边△ABC中,AB=12cm,现有M,N两点分别从点A,B同时出发,沿△ABC的边按顺时针方向运动,已知点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N同时停止运动,设运动时间为t(s).(1)当t为何值时,M,N两点重合?两点重合在什么位置?(2)当点M,N在BC边上运动时,是否存在使AM=AN的位置?若存在,请求出此时点M,N 运动的时间;若不存在,请说明理由.24.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.答案一.选择题1.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.【解答】解:∵△ABC和△A′B′C′关于直线l对称,∠A=50°,∠C′=30°,∴△ABC≌△A′B′C′,∴∠C=∠C′=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故选:D.3.【解答】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.4.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,又MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:B.5.【解答】解:根据题意,①当腰长为5时,周长=5+5+8=18;②当腰长为8时,周长=8+8+5=21.故选:A.6.【解答】解:如图,∵DB=DE,∴∠2=∠B,∴∠3=2∠B,∵∠C=90°,∴∠5=90°﹣∠B,∵m∥n,∴∠1+∠5+∠3=180°,∴65°+90°﹣∠B+2∠B=180°,∴∠B=25°,∴∠BDE=130°,故选:C.7.【解答】解:①有一个外角是120°的等腰三角形是等边三角形,正确;②有两个外角相等的等腰三角形不一定是等边三角形,错误;③有一边上的高也是这边上的中线的等腰三角形不一定是等边三角形,错误;④有一个角是60°,且是轴对称的三角形是等边三角形,正确.故选:C.8.【解答】解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故选:D.9.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在第四象限,,∴{a+1>0①2a−3<0②解不等式①得,a>﹣1,,解不等式②得,a<32,所以,不等式组的解集是﹣1<a<32故选:B.10.【解答】解:∵在△ABC中,∠C=60°,AD是BC边上的高,∴∠DAC=90°﹣∠C=90°﹣60°=30°,∵∠AFB=90°,EF=2,∴AE=2EF=4,∵点E为AD的中点,∴DE=AE=4,∵∠C=60°,∠BFC=180°﹣90°=90°,∴∠EBD=30°,∴BE=2DE=8,∴BF=BE+EF=8+2=10,故选:D.11.【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,{∠ABP=∠EBPBP=BP∠APB=∠EPB,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=12S△ABC=12×12=6,故选:C.12.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=4+6+9=19,∴CD的最大值为19,故选:B.二.填空题13.【解答】解:∵点A(m,﹣3),B(﹣2,n)关于y轴对称,∴m=2,n=﹣3,∴2m+3n=2×2+3×(﹣3)=﹣5.故答案为:﹣514.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.15.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG=1×110°=55°.216.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n﹣1.故答案是:2n﹣1.三.解答题17.证明:(1)∵∠ACB=90°,∴∠CAB+∠B=90°,又∵∠CAB=2∠B,∴∠B=30°,∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°;(2)∵∠DAB=30°=∠B,∴AD=DB,∵AC=EC,∠ACB=90°,∴AD=DE,∴DE=DB.18.解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=12BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.19.解:(1)S△ABC=3×4−12×2×2−12×1×4−12×2×3=12﹣2﹣2﹣3=5.故答案为:5;(2)如图,△A′B′C′即为所求;(3)如图,点P即为所求.20.解:(1)∵AE是BC边上的高,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=3,则EH=12AE=32、AH=32,∴S△ADF=12×3×32=334.21.解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.22.解:(1)如图1,连接AP,则 S△ABC=S△ABP+S△APC∴12BC•AM=12AB•PD+12AC•PF即12BC•h=12AB•h1+12AC•h2又∵△ABC是等边三角形∴BC=AB=AC,∴h=h1+h2;(2)点P在△ABC内时,h=h1+h2+h3,理由如下:如图2,连接AP、BP、CP,则 S△ABC=S△ABP+S△BPC+S△ACP∴12BC•AM=12AB•PD+12AC•PE+12BC•PF即12BC•h=12AB•h1+12AC•h2+12BC•h3又∵△ABC是等边三角形,∴BC=AB=AC.∴h=h1+h2+h3;点P在△ABC外时,h=h1+h2﹣h3.理由如下:如图3,连接PB,PC,PA由三角形的面积公式得:S△ABC=S△PAB+S△PAC﹣S△PBC,即12BC∙AM=12AB•PD+12AC•PE−12BC•PF,∵AB=BC=AC,∴h1+h2﹣h3=h,即h1+h2﹣h3=h.23.解:(1)由题意,t×1+12=2t,解得:t=12,∴当t=12时,M,N两点重合,此时两点在点C处重合;(2)结论:当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形.理由:由(1)知12秒时M、N两点重合,恰好在C处,如图,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,{∠C=∠B∠AMC=∠ANB,AC=AB∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,∵CM=NB,∴y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,当运动时间为12秒或16秒时,AM=AN.24.(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF.∴CE=CF.(2)解:GE=BE+GD成立.∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=GF.∴GE=DF+GD=BE+GD.(3)解:过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=12.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x﹣4,∴AD=AG﹣DG=16﹣x,AE=AB﹣BE=12﹣4=8.在Rt△AED中∵DE2=AD2+AE2,即x2=(16﹣x)2+82解得:x=10.∴DE=10.。
人教版八年级数学上册《第十三章轴对称》章节测试卷-附带答案
人教版八年级数学上册《第十三章轴对称》章节测试卷-附带答案一、选择题1.下列体育图标是轴对称图形的是()A.B.C.D.2.在平面直角坐标系中,点与点关于轴对称,则的值分别为()A.3,2 B.C.2,3 D.3.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的底角度数是()A.50°B.80°C.50°或70°D.80°或40°4.如图,AD是等边的中线,AE=AD,则的度数为()A.30°B.20°C.25°D.15°5.如图,在中,AB=AC,的垂直平分线交于点D,交于点E,若,则()A.B.C.D.6.在中,边,的垂直平分线分别交于点M,G(如图),连,AG.若.则的周长为()A.28 B.30 C.32 D.347.如图,在四边形刚好是中点,P、Q分别是线段上的动点,则的最小值为()A.12 B.15 C.16 D.188.如图,在中,的垂直平分线与的外角平分线交于点D,于点E,交的延长线于点F,则下列结论:①;②;③;④若,CE=4,则,其中一定成立的有()A.1个B.2个C.3个D.4个二、填空题9.已知,点O在三角形内,且,则的度数是度.10.在△ABC 中, , 的垂直平分线与AC 所在的直线相交所得锐角为 ,则∠B= .11.如图的周长为18,且,于D,的周长为12,那么的长为.12.如图,与关于直线对称,延长交于点,当°时,.13.如图,中,平分交于点D,过点A作交的延长线于点E.若,的周长为,的面积为,则.三、解答题14.如图,在直角坐标系中,的位置如图所示,请完成下列问题:⑴分别写出点A,点C的坐标;⑵作出关于x轴的对称图形,并写出的坐标为▲.⑶求的面积;⑷在y轴上找一点P,使最小.15.如图,在中,已知点在线段的反向延长线上,过的中点作线段交的平分线于,交于,且 .(1)求证:是等腰三角形:(2)若,求的长.16.如图,在中,AB=AC,点是边上的中点,连结,平分交于点,过点作交于点.(1)若,求的度数;(2)求证:.17.以点A为顶点作两个等腰直角三角形,其中,AB=AC,如图所示放置,D在AC边上,连接BD,CE.(1)求证:;(2)延长BD,交CE于点F,求的度数.18.如图,在中,AB=AC,过点作于点,过点作于点,与交于点,连接.(1)求证:;(2)若,求的度数.参考答案:1.A2.D3.C4.D5.C6.D7.D8.D9.11010.11.312.3613.414.解:⑴由图形可知:;⑵如下图,作点A、B、C关于y轴对称的点的坐标特征得到,连接即为所求;;(-2,-3)⑶由题意可知:的面积;⑷如(2)图,作点B关于x轴的对称点,连接交x轴于P点两点之间线段最短最小点P即为所求.15.(1)证明:平分是等腰三角形.(2)解:是的中点.在和中.16.(1)解:∵∴∵为的中点,∴,即,∴;(2)证明:∵平分∴∵∴∴∴.17.(1)解:∵,都是等腰直角三角形∴∴∴(2)解:∵∴∵∴∴∴18.(1)证明:∵∴∴∴∴∴(2)解:∵∴∵∴∴由(1)得:∴∴。
人教版八年级上册数学第13章《轴对称》测试题【含答案】
一、选择题(每小题3分,共24分)1.下列交通标志图案是轴对称图形的是()2.下列图形中对称轴只有两条的是()3.如图1,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性 B.用字母表示数C.随机性 D.数形结合4.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18C.20 D.16或205.如图2,△ABC与△A′B′C′关于直线l对称,且∠A′=78°,∠C=48°,则∠ABC的度数为()A.48°B.54°C.74°D.78°6.图3是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分线段EGC.连接BG,CE,其交点在AF上D.△DEG是等边三角形7.在平面直角坐标系xOy中,点P(-3,8)关于y轴的对称点的坐标为()A.(-3,-8)B.(3,8)C.(3,-8)D.(8,-3)8.如图4,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使点B落在AC边上的点E处,则∠CED的度数是()A.30°B.40°C.50°D.70°二、填空题(每小题4分,共32分)9.如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是________三角形.10. 已知M,N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN的关系是________. 11.如图5,在△ABC中,AB=AC,∠B=50°,则∠A=________.12.如图6,在△ABC中,AB=AC=3 cm,AB的垂直平分线MN交AC于点N,交AB于点M.已知△BCN的周长是5 cm,则BC的长是________cm.13.如图7,A,B,C三个居民小区的位置呈三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在________________.14.如图8,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有________个.15.观察规律,并填空:16.如图9,O为△ABC内一点,O与D关于AB对称,O与E关于BC对称,O与F关于AC对称,∠BAC=40°,∠ABC=80°,∠ACB=60°,则∠ADB+∠BEC+∠CFA=_________.三、解答题(共64分)17.(9分)请在如图10所示的三个2×2的方格中各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)18.(8分)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图11所示的三个汉字可以看成是轴对称图形,请在方框中再写出4个类似轴对称图形的汉字.19.(12分)如图12,在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.20.(11分)如图13,在△ABC中,点D,E分别是AB,AC边的中点,请你在BC边上确定一点P,使△PDE的周长最小,在图中作出点P.21.(12分)如图14,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线DE交AB于点E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.22.(12分)如图15,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE,则线段AE与BC有什么位置关系?请说明理由.第十三章轴对称测试题一、1.B 2.C 3.A 4.C 5.B 6.D 7.B 8.D二、9.等边 10. 相等 11.80° 12.213. AB,BC,CA垂直平分线的交点处14. 6 15. 16. 360°三、17.解:答案不唯一,如图1所示.18.解:答案不唯一,如中、田、日、吕、呆等.19.(1)证明:因为BD=AB,所以∠BAD=∠BDA.因为DE⊥BC,所以∠BDE=90°.又∠BAC=90°,所以∠EAD=∠EDA.所以AE=DE,即△ADE是等腰三角形.(2)还有三个等腰三角形,△ABD、△ABC、△CDE.20.解:如图2,作点D关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求作.21.解:(1)因为DE垂直平分AC,所以CE=AE,即△ACE是等腰三角形.所以∠ECD =∠A=36°.(2)因为AB=AC,∠A=36°,所以∠B=∠ACB=(180°-36°)÷2=72°.因为∠ECD=36°,所以∠BEC=∠A+∠ECD=72°,即∠BEC=∠B.所以BC=CE=5.22.解:AE∥BC.理由:因为△ABC和△DEC是等边三角形,所以BC=AC,CD=CE,∠ABC=∠BCA=∠ECD =60°.所以∠BCA-∠DCA=∠ECD-∠DCA,即∠BCD=∠ACE.在△ACE和△BCD中,AC=BC,∠ACE=∠BCD,CE=CD,所以△ACE≌△BCD.所以∠EAC=∠B=60°.所以∠EAC=∠ACB.所以AE∥BC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章轴对称
、选择题
F 列图案是几种名车的标志,在这几个图案中不是轴对称图形的是
A : (- 1 , - 2)
B : (- 1 , 2)
C : (1,- 2) D
F 列图形中对称轴最多的是 ()
F 列说法正确的是
若等腰三角形的周长为 26cm 一边为11cm,则腰长为(
A : 1个
B : 2个
C : 3个
D : 4个
二、填空题
11、在数字0、2、4、6、8中是轴对称图形的是
点M ( 1,2)关于x 轴对称的点的坐标为(
A :
A :等腰三角形
B :正方形 C
:线段
已知直角三角形中 30 °角所对的直角边为
cm,则斜边的长为( A : 2 cm
B :4 cm
C : 6 cm
D : 8 cm
A :等腰三角形的高、中线、角平分线互相重合
B :顶角相等的两个等腰三角形全等
C:等腰三角形的两个底角相等
D :等腰三角形一边不可以是另一边的二倍
8、 A : 11cm B : 7.5cm C : 11cm 或 7.5cm
如图:DE 是 ABC 中AC 边的垂直平分线,若 则 EBC 的周长为(
)厘米 A : 16
:18 C
如图:/ EAF=15 ,
AB=BC=CD=DE=EF W/ A : 90°
75
若等腰三角形腰上的高是腰长的一半
A : 75° 或 15 °
B : 75°
10、如图所示,|是四边形ABCD 勺对称轴,AD// BC,现给出下列结论:
①AB// CD ②AB=BC ③AB 丄BC;④AO=OC 其中正确的结论有(
以上都不对
D
BC=8厘米,
:26
D :28
A
o
60
A
,则这个等腰三角形的底角是 30
C
)
)
B
D : 75° 和 :70° D
C : 15°
O
D
12、等腰三角形一个底角是30°,则它的顶角是_____________ 度;
13、等腰三角形的一边长是6,另一边长是3,则周长为 ______________________
14、等腰三角形的一内角等于50。
,则其它两个内角各为
15、
16、
17、如图:在Rt △ ABC中,/ C=90°,Z A=30°, AB+ BC=12c m,
贝y AB= _______ cm;
如图:从镜子中看到一钟表的时针和分针,此时的实际时刻是_________ ; 如图:点P为/ AOB内一点,分别作出P点关于OA OB的对称点P, P2, 连接P1P2交OA于M 交OB于N, P1P2=15,则△ PMN勺周长为
点E ( a, —5)与点F (—2,b )关于y轴对称,则a= _______
19、等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为
20、如图:是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC
垂直于横梁AC,AB=8m,Z A=30° ,贝U DE等于______________ ;
三、解答题
21、如图:A、B是两个蓄水池,都在河流a的同侧,
为了方便灌溉作物,?要在河边建一个抽水站,将河水送
到A、B两地,问该站建在河边什么地方,?可使所修的渠
道最短,试在图中确定该点(保留作图痕迹)
A
24、若3a 2 |b 3 0,求P( —a,b)关于y轴的对轴点P'的坐标。
25、如图:在厶ABC中,/ B=90°, AB=BD AD=CD 求/ CAD的度数。
26、如图所示,在等边三角形ABC中,/ B/ C的平分线交于点O, OB和OC的垂直平
分线交BC于E、F,试用你所学的知识说明BE=EF=FC的道理。
27、如图:△ ABC^D^ ADE是等边三角形,AD是BC边上的中线。
求证:BE=BD
C
D点在AB边上,DE交BC于点F, DF=EF BD=CE 28、如图:E在厶ABC的AC边的延长线上,
求证:△ ABC是等腰三角形。