人教版高中数学全套教案导学案241平面向量的数量积的物理背景及其含义教学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 4.1平面向量的数量积的物理背景及其含义
一、教材分析
本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律. 二.教学目标
1.了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;
2.体会平面向量的数量积与向量投影的关系,理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算;
3.体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、教学重点难点
重点: 1、平面向量数量积的含义与物理意义,2、性质与运算律及其应用。
难点:平面向量数量积的概念
四、学情分析
我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。有些学生对于基本概念不清楚,所以讲解时需要详细
五、教学方法
1.实验法:多媒体、实物投影仪。
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习学案。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
创设问题情景,引出新课
1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?期望学生回答:向量的加法、减法及数乘运算。
2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向3.量数量积的物理背景及其含义(三)合作探究,精讲点拨探究一:数量积的概念:1、给出有关材料并提出问题3
F
S,(1)如图所示,一物体在力F的作用下产生位移α那么力F所做的功:W= |F| |S| cos。(2)这个公式的有什么特点?请完成下列填空:αS
量,①W(功)是量,F②(力)是
(位移)是③S 量,。④α是?
)你能用文字语言表述“功的计算公式”吗(3 期望学生回答:功是力与位移的大小及其夹角余弦的乘积 2、明晰数量积的定义数量积的定义:(1)??aabb b叫做,我们把数量cos已知两个非零向量︱︱与,它们的夹角为︱·︱?aaaabbbb,即:︱·︱·cos=与的数量积(或内积),记作:︱·︱)定义说明:(2ab?”代替。①记法“”不可以省略,也不可以用“·”中间的“·②“规定”:零向量与任何向量的数量积为零。:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小)提出问题4(3 的因素有哪些?期望学生回答:线性运算的结果是向量,而数量积的结果则是数,这个数值的大小不
ab仅和向量的模有关,还和它们的夹角有关。与)学生讨论,并完成下表:(4????°的范围°≤0°°≤0° <90< =90180 ab·的符
aaaabbbb的夹角⊥,③与1 例:已知||=3,||=6,当①∥,②ab.·60°时,分别求是
aabb同向,则它们的夹角θ解:①当与∥=0°,时,若aabb|·|18|∴cos0°=3×6×1=·;=|abθ=180°,与反向,则它们的夹角若aabb|||cos180°=3×6×(·-1)=-=|18∴;ab⊥时,它们的夹角θ②当=90°,ab∴·=0;ab与③当60°时,有的夹角是1aabb9 =||·|cos60°=3×6×=|2,因此,两个向量的数量积与它们的夹角有关,其范围是[0°,180°]评述:
ab.
180°两种可能∥时,有当0°或aaabbbb ttt的、,求使与|+变式:值,并求此时对于两个非零向量+|最小时的夹角。
探究二:研究数量积的意义 1.给出向量投影的概念:
??ab如图,我们把│cos│cos)(││aabb在方向上)的投影,叫做向量方向上(在?b 记做:│︱=OB︱│cos12.提出问题:数量积的几何意义是什么?5aaaabb的方向上的投影期望学生回答:数量积在·等于的长度︱︱与?b。的乘积 cos︱︱.
3. 研究数量积的物理意义。请同学们用一句话来概括功的数学本质:功是力与位移的数量积
探究三:探究数量积的运算性质:1、提出问题6aabb·︱×︱︱的大小,你有什么结论?比较︱︱与︱、明晰:数量积的性质2
都是非零向量,
反向时同向时,︱︱;、与
或特别地︱︱= ︱
aabb︱︱×︱︱≤︱·、︱ 3
3.数量积的运算律:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适(、提出问题1)7
用?预测:学生可能会提出以下猜想:aabb = ··①caacbb) (=·(②·)ccacabb··) =+·+ ③()2 (、分析猜想:猜想①的正确性是显而易见的。猜测②的左右两边的结果各是什么?它们一关于猜想②的正确性,请同学们先来讨论:定相等吗?ac共线的向量,显然在期望学生回答:左边是与向量共线的向量,而右边则是与向量ac不共线的情况下猜测②是不正确的。与向量向量、明晰:数量积的运算律:)3(
cab已知向量、、和实数λ,则: = aaaaabbbbb=λ((·)=λ·)(2)
aabb°,求的夹角为=4, 、(师生共同完成)已知︱=6︱60,︱与︱例2aabb)-3)(·+2(,并思考此运算过程类似于实数哪种运算?aaaaaabbbbbb.+2.-3-6.. -3)((+2=)·解:4 4×4×6×0.5-6× =36-3×
= -72
评述:可以和实数做类比记忆数量积的运算律
aaabbb222 )=(·++21变式:()+aaabbb2
2)()=(+- )·
2—(