期末高等数学(上)试题及答案(完整资料).doc
大一上学期(第一学期)高数期末考试题(有答案)
其通解为
y C1e x C2 e2x
1, r2 2.
2
1
代入初始条件 y(0)
y (0) 1,得
C1
, C2 3
3
y
2 e
x
故所求曲线方程为:
3
五、解答题(本大题 10 分)
1 e2 x 3
y 15. 解:(1)根据题意,先设切点为 ( x0 , ln x0 ) ,切线方程:
ln x0
1
(x x0
x0 )
设 ( x) 1 x , ( x) 3 33 x,则当 x 1时( )
2.
1x
.
(A) ( x)与 (x) 是同阶无穷小,但不是等价无穷小; 是等价无穷小;
(B) ( x)与 (x)
(C) ( x) 是比 ( x) 高阶的无穷小; 无穷小 .
(D) ( x) 是比 (x) 高阶的
x
3.
F (x) 若
1
(1 q) f ( x) d x q f ( x)dx
0
q
1 [0, q ] 2 [ q,1]
q (1 故有:
q) f ( 1)
q (1
f ( 1) f ( 2)
q) f ( 2 )
0
q
1
f ( x) d x q f ( x )dx
0
0
证毕。
17.
x
F ( x) f ( t)dt , 0 x
证:构造辅助函数:
x 0, y 0 , y (0) 1 10. 解: u x7 7 x6dx du
原式
1 (1 u)
11
du
(
2 )du
7 u(1 u) 7 u u 1
大一(第一学期)高数期末考试题及答案
大一上学期高数期末考试之巴公井开创作一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不成导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 4. =+→xx x sin 2)31(l i m .5.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.6.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .7. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .9.设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.10. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解. 四、 解答题(本大题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线xy ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个分歧的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分)5.6e. 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:1033()x f x dx xe dx ---=+⎰⎰⎰12. 解:由(0)0f =,知(0)0g =。
高等数学上期末试卷(含答案)
一. 选择题:(每小题3分,共15分)1. 若当0x →时,arctan x x -与nax 是等价无穷小,则a = ( ) B A. 3 B.13 C. 3- D. 13- 2. 下列函数在[1,1]-上满足罗尔定理条件的是 ( )C A. ()f x x = B. 3()f x x =C. ()e e xxf x -=+ D. 1,10()0,01x f x x -≤≤⎧=⎨<≤⎩3. 如果()e ,xf x -=则(ln )d f x x x'=⎰ ( )B A. 1C x -+ B. 1C x+ C. ln x C -+ D. ln x C + 4.曲线y x=渐近线的条数是( ) C A. 1 B. 2 C. 3 D. 45. 设函数()f x 与()g x 在[,]a a -上均具有二阶连续导数,且()f x 为奇函数,()g x 为偶函数,则[()()]d aa f x g x x -''''+=⎰( ) DA. ()()f a g a ''+B. ()()f a g a ''-C. 2()f a 'D. 2()g a '二. 填空题:(每小题3分,共15分)1. 要使函数2232()4x x f x x -+=-在点2x =连续,则应补充定义(2)f = .142. 曲线2e x y -=在区间 上是凸的.(,22-序号3.设函数322(21)e ,x y x x x =+++则(7)(0)y =______________.77!2+4. 曲线231x t y t⎧=+⎨=⎩在2t =点处的切线方程是 . 37.y x =- 5.定积分11(cos x x x -+=⎰ .π2三.解下列各题:(每小题10分,共40分)1.求下列极限(1)22011lim .ln(1)x x x →⎡⎤-⎢⎥+⎣⎦. 解:原式=2240ln(1)lim x x x x→-+ …………..2分 2302211lim.42x xx x x →-+== ………….3分 (2)()22220e d lim e d xt xx t t t t-→⎰⎰.解:原式= ()222202e d e limext x x x t x --→⋅⎰………….3分 22000e d e =2lim2lim 2.1x t xx x t x--→→==⎰ …………..2分2. 求曲线0πtan d (0)4x y t t x =≤≤⎰的弧长.解:s x x == …………..5分ππ440sec d ln sec tan |ln(1x x x x ==+=+⎰ ………..5分 3. 设()f x 满足e ()d ln(1e ),x x f x x C =-++⎰求()d .f x x ⎰解:1(),1e xf x -=+ …………..4分 1e ()d d d 1e 1e xx xf x x x x ---=-=++⎰⎰⎰ …………..3分 ln(1e ).x C -=++ …………..3分4. 已知2lim e d ,xc x x x c x x x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰求常数.c 解:2lim e ,xc x x c x c →+∞+⎛⎫= ⎪-⎝⎭………….4分 221e d (24cxc c x x -∞=-⎰ …………. 4分 5.2c = …………. 2分四.解下列各题:(每小题10分,共30分)1. 设()f x 在[,]a b 上连续,且()0,f x >且1()()d d ,()xba xF x f t t t f t =-⎰⎰求证: (1)[,],()2;x a b F x '∀∈≥(2)()F x 在(,)a b 内恰有一个零点.证明:(1)1()()2,()F x f x f x '=+≥= ……3分 (2)()F x 在[,]a b 上连续 ……1分11()()d d d 0,()()a bb aaa F a f t t t t f t f t =-=-<⎰⎰⎰ ……2分1()()d d ()d 0,()b bb aba Fb f t t t f t t f t =-=>⎰⎰⎰ ……2分由零点定理,()F x 在(,)a b 内至少有一个零点. ……1分 又()F x 在[,]a b 上严格单调增,从而()F x 在(,)a b 内恰有一个零点.……1分2. 设直线(01)y ax a =<<与抛物线2y x =所围成图形的面积为1,S 它们与直线1x =围成图形的面积为2.S(1)确定a 的值,使12S S S =+取得最小值,并求此最小值; (2)求该平面图形绕x 轴旋转一周所得的旋转体的体积.解:22(0,0),(,)y ax a a y x=⎧⇒⎨=⎩ ……..2分 1220()d ()d a aS ax x x x ax x =-+-⎰⎰31,323a a =-+21()0,22S a a a '=-=⇒=唯一驻点()20,S a a ''=>最小值2(.26S = ……..4分1222222π[()()]d π[()()]d 22x V x x x x x x =-+-1π.30+=……..4分 3. 设()f x 在[0,1]上二次可微,且(0)(1)0,f f ==证明:存在(0,1),ξ∈使得()()0.f f ξξξ'''+=证明:令()(),F x xf x '=则()F x 在[0,1]上可微, ……..3分(0)(1)0,f f ==()f x 在[0,1]上可微,由罗尔定理存在(0,1),η∈使()=0f η'……..3分(0)()0,F F η==由罗尔定理存在(0,)(0,1),ξη∈⊂使()=0F ξ' ()()(),F x f x xf x ''''=+(0,1),()()=0.f f ξξξξ'''∴∈+ ……..4分。
高等数学期末考试试题及答案(大一考试)
五、设函数由方程确定,求.(8分)六、若有界可积函数满足关系式,求。
(8分)七、求下列各不定积分(每题6分,共12分)(1).八、设求定积分。
(6分)九、讨论函数的单调区间、极值、凹凸区间和拐点坐标.(10分)十、求方程的通解(6分)十一、求证:.(5分)第一学期高等数学(上)(A)卷分标准题3分,共15分)2。
B 3。
D 4。
B 5.D分,共18分)为任意常数),4. 2 , 5。
6。
分 (6)分解:………………3分…………….6分 (8)导 (3)数)…………6分分解:(1)。
……。
.3分 (6)分分=……………6分时有极大值2,有极小值。
在上是凸的,在上是凹的,拐点为(0,0)………10分十、解;…………………..3分设方程(1)的解为代入(1)得………5分…………………….6分十一、证明:令………………1 分又…。
3分的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。
,所以…………。
5分.(2010至2011学年第一学期)一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是( )(A)(B) (C)(D)2.函数在点处连续是函数在该点可导的()(A)必要条件(B)充分条件(C)充要条件(D)既非充分也非必要条件3.设在内单增,则在内()(A)无驻点(B)无拐点(C)无极值点(D)4.设在内连续,且,则至少存在一点使()成立。
(A)(B)(C)(D)5.广义积分当( )时收敛。
(A) (B) (C)(D)二、填空题(15分,每小题3分)1、若当时,,则;2、设由方程所确定的隐函数,则;3、函数在区间单减;在区间单增;4、若在处取得极值,则;5、若,则;三、计算下列极限.(12分,每小题6分)1、2、四、求下列函数的导数(12分,每小题6分)1、,求2、,求五、计算下列积分(18分,每小题6分)1、2、3、设,计算六、讨论函数的连续性,若有间断点,指出其类型。
(7分)七、证明不等式:当时,(7分)八、求由曲线所围图形的面积。
大一上学期(第一学期)高数期末考试题及答案
大一上学期(第一学期)高数期末考试题及答案高等数学I(大一第一学期期末考试题及答案)1.当 $\alpha x$ 和 $\beta x$ 都是无穷小时,$\alpha(x)+\beta(x)$ 不一定是无穷小。
2.极限 $\lim\limits_{x\to a}\dfrac{\sin x+e^{2ax}-1}{x}$ 的值是 $2a$。
3.如果 $f(x)=\begin{cases}\dfrac{\ln(x+a)-\ln a}{x},& x\neq 0\\ \quad\quad 1,& x=0\end{cases}$ 在 $x=a$ 处连续,则$a=e^{-1}$。
4.如果 $f(x)$ 在 $x=a$ 处可导,则$f'(a)=\dfrac{1}{3}(f(a+2h)-f(a-h))$。
5.极限 $\lim\limits_{x\to a}\dfrac{\ln(x+a)-\ln a}{x}$ 的值是 $1/a$。
6.确定函数 $y(x)$,使得 $y(x)$ 的导函数为$y'(x)=\dfrac{y}{2\sin(2x)}+\dfrac{y e^{xy}}{x}-\dfrac{x}{y\ln x}$,则 $y(x)=\dfrac{1}{\ln x}$。
7.过点 $M(1,2,3)$ 且与平面 $x+2y-z=0$ 和 $2x-3y+5z=6$ 平行的直线 $l$ 的方程为 $\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{2}$。
8.函数 $y=2x-\ln(4x)$ 的单调递增区间为 $(-\infty,0)\cup(1,+\infty)$。
9.计算极限 $\lim\limits_{x\to 0}\dfrac{(1+x)^{-e^x}-e}{x}$,结果为 $-1/2$。
10.设 $f(x)$ 在 $[a,b]$ 上连续,则 $F(x)=\int_a^x(x-t)f(t)dt$ 的二阶导数为 $F''(x)=f(x)$。
大一上学期高数期末考试试题(五套)详解答案
2010级高等数学(上)A 解答一、填空题:(每题3分,共18分)(请将正确答案填入下表,否则不给分)1.已知极限01lim 2=⎪⎪⎭⎫⎝⎛--+∞→b ax x x x ,则常数b a ,的值分别是(空1)。
解:0x b a 1x x lim b ax 1x x x 1lim x 2x =⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ ⇒1-a=0⇒a=1⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=∞→∞→x 1x x lim ax 1x x lim b 2x 2x 1x111lim 1x x lim 1x x x x lim x x 22x -=+-=+-=⎪⎪⎭⎫ ⎝⎛+--=∞→∞→∞→ 或:01x b x )b a (x )a 1(lim b ax 1x x lim 2x 2x =⎪⎪⎭⎫⎝⎛+-+--=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ 所以1-a=0,a+b=0⇒a=1,b=-1。
或:⎪⎪⎭⎫⎝⎛++--+-=⎪⎪⎭⎫ ⎝⎛--+∞→∞→1x 1b ax 1x 1x lim b ax 1x x lim 2x 2x 01x 1)b 1(x )a 1(lim 1x 1b ax 1x lim x x =⎪⎭⎫ ⎝⎛+++--=⎪⎭⎫ ⎝⎛++---=∞→∞→ 所以1-a=0,1+b=0⇒a=1,b=-1。
2.函数xx x x x f 323)(23---=的第一类间断点是(空2)。
解:f(x)在x=3,0,-1处无定义,是间断点。
121)3x )(1x (x 3x lim x 3x 2x 3x lim)x (f lim 3x 233x 3x =-+-=---=→→→,x=3是第一类间断点。
∞=---=-→-→x3x 2x 3x lim)x (f lim 231x 1xx=-1是第二类间断点。
∞=---=→→x3x 2x 3x lim)x (f lim 230x 0xx=0是第二类间断点。
3.设函数)(x f 可导,)(1)(2x f x g +=,则)('x g =(空3)。
高等数学期末考试试题及答案(大一考试)
高等数学期末考试试题及答案(大一考试)姓名:__________ 班级:__________ 学号:__________课程名称:高等数学(上)(A卷) 考试日期:2008年1月10日注意事项:1.本试卷满分100分,要求卷面整洁、字迹工整、无错别字。
2.考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3.考生必须在签到单上签到,若出现遗漏,后果自负。
4.如有答题纸,请将答案全部写在答题纸上,否则不给分。
考完请将试卷和答题卷分别一同交回,否则不给分。
一、单选题(每题3分,共15分)1.lim(sin(x^2-1)/(x-1)),x趋近于1,等于()A)1;(B)0;(C)2;(D)不存在。
2.若f(x)的一个原函数为F(x),则∫e^(-x)f(e^x)dx等于()A)F(e^x)+c;(B)-F(e^-x)+c;(C)F(e^-x)+c;(D)F(e^-x^2/2)+c。
3.下列广义积分中()是收敛的。
A)∫sinxdx,从负无穷到正无穷;(B)∫1/|x|dx,从-1到1;(C)∫x/(1+x^2)dx,从负无穷到正无穷;(D)∫e^x dx,从负无穷到0.4.f(x)为定义在[a,b]上的函数,则下列结论错误的是()A)f(x)可导,则f(x)一定连续;(B)f(x)可微,则f(x)不一定可导;(C)f(x)可积(常义),则f(x)一定有界;(D)函数f(x)连续,则∫f(x)dx在[a,b]上一定有定义。
5.设函数f(x)=lim(n→∞)(1+x^2n)^2,则下列结论正确的是()A)不存在间断点;(B)存在间断点x=1;(C)存在间断点x=0;(D)存在间断点x=-1.二、填空题(每题3分,共18分)1.极限lim(x→∞)(x^2+1-1)/x=______。
2.曲线y=3t在t=2处的切线方程为y=______。
3.已知方程y''-5y'+6y=xe^(2x)的一个特解为-1/2(x+2x)e^(2x),则该方程的通解为______。
高数(大一上)期末试题及答案
第一学期期末考试试卷(1)课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: . 一、填空(每小题3分,满分15分)1、xx x x 2sin 3553lim 2++∞→ 2、设A f =-'')1(,则=--'--'→hh f f h )12()1(lim 0 3、曲线⎩⎨⎧==-t tey e x 2在0=t 处切线方程的斜率为4、已知)(x f 连续可导,且2)2(,)1(,1)0(,0)(e f e f f x f ===>,='⎰10)2()2(dx x f x f5、已知21)(xe xf x+=,则='')0(f 二、单项选择(每小题3分,满分15分)1、函数x x x f sin )(=,则 ( )A 、当∞→x 时为无穷大B 、当∞→x 时有极限C 、在),(+∞-∞内无界D 、在),(+∞-∞内有界2、已知⎩⎨⎧≥<=1,ln 1,)(x x x e x f x ,则)(x f 在1=x 处的导数( )A 、等于0B 、等于1C 、等于eD 、不存在3、曲线xxe y -=的拐点是( )A 、1=xB 、2=xC 、),1(1-eD 、)2,2(2-e 4、下列广义积分中发散的是( )A 、⎰10sin x dxB 、⎰-101xdx C 、⎰+∞+02/31x dx D 、⎰+∞22ln xx dx5、若)(x f 与)(x g 在),(+∞-∞内可导,)()(x g x f <,则必有( ) A 、)()(x g x f -<- B 、)()(x g x f '<'C 、)(lim )(lim 0x g x f xx xx →→< D 、⎰⎰<0000)()(x x dx x g dx x f三、计算题(每小题7分,共56分)答题要求:写出详细计算过程1、求xx e e x x x x sin )cos 1()(lim 220---→2、求)arcsin(lim 2x x x x -++∞→3、设)(x y y =由03=-+xyy x 确定,求0|=x dy 。
《高等数学》上册期末考试题附答案
2006-2007学年第一学期高等数学(A1)试题(A卷)、填空(本题共5小题,每小题3分,满分15分)1 2 1+ —i=x2+—^+3,贝y f(x)=x x2. 设f (xo)存在,则怙f(x° ")—f(x°—h)= .h-P h3. 设f (x)的原函数为■ln二则]fTxdx= _______________ .x4. 向量才=也,-3,4}在向量6 = {2,2,1}上的投影是___________5. f(x)=丄按(x+1)的幕展开到n阶的泰勒公式是__________________x二、选择题(本题共5小题,每小题3分,满分15分)11. 设f x可导且f x0二-,当二Xr 0时,f x在x0处的微分dy2与丄x比较是()无穷小.(A)等价(B)同阶(C)低阶(D)高阶2. 已知y = x3• 3ax2 3bx c,在x = -1处取得极大值,点(0,3)是拐点, 则().(A) a=0, b = -1,c=3 (B) a = -1,b = 0,c=3(C) a=3,b = -1,c=0 (D)以上均错3. 设f (x)在[-5 , 5]上连续,则下列积分正确的是().(A) 「f (x) f (-x)dx =0-5 (C) :〔f(x) f(-x)dx =01.已知f x(B) 「f (x) _ f (_x)】dx = 0(D) :〔f(x)- f(-x)dx = 0-51 ------ d x. x^1 -(ln x )、 1 1五、 (7 分)设 1 a b, f (x)ln x,求证:0 f (b) - f (a) (b - a).x41. 2.3. 、计算下列各题(本题共4小题,每小题7分洪28分) y =sec2x -In 2x ■ e 十dy e 1 dx 设y 二y(x)是由方程2y - x =(x - y)ln(x - y)确定的隐函数,求 dy. X 2 J 。
大一第一学期期末高等数学(上)试题及答案
(本小题5分)第一学期期末高等数学试卷、解答下列各题(本小题5分)x 3 12x 162x 3(本小题5分)求 x 2 2 dx. (1 x )(本小题5分)(本小题5分) 求-^dx. 1 x(本小题5分)求— 1 t 2 dt .dx 0(本小题5分)求 cot 6 x esc 4 xdx.(本小题5分)求-1 1 , 求 1 p cos dx. x x(本小题5分)设X e2t cost确定了函数y y e si nt(本小题5分)求'x 1 xdx .0 ■(本小题1、2、3、4、5、6、7、8、9、10、 11、 12、13、求函数 y 4 2xx 2的单调区间丫(本小题5分) sin x dx.求2 2 0 8 sin 2 x (本小题5分) 设 x(t) e kt(3cos t 4sin t),求 dx .设函数y y (x )由方程y 2 in y 2 x 6所确定,求史 dx (本大题共16小题, 总计80分)求极限 limx 2 9x 212x求极限 limarctan xx.1 arcsin xy(x),求乎dx14、 (本小题5分)求函数y 2e x e x 的极值15、 (本小题5分)2 2 2 2求极限 lim & “ (2x“ (3xD d°x Dx(10x 1)(11x 1)16、 (本小题5分)cos2x .求dx.1 sin xcosx二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省.(本大题6分)设f (x ) x (x 1)( x 2)( x 3),证明f (x ) 0有且仅有三个实根一学期期末高数考试(答案)、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)23x 212 26x 18x 122、(本小题3分)x 2\ 2x )1 d(1 x 2) 2(1 x 2)2c.3、(本小题3分) 因为 arctanx而 limarcsin — 02 x x2、(本小题7分)2求由曲线y -和y2三、解答下列各题所围成的平面图形绕 0X 轴旋转所得的旋转体的 体积.解:原式 limx 2lim 歿 x 212x18(19、 116 151故 limarcta n x arcs in o x x求—1 t2 dt .dx 0 '原式 2x 1 x 4cot 6 x(1 1 .7cot x 7(本小题4分) 2求1 工-x2cot x)d(cot x)1. 9cot x c.91cos^d(^) x x2(本小题4分)求 x 1 xdx.令 J 1 x ui u4、 5、(本小题3分)x .dx1 x1 x 1dx 1 x . dx dx1 xx ln 1 x(本小题3分)c.6、(本小题4分)cot 5 6 x csc 4 xd x8、1 (本小题4分) x e 2^st确定了函数y y e si nty(x),求 dy dx解:dy dxe 2t (2sin tt22e (cost 2tsin t ) e t (2 sint cost)22~(cost 2t sin t )cost)7、cos 1dx. x原式1 si n — x2u2)du 原式 2 (u41 \32(—)5 39、116 15解: dxx (t)dt13、(本小题6分)设函数y y (x )由方程y 2 ln y 2 x 6所确定,求鱼dx2yy 空 6x 5 y3yx 57厂14、(本小题6分)求函数y 2e x ex , 2x1、y 2e (e y1 1驻点:x -| n —2 2由于 y 2e x e x 0故函数有极小值,,1n "2)2 210、(本小题5分) 求函数 y 4 2x x 2的单调区间解: 函数定义域(11、 12、 设 y 当x当x 当xX)2 2x 2(1 1, y 01, y0函数单调增区间为,11, y 0函数的单调减区间为1,(本小题5分)sin x ,2— dx.8 sin x2d cosx 09 cos 2 x原式1, 3 cosx ln ---------- 6 3 cosx丄In 26(本小题x (t )6分)e kt (3cos t 4sin t),求dx .e kt (43k)cos t (4k 3 )sin t dtx的极值解.定义域),且连续V x264d(*si n2x 1) 1 丄 si n2x2 1In 1 -si n2x c2、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 沿, 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省•512设晒谷场宽为x,则长为 ----- 米,新砌石条围沿的总长为512xL 2x —— x (x 0)L c 51222x唯— •驻点 x 16 L1024 小3x即 x 16为极小值点 故晒谷场宽为16米,长为51232米时,可使新砌石条围沿16所用材料最省2、(本小题8分)15、(本小题 求极限 原式 2 2 2(x 1)(2x 1) (3x 1)2(10x 1)(10x 1)(11x 1)1 2 1 2 1 2 (1 -)2 (2 -)2 (3 -)2(10 丄)2x x x x1 1(10 -)(11 -)x x 10 11 216 10 11lim x lim x 16、(本小题7 210分) cos2x dx 1 sin xcosx cos2x 1 l sin2xdx2求由曲线y -和y2,8x 22x 3 x 10, x 1 4-)2x 32 (rdx 4x 40(匚6x)dx4J 1 5 (——x 4 5 1 1 7. -------x ) 64 7 04 1 1 512 44(—— )—5 7 35二、解答下列各题(本大题10分)设f (x) x(x 1)( x2)(x 3),证明f (x) 0有且仅有三个实根证明:f (x)在(,)连续,可导,从而在[0,3];连续,可导.又 f(0)f(1)f(2)f(3)则分别在[0,1],[1,2],[2,3]上对f(x)应用罗尔定理得,至少存在1(0,1), 2 (1,2), 3(2,3)使f ( !) f ( 2) f ( 3)即f (x) 0至少有三个实根,又f (x) 0,是三次方程,它至多有三个实根 由上述f (x)有且仅有三个实根高等数学(上)试题及答案D 、不存在2、下列变量中,是无穷小量的为(、填空题(每小题 3分,本题共 15分)1、2、时,f (x)x e 2x在x 0处连续.3、dx ln x ,则巴dyx/x+14、 曲线yx 在点(0, 1 )处的切线方程是y=x+15、 若 f (x)dxsin2x C ,C 为常数,则 f (x)2cos2x —。
经济与管理学院《高等数学(一)》第一学期期末考试试题测试卷及参考答案
x ⎩⎰《高等数学(一)》第一学期期末考试试卷本期末试卷满分为80分,占课程总成绩的80,平时成绩占课程总成绩的20。
答题要求:1.请将所有答案统一写在答题纸上,不按要求答题的,责任考生自负。
2.答题纸与试卷一同交回,否则酌情扣分。
试题符号说明:y (n )表示y 的n 阶导数,α~β表示α与β是等价无穷小量。
一.填空题:(满分14分,共7小题,2分/题)1.若f (t )=lim t ⎛1+1⎫2tx⎪,则f '(t )=;x →∞⎝x ⎭2.d ⎰d ⎰f (x )dx =;3.limx →0⎰sin tdt x 2= ;4.设函数y =12x +3,则y (n )(0)=;⎧⎪x =5.设f (t )-π其中f 可导,且f '(0)≠0,则dy=;⎨⎪y =f (x )f (e 3t -1)sin x dx πxf '(x )dx t =06.设有一个原函数,则⎰π=;27.+∞x 4e -x dx =;二.单项选择题:(满分16分,共8小题,2分/题)1.极限lim x →011的结果是()2+3x(A)不存在(B)1/2(C)1/5(D)01=⎛1⎫2.当x →∞时,若ax 2+bx +c o ⎪,则a,b,c 之值一定为()x +1⎝⎭x1-x 2⎨0ππcos xdx <2cos xdx =2(A)(C)a =0,b =1,c =1;(B)a ≠0,b,c 为任意常数;(D)⎧f (x )a =0,b =1,c 为任意常数;a,b,c 均为任意常数;3.设函数F (x )=⎪⎪⎩xf (0)x ≠0其中f (x )在x =0处可导,x =0f '(x )≠0,f (0)=0,则x=0是F (x )的()(A)连续点(B)第一类间断点(C)第二类间断点(D)连续点或间断点不能由此确定4.曲线y =1xex2()(A)仅有水平渐近线;(B)仅有铅直渐近线;(C)既有铅直又有水平渐近线;(D)既有铅直又有斜渐近线;5.设函数f (x )在(-∞,+∞)内连续,其导函数的图形如图所示:则f (x )有()(A)一个极小值点和两个极大值点;(B)两个极小值点和一个极大值点;(C)两个极小值点和两个极大值点;(D)三个极小值点和一个极大值点;6.根据定积分的几何意义,下列各式中正确的是()π⎰-⎰π3⎰-π⎰π222(C)⎰sin xdx =0(D)⎰sin xdx =07.设⎰f (x )dx =sin x +C ,则⎰f (arcsin x )dx =()(A)arcsin x +C (C)1(arcsin x )2+C2(B)sin +C(D)x +C1-x2π2π(A)2cos xdx(B)cos xdx⎰⎰2⎨8.当()时,广义积分e -kx dx 收敛-∞(A)k >0(B)k ≥0(C)k <0(D)k ≤0三.计算题(满分24分,共4小题,6分/题)1.设y =arctane x-ln,求x =1⎛1cos 2x ⎫2.求lim 2-2⎪3.求x →0⎝sin x x ⎭2x +5dxx +2x -34.设f (x )=1+1+x 2⎰1f (x )dx ,求⎰1f (x )dx四.(满分11分)⎧x n sin 1x ≠0n 在什么条件下函数f (x )=⎪⎪⎩x,x =0(1)在x =0处连续;(2)在x =0处可微;(3)在x =0处导函数连续;五.(满分10分)设曲线为y =e -x(x ≥0)(1)把曲线y =e -x 、x 轴、y 轴和直线x =ξ(ξ>0)所围成平面图形绕x 轴旋转一周得一旋转体,求此旋转体的体积V (ξ),并求a 满足V (a )=1lim V (ξ)2ξ→+∞(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积e 2x e 2x +1dydx1-x 2六.证明题(满分5分)设函数f(x)在[a,b]上连续,在(a,b)内可导,又b>a>0,证明,在(a,b)内存在ξ,η使得f'(ξ)=2ηf'(η) +b a22007-2008学年第一学期《高等数学(一)》(309010034)期末考试试题(A 卷)参考答案及评分标准考试对象:2007级经济学工商管理类专业及其他专业本期末试卷满分为80分,占课程总成绩的80,平时成绩占课程总成绩的20。
(完整版)大学高等数学上考试题库(附答案)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是(). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x =和()g x =(C )()f x x =和()2g x =(D )()||x f x x=和()g x =1 2.函数()()20ln 10x f x x a x ≠⎪=+⎨⎪=⎩在0x =处连续,则a =().(A )0(B )14(C )1(D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为(). (A )1y x =-(B )(1)y x =-+(C )()()ln 11y x x =--(D )y x =4.设函数()||f x x =,则函数在点0x =处().(A )连续且可导(B )连续且可微(C )连续不可导(D )不连续不可微5.点0x =是函数4y x =的().(A )驻点但非极值点(B )拐点(C )驻点且是拐点(D )驻点且是极值点6.曲线1||y x =的渐近线情况是(). (A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是().(A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1fC x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x xdxe e -+⎰的结果是().(A )arctan x e C +(B )arctan x e C -+(C )x x e e C --+(D )ln()x x e e C -++9.下列定积分为零的是().(A )424arctan 1x dx x ππ-+⎰(B )44arcsin x x dx ππ-⎰(C )112x xe e dx --+⎰(D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于().(A )()()20f f -(B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f - 二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条.4.()21ln dxx x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分)1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '.3.求不定积分①()()13dx x x ++⎰②()0a >③x xe dx -⎰四.应用题(每题10分,共20分) 1.作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一. 选择题1.B2.B3.A4.C5.D6.C7.D8.A9.A10.C二.填空题 1.2- 2.3-3.2 4.arctanln x c + 5.2 三.计算题1①2e ②162.11xy x y '=+-3.①11ln ||23x C x +++②ln ||x C +③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是().(A)()f x x =和()g x =()211x f x x -=-和1y x =+(C)()f x x =和()22(sin cos )g x x x x =+(D)()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=(). (A)0(B)1(C)2(D)不存在3.设函数()y f x =在点0x 处可导,且()f x '>0,曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{}.(A)0(B)2π(C)锐角(D)钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是().(A)12,ln 2⎛⎫ ⎪⎝⎭(B)12,ln 2⎛⎫- ⎪⎝⎭(C)1,ln 22⎛⎫ ⎪⎝⎭(D)1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是().(A)单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D)单调增加且是凹的6.以下结论正确的是().(A)若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B)函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C)若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0.(D)若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =(). (A)()121xx e -(B)12xx e -(C)()121x x e +(D)12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰().(A)()sin F x c +(B)()sin F x c -+(C)()cos F x c +(D)()cos F x c -+9.设()F x 为连续函数,则102x f dx ⎛⎫' ⎪⎝⎭⎰=().(A)()()10f f -(B)()()210f f -⎡⎤⎣⎦(C)()()220f f -⎡⎤⎣⎦(D)()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分ba dx ⎰()ab <在几何上的表示().(A)线段长b a -(B)线段长a b -(C)矩形面积()1a b -⨯(D)矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩,在0x =连续,则a =________.2.设2sin y x =,则dy =_________________sin d x .3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5.定积分2121sin 11x x dx x-+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分)1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDBCADDD二填空题:1.-22.2sin x 3.34.2211ln 24x x x c -+ 5.2π三.计算题:1.①2e ②12.2yx e y y '=- 3.①3sec 3xc +②)ln x c +③()222x x x e c -++四.应用题:1.略2.13S =《高数》试卷3(上)一、 填空题(每小题3分,共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩,则当a =_________时,()f x 在0x =处连续.3.函数221()32x f x x x -=-+的无穷型间断点为________________.4.设()f x 可导,()x y f e =,则____________.y '=5.221lim _________________.25x x x x →∞+=+- 6.321421sin 1x xdx x x -+-⎰=______________. 7.20_______________________.x td e dt dx -=⎰ 8.30y y y '''+-=是_______阶微分方程. 二、求下列极限(每小题5分,共15分)1.01lim sin x x e x →-;2.233lim 9x x x →--;3.1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分,共15分)1.2xy x =+,求(0)y '.2.cos x y e =,求dy . 3.设x y xy e +=,求dydx.四、求下列积分(每小题5分,共15分)1.12sin x dx x ⎛⎫+ ⎪⎝⎭⎰.2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+直线0,0y x ==和1x =所围成的平面图形的面积,以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+ 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰ =221lim(1)[lim(1)]222x x x x x C +--+++ 3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰由10,0y x C ==⇒=《高数》试卷4(上)一、选择题(每小题3分)1、函数2)1ln(++-=x x y 的定义域是().A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限x x e ∞→lim 的值是().A 、∞+B 、0C 、∞-D 、不存在3、=--→211)1sin(lim x x x ().A 、1B 、0C 、21-D 、214、曲线23-+=x x y 在点)0,1(处的切线方程是()A 、)1(2-=x yB 、)1(4-=x yC 、14-=x yD 、)1(3-=x y 5、下列各微分式正确的是(). A 、)(2x d xdx =B 、)2(sin 2cos x d xdx = C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)(,则=)(x f ().A 、2sin xB 、2sin x -C 、C x +2sinD 、2sin 2x-7、⎰=+dx xxln 2(). A 、C x x++-22ln 212B 、C x ++2)ln 2(21C 、C x ++ln 2lnD 、C xx++-2ln 1 8、曲线2x y =,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ().A 、⎰14dx x πB 、⎰1ydy πC 、⎰-10)1(dy y πD 、⎰-14)1(dx x π9、⎰=+101dx e e xx(). A 、21lne +B 、22ln e +C 、31ln e +D 、221ln e+ 10、微分方程x e y y y 22=+'+''的一个特解为(). A 、x e y 273=*B 、x e y 73=*C 、x xe y 272=*D 、x e y 272=* 二、 填空题(每小题4分)1、设函数x xe y =,则=''y ;2、如果322sin 3lim0=→x mx x ,则=m .3、=⎰-113cos xdx x ;4、微分方程044=+'+''y y y 的通解是.5、函数x x x f 2)(+=在区间[]4,0上的最大值是,最小值是;三、计算题(每小题5分)1、求极限x x x x --+→11lim;2、求x x y sin ln cot 212+=的导数;3、求函数1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ;6、解方程21xy xdx dy -=; 四、应用题(每小题10分)1、求抛物线2x y =与22x y -=所围成的平面图形的面积.2、利用导数作出函数323x x y -=的图象.参考答案一、1、C ;2、D ;3、C ;4、B ;5、C ;6、B ;7、B ;8、A ;9、A ;10、D ;二、1、x e x )2(+;2、94;3、0;4、x e x C C y 221)(-+=;5、8,0三、1、1;2、x 3cot -;3、dx x x 232)1(6+;4、C x x +++-+)11ln(212;5、)12(2e -;6、C x y =-+2212; 四、1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12+++=x x y 的定义域是().A 、()()+∞--,01,2B 、()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是().A 、x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、x x 2lim +∞→3、=+∞→xx xx )1(lim ().A 、eB 、2eC 、1D 、e14、曲线x x y ln =的平行于直线01=+-y x 的切线方程是().A 、x y =B 、)1)(1(ln --=x x yC 、1-=x yD 、)1(+-=x y 5、已知x x y 3sin =,则=dy ().A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是().A 、⎰++=-C x dx x 111αααB 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是().A 、C e x +sinB 、C x e x +cos sin C 、C x e x +sin sinD 、C x e x +-)1(sin sin8、曲线2x y =,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ().A 、⎰104dx x πB 、⎰1ydy πC 、⎰-10)1(dy y πD 、⎰-14)1(dx x π9、设a ﹥0,则=-⎰dx x a a22().A 、2aB 、22a πC 、241a 0D 、241a π 10、方程()是一阶线性微分方程.A 、0ln 2=+'xyy x B 、0=+'y e y xC 、0sin )1(2=-'+y y y xD 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设x xe y =,则=''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是,最小值是;4、=⎰-113cos xdx x ;5、微分方程023=+'-''y y y 的通解是. 三、计算题(每小题5分)1、求极限)2311(lim 21-+--→x x x x ;2、求x x y arccos 12-=的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xx ln 21;5、求定积分⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、 应用题(每小题10分)1、求由曲线22x y -=和直线0=+y x 所围成的平面图形的面积.2、利用导数作出函数49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ;2、A ;3、D ;4、C ;5、B ;6、C ;7、D ;8、A ;9、D ;10、B.二、1、2,b ;2、x e x )2(+;3、5ln ,0;4、0;5、x x e C e C 221+.三、1、31;2、1arccos 12---x x x ;3、dx xx 221)1(1--;4、C x ++ln 22;5、)12(2e -;6、x e x y 122-=; 四、1、29;2、图略。
高数(大一上)期末试题及答案
第一学期期末考试试卷(1)课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: . 一、填空(每小题3分,满分15分)1、xx x x 2sin 3553lim 2++∞→ 2、设A f =-'')1(,则=--'--'→hh f f h )12()1(lim 0 3、曲线⎩⎨⎧==-t tey e x 2在0=t 处切线方程的斜率为4、已知)(x f 连续可导,且2)2(,)1(,1)0(,0)(e f e f f x f ===>,='⎰10)2()2(dx x f x f5、已知21)(xe xf x+=,则='')0(f 二、单项选择(每小题3分,满分15分)1、函数x x x f sin )(=,则 ( )A 、当∞→x 时为无穷大B 、当∞→x 时有极限C 、在),(+∞-∞内无界D 、在),(+∞-∞内有界2、已知⎩⎨⎧≥<=1,ln 1,)(x x x e x f x ,则)(x f 在1=x 处的导数( )A 、等于0B 、等于1C 、等于eD 、不存在3、曲线xxe y -=的拐点是( )A 、1=xB 、2=xC 、),1(1-eD 、)2,2(2-e 4、下列广义积分中发散的是( )A 、⎰10sin x dxB 、⎰-101xdx C 、⎰+∞+02/31x dx D 、⎰+∞22ln xx dx5、若)(x f 与)(x g 在),(+∞-∞内可导,)()(x g x f <,则必有( ) A 、)()(x g x f -<- B 、)()(x g x f '<'C 、)(lim )(lim 0x g x f xx xx →→< D 、⎰⎰<0000)()(x x dx x g dx x f三、计算题(每小题7分,共56分)答题要求:写出详细计算过程1、求xx e e x x x x sin )cos 1()(lim 220---→2、求)arcsin(lim 2x x x x -++∞→3、设)(x y y =由03=-+xyy x 确定,求0|=x dy 。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷及答案详解一、选择题1. 该题为微分求导题,考察对基本微分法则的掌握。
解答:根据指数函数的求导法则,对指数函数f(x)进行求导,得到f'(x)=3x^2。
将x=2代入f'(x),得到f'(2)=3×2^2=12。
因此,选项C为正确答案。
2. 该题为函数极值题,考察对函数极值点的判断和求解。
解答:首先计算函数f(x)的导函数f'(x)。
根据导数定理,函数在极值点处的导数为0。
将f'(x)=2x-3=0,求解得到x=3/2。
接下来通过二阶导数的符号判断极值类型。
计算f''(x)=2,由此可知二阶导数恒为正,故x=3/2是函数f(x)的极小值点。
因此,选项A为正确答案。
3. 该题为定积分计算题,考察对定积分的理解和计算。
解答:根据定积分的定义,将被积函数f(x)=2x在区间[1,3]上进行积分,即∫(1->3) 2x dx。
对函数f(x)进行不定积分,得到F(x)=x^2+C。
将上限3代入不定积分结果,再减去下限1代入不定积分结果,得到∫(1->3) 2x dx=F(3)-F(1)=(3)^2+C-(1)^2+C=9+C-1-C=8。
因此,选项B为正确答案。
4. 该题为二重积分计算题,考察对二重积分的理解和计算。
解答:首先对被积函数f(x,y)=x+2y进行内积分,得到f_1(y)=xy+2y^2/2=x(y+y^2)。
接下来对内积分结果进行外积分,即对f_1(y)在区间[0,1]上积分,得到∫(0->1) x(y+y^2) dy。
先对y进行积分,得到∫(0->1) (xy+xy^2) dy=x/2 + x/3=5x/6。
因此,选项C为正确答案。
二、填空题1. 该题为极限计算题,考察对极限的求解。
解答:将x趋近于无穷大时,分子和分母的最高次项均为x^4,根据极限的最高次项的性质,可以将该极限简化为计算3/(-2)= -3/2。
(完整版),期末高等数学(上)试题及答案,推荐文档
1、(本小题 3 分)
解: 原式
lim
x2
3x 6x2
2 12 18x
12
6x lim x 2 12 x 18
2
2、(本小题 3 分)
(1
x x2)2
dx
1 d(1 x2 ) 2 (1 x 2) 2
11 2 1 x2 c.
3、(本小题 3 分)
因为 arctan x
而 lim arcsin 1 0
lim
x
x
x
x
1
1
(10 )(11 )
x
x
10 11 21
(10 1 ) 2 x
6 10 11 7
2
16、( 本小题 10 分 )
解:
cos2x dx
1 sin x cosx
d( 1 sin 2x 1) 2
1 1 sin 2x 2
1 ln 1 sin 2x c
2
二、解答下列各题 (本大题共 2 小题,总计 13 分 ) 1、(本小题 5 分)
且
F ( 1) 1 0 , F (1) 1 0 .
22
由零点定理知存在
x1
1 [
,1]
,使
F ( x1 )
0.
2
由 F ( 0) 0 ,在 [ 0, x1] 上应用罗尔定理知,至少存在一点
(0, x1) ( 0,1) ,使 F ( ) f ( ) 1 0 ,即 f ( ) 1 …
第 7 页,共 7 页
9、(本小题 5 分)
3
求 x 1 x dx. 0
10、( 本小题 5 分 )
求函数 y 4 2 x
11、( 本小题 5 分 )
最新高等数学上册期末考试复习题库含答案
1 0 1 x4
dx2
arctan
x2
0
2
x
14.已知函数 f (x)连续,若 (x)=x f (t)dt,则 ′(x)=_________. 1
x
答案: f (t)dt xf (x) 1
知识点:变限积分的导数
4 / 42
高等数学上册期末考试复习题库含答案
解: ' x
x
1
f
(t)dt
3
的铅直渐近线为_________.
答案: x 1
知识点:曲线的渐近线
解: lim x2 2x 3 , 曲线 x2 2x 3的铅直渐近线为x 1
x1 x2 1
x2 1
11.无穷限反常积分
2x 0 1 x4
dx
=_________.
答案: 2
知识点:无穷限反常积分
解:
2x 0 1 x4 dx
A.左导数存在,右导数不存在
B.左导数不存在,右导数存在
C.左、右导数都存在
D.左、右导数都不存在
答案:C
知识点:导数的定义
解:
f
(x)
ln(1
x
2
,
x),
x0 ,
x0
法一:f
'(0)
lim
x0
x2 0 x0
0
f
'(0)
lim
x0
ln(1 x) 0 x0
lim
x0
x x
1
法二:f '(0) 2x x0 0
1
C.x sin
x
D. 1 sin x x
答案:C
知识点: 无穷小量
1
高等数学(上)期末考试试题及参考答案
2007级高等数学(上)期末考试试题班级 学号 姓名得分一.选择题(每小题3分,共15分) 1.设当0→x 时, 1cos -x 与2ax 是等价无穷小,则=a ( ) (A) 2 (B) 2-(C)12(D)12-2.设21()1⎧≤=⎨+>⎩x x f x ax bx 在1=x 处可导,则,a b 的值分别为( ) (A)1,2(B) 2,1- (C) 1,2- (D)2,1-3.121(1)1d x x x -+-=⎰ ( )(A) π (B) 2π (C)4π(D) 04.曲线=x y e 与该曲线过原点的切线=y ex 及y 轴所围成图形的面积=A ( ) (A) 1()d -⎰exe ex x (B) 1(l n )d-⎰e y y y e(C) 10()d -⎰xeex x(D) 10(ln )d -⎰y y y e5.曲线2221⎧-=⎨=⎩x y z 绕x 轴旋转一周所形成的曲面方程为( )(A )22221x y z --= (B) 22221x y z -+= (C) 222221x y z --= (D) 222221x y z -+=二.填空题(每小题3分,共15分) 6.若向量 x 与(2,1,1)=a 共线,且18⋅=-a x ,则=x7.设3233()(1)x f x x x x e =++++,则(10)()f x = 8.设20()()d ln 22xtF x f t =+⎰,其中()f x 连续,则()F x '=9.设 2=x y e 与 2=x y xe 都是某二阶常系数齐次线性微分方程的特解,则该微分方程为 10.曲线sin ,cos (0)4y x y x x π==≤≤与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积=x V 三、计算题(每小题5分,共60分)11.求 211lim tan x xx x →⎛⎫- ⎪⎝⎭.12.设曲线()n y f x x ==(n 为正整数)在点(1,1)处的切线与x 轴的交点为(,0)ξ,求lim()→∞n f ξ. 13.设 2arctan ln(1)x t y t =⎧⎨=+⎩, 求 x y d d 及 22d d x y. 14.设 y e xy e +=,求 0x y =''. 15.设0=x 是 43()2y f x x x ax ==-+ 的驻点,求常数a 的值,并求该曲线的凹凸区间与拐点. 16.设()d sin f x x x x C =+⎰,求()d cos f x x x⎰. 17.求13d 32xx x--⎰. 18.求微分方程 0x x xy y xe e '+--=的通解. 19.求微分方程2324x y y y e '''++=的通解.20.求过点(0,1,2),且与直线11211x y z -+==平行,又与平面230++=x y z 垂直的平面方程.21.已知()''f x 连续,()1=f π,且0[()()]s i n d 3''+=⎰f x f x x x π,求(0)f .22.求 21arctan d +∞⎰xx x . 四、证明题(每小题5分,共10分)23.证明:当2e a b e <<<时,2224ln ln ()b a b a e->-.24.设函数()f x 对任意实数12,x x 都满足 1212()()()+=⋅f x x f x f x ,且(0)1'=f ,证明: (1)()()'=f x f x ; (2)()=x f x e .参 考 答 案一.选择题(每小题3分,共15分) 1.C 2.B 3.B 4.C 5.C二.填空题(每小题3分,共15分)6.6,33---(,) 7.1033e x 8.2()f x9.440y y y '''-+= 10.12π三、计算题(每小题5分,共60分)11.原式2223220000tan tan sec 1tan 1lim lim lim lim tan 333x x x x x x x x x x x x x x x →→→→---====== 12. 切线方程 1(1)y n x -=-11lim ()lim(1)n n n f n eξ→∞→∞-==13. 2dy t dx =, 2222(1)d yt dx=+14.y yy e x'=-+;2()(1)()()y y y y y e x e y e x y e x ''⋅+-⋅+⋅+''=-+ ;021|x y e =''=15. 0a =, )(x f 的凹区间为(,0],[1,)-∞+∞;凸区间为 [0,1];拐点为(0,0),(1,1)-16.()sin cos f x x x x =+2()sin 1d ()d lncos cos cos 2f x x x x x x x C x x =+=-++⎰⎰ 17.令 32t x =-, 原式1231331114(3)d [3]2233t t t t --=--=-⎰= 18.原方程变为:1x xxe e y y x x+'+=原方程的通解:111[](C)x x dx dx x x xxe e y e e dx C xe x x-+⎰⎰=+=+⎰ 19.320y y y '''++=的通解:212x xY C e C e --=+;原方程特解2213x x y Ae e ==原方程通解212x x y C e C e --=+213x e +20.平面的法向量为 (2,1,1)(1,2,3)(1,5,3)n =⨯=-平面的方程为5310x y z -+-=21.0[()()]sin d ()sin d ()sin d f x f x x x f x x x f x x x πππ''''+=+⎰⎰⎰()d(cos )sin d(())f x x x f x ππ'=-+⎰⎰000[()cos ]()cos d [()sin ]()cos d f x x f x x x f x x f x x x ππππ''=-++-⎰⎰()(0)f f π=+所以:(0)2f = 22.21arctan d +∞⎰x x x 11arctan d()x x +∞=-⎰121arctan 1|d (1)x x xx x +∞+∞=-++⎰211[ln ln(1)]|42x x π+∞=+-+1ln 242π=+23. 2()ln f x x =在[,]a b 上应用Lagrange 中值定理得:222ln ln ln ()()b a b a a b ξξξ-=-<<ln ()x g x x =在2(,)e e 内导数 21l n()0xg x x -'=< 由ln ()x g x x =在2[,]e e 上单调性得 222ln ln 2e e e ξξ>=所以 2224ln ln ()b a b a e->-24.(1)00()()()()()(0)()lim lim h h f x h f x f x f h f x f f x h h→→+--'== 0()(0)()lim ()(0)()h f h f f x f x f f x h→-'=== (2)由()()f x f x '=得:d[()]d ()f x x f x =, 所以l n ()l nf x xC =+ ()x f x Ce = , 由题得:1C = , 所以:()x f x e =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-2332121629124 2、(本小题5分).d )1(22x x x⎰+求3、(本小题5分)求极限limarctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x xx求 5、(本小题5分) .求dt t dxdx ⎰+2216、(本小题5分) ⎰⋅.d csc cot 46x x x 求7、(本小题5分).求⎰ππ2121cos 1dx x x8、(本小题5分)设确定了函数求.x e t y e t y y x dy dx t t==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分).求dx x x ⎰+30110、(本小题5分) 求函数 的单调区间y x x =+-42211、(本小题5分).求⎰π+202sin 8sin dx xx12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分)设函数由方程所确定求.y y x y y x dydx =+=()ln ,226求函数的极值y e e x x =+-215、(本小题5分)求极限lim()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分).d cos sin 12cos x xx x⎰+求 二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分).8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y == 三、解答下列各题( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→limx xx 261218 =22、(本小题3分)⎰+xx xd )1(22⎰++=222)1()1d(21x x =-++12112x c .因为arctan x <π2而limarcsinx x→∞=10故limarctan arcsinx x x→∞⋅=14、(本小题3分)⎰-x x xd 1xx x d 111⎰----= ⎰⎰-+-=x xx 1d d=---+x x c ln .15、(本小题3分) 原式=+214x x6、(本小题4分)⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分)原式=-⎰cos ()1112x d x ππ=-sin112xππ=-1 8、(本小题4分)解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )22229、(本小题4分)令 1+=x u原式=-⎰24122()u u du=-2535312()u u=1161510、(本小题5分)),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当(][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x11、(本小题5分)原式=--⎰d xxcos cos 9202π=-+-163302lncos cos x x π=162ln 12、(本小题6分)dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分)2265yy y y x '+'='=+y yx y 315214、(本小题6分)定义域,且连续(),-∞+∞'=--y e e x x 2122()驻点:x =1212ln由于''=+>-y e e x x 2022)21ln 21(,,=y 故函数有极小值15、(本小题8分)原式=++++++++--→∞lim()()()()()()x x x x x x x1121311011011112222=⨯⨯⨯⨯=101121610117216、(本小题10分)dxxxdx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=xx d 2sin 211)12sin 21(=++ln sin 1122x c二、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x xx ,,()51225120=+> '=-=L xx 2512162 唯一驻点 ''=>=L xx 10240163 即为极小值点故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,=2、(本小题8分)解 :,,.x x x x x x 232311288204==== V x x dx x x dxx =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x xπ=-π=35512)7151(44三、解答下列各题 ( 本 大 题10分 )证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()参考答案一。
填空题(每小题3分,本题共15分) 1、6e 2、k =1 . 3、xx+1 4、1=y 5、x x f 2cos 2)(=二.单项选择题(每小题3分,本题共15分)1、D2、B3、C4、B5、A 三.计算题(本题共56分,每小题7分) 1.解:x x x 2sin 24lim0-+→81)24(2sin 2lim 21)24(2sin lim 00=++=++=→→x x x x x x x x 2.解:21lim 11lim )1(1lim )111(lim 0000=++=+--=---=--→→→→x x x x x x x x x x x x x x xe e e e xe e e e x x e e x3、解: 2cos 102lim xdt e x tx ⎰-→exxe xx 212sin lim 2cos0-=-=-→ 4、解:)111(1122xxx y ++++='211x+=5、解:t t t t dx dy 21121122=++=222232112()241d y t d dydxtdtt dt dx dxt t-+===-+6、解:C x d x dx x x++=++-=+⎰⎰)32cos(21)332()32sin(21)32sin(127、 解: ⎰⎰=x x e x x x e d cos d cos⎰+=sinxdx e cos x x e x ⎰+=x de sin cos x x e xdx cos sin cos x e x e x e x x x ⎰-+=C x x e x ++=)cos (sin8、解:⎰⎰⎰⎰--+==-01101120d )(d )(d )(d )1(x x f x x f x x f x x f …⎰⎰+++=-10011d 1d x x e xx1001)1ln(d )11(x x e e x x +++-=⎰-2ln )1ln(101++-=-x e)1ln()1ln(11e e +=++=-四. 应用题(本题7分)解:曲线2x y =与2y x =的交点为(1,1),于是曲线2x y =与2y x =所围成图形的面积A 为31]3132[)(1021232=-=-=⎰x x dx x x AA 绕y 轴旋转所产生的旋转体的体积为:()πππ10352)(1052142=⎥⎦⎤⎢⎣⎡-=-=⎰y y dy y y V五、证明题(本题7分) 证明: 设x x f x F -=)()(,显然)(x F 在]1,21[上连续,在)1,21(内可导, 且021)21(>=F ,01)1(<-=F . 由零点定理知存在]1,21[1∈x ,使0)(1=x F .由0)0(=F ,在],0[1x 上应用罗尔定理知,至少存在一点)1,0(),0(1⊂∈x ξ,使01)()(=-'='ξξf F ,即1)(='ξf …。