经典案例,假设检验
t检验经典案例集
![t检验经典案例集](https://img.taocdn.com/s3/m/cf3a48c45fbfc77da269b1dd.png)
1.某地随机抽样调查了部分健康成人的红细胞数和血红蛋白量,结果如下表:某年某地健康成年人的红细胞数和血红蛋白含量指标性别例数均数标准差标准值*红细胞数男360 4.66 0.58 4.84(1012/L)女255 4.18 0.29 4.33血红蛋白男360 134.5 7.1 140.2(g/L)女255 117.6 10.2 124.7*实用内科学(1976年)所载均数(转为法定单位)请就上表资料:(1)说明女性的红细胞数与血红蛋白的变异程度何者为大?(2)计算男性两项指标的抽样误差。
(3)试估计该地健康成年女性红细胞数的均数。
(4)该地健康成年男、女血红蛋白含量是否不同?(5)该地男性两项血液指标是否均低于上表的标准值(若测定方法相同)?2.一药厂为了解其生产的某药物(同一批次)之有效成份含量是否符合国家规定的标准,随机抽取了该药10片,得其样本均数为103.0mg,标准差为2.22mg。
试估计该批药剂有效成份的平均含量。
3.通过以往大量资料得知某地20岁男子平均身高为1.68米,今随机测量当地16名20岁男子,得其平均身高为1.72米,标准差为0.14米。
问当地现在20岁男子是否比以往高?4.为了解某一新降血压药物的效果,将28名高血压病患者随机分为试验组和对照组,试验组采用新降压药,对照组则用标准药物治疗,测得治疗前后的舒张压(mmHg)如下表。
问:(1)新药是否有效?(2)要比较新药和标准药的疗效是否不同,请用下述两种不同方式分别进行检验:I仅考虑治疗后的舒张压;II考虑治疗前后舒张压之差。
您认为两种方法各有何优缺点?何种方法更好?两种药物治疗前后的舒张压(mmHg)药治疗前102 100 92 98 118 100 102 116 109 116 92 108 102 100 治疗后90 90 85 90 114 95 86 84 98 103 88 100 88 86标准药病人号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 治疗前98 103 110 110 110 94 104 92 108 110 112 92 104 90 治疗后100 94 100 105 110 96 94 100 104 109 100 95 100 855.某医师观察某新药治疗肺炎的疗效,将肺炎病人随机分为新药组和旧药组,得两组的退热天数如下表。
假设检验法律效力的案例(3篇)
![假设检验法律效力的案例(3篇)](https://img.taocdn.com/s3/m/df5fe0e4d5d8d15abe23482fb4daa58da0111c90.png)
第1篇一、案例背景随着我国城市化进程的加快,土地征收成为地方政府推动城市发展的重要手段。
然而,在这个过程中,也出现了一些违法征收土地的行为,损害了农民的合法权益。
本案即是一起因违法征收土地引发的行政诉讼案件。
二、案情简介原告李某,男,汉族,某市某镇某村村民。
被告某县政府为推动该市某区域的经济发展,决定在该区域进行土地征收。
根据征收计划,李某所在村的土地将被全部征收。
李某认为,该土地征收行为违反了《中华人民共和国土地管理法》等相关法律法规,损害了自己的合法权益,遂向某市中级人民法院提起诉讼。
三、争议焦点本案的争议焦点主要集中在以下几个方面:1. 被告某县政府是否依法进行土地征收;2. 被告某县政府是否违反了《中华人民共和国土地管理法》等相关法律法规;3. 原告李某的合法权益是否受到损害。
四、法庭调查1. 被告某县政府提交了以下证据:(1)某市政府关于该区域土地征收的批复文件;(2)某县政府关于该区域土地征收的实施方案;(3)某县政府与原告李某签订的征收补偿协议。
2. 原告李某提交了以下证据:(1)某市国土资源局出具的《土地征收许可证》;(2)原告李某与某县政府签订的《征地补偿安置协议》;(3)原告李某的身份证、户口簿等证明其身份的材料。
五、法庭辩论1. 被告某县政府辩称:(1)某市政府的批复文件是合法有效的,某县政府依法进行土地征收;(2)某县政府在征收过程中,已经按照法律法规的规定,与原告李某签订了征收补偿协议,补偿标准合理;(3)原告李某的合法权益未受到损害。
2. 原告李某辩称:(1)某市政府的批复文件违反了《中华人民共和国土地管理法》等相关法律法规,不应予以认可;(2)某县政府在征收过程中,未依法进行公告、听证等程序,违反了程序正义;(3)某县政府与原告李某签订的征收补偿协议内容不合法,补偿标准过低。
六、法庭判决1. 法院经审理认为:(1)某市政府的批复文件违反了《中华人民共和国土地管理法》等相关法律法规,不应予以认可;(2)某县政府在征收过程中,未依法进行公告、听证等程序,违反了程序正义;(3)某县政府与原告李某签订的征收补偿协议内容不合法,补偿标准过低。
假设检验案例
![假设检验案例](https://img.taocdn.com/s3/m/61cc46fa5ff7ba0d4a7302768e9951e79b896925.png)
案例在单个总体参数的检验中,用到的检验统计量主要有3个:Z统计量、t统计量和x2统计量。
Z统计量、t统计量常用于均值的检验。
x2统计量常用于方差的检验。
例1某地区20户家庭年收入数据为例进行均值的检验,20户家庭的年收入的原始数据见excel(第八章案例)。
(1)提出原假设和备择假设H 0:μ=15(2)计算样本个数count 。
单元格D2=“COUNT(A2:A21)”(3)计算样本均值average 。
单元格D3=“AVERAGE(A2:A21)”D4单元格输入公式“=(D3-15)/SQRT(16)/SQRT(D2)”,相当于z 值的计算公式nx /_σµ−Z<-1.96或Z>1.96rs,P值来判断是否接受原假设P=2*(1-D5)总体方差未知的情况下,对均值进行检验计算样本方差。
在D4单元格中输入函数“=VAR(A2:A21)例2一家百货公司的管理者打算为公司的信用卡客户安装一套新的账单系统。
在进行了全面的财务分析后,她发现只有当平均每人每月的账单上的消费超过170元时,安装这个新系统才可以收回成本。
抽取了400个人的每月账单构成随机样本,它们的平均数是178元。
这个管理者知道账单大致服从标准差为65元的正态分布。
H0:μ≤170(不安装新系统)H1:μ>170(安装新系统)α1 1 --αμ=170 拒绝域α1 1 --α的值:=175.62L x −μ=170 拒绝域α1 1 --αμ=0 拒绝域α1 1 --α因为2.46>1.645,所以拒绝原假设,我们有足够的证据可推断每月账单均值大于170元。
近年来,很多公司在长途电话业务上和A公司竞争。
这些公司在广告上的费率明显低于A公司,从而有人认为客户账单上的花费也要少。
然后他抽取了100个客户的随机样本,用竞争对手在广告中所引用的费率重新计算了这些客户的话费账单。
假定总体的标准差和A公司的一样,在5%的置信水平下,我们能否认为A公司与其他竞争者的账单有区别。
假设检验在质量管理中的应用.
![假设检验在质量管理中的应用.](https://img.taocdn.com/s3/m/0e26c23caaea998fcd220e1d.png)
假设检验在质量管理中的应用摘要:随着市场的不断完善,假设检验理论在质量管理中的重要性与日俱增,作为一种由样本信息推断总体特征的数理统计方法,在生产的各个方面都得到了广泛的应用。
本文从实际出发,对国内外研究现状进行了简要的综述,阐述了假设检验理论的基本原理,具体的实施步骤,以及在应用中需要注意的问题,同时将假设检验应用到实际的产品质量控制当中,对相关产品的质量做出合理的结论,为管理者进行改进产品质量的决策提供一定的依据。
关键词:假设检验应用质量管理Hypothesis Testing in the Application ofQuality ManagementAbstract: With the developing of the market,hypothesis testing plays an more important role in quality management.As a mathematical statistical method to make statistical inference in total population from the sample information,it is widely used in many aspects of product.This article summarizes the status of the foreign and domestic explorations.It also introduces the hypothesis testing theory,its steps ,the problems that we should pay attention to and apply it into real product quality control.It can make some conclusion of correlative product.It also can provide basis for the manager to make decision on improving product quality.Key Words: hypothesis testing application quality management在现实的生产生活中,为了取得更好的经济和社会效益,企业单位会在产品生产的各个阶段进行控制,以便达到生产预期效果,达到计划目标。
经典案例,假设检验
![经典案例,假设检验](https://img.taocdn.com/s3/m/e57cf26f7ed5360cba1aa8114431b90d6c8589ad.png)
经典案例,假设检验从经典案例理统计学中的假设检验生活中存在大量的非统计应用的假设检验,一个众所周知的例子就是对罪犯的审讯。
当一个人被控告为罪犯时,他将面临审讯。
控告方提出控诉后,陪审团必须根据证据做出决策。
事实上,陪审团就进行了假设检验。
这里有两个要被证明的假设。
第一个称为原假设,用H0表示(发音为H-nought, nought是零的英国表示方法)。
它表示H0:被告无罪第二个假设称为备择假设,用H1表示。
在罪犯审讯中,它表示H1:被告有罪当然,陪审团不知道哪个假设是正确的,他们根据控辩双方所提供的证据做出判断。
这里只有两种可能:判定被告有罪或无罪释放。
在统计应用中,判定被告有罪就相当于拒绝原假设;而判定被告无罪也就相当于不能拒绝原假设。
应当注意,我们并不能接受原假设。
在罪犯审判中,接受原假设意味着发现被告无罪。
在我们司法系统中,并不允许这样的判定。
当我们进行假设检验时,存在两种可能的错误。
第一类错误是当原假设正确时,我们却拒绝了它。
第二类错误被定义为当原假设有错误时,我们却并没有拒绝。
在上面的例子中,第一类错误就是一个无罪的人被判定有罪。
当一个有罪的被告被判定无罪时,第二类错误就发生了。
我们把发生第一类错误的概率记为a,通常它也被称作显著性水平。
第二类错误发生的概率记为b。
发生错误的概率a 和b是相反的关系,这就意味着任何尝试减少某一类错误的方法都会使另外一类错误发生的概率增加。
在司法系统中,第一类错误被认为是更加严重的。
这样,我们的司法系统的构建就要求第一类错误发生的概率要很小。
要达到这样的结果,往往会对起诉证据进行限制(原告必须证明罪犯有罪,而被告则不需要证明什么),同时要求陪审团只有具有“远非想象的证据”时才能判定被告有罪。
在缺少大量证据的情况下,尽管有一些犯罪证据,陪审团也必须判定其无罪。
这样的安排必然使有罪的人被判无罪的概率比较大。
美国最高法院法官奥利弗·温德尔·霍姆斯(Oliver Wendell Holmes)曾经用下面一段话描述了第一类错误发生的概率与第二类错误发生概率之间的关系。
结构方程模型原理以及经典案例研究
![结构方程模型原理以及经典案例研究](https://img.taocdn.com/s3/m/f58d78247f21af45b307e87101f69e314232fa47.png)
结构方程模型原理以及经典案例研究结构方程模型(Structural Equation Modeling, SEM)是一种统计分析方法,主要用于建立和检验复杂的因果关系模型。
该模型可以同时考虑多个观测变量和潜在变量之间的关系,从而更准确地评估变量之间的关联性和因果性。
SEM的基本原理是基于路径分析和因子分析的组合。
路径分析可以用来建立变量之间的因果关系模型,并通过评估路径系数来分析变量之间的直接和间接影响。
因子分析用于构建潜在变量,并通过潜在变量与观测变量之间的关系来解释观测变量的变异。
经典的SEM案例研究可以帮助我们更好地理解SEM的应用和优势。
以下是一个经典的SEM案例研究:假设研究者想要探究家庭背景对学生学业成绩的影响。
研究者收集了500名学生的数据,包括学业成绩、家庭背景因素(例如家庭收入、父母教育水平)、自我效能感和学习动机等变量。
首先,研究者使用因子分析方法构建潜在变量模型。
他们将家庭收入、父母教育水平等观测变量组合起来,构建了一个“家庭背景”潜在变量,用以测量学生的家庭背景因素。
同样地,他们根据相关的观测变量构建了“自我效能感”和“学习动机”两个潜在变量。
接下来,研究者使用路径分析方法建立因果关系模型。
他们假设家庭背景对学生学业成绩有直接和间接的影响。
间接影响通过自我效能感和学习动机来实现。
路径分析模型将家庭背景作为独立变量,学业成绩作为因变量,自我效能感和学习动机作为中介变量。
研究者在模型中还考虑了其他潜在变量(例如学习时间、学校环境),以控制其他可能的影响因素。
最后,研究者使用SEM方法对模型进行参数估计和假设检验。
他们通过评估路径系数来确定各个变量之间的直接和间接关系。
如果路径系数显著不为零,则可以断定两个变量之间存在关系。
通过SEM方法,研究者可以对研究模型进行全面的分析,包括直接和间接关系、回归系数、误差方差等。
通过以上案例,我们可以看到SEM的优势在于可以同时处理多个因素的复杂关系。
数学中的假设检验
![数学中的假设检验](https://img.taocdn.com/s3/m/0c66c76f657d27284b73f242336c1eb91b373362.png)
数学中的假设检验假设检验是统计学中一种重要的方法,用于对统计样本数据进行推断与判断。
它可以帮助我们判断某个假设是否成立,从而为决策提供依据。
本文将通过介绍假设检验的基本概念、步骤和应用案例,深入探讨数学中的假设检验方法。
一、假设检验的基本概念假设检验是根据样本数据对总体进行统计推断的方法。
它基于两个互为对立的假设:原假设(H0)和备择假设(H1)。
原假设通常是我们认为成立的假设,而备择假设则是我们希望验证的假设。
在进行假设检验时,我们首先假设原假设成立,然后利用统计方法计算出样本数据的观察值,根据观察值与预期值之间的偏差,判断原假设的合理性。
如果观察值与预期值之间的差异显著大于正常情况下的偏差范围,我们就可以拒绝原假设,接受备择假设。
二、假设检验的步骤假设检验包括以下几个基本步骤:1. 确定假设:根据问题的背景和研究目的,明确原假设和备择假设。
2. 选择显著性水平:显著性水平(α)是假设检验中一个重要的参数,用于确定拒绝原假设的标准。
一般情况下,α取0.05或0.01。
3. 计算统计量:根据样本数据,选择合适的统计量进行计算。
常用的统计量有t值、F值和卡方值等。
4. 判断拒绝域:根据显著性水平和统计量的分布特性,确定拒绝原假设的临界值。
5. 比较统计量和临界值:将计算得到的统计量与拒绝域的临界值进行比较,判断是否拒绝原假设。
6. 得出结论:根据比较结果,给出对原假设的结论,并解释其统计意义和实际意义。
三、假设检验的应用案例1. 以某医院为例,研究员想要验证该医院使用的一种新型药物是否比常规药物更有效。
设定原假设为“新型药物不比常规药物更有效”,备择假设为“新型药物比常规药物更有效”。
收集一组患者的数据,比较两组患者接受新型药物和常规药物后的治疗效果,通过假设检验确定是否接受备择假设。
2. 在金融领域,分析师经常使用假设检验来验证股票市场的有效性。
他们可以将原假设设定为“股票市场不存在明显的投资机会”,备择假设设定为“股票市场存在明显的投资机会”。
假设检验的案例与应用
![假设检验的案例与应用](https://img.taocdn.com/s3/m/40e7625e001ca300a6c30c22590102020640f25a.png)
假设检验的案例与应用
案例1:一家电商网站新上线了一个广告推广功能,想要测试该功能是否能够有效提升用户成交率。
他们将5000个随机选取的用户分成两组,其中一组只看到常规的广告,另外一组则看到常规广告和新推出的广告。
在一个月的时间内,两组用户的成交率分别为5.7%和6.2%。
经过计算和分析,得到的假设检验结果为t值为2.56,p值为0.011,意味着该网站可以拒绝0.05的显著性水平,即可以认为新广告推广功能确实可以有效提升用户成交率。
应用:电商网站可以通过假设检验来验证其新产品或功能是否有助于提升或改善客户的体验。
案例2:一位医生想要测试药物对于一种病毒的治疗效果,他们将100名患者随机分成两组,其中一组接受药物治疗,另外一组则接受安慰剂治疗。
在4周后,两组患者的病情好转率分别为65%和40%。
经过计算和分析,得到的假设检验结果为t值为3.12,p值为0.002,说明该医生可以拒绝0.05的显著性水平,即认为药物确实具有能够提高患者病情好转率的治疗效果。
应用:医生和药物制造商可以通过假设检验来验证药物是否有效,以及在何种程度上有效治疗疾病。
案例3:一家公司想要测试早上和下午两个时间段对于员工工作效率的影响。
他们选择了同一组员工,在早上和下午分别工作了8小时,工作时长和任务的性质
是相同的。
经过计算和分析,得到的假设检验结果为t值为1.27,p值为0.21,无法拒绝0.05的显著性水平,说明该公司无法判断早上和下午对员工工作效率的影响是否显著不同。
应用:公司可以通过假设检验来验证员工是否对特定因素有敏感性,以得出更好的工作时间和任务分配方案。
假设检验例题 (5)
![假设检验例题 (5)](https://img.taocdn.com/s3/m/a3ee0df01b37f111f18583d049649b6648d7099a.png)
假设检验例题引言假设检验是统计学中常用的一种推断方法,用于判断一个统计推断的结论是否可靠。
通常,假设检验的过程包括假设的设定、对样本数据的收集和分析、推断的结论以及结果的解释。
本文将通过一个具体的例子,详细介绍假设检验的步骤和方法。
例题背景假设某家电公司声称他们生产的电视机平均使用寿命超过5年。
我们对该公司的50台电视进行了检测,并记录下每台电视使用的寿命。
现在我们的任务是根据样本数据,判断该公司声称的平均使用寿命是否可信。
假设的设定在进行假设检验之前,我们需要先设定原假设(H0)和备择假设(H1)。
原假设通常是我们需要验证的观点,备择假设则是对原假设的否定。
对于本例,我们的原假设是:该家电公司生产的电视机平均使用寿命超过5年。
备择假设是:该家电公司生产的电视机平均使用寿命不超过5年。
数据收集与分析现在我们已经有了50台电视机的使用寿命数据,下面是样本数据的统计信息:•样本均值(x̄): 5.2年•样本标准差(s): 0.8年接下来,我们需要选择一个适当的假设检验方法。
根据样本数量和总体标准差是否已知,我们可以选择使用t检验或者z检验。
由于总体标准差未知,我们将选择使用t检验。
在进行t检验前,我们还需要设定显著性水平(α),它表示我们能够接受原假设的风险。
常用的显著性水平有0.05和0.01。
在本例中,我们选择α为0.05,意味着我们能够接受5%的错误率。
推断的结论现在我们可以进行假设检验了。
根据样本数据和设定的假设,我们可以计算出t值。
根据t值和t分布的临界值,我们可以判断是否拒绝原假设。
首先,我们计算出t值的公式如下:t值公式t值公式其中,x̄表示样本均值,μ表示总体均值,s表示样本标准差,n表示样本数量。
我们将通过计算得到的t值与t分布的临界值进行比较。
根据t检验的临界值表,当自由度为49(即n-1=50-1)时,对应的双侧检验的临界值约为2.01。
假设计算得到的t值为3.0,显著性水平为0.05。
假设检验案例范文
![假设检验案例范文](https://img.taocdn.com/s3/m/418d0bdd50e79b89680203d8ce2f0066f433646e.png)
假设检验案例范文假设检验是统计分析中最常用的方法之一,用于判断统计样本与其中一种已知条件是否相符。
在假设检验中,我们通常会提出一个假设(称为原假设)和另外一个相反的假设(称为备择假设),然后利用样本数据来判断两个假设的成立情况。
下面我们以一个实例来进行假设检验的分析。
假设我们想要研究医院住院患者的平均住院天数。
我们假设该医院的平均住院天数为7天,并使用样本数据对这个假设进行检验。
我们从该医院中随机抽取了100个患者,并记录了他们的住院天数。
假设这100个患者的住院天数的均值为8天,标准差为2天。
首先,我们需要明确原假设和备择假设。
在这个例子中,原假设可以表示为“该医院的平均住院天数为7天”,备择假设可以表示为“该医院的平均住院天数不等于7天”。
接下来,我们需要选择适当的统计检验方法。
由于我们关注的是一个总体均值,并且样本的大小大于30,所以我们可以使用z检验。
z检验的计算公式如下:z=(x-μ)/(σ/√n)其中,x是样本均值,μ是假设的总体均值,σ是总体标准差,n是样本大小。
根据我们的例子,代入具体数值进行计算。
x=8,μ=7,σ=2,n=100z=(8-7)/(2/√100)=5得到z的值为5接下来,我们需要根据选择的显著性水平来确定拒绝域。
显著性水平是一个预先设定的阈值,用于判断原假设是否应该被拒绝。
通常使用的显著性水平有0.05和0.01、在这个例子中,我们选择显著性水平为0.05根据显著性水平,我们可以查找标准正态分布表,找到对应的临界值。
在这个例子中,显著性水平为0.05,双侧测试,所以我们需要查找临界值的两侧各0.025的z值。
查表可知,对应的两个临界值分别为-1.96和1.96最后,我们将计算得到的z值与临界值进行对比。
如果z值在临界值范围内,那么我们接受原假设;如果z值超出了临界值范围,那么我们拒绝原假设。
在这个例子中,计算得到的z值为5,远远超过了临界值范围。
因此,我们可以拒绝原假设,即认为该医院的平均住院天数不等于7天。
t检验 经典案例
![t检验 经典案例](https://img.taocdn.com/s3/m/3e9c9e09f011f18583d049649b6648d7c1c70832.png)
t检验经典案例经典案例:t检验1. 研究背景t检验是统计学中常用的假设检验方法之一,用于比较两个样本均值是否有显著差异。
下面将介绍一些经典案例,以帮助读者更好地理解t检验的应用。
2. 独立样本t检验案例案例1:某医院想比较两种降压药物的疗效,随机选取了两组高血压患者,一组服用药物A,另一组服用药物B,通过测量患者的收缩压,使用独立样本t检验来判断两种药物的疗效是否有显著差异。
案例2:某公司想评估两种不同培训方法对员工销售业绩的影响,随机选取了两组员工,一组接受传统培训,另一组接受新的培训方法,通过比较两组员工的销售额,使用独立样本t检验来判断两种培训方法是否有显著差异。
3. 配对样本t检验案例案例3:某学校想研究一种新的学习方法对学生的成绩是否有帮助,随机选取了一组学生,在某次考试前和考试后分别进行测试,使用配对样本t检验来比较学生在考试前后的成绩是否有显著差异。
案例4:某厂商想评估一种新的生产工艺对产品质量的影响,随机选取了一批产品,在使用新工艺前和使用新工艺后进行质量检测,使用配对样本t检验来判断产品在两种工艺下的质量是否有显著差异。
4. 单样本t检验案例案例5:某公司想评估员工的满意度水平,随机选取了一组员工,使用单样本t检验来判断员工的满意度是否显著高于平均水平。
案例6:某城市想研究居民的平均月收入水平,随机选取了一批居民,使用单样本t检验来判断居民的平均月收入是否显著高于全国平均水平。
5. 非参数t检验案例案例7:某医院想比较两组癌症患者的存活率,由于数据不符合正态分布,使用非参数t检验(如Wilcoxon秩和检验)来判断两组患者的存活率是否有显著差异。
案例8:某公司想比较两种广告宣传方式对销售额的影响,由于数据不符合正态分布,使用非参数t检验(如Mann-Whitney U检验)来判断两种宣传方式是否有显著差异。
6. 多样本t检验案例案例9:某学校想评估不同年级学生的平均成绩是否有显著差异,随机选取了三个年级的学生,使用多样本t检验(如单因素方差分析)来判断不同年级学生的平均成绩是否有显著差异。
假设检验的应用实例
![假设检验的应用实例](https://img.taocdn.com/s3/m/42982b58eef9aef8941ea76e58fafab068dc445c.png)
假设检验的应用实例
嘿,你知道不?假设检验这玩意儿,在咱生活里那可老有用啦!就说前段时间我去菜市场买菜的事儿吧。
那天我寻思着买点儿苹果,走到一个水果摊前,看着那红彤彤的苹果,可诱人了。
我就心里犯起了嘀咕:这苹果甜不甜呢?这时候,假设检验就派上用场啦。
我先假设这苹果是甜的,然后开始找证据。
我拿起一个苹果,看看颜色,红彤彤的,嗯,一般来说颜色红的苹果可能会比较甜。
接着我又捏了捏,有点硬,感觉应该水分挺足。
这时候我就有点倾向于我的假设是正确的了。
但光看外表可不行啊,我得再找点别的证据。
我就跟老板说:“老板,能尝尝不?”老板很大方地说:“行,尝尝。
” 我咬了一口,哇,那甜味一下子在嘴里散开了。
这下子证据确凿了,我的假设成立,这苹果是甜的。
于是我就高高兴兴地买了几斤。
在生活中,咱经常会遇到这样那样的情况,都可以用假设检验的方法来判断。
比如说你去一家新的餐厅吃饭,你可以先假设这家餐厅的菜好吃,然后看看餐厅的环境干不干净呀,人多不多呀。
如果环境不错,人也挺多,那你就会觉得你的假设可能是对的。
等菜上来尝一尝,要是味道真不错,那假设就完全成立啦。
假设检验其实就是这么个道理,先有个想法,然后去找证据来验证这个想法对不对。
它可不是啥高深莫测的东西,咱平时生活里都能用得上。
下次你遇到啥事儿拿不准的时候,也可以试试假设检验的方
法,说不定会有惊喜哦!。
假设检验例题讲解
![假设检验例题讲解](https://img.taocdn.com/s3/m/811837b2bb0d4a7302768e9951e79b896902686d.png)
假设检验例题讲解引言假设检验是统计学中一种重要的推断方法,用于根据样本数据对总体参数进行推断。
在实际应用中,我们经常需要对某个总体参数是否满足某个假设进行检验,以此来判断某种情况的发生是否是偶然的还是具有统计学意义的。
在本文中,我们将通过一个具体的例子来详细讲解假设检验的步骤和方法。
例题描述某公司通过市场调研,推出了一种新的产品,并声称该产品的平均寿命超过了现有市场上的同类产品。
为了验证这一声称,该公司随机选取了30台该产品进行了测试,并记录了它们的寿命(以小时为单位)。
假设该产品的寿命服从正态分布,现在我们想要对该声称进行检验。
步骤1:建立假设在进行假设检验之前,首先需要明确我们的原假设和备择假设。
原假设(H0):该产品的平均寿命不超过现有市场上同类产品的平均寿命,即μ ≤ μ0(μ0为现有产品的平均寿命)。
备择假设(H1):该产品的平均寿命超过现有市场上同类产品的平均寿命,即μ> μ0。
在本例中,我们要采用单侧检验,因为我们关心的是新产品平均寿命是否超过现有产品的平均寿命。
步骤2:选择显著性水平显著性水平(α)是在进行假设检验时事先设定的一个值,它规定了我们对收集到的样本数据作出判断的临界点。
常用的显著性水平有0.05和0.01两种。
在本例中,我们选择α = 0.05作为显著性水平。
步骤3:计算样本统计量根据收集到的样本数据,我们需要计算出一个样本统计量,用来对总体参数进行估计。
在本例中,我们要计算平均寿命的样本均值和样本标准差。
假设样本的平均寿命为x̄,样本标准差为s。
步骤4:计算检验统计量在假设检验中,我们需要计算一个检验统计量来判断样本数据和原假设是否一致。
在本例中,我们要计算t检验统计量,其公式为: t统计量其中,x̄为样本均值,μ0为原假设的参数值,s为样本标准差,n为样本容量。
步骤5:计算P值在假设检验中,P值是一个重要的指标,用于评估样本数据在原假设为真时出现的概率。
在本例中,我们要计算P值,即检验统计量大于等于观察到的t检验统计量的概率。
假设检验案例集
![假设检验案例集](https://img.taocdn.com/s3/m/ec3c0853842458fb770bf78a6529647d26283457.png)
案例一:假设检验设备判断中的应用1例如:某公司想从国外引进一种自动加工装置..这种装置的工作温度X服从正态分布μ;52;厂方说它的平均工作温度是80度..从该装置试运转中随机测试16次;得到的平均工作温度是83度..该公司考虑;样本结果与厂方所说的是否有显著差异厂方的说法是否可以接受类似这种根据样本观测值来判断一个有关总体的假设是否成立的问题;就是假设检验的问题..我们把任一关于单体分布的假设;统称为统计假设;简称假设..上例中;可以提出两个假设:一个称为原假设或零假设;记为H0:μ=80度;另一个称为备择假设或对立假设;记为H1 :μ≠80度这样;上述假设检验问题可以表示为:H0:μ=80H1:μ≠80原假设与备择假设相互对立;两者有且只有一个正确;备择假设的含义是;一旦否定原假设H0;备择假设H1备你选择..所谓假设检验问题就是要判断原假设H0是否正确;决定接受还是拒绝原假设;若拒绝原假设;就接受备择假设..应该如何作出判断呢如果样本测定的结果是100度甚至更高或很低;我们从直观上能感到原假设可疑而否定它;因为原假设是真实时; 在一次试验中出现了与80度相距甚远的小概率事件几乎是不可能的;而现在竟然出现了;当然要拒绝原假设H0..现在的问题是样本平均工作温度为83度;结果虽然与厂方说的80度有差异;但样本具有随机性;80度与83度之间的差异很可能是样本的随机性造成的..在这种情况下;要对原假设作出接受还是拒绝的抉择;就必须根据研究的问题和决策条件;对样本值与原假设的差异进行分析..若有充分理由认为这种差异并非是由偶然的随机因素造成的;也即认为差异是显著的; 才能拒绝原假设;否则就不能拒绝原假设..假设检验实质上是对原假设是否正确进行检验;因此;检验过程中要使原假设得到维护;使之不轻易被否定;否定原假设必须有充分的理由;同时;当原假设被接受时;也只能认为否定它的根据不充分;而不是认为它绝对正确..编辑案例二:假设检验在卷烟质量判断中的应用2在卷烟生产企业经常会遇到如下的问题:卷烟检验标准中要求烟支的某项缺陷的不合格品率P不能超过3%;现从一批产品中随机抽取50支卷烟进行检验;发现有2支不合格品;问此批产品能否放行按照一般的习惯性思维:50支中有2支不合格品;不合格品率就是4%;超过了原来设置的3%的不合格品率;因此不能放行..但如果根据假设检验的理论;在α=0.05的显著性水平下;该批产品应该可以放行..这是为什么呢最关键的是由于我们是在一批产品中进行抽样检验;用抽样样本的质量水平来判别整批的质量水平;这里就有一个抽样风险的问题..举例来说;我们的这批产品共有10000支卷烟;里面有4支不合格品;不合格品率是0.04%;远低于3%的合格放行不合格品率..但我们的检验要求是随机抽样50支;用这50支的质量水平来判别整批 10000支的质量水平..如果在50支中恰好抽到了2支甚至更多的不合格品;简单地用抽到的不合格品数除以50来作为不合格品率来判断;那我们就会对这批质量水平合格的产品进行误判..如何科学地进行判断呢这就要用到假设检验的理论..步骤1:建立假设要检验的假设是不合格品率P是否不超过3%;因此立假设H0:P≤0.03这是原假设;其意是:与检验标准一致..H1:P>0.03步骤2:选择检验统计量;给出拒绝域的形式若把比例P看作n=1的二项分别b1;p中成功的概率;则可在大样本场合一般n≥25获得参数p的近似μ的检验;可得样本统计量:近似服从N0;1其中=2/50=0.04;p=0.03;n=50步骤3:给出显著性水平α;常取α=0.05..步骤4:定出临界值;写出拒绝域W..根据α=0.05及备择假设知道拒绝域W为步骤5:由样本观测值;求得样本统计量;并判断..结论:在α=0.05时;样本观测值未落在拒绝域;所以不能拒绝原假设;应允许这批产品出厂..假设检验中的两类错误..进一步研究一下这个例子;在50个样品中抽到多少个不合格品;就要拒绝入库呢我们仍取α=0.05;根据上述公式;得出;解得x>3.48;也就是在50个样品中抽到4个不合格品才能判整批为不合格..而如果我们改变α的取值;也就是我们定义的小概率的取值;比如说取α=0.01;认为概率不超过0.01的事件发生了就是不合理的了; 那又会怎样呢还是用上面的公式计算;则得出;解得x>4.30;也就是在50个样品中抽到5个不合格品才能判整批为不合格..检验要求是不合格品率 P不能超过3%;而现在根据α=0.01;算出来50个样品中抽到5个不合格品才能判整批为不合格;会不会犯错误啊假设检验是根据样本的情况作的统计推断;是推断就会犯错误;我们的任务是控制犯错误的概率..在假设检验中;错误有两类:第一类错误拒真错误:原假设H0为真批产品质量是合格的;但由于抽样的随机性抽到过多的不合格品;样本落在拒绝域W内;从而导致拒绝H0根据样本的情况把批质量判断为不合格..其发生的概率记为α;也就是显著性水平..α控制的其实是生产方的风险;控制的是生产方所承担的批质量合格而不被接受的风险..第二类错误取伪错误:原假设H0不真批产品质量是不合格的;但由于抽样的随机性抽到过少的不合格品;样本落在W外;从而导致接受H0根据样本的情况把批质量判断为合格..其发生的概率记为β..β控制的其实是使用方的风险;控制的是使用方所承担的接受质量不合格批的风险..再回到刚刚计算的上例的情况;α由0.05变化为0.01;我们对批质量不合格的判断由50 个样本中出现4个不合格变化为5个;批质量是合格的而不被接受的风险就小了;犯第一类错误的风险小了;也就是生产方的风险小了;但同时随着α的减小对批质量不合格的判断条件其实放宽了——50个样本中出现4个不合格变化为5个;批质量是不合格的而被接受的风险大了;犯第二类错误的风险大了;也就是使用方的风险大了.. 在相同样本量下;要使α小;必导致β大;要使β小;必导致α大;要同时兼顾生产方和使用方的风险是不可能的..要使α、β皆小;只有增大样本量;这又增加了质量成本..因此综上所述;假设检验可以告诉我们如何科学地进行质量合格判定;又告诉我们要兼顾生产方和使用方的质量风险;同时考虑质量和成本的问题..。
假设检验案例
![假设检验案例](https://img.taocdn.com/s3/m/ac3d4d02ccbff121dd3683c7.png)
假设检验案例【篇一:假设检验案例】在自己对数据进行分析后只觉得直方图有异常,但缺乏实际运用的经验,没有更深入的再作分析,李老师出于对数据的敏感度和多年实践经验的积累,以及认真、严谨、敬业的态度让人非常敬佩,受益匪浅。
我们有很好的条件,本身就在现场,稍微摸索下,就可以和我们的生产联系起来了。
在实际工作中注意挖掘数据背后的信息,充分利用有效信息指导生产,把所学的工具都用用,逐步积累实践经验,一定可以在实际工作中发挥作用!【篇二:假设检验案例】假设检验案例分析案例6-1 为研究直肠癌患者手术前后血清cea 含量有无差异,作者收集了资料:前(24例):31.5 30.0 28.6 39.7 45.2 20.3 37.3 24.0 36.2 20.5 23.1 29.0 33.1 35.2 28.9 26.4 25.9 23.8 30.4 31.6 27.9 33.0 34.0 32.7 2.03.2 2.3 3.1 1.9 2.2 1.5 1.8 3.2 3.0 2.8 2.1 (1)有人采用了两独立样本的t 检验,结果t =15.92,自由度 =34,p【篇三:假设检验案例】双侧检验单侧检验h0: = 0单侧左尾检验单侧右尾检验h1: 0h0: = 0h1: 0h0: = 0h1: 0接受域1- 接受域1- 接受域1- 拒绝域:两侧 /2拒绝域:两侧拒绝域:两侧目的:观察在给定的显著用于检测样本统计量是否用于检测样本统计量是否假设检验的步骤1 设定原假设和备择假设2 设定显著水平 3 选择检验统计量(f/t/x2/z) ,计算统计量的观测值4 根据统计量和显著水平确定临界点,给出拒绝域5 判断样本统计量所在区域,在拒绝域内拒绝原假设,接受备择假设假设检验按照参数分为总体均值的检验、两总体均值之差的检验、总体比例的检验和总体方差的检验z检验t检验f检验卡方检验独立样本t检用于比较两个不同样本之间的均值是否相等配对样本t检指同一样本在两个不同时候的均值比较,比如比较某种减肥药的效果方差分析用于检验某因素的影响显著程度用于检验正态样本均值是否等于某个假设值,事先知道总体方差,得到的统计量服从正态分布,一般用于大样与z检验相似, t检验不需要知道总体方差,他用样本方差代替总体方差,得到的统计量服从t分布。
假设检验的例子及解析
![假设检验的例子及解析](https://img.taocdn.com/s3/m/5be5fd7cbdd126fff705cc1755270722192e5999.png)
假设检验的例子及解析以下是 9 条关于假设检验的例子及解析:1. 咱就说,你觉得每天喝一杯牛奶能长高,这是不是一个假设呀,就像你觉得学习一门新语言能让你更聪明一样。
那咱们怎么检验呢?那就得观察长期喝牛奶的人是不是真的普遍比不喝的高呀!要是真这样,那这假设可能就有点靠谱呢!2. 比如说你假设经常锻炼的人身体更好,这可不是凭空说的吧!就好像你说经常笑的人运气不会差一样。
那怎么知道对不对呢?那就去看看那些健身达人,他们是不是真的很少生病,身体倍儿棒!3. 你说多吃水果皮肤会变好,这咋检验呀?好比你说早睡早起精神好一样。
那就找一群人,一部分多吃水果,一部分不多吃,过段时间看看他们皮肤状态的差别不就行了嘛!4. 假设下雨天心情会不好,哎呀,这可真太常见了!就像你说考试前会紧张一样。
那咱们去问问周围的人,下雨天的时候是不是大多都有点小情绪低落呀!5. 要是说努力工作就会升职加薪,这是真理吗?这就如同说长得帅就一定有女朋友一样。
那得看看那些努力了很久的同事,是不是真的得到了相应的回报呀!6. 有人假设听音乐能提高工作效率,哇,这有点意思哦!好比说吃巧克力能让人开心一样。
那咱们自己试试呗,边工作边听听音乐,看看效率是高了还是低了!7. 假设玩游戏能锻炼思维能力,这能是真的吗?就像有人说逛街能减肥一样。
那找些爱玩游戏的人,看看他们的思维是不是真的很敏捷呀!8. 你觉得看小说能增长知识,这到底对不对呢?这就好比说发呆能放松身心一样。
拿自己做个实验呗,看看看完一本小说后知识量有没有增加呀!9. 说吃辣能让人性格开朗,这可太神奇了吧!就仿佛说跑步能让人更有毅力一样。
那到底是不是这样呢?去观察那些无辣不欢的人呀!我的观点结论就是:假设检验真是个有意思的事儿,能让我们知道好多事情到底是不是真的像我们想的那样,通过观察和对比来验证,真的很有趣!。
假设检验的案例
![假设检验的案例](https://img.taocdn.com/s3/m/1af698f0dc88d0d233d4b14e852458fb770b38d3.png)
假设检验的案例想象一下你是一家披萨店的老板,你一直觉得自己店的招牌超大号披萨平均直径是30厘米。
这就是你的原假设(H₀)。
有一天,一个特别挑剔的顾客跑来跟你说:“你家这披萨根本没有30厘米,我感觉小多了。
”你心里就有点不服气,但也开始有点怀疑了,这时候就需要进行假设检验啦。
于是你随机抽取了最近做的20个超大号披萨,仔仔细细地量了它们的直径。
结果算出来这20个披萨的平均直径是28厘米,样本标准差呢假设是2厘米。
现在就开始分析啦。
从这个样本数据看,好像确实比你认为的30厘米小。
但是呢,这有可能只是偶然现象啊,毕竟你不可能每次做出来的披萨直径都丝毫不差。
那怎么判断这个差异是不是真的说明你的原假设不对呢?这就需要用到统计学的魔法啦。
我们可以计算一个统计量(就像给这个差异打个分数一样),然后看看这个分数在正常情况下是不是很容易出现。
假如我们用t 检验(因为总体标准差不知道嘛),根据公式算出t值。
然后再看看这个t值对应的概率(p 值)。
比如说这个p 值算出来是0.03。
这是什么意思呢?这就好比是在说,如果你的披萨真的平均直径是30厘米(原假设成立),那么得到像28厘米这么小(或者更小)的平均直径的可能性只有3%。
一般来说,如果这个p 值小于5%(这个5%就是一个大家常用的临界值,当然你也可以根据自己的情况定),那就像在说:“这么小的概率都发生了,那很可能原假设是错的。
”所以你可能就不得不承认,也许你家的招牌超大号披萨的平均直径确实不是30厘米,得想办法改进制作流程啦。
要是p 值大于5%呢,你就可以松口气,对那个挑剔的顾客说:“亲,这个数据显示我们的披萨还是符合30厘米这个标准的,你这次可能只是运气不好,拿到了几个稍微小一点的。
”。
h0h1假设例题
![h0h1假设例题](https://img.taocdn.com/s3/m/601d6065e3bd960590c69ec3d5bbfd0a7856d568.png)
h0h1假设例题
H0和H1是统计学假设检验中的两个基本概念,分别代表零假设(Null Hypothesis, H0)和备择假设(Alternative Hypothesis, H1)。
下面是一个简单的H0与H1的假设检验例题:
例题:
某公司声称其新产品的合格率为95%。
为验证这一说法是否准确,质检部门随机抽取了该新产品200件进行检测,并发现其中190件产品合格。
零假设(H0):
- H0: 新产品的实际合格率为95%,即产品质量符合公司的声明。
-具体数学形式表示为:H0: p = 0.95,其中p代表新产品的实际合格率。
备择假设(H1):
-H1: 新产品的实际合格率不等于95%,即产品质量可能不符合公司的声明。
-双侧备择假设:H1: p ≠0.95,意味着实际合格率可能高于或低于95%。
-单侧备择假设(假设我们只想知道是否合格率偏低):H1: p < 0.95
或者H1: p > 0.95 (取决于问题的具体方向性)
接下来,我们会根据样本数据计算检验统计量,并基于显著性水平α确定拒绝域,通过比较样本结果与拒绝域来决定是否拒绝零假设,从而判断公司声称的产品合格率是否可信。
假设检验的经典案例
![假设检验的经典案例](https://img.taocdn.com/s3/m/ae076f684b7302768e9951e79b89680202d86b07.png)
假设检验的经典案例那我给你讲个超有趣的假设检验案例吧。
比如说,有个老板觉得他厂里新换的那批机器生产的产品质量更好。
原来那批旧机器生产的产品平均重量是500克,他就想验证这个想法对不对。
这就是假设检验的开始啦。
首先他提出了两个假设,原假设就像是保守派的想法:“新机器生产的产品平均重量和旧机器一样,还是500克”,用专业点的话就是H0:μ = 500。
那另一个假设呢,就是他心里希望的那个:“新机器生产的产品平均重量不是500克”,也就是H1:μ≠ 500。
然后呢,他就从新机器生产的产品里随机抽了一些样品,比如说抽了50个。
然后把这些样品的重量都测出来,再计算出这些样品的平均重量,还得算出样本的标准差。
假如算出来这50个样品的平均重量是505克,样本标准差是10克。
接下来就是用统计的魔法啦。
通过一些数学公式(咱就不细究那些复杂公式啦)算出一个检验统计量的值。
如果这个值落在一个很特别的区间里,就像这个产品重量的例子,如果按照统计学的标准,这个值落在了拒绝原假设的区间里。
那就相当于有足够的证据说:“老板啊,你猜得没错,新机器生产的产品平均重量和旧机器不一样呢。
”如果这个值落在了接受原假设的区间里,那就是说:“老板啊,你可能想多啦,新机器生产的产品平均重量和旧机器没区别。
”再给你讲个关于减肥的假设检验例子。
有个人说他吃了一种新的减肥药很有效果。
那原假设就是:“吃这个减肥药没效果,体重不变”,假设体重原来150斤,那H0:μ = 150。
备择假设就是:“吃这个减肥药有效果,体重变了”,H1:μ≠150。
然后他每天称体重,记录了一个月的数据。
算出这一个月体重的平均值和标准差。
要是最后计算出来的结果显示这个平均值和150斤差得还挺多,而且达到了可以拒绝原假设的程度,那就是这个减肥药可能真的有用。
要是没达到那个标准,那就可能这个减肥药就是个噱头,没起啥作用。
假设检验案例分析
![假设检验案例分析](https://img.taocdn.com/s3/m/bd7c8385be23482fb5da4c86.png)
.假设检验案例分析案例6-1 为研究直肠癌患者手术前后血清CEA含量有无差异,作者收集了资料:术前(24例):31.5 30.0 28.6 39.7 45.2 20.3 37.3 24.0 36.2 20.5 23.1 29.033.1 35.2 28.9 26.4 25.9 23.8 30.4 31.6 27.9 33.0 34.0 32.7 术后(12例):2.0 3.2 2.3 3.1 1.9 2.2 1.5 1.8 3.2 3.0 2.8 2.1 (1)有人采用了两独立样本的t检验,结果t=15.92,自由度ν=34,P<0.05。
从而得出结论:手术前后血清CEA含量有差异,术前CEA含量高于术后。
(2)也有人认为应该采用校正t检验,结果:t'=22.51,P<0.05。
(3)还有人觉得上述分析方法都不对,应该采用两独立样本的秩和检验,结果为:=,P<0.05。
Z-834.(4)有人将上述三种方法作一比较,认为既然三者结论是一致的,所以采用哪种分析方法都无所谓。
对此你有何看法?案例6-2 为研究不同药物对肥胖患者的疗效,将BMI≥28的肥胖患者随机分成两组,每组10人,测得他们服药前及服药2个月后体重的变化(见下表)。
试评价:①A、B两种药物对肥胖患者是否有效。
②A、B两种药物的疗效有无差别。
表两组肥胖患者服药前后体重变化/kg药物 1 2 3 4 5 6 7 8 9 10 A 服药前75.6 61.2 67.8 77.2 73.2 65.4 80.0 74.4 82.6 68.6服药后73.0 60.2 63.6 72.0 74.6 60.8 69.4 77.4 79.6 63.4 B 服药前69.4 89.9 66.8 63.4 70.0 86.6 90.4 74.8 67.4 84.4服药后60.8 95.5 61.6 62.0 69.4 78.0 71.0 76.6 58.2 75.4(1)假设数据服从正态分布,且总体方差齐,在评价A、B两种药物对肥胖患者是否有效时,作者对A、B两组患者分别采用了独立样本的t 检验,结果:A 组患者服药前后比较t =1.040,P=0.312;B组患者服药前后比较t =1.125,P=0.275。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从经典案例理统计学中的假设检验
生活中存在大量的非统计应用的假设检验,一个众所周知的例子就是对罪犯的审讯。
当一个人被控告为罪犯时,他将面临审讯。
控告方提出控诉后,陪审团必须根据证据做出决策。
事实上,陪审团就进行了假设检验。
这里有两个要被证明的假设。
第一个称为原假设,用H0表示(发音为H-nought, nought是零的英国表示方法)。
它表示
H0:被告无罪
第二个假设称为备择假设,用H1表示。
在罪犯审讯中,它表示
H1:被告有罪
当然,陪审团不知道哪个假设是正确的,他们根据控辩双方所提供的证据做出判断。
这里只有两种可能:判定被告有罪或无罪释放。
在统计应用中,判定被告有罪就相当于拒绝原假设;而判定被告无罪也就相当于不能拒绝原假设。
应当注意,我们并不能接受原假设。
在罪犯审判中,接受原假设意味着发现被告无罪。
在我们司法系统中,并不允许这样的判定。
当我们进行假设检验时,存在两种可能的错误。
第一类错误是当原假设正确时,我们却拒绝了它。
第二类错误被定义为当原假设有错误时,我们却并没有拒绝。
在上面的例子中,第一类错误就是一个无罪的人被判定有罪。
当一个有罪的被告被判定无罪时,第二类错误就发生了。
我们把发生第一类错误的概率记为a,通常它也被称作显著性水平。
第二类错误发生的概率记为b。
发生错误的概率a 和b是相反的关系,这就意味着任何尝试减少某一类错误的方法都会使另外一类错误发生的概率增加。
在司法系统中,第一类错误被认为是更加严重的。
这样,我们的司法系统的构建就要求第一类错误发生的概率要很小。
要达到这样的结果,往往会对起诉证据进行限制(原告必须证明罪犯有罪,而被告则不需要证明什么),同时要求陪审团只有具有“远非想象的证据”时才能判定被告有罪。
在缺少大量证据的情况下,尽管有一些犯罪证据,陪审团也必须判定其无罪。
这样的安排必然使有罪的人被判无罪的概率比较大。
美国最高法院法官奥利弗·温德尔·霍姆斯(Oliver Wendell Holmes)曾经用下面一段话描述了第一类错误发生的概率与第二类错误发生概率之间的关系。
他说,“判定100个有罪的人无罪,要比判1个无罪的人有罪好得多。
”在霍姆斯看来,发生第一类错误的概率应该是第二类错误的
1/100。
这里一些关键的概念如下:
1、这里有两个假设,一个叫做原假设,另一个叫做备择假设。
2、这个检验过程从假设原假设是正确的开始。
3、这个过程的目的是判定是否有足够的证据判断备择假设是正确的。
4、这里有两个推断:拒绝原假设,赞成备择假设;不拒绝原假设。
5、在任何的检验中,有两类可能的错误。
第一类是原假设正确却拒绝它,第
二类错误是当原假设不正确时却未能拒绝。
P(第一类错误)=a
P(第二类错误)=b
我们把这些概念引申到统计假设检验中。
在罪犯审讯的例子中,“足够的证据”定义为“超越合理怀疑的证据”。
在统计学中,我们需要利用检验统计量的样本分布来定义“足够的证据”。
假设检验基于样本统计量的抽样分布。
一个假设检验的结果是对样本统计量的一个概率表述。
计算检验统计量,并确定当原假设正确时有多大发生的可能性。
如果概率很小,我们可断定原假设为真的假定不成立,应该拒绝它。