博弈论与纳什均衡

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《博弈论与纳什均衡理论》

姓名张贺祺

学号 2010010404 专业政治经济学

指导老师张秉云

摘要

博弈论是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗争或竞争性质现象的数学理论和方法,也是运筹学的一个重要学科。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。

关键字:博弈论;纳什均衡;合作博弈;非合作博弈

目录

摘要 (2)

关键字 (2)

一、引言 (4)

二、博弈论与纳什均衡的主要内容 (4)

(一)博弈论的主要思想 (4)

(二)博弈论的分类 (5)

三、经典案例 (7)

(一)博弈论的经典案例 (7)

(二)纳什均衡经典案例 (7)

四、博弈论和纳什均衡的重要影响 (8)

(一)博弈论的重要影响 (8)

(二)纳什均衡的重要影响 (8)

参考文献 (9)

博弈论与纳什均衡理论

一、引言

近代对于博弈论的研究,开始于策墨咯(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。 1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的学科。

博弈论(Game Theory):亦名“对策论”、“赛局理论”,属应用数学的一个分支,主要研究公式化了的激励结构间的相互作用。是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

纳什均衡:(Nash equilibrium)又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。假设有n人局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。

二、博弈论与纳什均衡的主要内容

(一)博弈论的主要思想

一个完整的博弈应当包括五个方面的内容:第一,博弈的参加者,即博弈过程中独立决策、独立承担后果的个人和组织;第二,博弈信息,即博弈者所掌握的对选择策略有帮助的情报资料;第三,博弈方可选择的全部行为或策略的集合;第四,博弈的次序,即博弈参加者做出策略选择的先后;第五,博弈方的收益,即各博弈方做出决策选择后的所得和所失。博弈论模型可以用五个方面来描述:G = {P, A S, I, U)

P:为局中人,博弈的参与者,也称为博弈方,局中人是能够独立决策,独立承担责任的个人或组织,局中人以最终实现自身利益最大化为目标。决策人:在博弈中率先做出决策的一方,这一方往往依据自身的感受、经验和表面状态优先采取一种有方向性的行动。对抗者:在博弈二人对局中行动滞后的那个人,与决策人要做出基本反面的决定,并且他的动作是滞后的、默认的、被动的,但最终占优。他的策略可能依赖于决策人劣势的策略选择,因此对

抗是唯一占优的方式,实为领导人的阶段性终结行为。局中人(players):在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为两人博弈,而多于两个局中人的博弈称为多人博弈。

A:为各局中人的所有可能的策略或行动的集合。根据该集合是有限还是无限,可分为有限博弈和无限博弈,后者表现为连续对策、重复博弈和微分对策等。策略(strategy):一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。

S: 博弈的进程:也是博弈进行的次序、局中人同时行动的一次性决策的博弈,称为静态博弈;局中人行动有先后次序,称为动态博弈。

I:博弈信息,能够影响最后博弈结局的所有局中人的情报。信息在博弈中占重要的地位,博弈的赢得很大程度上依赖于信息的准确度与多寡。得益信息是博弈中的重要信息,如果博弈各方对各种局势下所有局中人的得益状况完全清楚,称之为完全信息博弈。反之为不完全信息博弈。在动态博弈中还有一类信息:轮到行动的博弈方是否完全了解此前对方的行动。如果完全了解则称之为具有完美信息的博弈。反之称为不完美信息的动态博弈。由于信息不完美,博弈的结果只能是概率期望, 而不能像完美信息博弈那样有确定的结果。

U: 为局中人获得利益,也是博弈各方追求的最终目标。根据各方得益的不同情况,分为零和博弈与变和博弈。零和博弈中各方利益之间是完全对立的。变和博弈有可能存在合作关系,争取双赢的局面。得失(payoffs):一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。次序(orders):各博弈方的决策有先后之分,且一个博弈方要作不止一次的决策选择,就出现了次序问题;其他要素相同次序不同,博弈就不同。

(二)博弈论的分类

博弈模型一般分为合作博弈(cooperative game)和非合作博弈(non- cooperative game),如图 1.1。合作博弈是以单个参与者的可能行动集合为基本元素,而非合作博弈是以参与人群的可能联合行动集合为基本元素(Martin J.Osborne and Ariel Rubinstein,2000,P2),也就是说,在合作博弈中,博弈中所有参与者都独立行动,不存在有约束力的合作、联合或联盟的关系,而在非合作博弈中,在一些参与者之间存在着有约束力的合作、联合或联盟的关系,并因为这种关系影响到博弈的结局。合作博弈强调的是团体理性(collective rationality)、效率、公正和公平;非合作博弈强调的是个人理性、个人最优决策,其结果可能是有效率的,也可能是低效率或无效率的(张维迎,1996,P5)。20世纪50年代,合作博弈的研究达到鼎盛期,同时开始出现对非合作博弈的研究,此后,博弈论的研究主流逐步转向在非合作博弈领域。有些人认为非合作博弈模型比合作博弈更“基本”,但有些人认为两者不相上下(Martin J.Osborne and Ariel Rubinstein,2000,P2)。

合作博弈,有时也叫做联盟博弈(coalitional game),一般根据有无转移支付而分为两类:可转移支付联盟博弈(coalitional game with transferable

相关文档
最新文档