一次函数图象的变换
函数专题——-一次函数的图像和性质
![函数专题——-一次函数的图像和性质](https://img.taocdn.com/s3/m/d294cb79680203d8cf2f2466.png)
教学过程一、课程导入画出y=-x与y=-x+2的图象,找出它们的相同点和不同点小结:直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。
即k值相同时,直线一定平行。
二、 复习预习①如图〔l 〕所示,当k >0,b >0时,直线经过第一、二、三象限〔直线不经过第四象限〕;②如图〔2〕所示,当k >0,b ﹥O 时,直线经过第一、三、四象限〔直线不经过第二象限〕;③如图〔3〕所示,当k ﹤O ,b >0时,直线经过第一、二、四象限〔直线不经过第三象限〕;④如图〔4〕所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限〔直线不经过第一象限〕.k >0时,y 的值随x 值的增大而增大;当k<0时, y 的值随x 值的增大而减小;一次函数y =kx +b 的图象为 一条直线,与坐标轴的交点分别为)0.(k b ,(0,b).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置.三、知识讲解考点1 一次函数图象上点的坐标特征1、一次函数y =kx +b 的图象为一条直线,与坐标轴的交点分别为)0.(kb ,(0,b).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置.2、正比例函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函数的解析式.根据正比例函数的定义,知xy 是定值. 3、经过函数的某点一定在函数的图象上.在这条直线上的各点的坐标一定适合这条直线的解析式.考点2 一次函数图像的平移上加下减〔b〕,左加右减〔x〕直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。
即k值相同时,直线一定平行。
考点3 待定系数法求一次函数关系式先设待求函数关系式〔其中含有未知的常数系数〕,再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。
新42.一次函数的图像变换
![新42.一次函数的图像变换](https://img.taocdn.com/s3/m/0a2d458883d049649b66584f.png)
35. 【中】将直线 y = 2 x − 3 向下平移 4 个单位可得直线______,再向左平移 2 个单位可得 直线_______ 【答案】 y = 2 x − 7 , y = 2 x − 3 36. 【中】将直线 y = 2 x + 1 向下平移 3 个单位,得到的直线应为_______,关于 y 轴对称的 直线为________ 【答案】 y = 2 x − 2 , y = −2 x − 2 37. 【中】 (沈阳)将 y = −3x + 4 先向左平移 3 个单位,再向下平移 5 个单位,得到的直线 为__________. 【答案】 y = −3x − 10 38. 【中】 (2009 青海)直线 y = x + 2 向右平移 3 个单位,再向下平移 2 个单位所得直线的 解析式为________ 【答案】 y = x − 3 39. 【中】若直线 y = kx + b 平行直线 y = 3x + 4 ,且过点 (1,− 2 ) ,则将 y = kx + b 向下平移
3 个单位的直线是______. 【答案】 y = 3x − 8
1) ,则平移后的直线的函数关系式为 40. 【中】将直线 y = −3x + 5 平移,使它经过点 ( −1,
________ 【答案】 y = −3x − 2
41. 【中】已知一次函数 y = −3x + 2 ,它的图象不经过第____象限,将直线 y = 2 x − 4 向上 平移 5 个单位后,所得直线的表达式为________ 【答案】三, y = 2 x + 1 42. 【中】 (2010 人大附初二上统练)若直线 y = − mx + 1 + n 沿着 x 轴向左平移 3 个单位得 到 y = − x + 1 ,则 m − n = __________. 【答案】 −2 43. 【中】 (2009 枣庄)在直角坐标系中有两条直线 l1 、 l2 ,直线 l1 所对应的的函数关系式 为 y = x − 2 ,如果将坐标纸折叠,使 l1 与 l2 重合,此时点 ( −1,0 ) 与点 ( 0 ,− 1) 也重合, 则直线 l2 所对应的函数关系式为______________ 【答案】 y = x + 2
一次函数图象的变换
![一次函数图象的变换](https://img.taocdn.com/s3/m/c7dc7743ac02de80d4d8d15abe23482fb4da02fb.png)
一次函数图象的变换(一)——平移求一次函数图像平移后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住点的坐标变化解决问题。
知识点:“已知一个点的坐标和直线的斜率 k,我们就可以写出这条直线的解析式”。
我们知道:y =kx+b经过点(0,b),而(0,b)向上平移m个单位得到点(0,b+m),向下平移m个单位得到点(0,b-m),向左平移m个单位得到点(0-m,b),向右平移m个单位得到点(0+m,b ),直线y =kx+b平移后斜率不变仍然是k,设出平移后的解析式为y =kx+ h,把平移后得到的点的坐标带入这个解析式求出h,就可以求出平移后直线的解析式。
下面我们通过例题的讲解来反馈知识的应用:例1:把直线y=2x-1向右平移1个单位,求平移后直线的解析式。
分析:y=2x-1经过点(0,-1),向右平移1个单位得到(1,-1)。
平移后斜率不变,即k=2,所以可以设出平移后的解析式为y =2x+ h,再将点(1,-1)代入求出解析式中的h,就可以求出平移后直线的解析式。
解:设平移后的直线解析式为y=2x+h点(0,-1)在y=2x-1上,向右平移1个单位得到(1,-1),将点(1,-1)代入y=2x+h中得:-1=2×1+hh=-3所以平移后直线的解析式为y=2x-3例2:把直线y=2x-1向上平移3个单位,再向右平移1个单位,求平移后直线的解析式。
分析:点(0,-1)在直线y=2x-1上,当直线向上平移3个单位,点变为(0,-1+3),即为(0,2);再向右平移1个单位后,点(0,2)变为点(0+1,2),即点变为(1,2)。
设出平移后的解析式为y =kx+h,根据斜率k =2不变,以及点(1,2)就可以求出h,从而就可以求出平移后直线的解析式。
解:设平移后的直线解析式为y=2x+h.易知点(0,-1)在直线y=2x-1上,则此点按要求平移后的点为:平移后得到的点(1,2)在直线y=2x+h 上则:2=2×1+hh=0所以平移后的直线解析式为y=2x总结:求直线平移后的解析式时,只要找出一个点坐标,求出按要求平移后此点的坐标变为多少,再根据斜率不变和变化后的点来求解析式。
一次函数图象的变换--对称
![一次函数图象的变换--对称](https://img.taocdn.com/s3/m/daca666950e2524de4187e8d.png)
一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。
知识点:1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。
设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。
2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。
设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。
下面我们通过例题的讲解来反馈知识的应用:例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。
分析:关于x轴对称时,横坐标不变纵坐标互为相反数;关于y轴对称时,纵坐标不变横坐标互为相反数;关于某条直线(垂直坐标轴)对称时,则相关点解:1、关于x轴对称设点( x , y )在直线l上,则点( x , -y )在直线y=2x+6上。
即:-y=2x+6y=-2x-6所以关于x轴对称的直线l的解析式为:y=-2x-6.关于直线对称。
2、关于y轴对称设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。
即:y=2(-x) +6y=-2x+6所以关于y轴对称的直线l的解析式为:y=-2x+6.3、关于直线x=5对称(作图)由图可知:AB=BC则C点横坐标:-x+5+5=-x+10所以点C (-x+10, y)设点(x,y)在直线l上,则点(-x+10, y)在直线y=2x+6上。
即:y=2(-x+10)+6y=-2x+26所以关于直线x=5对称的直线l的解析式为:y=-2x+26.总结:根据对称求直线的解析式关键在找对称的坐标点。
关于x轴对称,横坐标不变纵坐标互为相反数;关于y轴对称,纵坐标不变横坐标互为相反数;关于某条直线(垂直对称轴)对称,可见例题中分析的方法去求对称点。
微专题六 一次函数的图象与几何变换
![微专题六 一次函数的图象与几何变换](https://img.taocdn.com/s3/m/4574c9c93169a4517623a30b.png)
专题解读
一次函数图象的平移规律:左加右减、上加 下减;图象的平移不改变 k 的值.
探究一 一次函数图象的平移
典型例题 1 一次函数 y=kx+b 的图象,如图 所示.
(1) 求这个一次函数的表 达式;
(2) 如果这个一次函数的图象向上平移 m 个单位得到的图象恰与它向右平移 n 个单位得 到的图象完全相同,求 m,n 之间的关系.
解:(1)这个一次函数的表达式为 y=-21x +2;
(2)依题意可得:-12x+2+m=-12(x-n) +2,
化简得:m=21n.
对点自测
1. 直线 y=2x+2 沿 y 轴向下平移 6 个单位 后与 x 轴的交点坐标是( D )
A. (-4,0)
B. (-1,0)
C. (0,2)
D. (2,0)
A. (0,4) B. (0,3) C. (-4,0) D. (0,-3)
解:∵直线 y=-43x+8 与 x 轴,y 轴分别
交于点 A 和点 B, ∴y=0 时,x=6, 则 A 点坐标为:(6,0), 当 x=0 时,y=8, 则 B 点坐标为(0,8); ∴BO=8,AO=6, ∴AB= 82+62=10,
A. (-2,0)
B. (2,0)
C. (-6,0)
D. (6,0)
解:∵直线 l1 经过点(0,4),l2 经过点(3, 2),且 l1 与 l2 关于 x 轴对称,
∴两直线相交于 x 轴上,直线 l1 经过点(3, -2),l2 经过点(0,-4),
把点(0,4)和点(3,-2)代入直线 l1 的表达 式 y=kx+b,则有
2. 如图,直线 l1 与直线 l2 关于 y 轴对称, 4
一次函数图像的平移变换
![一次函数图像的平移变换](https://img.taocdn.com/s3/m/377a20a3988fcc22bcd126fff705cc1755275ff0.png)
一次函数图像的平移变换一次函数又称为线性函数,表示为y = kx + b。
其中,k为斜率,b为截距。
在数学中,我们经常会遇到需要对一次函数的图像进行平移变换的情况。
本文将介绍一次函数图像的平移变换及其相关概念和公式。
1. 平移变换的概念和基本原理平移变换是指将函数图像沿着横轴或纵轴方向平移一定的单位长度。
当对一次函数进行平移变换时,只需考虑平移的距离和方向。
2. 沿横轴的平移变换当对一次函数图像沿横轴正方向平移h个单位长度时,函数表达式中的x值需要减去h。
即新的函数表达式为y = k(x - h) + b。
同样地,当对一次函数图像沿横轴负方向平移h个单位长度时,函数表达式中的x值需要增加h。
3. 沿纵轴的平移变换当对一次函数图像沿纵轴正方向平移v个单位长度时,函数表达式中的y值需要增加v。
即新的函数表达式为y = kx + (b + v)。
同样地,当对一次函数图像沿纵轴负方向平移v个单位长度时,函数表达式中的y值需要减去v。
4. 示例和应用为了更好地理解一次函数图像的平移变换,我们来看一个具体的示例。
假设有一条一次函数的图像,其函数表达式为y = 2x + 3。
我们对该函数图像进行以下平移变换:- 沿横轴正方向平移2个单位长度;- 沿纵轴负方向平移3个单位长度。
对于沿横轴的平移,我们将函数表达式中的x值减去2,得到新的函数表达式y = 2(x - 2) + 3。
这个新的函数表示了原函数向右平移2个单位长度后的图像。
对于沿纵轴的平移,我们将函数表达式中的y值减去3,得到新的函数表达式y = 2x + (3 - 3)。
这个新的函数表示了原函数向下平移3个单位长度后的图像。
通过对一次函数图像的平移变换,我们可以改变函数图像在平面坐标系中的位置,从而更灵活地应用于实际问题中。
5. 总结一次函数图像的平移变换是一种常见的数学操作,通过改变函数表达式中的自变量或因变量来实现。
沿横轴的平移变换可以通过调整函数表达式中的x值实现,而沿纵轴的平移变换可以通过调整函数表达式中的y值实现。
第3讲 一次函数的解析式与图象变换(教师版)
![第3讲 一次函数的解析式与图象变换(教师版)](https://img.taocdn.com/s3/m/26aaef3df5335a8102d220e4.png)
板块一
此处需要添加知识点1
已知:正比例函数
1
1
1
一次函数
板块二
此处需要添加知识点1
把函数
1
1
阅读下面的材料:
∵直线分别与轴、轴交于点、,∴点∵,∴直线为.∴点的坐标为∵,∴.∴点在轴的正半轴上.
当点在点的左侧时,
当点在点的右侧时,
1
⑴2
3
如图,在平面直角坐标系中,
板块三
1
在直角坐标系中画函数
1
求在直角坐标平面中不等式1
如图,已知直线
1
已知一次函数图象经过点
1
一辆汽车在行驶过程中,路程1
已知一次函数
1
已知一次函数1
若将直线
1
如图,将直线
1
在同一坐标系中,对于函数①2
某一次函数的图象与直线
1
已知:一次函数2
已知点
1
在直角坐标系中画函数
的值对应取绝对值所得,
图象中位于轴下方部分翻折到轴上方所得,直1
已知
1
如果一条直线
1
已知一次函数
1
函数
1
平面直角坐标系中,正方形
1
解关于
标注函数>二次函数。
一次函数的几何变换
![一次函数的几何变换](https://img.taocdn.com/s3/m/ecd7737e852458fb770b5631.png)
)左右平移过程中,纵坐标不变,改变的是横坐标也就是自变量,向左平移自变量变小,因此要加上平移的变大,因此要减去平移的量,简述为“左加右减”.
“左加右减,上加下减;左右平移在括号,上下平移在末稍”.
()关于轴对称(翻折)后,纵坐标不变,横坐标变为相反数.
即关于轴对称后的解析式为18/06/12
x x 2y y =kx +b y
()关于原点对称(绕原点旋转即关于原点对称后的解析式为【方法】口诀:“关于谁,谁不变;另一个,变相反;关于原点都要变”.
()关于直线对称(翻折)
【方法】
①根据两点确定一条直线,结合图形求出对称后直线上两个点的坐标,再用待定系数法求出解析式即可.3y =kx +b 已知直线与直线1y =kx +b 2y =n
【方法】根据两点确定一条直线,结合图形求出对称后直线上两个点的坐标,再用待定系数法求出解析式即可.
直线绕原点逆时针旋转后的解析式为( ).
A. B. C. D. y =3x O 90∘y =− x 13
y =3x
y = x 13
y =−3x。
第二十章 一次函数-3一次函数的性质(上)沪教版八年级第二学期数学
![第二十章 一次函数-3一次函数的性质(上)沪教版八年级第二学期数学](https://img.taocdn.com/s3/m/184fe5d8846a561252d380eb6294dd88d0d23dc8.png)
技能点拨
【答案】C 【解析】解:过C点作CD⊥x轴于D,如图. ∵y=-2x+2的图象分别与x轴、y轴交于A,B两点, ∴当x=0时,y=2,则B(0,2), 当y=0时,-2x+2=0,解得x=1,则A(1,0). ∵线段AB绕A点顺时针旋转90°, ∴AB=AC,∠BAC=90°, ∴∠BAO+∠CAD=90°, 而∠BAO+∠ABO=90°, ∴∠ABO=∠CAD. 在△ABO和△CAD中
di
er
bu
fen
第二部 分
技能点拨
【答案】C 【解析】解: 由“上加下减”的原则可知,直线y=-2x向下平移2个单位,得 到直线是:y=-2x-2. 故选C.
技能点拨
变式:(中)把直线y=2x-1向左平移1个单位,平移后直线的关 系式为( ) A.y=2x-2 B.y=2x+1 C.y=2x D.y=2x+2
课堂检测
【解答】(3)直线y=2x-4与x轴的交点A的坐标为(2,0),与直线x=-1 的交点B的坐标为(-1,-6), 直线y=2x-4绕点P(-1,0)顺时针旋转90°时,A点的对应点A′的坐标为(1,-3),B点的对应点B′的坐标为(-7,-0), 设旋转后的直线解析式为y=kx+b,把A′(-1,-3),B′(-7,0)代入得
知识回顾
一次函数图像的几何变换
(2)对称 直线y=kx+b,(k≠0,且k,b为常数) ①关于x轴对称,就是x不变,y变成-y:-y=kx+b,即y=-kx-b; (关于X轴对称,横坐标不变,纵坐标是原来的相反数) ②关于y轴对称,就是y不变,x变成-x:y=k(-x)+b,即y=kx+b;(关于y轴对称,纵坐标不变,横坐标是原来的相反数) ③关于原点对称,就是x和y都变成相反数:-y=k(-x)+b,即 y=kx-b.(关于原点轴对称,横、纵坐标都变为原来的相反数)
初中数学 第19章一次函数 教案及试题
![初中数学 第19章一次函数 教案及试题](https://img.taocdn.com/s3/m/25765b5f770bf78a652954f3.png)
\ 1 /0⎨b ⎩ ⎩ ⎪第十九章 一次函数基础知识通关19.1 函数1. 变量与常量:在一个变化过程中,我们称数值发生的量为变量,数值始终 的量为常量。
2. 自变量、函数、函数值:一般地,在一个变化过程中,如果有两个变量 x 与 y ,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是 ,y 是 x 的。
如果当 x=a 时 y=b ,那么 b 叫做当自变量的值为 a 时的 。
3. 解析式:像 y=50-0.1x 这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。
这种式子叫做函数的解析式。
4. 函数的图象:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标, 那么坐标平面内由这些点组成的图形,就是这个函数的图象。
19.2 一次函数5. 一次函数:若两个变量 x,y 间的关系式可以表示成 y=kx+b(k ≠0)的形式,则称 y 是 x 的一次函数(x 为自变量,y 为因变量)。
特别地,当 b=0 时,称 y 是 x 的正比例函数。
(1)b .0 k 0 b 012(2)(3)b . 0 k1 2b 03b 03(1)(2) (3)6. 正比例函数一般式:y=kx (k ≠0),其图象是经过 的一条直线。
7. 正比例函数与一次函数性质正比例函数 y=kx (k ≠0)的图象是一条经过原点的直线, 当 k>0 时,直线 y=kx 经过第一、三象限,y 随 x 的增大而 , 当 k<0 时,直线 y=kx 经过第二、四象限,y 随 x 的增大而 , 在一次函数 y=kx+b (k ≠0)中:当 k>0 时,b>0,y 随 x 的增大而增大,与 y 轴交点在 y 轴正半轴,图象过 象限; 当 k>0 时,b<0,y 随 x 的增大而增大,与 y 轴交点在 y 轴负半轴,图象过 象限; 当 k<0 时,b>0,y 随 x 的增大而减小,与 y 轴交点在 y 轴正半轴,图象过 象限; 当 k<0 时,b<0,y 随 x 的增大而减小,与 y 轴交点在 y 轴负半轴,图象过 象限;8.已知两点坐标求函数解析式:待定系数法9. 一次函数的图象变换直线的平移:⑴当直线 y=kx+b 向左(右)平移 m(m>0)个单位时,可得:y=k(x+m)+b(y=k(x-m)+b); ⑵当直线 y=kx+b 向上(下)平移 n(n>0)个单位时,可得:y=kx+b+n(y=kx+b-n).由一次函数平移的特征可以发现,如果两个一次函数的图象互相平行,则 k 值相等;反之亦然. 直线的对称:⑴直线 y=kx+b 关于 x 轴对称后得到的直线解析式为 ; ⑵直线 y=kx+b 关于 y 轴对称后得到的直线解析式为 ; ⑶直线 y=kx+b 关于原点对称后得到的直线解析式为.解一元一次不等可转化为式 kx+b>0 或kx+b<0(k≠0)10.一次函数与方程和不等式:19.3课题学习选择方案本章知识结构图从图象上看从图象上看解一元一次方程kx+b=0(k≠0)可转化为一次函数 y=kx+b当y=0 时,求 x 值确定直线 y=kx+b与x 的交点横坐标一次函数 y=kx+b求当 y>0 或y<0时,x 的取值范围当y>0 时,直线上的点在 x 轴上方当y<0 时,直线上的点在 x 轴下方\ 2 /单元检测一.选择题(共10 小题)1.一本笔记本5 元,买x 本共付y 元,则5 和y 分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量2.下列曲线中不能表示y 是x 的函数的是()A.B.C.D.3.已知 A、B 两地相距 3 千米,小黄从 A 地到B 地,平均速度为 4 千米/小时,若用 x 表示行走的时间(小时),y 表示余下的路程(千米),则y 关于x 的函数解析式是()A.y=4x(x≥0)B.y=4x﹣3(x≥)C.y=3﹣4x(x≥0)D.y=3﹣4x(0≤x≤)4.函数y=的自变量的取值范围是()A.x≥0 B.x≠2019 C.x≤2019 D.x≥20195.当x=2 时,函数y=﹣x2+1 的值是()A.﹣2 B.﹣1 C.2 D.36.一天,李师傅骑车上班途中因车发生故除,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,下列说法中错误的是()A.李师傅上班处距他家 2000 米B.李师傅修车用了 15 分钟C.修车后李师傅骑车速度是修车前的 2 倍D.李师傅路上耗时 20 分钟7.若函数y=x m+1+1 是一次函数,则常数m 的值是()A.0 B.1 C.﹣1 D.﹣28.一次函数y=ax+b 和y=bx+a 的图象可能是()A.B.C.D.9.若一次函数y=(m﹣1)x﹣3 的图象经过第二、三、四象限,则m 的取范围为()A.m>0 B.m<0 C.m>1 D.m<110.如图,函数y=mx+n 和y=﹣2x 的图象交于点A(a,4),则方程mx+n=﹣2x 的解是()A.x=﹣2B.x=﹣3C.x=﹣4D.不确定\ 3 /11.某物体运动的路程S(厘米)与运动的时间t(秒)之间的关系如图所示.则该物休运动20 秒所经过的路程是厘米.12.函数y=(m﹣4)x是正比例函数,则m=.13.若直线y=kx﹣3 经过点(1,﹣2)和点(0,b),则k﹣b 的值是.14.如图,一次函数y=6﹣x 与正比例函数y=kx 的图象如图所示,则k 的值为.15.已知一次函数的图象经过两点A(﹣1,3),B(2,﹣5),则这个函数的表达式为.16.一次函数y=kx+b,当1≤x≤4 时,3≤y≤6,则k+b=.17.已知正比例函数y=kx(k 是常数,k≠0),当﹣3≤x≤1 时,对应的y 的取值范围是﹣1≤y≤,且y 随x 的减小而减小,则k 的值为.18.如图所示,一次函数y=ax+b 的图象与x 轴交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程﹣ax+b=0 的解是.第18 题图第19 题图19.同一平面直角坐标系中,一次函数y=k1x+b 的图象与一次函数y=k2x 的图象如图所示,则关于x 的方程k1x+b=k2x 的解为.20.“五一黄金周”期间李师傅一家开车去旅游,出发前查看了油箱里有 50 升油,下面的两幅图分别描述了行驶里程及耗油情况,行驶130 公里时,油箱里剩油量为升.\ 4 /21.若一次函数 y=(6﹣3m)x+(2n﹣4)不经过第三象限,求 m、n 的取值范围.22.如图,四边形 ABCD 为菱形,已知 A(3,0),B(0,4).(1)求点 C 的坐标;(2)求经过点 C,D 两点的一次函数的解析式;(3)求菱形 ABCD 的面积.23.如图,函数y=﹣2x+3 与y=﹣x+m 的图象交于P(n,﹣2)(1)m,n 的值;(2)直接写出不等式 -x+m>﹣2x+3 的解集;(3)求出△ABP 的面积.24.已知 O 为原点,点 A(8,0)及在第一象限的动点 P(x,y),且 x+y=8,设△OPA 的面积为 S.(1)求S 关于x 的函数解析式;(2)求x 的取值范围;(3)当S=12 时,求 P 点坐标;(4)画出函数 S 的图象,\ 5 /\ 6 /25. 某公交车每天的支出费用为 600 元,每天的乘车人数 x (人)与每天利润(利润=票款收入﹣支出费用)y (元)的变化关系如下表所示(每位乘客的乘车票价固定不变):(1) 在这个变化关系中,自变量是什么?因变量是什么? (2) 若要不亏本,该公交车每天乘客人数至少达到多少? (3) 请你判断一天乘客人数为 500 人时,利润是多少?(4) 试写出该公交车每天利润 y (元)与每天乘车人数 x (人)的关系式.四、附加题(共 2小题)26. 某市为支援灾区建设,计划向 A 、B 两受灾地运送急需物资分别为 60 吨和 140 吨,该市甲、乙两地有急需物资分别为 120 吨和 80 吨,已知甲、乙两地运到 A 、B 两地的每吨物资的运费如表所示:x 的取值范围;(2) 求最低总运费,并说明总运费最低时的运送方案.27.五一节快到了,单位组织员工去旅游,参加人数估计为 10 至20 人,甲、乙两家旅行社为了吸引更多的顾客,分别提出了优惠方法,甲旅行社的优惠方法是:买 3 张全票,其余人按半价优惠,乙旅行社的优惠方法是:一律按 6 折优惠,已知两家旅行社的原价均为每人 100 元.(1)分别表示出甲旅行社收费 y1,乙旅行社收费 y2 与旅游人数 x 的函数关系式;(2)随着团体人数的变化,哪家旅行社的收费更优惠?\ 7 /基础知识通关答案1.变化,不变2.自变量,函数,函数值6.原点(0,0)7.增大,减小一、二、三, 一、三、四, 一、二、四, 二、三、四9.y=-kx-b, y=-kx+b, y=kx-b单元检测答案一.选择题(共10 小题)1.【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,所以 5 和y 分别是常量,变量,据此判断即可.【解答】解:一本笔记本 5 元,买 x 本共付 y 元,则 5 和 y 分别是常量,变量.故选:C.【知识点】12.【分析】根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.【解答】解:A、B、C 选项中,对于一定范围内自变量 x 的任何值,y 都有唯一的值与之相对应,y 是x 的函数;D 选项中,对于一定范围内 x 取值时,y 都有2 个值与之相对应,则 y 不是x 的函数;故选:D.【知识点】23.【分析】根据路程=速度×时间,容易知道 y 与x 的函数关系式.【解答】解:根据题意得:全程需要的时间为:3÷4=(小时)∴y=3﹣4x(0≤x≤).故选:D.【知识点】54.【分析】根据被开方数大于等于 0 列式计算即可得解.【解答】解:根据题意得,2019﹣x≥0,解得 x≤2019.故选:C.【知识点】25.【分析】把x=2 代入函数关系式进行计算即可得解.【解答】解:x=2 时,y=.故选:B.【知识点】26.【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,李师傅上班处距他家 2000 米,故选项 A 正确;李师傅修车用了 15﹣10=5(分钟),故选项 B 错误;修车后李师傅骑车速度是修车前的:=2 倍,故选项C 正确;李师傅路上耗时 20 分钟,故选项 D 正确,故选:B.【知识点】4\ 8 /7.【分析】根据一次函数解析式 y=kx+b(k≠0,k、b 是常数)的结构特征:k≠0;自变量的次数为 1;常数项 b 可以为任意实数.可得 m+1=1,解方程即可.【解答】解:由题意得:m+1=1,解得:m=0,故选:A.【知识点】58.【分析】对于各选项,先确定一条直线的位置得到 a 和b 的符号,然后根据此符号判断另一条直线的位置是否符号要求.【解答】解:依次分析选项可得:A、读图可得,b>0,a>0;两条直线都过一、二、三象限,与图不符;B、读图可得,b>0,a<0;一条直线过一、三、四象限,另一条过一、二、四象限,与图不符;C、读图可得,b<0,a<0;两条直线都过二、三、四象限,与图不符;D、读图可得,b>0,a<0;一条直线过一、三、四象限,另一条过一、二、四象限,与图相符.故选:D.【知识点】79.【分析】一次函数 y=(m﹣1)x﹣3 的图象经过第二、三、四象限,则一次项系数 m﹣1 是负数,即可求得 m 的范围.【解答】解:根据题意得:m﹣1<0,解得:m<1,故选:D.【知识点】710.【分析】把A(a,4)代入 y=﹣2x 求得a 的值,得出 A(﹣2,4),根据方程的解就是两函数图象交点的横坐标即可得出答案.【解答】解:∵y=﹣2x 的图象过点 A(a,4)∴4=﹣2a,解得 a=﹣2∴A(﹣2,4)∵函数 y=mx+n 和 y=﹣2x 的图象交于点 A(﹣2,4)∴方程mx+n=﹣2x 的解是x=﹣2 故选:A.【知识点】10二.填空题(共 10 小题)11.【分析】由图象可求出函数的关系式,再依据关系式,已知一个变量求另一个变量的值.【解答】解:设 S 与 t 的关系式为 S=kt,当 t=4 时,S=10,代入得:k=∴S=t当t=20 时,S==50【知识点】712.【分析】根据正比例函数的定义得到 m2﹣15=1 且m﹣4≠0.【解答】解:∵y=(m﹣4)x 是正比例函数∴m2﹣15=1 且 m﹣4≠0解得 m=4(不合题意,舍去)或 m=﹣4【知识点】613.【分析】把题中所给两点的坐标代入直线解析式计算可得 k 和b 的值.【解答】解:\ 9 /∵直线 y=kx﹣3 经过点(1,﹣2)和点(0,b)∴,解得k=1,b=﹣3∴k﹣b=4.【知识点】714.【分析】将点 A 的横坐标代入 y=6﹣x 可得其纵坐标的值,再将所得点 A 坐标代入 y=kx 可得k.【解答】解:设 A(2,m).把 A (2,m)代入 y=6﹣x 得:m=﹣2+6=4把A (2,4)代入 y=kx 得4=2k,解得 k=2.故答案是:2.【知识点】815.【分析】设直线 AB 的解析式为 y=kx+b,利用待定系数法即可解决问题.【解答】解:设直线 AB 的解析式为 y=kx+b,把A(﹣1,3),B(2,﹣5)两点坐标代入得到:,解得,∴这个函数的解析式为y=﹣x+【知识点】816.【分析】分k>0 和k<0 两种情况,结合一次函数的增减性,可得到关于 k、b 的方程组.【解答】解:当 k>0 时,此函数是增函数∵当 1≤x≤4 时,3≤y≤6∴当 x=1 时,y=3;当 x=4 时,y=6∴,解得当 k<0 时,此函数是减函数∵当 1≤x≤4 时,3≤y≤6∴当 x=1 时,y=6;当 x=4 时,y=3∴,解得:∴k+b=3 或6.【知识点】7,817.【分析】由一次函数的性质,进行运算求解.【解答】解:易知 k>0 时,y 随 x 的减少而减少∴当 x=﹣3 时,y=﹣1,代入正比例函数 y=kx 得:﹣1=﹣3k,解得 k=【知识点】6,718.【分析】由于一次函数 y=ax+b 与y=﹣ax+b 的图象关于 y 轴对称,所以一次函数 y=ax+b 与x 轴的交点(2,0)关于y 轴的对称点即为关于 x 的方程﹣ax+b=0 的解.【解答】解:∵一次函数 y=ax+b 与 y=﹣ax+b 的图象关于 y 轴对称∴一次函数 y=ax+b 与 x 轴的交点关于 y 轴的对称点即为 y=﹣ax+b 与 x 轴的交点\ 10 /又∵一次函数 y=ax+b 的图象与 x 轴交于点(2,0)∴一次函数 y=﹣ax+b 的图象与 x 轴交于点(﹣2,0)∴关于 x 的方程﹣ax+b=0 的解是 x=﹣2【知识点】919.【分析】根据函数图象交点的横坐标是关于 x 的方程的解,可得答案.【解答】解:由函数图象,得两直线的交点坐标是(﹣1,﹣2),所以,关于 x 的方程 k1x+b=k2x 的解为 x=﹣1【知识点】1020.【分析】找准几个关键点进行分析解答即可.【解答】解:由图象可知:当用时 1 小时时,油量剩余 45 升,行驶了 30 公里;当用时在 1﹣2.5 小时之间时,可得:每小时行驶的里程为公里,每小时耗油量为升∴当用时 1+1=2 小时时,此时刚好行驶了 130 公里,此时油箱里的剩油量为:45﹣8×1=37 升【知识点】4,7三.解答题(共 7 小题)21.【分析】若函数 y=kx+b 的图象不经过第三象限,则 k<0,b≥0,由此可以确定 m、n 的取值范围.【解答】解:∵y=(6﹣3m)x+(2n﹣4)不经过第三象限∴6﹣3m<0,2n﹣4≥0故 m>2,n≥2【知识点】722.【分析】(1)利用勾股定理求出 AB,再利用菱形的性质求出 OC 的长即可.(2)求出 C,D 两点坐标,利用待定系数法即可解决问题.(3)利用菱形的面积公式计算即可.【解答】解:(1)∵A(3,0),B(0,4)∴OA=3,OB=4∴AB=5∵四边形 ABCD 是菱形∴BC=AB=5∴OC=1∴C(0,﹣1)(2)由题意 C(0,﹣1),D(3,﹣5),设直线 CD 的解析式为 y=kx+b,则有,解得∴直线CD 的解析式为y=﹣x﹣1(3)S=5×3=15菱形 ABCD【知识点】823.【分析】(Ⅰ)先把P(n,﹣2)代入y=﹣2x+3 求出n 得到P(,﹣2),然后把P 点坐标代入y=﹣x+m 求出m;(Ⅱ)写出直线y=﹣x+m 在直线y=﹣2x+3 的上方所对应的自变量的范围即可;(Ⅲ)先求出 A、B 的坐标,然后利用三角形面积公式计算即可.【解答】解:(Ⅰ)把P(n,﹣2)代入y=﹣2x+3 得﹣2n+3=﹣2,解得n=;∴P(,﹣2)把P(,﹣2)代入y=﹣x+m 得﹣+m=﹣2,解得m=﹣(Ⅱ)不等式﹣x+m>﹣2x+3 的解集为x>;(Ⅲ)当 x=0 时,y=﹣2x+3=3,则 A(0,3)当x=0 时,y=﹣x﹣=﹣,则B(0,﹣)75所以△ABP 的面积=×(3+ )×=16【知识点】8,1024.【分析】(1)根据三角形的面积公式即可得出结论;(2)根据(1)中函数关系式及点 P 在第一象限即可得出结论;(3)把S=12 代入(1)中函数关系即可得出 x 的值,进而得出 y 的值;(4)利用描点法画出函数图象即可.【解答】解:(1)∵A 和 P 点的坐标分别是(8,0)、(x,y)∴S=×8×y=4y∵x+y=8∴y=8﹣x∴S=4(8﹣x)=32﹣4x∴所求的函数关系式为:S=﹣4x+32(2)由(1)得 S=﹣4x+32>0,解得:x<8又∵点 P 在第一象限S∴x>0综上可得 x 的范围为:0<x<8(3)∵S=12∴﹣4x+32=12,解得 x=5∵x+y=8∴y=8﹣5=3,即 P(5,3)(4)∵解析式为 S=﹣4x+32∴函数图象经过点(8,0)(0,32)(但不包括这两点的线段)所画图象如图【知识点】725.【分析】(1) 在变化过程中,哪个变量是随着哪个变量的变化而变化的,从而确定自变量、因变量;(2) 从表格中可以看出,当利润 y =0 时,相应的人数 x =300,从而得出答案;(3) 从表格中所列数据可以看出,当人数 x 每增加 50 人,利润 y 就相应的增加 100 元,通过推算可得出结果;(4) 根据表格中两个变量的变化规律,可以直接写出函数的关系式,【解答】解:(1)在这个变化关系中,自变量是每天的乘车人数 x (人);因变量是每天利润 y (元);(2) 当 y =0 时,x =300因此要不亏本,该公交车每天乘客人数至少达到 300 人(3)200+100× =400 元因此当一天乘客人数为 500 人时,利润是 400 元(4)y =100×=2x ﹣600 【知识点】1,4四、附加题(共 2 小题)26.【分析】(1) 设甲地运到 A 地的急需物资为 x 吨,则运到 B 地(120﹣x )吨,乙地运到 A 地(60﹣x )吨,运到 B 地(x+20)吨,根据题意即可求得总运费 y 与 x 的函数关系式;(2) 由(1)中的函数解析式,即可得 y 随 x 的增大而增大,则可求得何时总运费最低,继而可求得总运费最低时的运输方案.【解答】解:(1) 设甲地运到 A 地的急需物资为 x 吨,则运到 B 地(120﹣x )吨,乙地运到 A 地(60﹣x )吨,运到 B 地(x+20)吨.可得:y =20x+25(120﹣x )+15(60﹣x )+24(20+x )即 y =4x+4380(0≤x ≤60)(2) ∵k =4>0 ∴y 随 x 的增大而增大,当 x =0 时,最低费用 y =4380(元)方案:甲运往 B 地 120 吨,乙运 A 地 60 吨.乙运 B 地 20 吨.【知识点】7,一次函数的应用27.【分析】(1)根据甲、乙两旅行社的优惠方法,找出甲旅行社收费 y 1,乙旅行社收费 y 2 与旅游人数x 的函数关系式;(2)分 y 1<y 2,y 1=y 2,y 1>y 2 三种情况找出 x 的取值范围或 x 的值,此题得解.【解答】解:(1)根据题意得:y 1=100×3+100× (x ﹣3)=50x+150;y 2=100×60%x =60x .(2) 当 y 1=y 2 时,即 50x+150=60x ,解得:x =15;当 y 1<y 2 时,即 50x+150<60x ,解得:x >15,当 y1>y2时,即 50x+150>60x,解得:x<15,综上所述:当 10≤x<15 时,乙旅行社收费更优惠;当旅游的人数为 15 人时,甲、乙旅行社收费一样;当 15<x≤20 时,甲旅行社收费更优惠.【知识点】10。
一次函数考点知识梳理
![一次函数考点知识梳理](https://img.taocdn.com/s3/m/229a5d73effdc8d376eeaeaad1f34693dbef1054.png)
一次函数考点知识梳理1.一次函数定义:o一次函数的一般形式为y=kx+b(k≠0),其中k是斜率,b 是y轴截距。
o理解并掌握一次函数的图像特征:直线、方向(上升或下降)、位置(与坐标轴的交点)。
2.斜率的理解和应用:o斜率的意义:表示直线的倾斜程度,斜率为正时,直线从左向右上升;斜率为负时,直线从左向右下降。
o计算斜率的方法:两点式斜率公式k=(y2-y1)/(x2-x1)。
o判断两条直线平行或垂直的关系:若两直线斜率相等,则两线平行;若一直线斜率为另一直线斜率的相反数且绝对值相等,则两线垂直。
3.一次函数图像平移变换:o水平平移:原函数y=kx+b平移h个单位后变为y=k(x-h)+ b,其中h>0向右平移,h<0向左平移。
o垂直平移:原函数y=kx+b向上平移k个单位后变为y=kx+b +k,向下平移则减去相应的单位。
4.一次函数的实际应用问题:o表示实际生活中的增长、减少、路程与时间关系等问题,理解“速度”即斜率的概念。
o解决与一次函数相关的面积计算、行程问题、利润问题等。
5.一次函数与方程、不等式的联系:o一次函数解析式可以转化为一元一次方程和一元一次不等式,通过求解方程或不等式来确定图像上的点或区域。
6.一次函数与坐标轴的交点坐标:o求解一次函数与x轴和y轴的交点坐标,从而确定函数图形的具体位置。
7.线性关系与一次函数模型:o在实际问题中建立一次函数模型,通过观察数据、分析趋势确定变量之间的线性关系,并用一次函数的形式表示出来。
o学会从表格、图象或具体情境中提取信息,构建并验证一次函数模型。
8.一次函数图像特征与性质:o根据k和b的符号及绝对值大小,判断一次函数图像经过的象限(一、二、三、四象限)以及单调性(增函数还是减函数)。
o了解两点决定一条直线的原理,并能利用两个点坐标画出一次函数图像。
9.一次函数与反比例函数、二次函数的区别与联系:o明确一次函数是一次项系数不为零的多项式函数,而反比例函数是y=k/x形式,二次函数是y=ax²+bx+c形式,理解它们在图形、性质上的差异与共同点。
一次函数图像的平移对称旋转问题
![一次函数图像的平移对称旋转问题](https://img.taocdn.com/s3/m/31fba5ffdd3383c4bb4cd2ee.png)
一次函数图象的平移变换问题的探究求一次函数图象平移后的解析式是一类重要题型,在各省市中考试题频繁亮相.在一次函数y kx b =+中常数k 决定着直线的倾斜程度:直线111y k x b =+与直线222y k x b =+平行⇔12k k =.一、一次函数平移的三种方式:⑴上下平移:在这种平移中,横坐标不变,改变的是纵坐标也就是函数值y .平移规律是上加下减.⑵左右平移:在这种平移中,纵坐标不变,改变的是横坐标也就是自变量x .平移规律是左加右减.⑶沿某条直线平移:这类题目稍有难度.“沿”的含义是一次函数图象在平移的过程中与沿着的那条直线的夹角不变.解题时抓住平移前后关键点坐标的变化. 二、典型例题:(1)点(0,1)向下平移2个单位后的坐标是 ___,直线21y x =+向下平移2个单位后的解析式是所谓平移变换就是在平面内,.经过平移后的图形与原来的图形相比大小、形状不变,只是位置发生了变化.简单的点P (x ,y )平移规律如下:(1)将点P (x ,y )向左平移a 个单位,得到P 1(x -a ,y ) (2)将点P (x ,y )向右平移a 个单位,得到P 2(x+a ,y ) (3)将点P (x ,y )向下平移a 个单位,得到P 3(x ,y -a )(4)将点P (x ,y )向上平移a 个单位,得到P 4(x ,y+a )反之也成立.下面我们来探索直线的平移问题.【引例1】探究一次函数l :y=32x 与1l :y=32x+2,2l :y=32x -2的关系. .【拓广】:一般地,一次函数y=kx+b 的图象是由正比例函数y=kx 的图象沿y 轴向上(b>0)或向下(b<0)平移b 个单位长度得到的一条直线.【应用】:例1、(08上海市)在图2中,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .2lx练习1. 直线y=2x+1向上平移4个单位得到直线 2. 直线y=-3x+5向下平移6个单位得到直线 3. 过点(2,-3)且平行于直线y=2x 的直线是____ _____。
一次函数图象的变换--对称
![一次函数图象的变换--对称](https://img.taocdn.com/s3/m/de2e37380066f5335b81210b.png)
一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。
知识点:1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。
设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。
2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。
设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。
下面我们通过例题的讲解来反馈知识的应用:例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。
分析:关于x轴对称时,横坐标不变纵坐标互为相反数;关于y轴对称时,纵坐标不变横坐标互为相反数;关于某条直线(垂直坐标轴)对称时,则相关点解:1、关于x轴对称设点(x , y )在直线l上,则点(x , -y )在直线y=2x+6上。
即:-y=2x+6y=-2x-6所以关于x轴对称的直线l的解析式为:y=-2x-6.关于直线对称。
2、关于y轴对称设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。
即:y=2(-x) +6y=-2x+6所以关于y轴对称的直线l的解析式为:y=-2x+6.3、关于直线x=5对称(作图)由图可知:AB=BC则C点横坐标:-x+5+5=-x+10所以点C (-x+10, y)设点(x,y)在直线l上,则点(-x+10, y)在直线y=2x+6上。
即:y=2(-x+10)+6y=-2x+26所以关于直线x=5对称的直线l的解析式为:y=-2x+26.总结:根据对称求直线的解析式关键在找对称的坐标点。
关于x轴对称,横坐标不变纵坐标互为相反数;关于y轴对称,纵坐标不变横坐标互为相反数;关于某条直线(垂直对称轴)对称,可见例题中分析的方法去求对称点。
一次函数图象变换与面积问题
![一次函数图象变换与面积问题](https://img.taocdn.com/s3/m/8225076a77232f60ddcca18d.png)
一次函数图象变换与面积问题【专题介绍】在平面直角坐标系,如果改变某个一次函数图象的位置,如何求解新的图象解析式呢?这就本节要学习一次函数图象变换问题,图象变换问题主要有平移,对称和旋转。
而这些问题的本质,还是根据点坐标求一次函数解析式的问题。
另外,我们还会学习一次函数与面积的综合问题。
【学习目标】1.掌握一次函数图象变换的方法。
2.学会利用一次函数解决面积问题。
模块一一次函数图象变换一次函数的平移先做出y=2x的图象①将y=2x向上平移1个单位,画图求解析式②将y=2x向下平移1个单位,画图求解析式总结:上加下减(观察y值的变化)③将y=2x向左平移1个单位,画图求解析式④将y=2x向右平移1个单位,画图求解析式总结:左加右减(观察x值的变化)【例1】(1)一次函数y=2x+3的图象沿y轴向下平移2个单位,所得图象的函数解析式是()A y=2x-3B y=2x+2C y=2x+1D y=2x(2)若把一次函数y=2x-3向上平移3个单位长度,得到图象解析式是()A y=2xB y=2x-6 C.y=5x-3 D.y=-x-3(3)把函数y=-2x+3的图象向下平移4个单位后的函数图象解析式是()A. y=2x+7B. y=-6x+3C. y=-2x-1D. y=-2x-5(4)将直线y=-x+2向上平移3个单位,得到直线解析式为【练1】(1)在直角坐标系中,将直线y=kx向左平移两个单位得到y=kx+b,刚好过点(-1,4),则不等式组0<kx+b<-4x的解集为(2)如图,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(a , b ) 且2a +b =6,则直线AB 的解析式是( )A y =2x -3 B.y =-2x +6 C.y =-2x -3 D.y =-2x -6一次函数的对称【例2】 (1)如果y =kx 与y =4x 的图象关于x 轴对称,则k 的值等于(2)如果y =kx 与y =2x 的图象关于x 轴对称,则k 的值等于(3)一次函数y =(m 2-4)x +(1-m )和y =(m +2)x +(m 2-3)的图象分别与y 轴交于P 、Q.这两点关于x 轴对称,则m 的取值是( )A.2B.2或-1C.1或-1D.-1【练2】(1)直线y =2x +5的图象沿y 轴翻折,翻折后图象对应的解析式为(2)已知直线y =-321 x ,则此直线关于y 轴对称的直线为 (3)若直线l :y =kx +b 与直线y =2x -3关于y 轴对称,则直线l 的解析式是(4)一束光沿直线y =-2x +4 照射到x 轴上的平面镜A 被反射,则反射光线所在的直线解析式为 一次函数对称变换一般思想是:“先取特殊点,求出特殊点的对称点,在根据点坐标求新的直线解析式”。
函数图像的移动规律
![函数图像的移动规律](https://img.taocdn.com/s3/m/fb9eef41227916888486d7a5.png)
函数图像的移动规律: 若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点, 它们确定图象现;开口、大小由a断,c与Y 轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。
一次函数的图像与图像变换教学指导
![一次函数的图像与图像变换教学指导](https://img.taocdn.com/s3/m/832cf1cd9f3143323968011ca300a6c30c22f1c8.png)
一次函数的图像与图像变换教学指导一、引言一次函数是高中数学中的基础知识之一,在学习中起到了重要的作用。
理解一次函数的图像及其变换对于学生的数学素养和解题能力的提高具有重要意义。
本文将就如何教学一次函数的图像及其变换进行指导和探讨。
二、一次函数的图像一次函数的图像是由该函数的表达式和定义域确定的。
一次函数的一般形式为y=ax+b,其中a和b为常数,且a不等于0。
下面将以y=x+1为例,介绍一次函数的图像。
1. 确定坐标系首先,我们需要确定一个坐标系,一般选择笛卡尔坐标系。
x轴表示自变量x,y轴表示因变量y。
2. 确定函数值根据函数的表达式,我们可以计算出不同的x对应的y值。
例如,当x=0时,y=1;当x=1时,y=2,以此类推。
3. 绘制点在坐标系中,以x和y的对应关系为依据,绘制出相应的点。
对于y=x+1,我们可以得到一个点(0, 1),另一个点(1, 2),将这两个点用直线连接起来,即可得到一次函数的图像。
4. 图像特征一次函数的图像为一条直线,且直线的斜率为a,即斜率为1。
当a为正数时,直线向上倾斜;当a为负数时,直线向下倾斜。
一次函数关于y轴对称。
三、一次函数的图像变换在教学中,我们除了要让学生掌握一次函数的基本图像之外,还需要让他们了解一次函数的图像变换。
常见的一次函数的图像变换有平移、伸缩、翻折和旋转等。
接下来我们将依次介绍这些图像变换。
1. 平移平移是指将原来的图像沿x轴或y轴方向上下移动。
当我们对一次函数y=x+1进行平移时,可以将函数表达式改为y=x+1+k,其中k为常数。
当k为正数时,图像向上平移,当k为负数时,图像向下平移。
2. 伸缩伸缩是指将原来的图像在x轴或y轴方向上进行拉伸或压缩。
对于一次函数y=x+1,进行纵向伸缩可以将函数表达式改为y=a(x+1),其中a为正数。
当a大于1时,图像被纵向拉长;当03. 翻折翻折是指对原来的图像进行反转。
对于一次函数y=x+1,进行关于x轴翻折可以将函数表达式改为y=-(x+1);进行关于y轴翻折可以将函数表达式改为y=(-x)+1。
八年级数学一次函数的图象和性质
![八年级数学一次函数的图象和性质](https://img.taocdn.com/s3/m/ff53ca4991c69ec3d5bbfd0a79563c1ec4dad76b.png)
描点作图
将计算出的点在坐标轴上 标出,并使用平滑的曲线 连接这些点。
一次函数图象的特点
线性关系
一次函数图象是一条直线,函数 值随自变量的变化而均匀变化。
斜率
一次函数的斜率表示函数值随自 变量变化的速率,斜率k>0时, 函数值随自变量增大而增大;斜 率k<0时,函数值随自变量增大
而减小。
y轴上的截距
05 练习与巩固
基础练习题
2、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是( )
3、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是____.
1、已知函数$y = (2m + 1)x + m - 3$,若这个函数的图象不经过第 二象限,则$m$的取值范围是 ____.
一次函数的表示方法
一次函数可以用解析式表示为 $y=kx+b$,其中$k$是斜率,$b$是 截距。
也可以通过表格或图象来表示一次函 数的关系。
一次函数的基本性质
斜率
斜率$k$决定了函数的增减性,当$k>0$时,函数随$x$ 的增大而增大;当$k<0$时,函数随$x$的增大而减小。
单调性
一次函数的单调性由斜率决定,斜率$k>0$时,函数为增 函数;斜率$k<0$时,函数为减函数。
一次函数与坐标轴的关系
一次函数与x轴的交点
当y=0时,x的值即为与x轴的交点。
一次函数与坐标轴围成的三角形面积
可以通过截距和与x轴交点来计算三角形面积。
04 一次函数的应用
一次函数在实际问题中的应用
人教版初二数学讲义《一次函数解析式与图象变换》
![人教版初二数学讲义《一次函数解析式与图象变换》](https://img.taocdn.com/s3/m/b97b699925c52cc58bd6bef2.png)
1题型切片(三个) 对应题目题型目标复杂条件下求解析式例1,例2,练习1,练习2,例6; 一次函数图象变换 例3,例4,练习3,练习4; 与“将军饮马”问题的综合例5,练习5.本讲内容主要分为三个题型,在寒假学习过待定系数法求一次函数解析式之后,题型一部分一方面要对寒假内容进行巩固,另一方面增加题目难度,进一步熟练解析式的求法;题型二重点探讨了一次函数图象的平移、对称及旋转变换,逐步完备一次函数学习体系;题型三是点的存在性问题之“将军饮马”模型与一次函数的综合,与之前在轴对称版块的学习侧重点不同,主要是把解析法融入到几何题目当中,需要学生一会画图,二会根据点的坐标求直线解析式,最后再求题型切片编写思路知识互联网一次函数的解析式与图象变换1交点坐标,需熟练掌握.本讲的最后一部分是2013年东城(南片)期末考试真题,本题既考查到求函数解析式,又涉及平移,并且与找规律进行结合,综合性比较强,并且训练了由已知点的坐标求线段长度的问题,这部分的训练是函数问题的重要组成部分,后期学习函数与几何题目的综合练习时会进一步深入探索.一次函数解析式的确定方法:确定图象上两个点的坐标,用待定系数法求解析式.寒假一次函数图象性质的回顾(填表):y kx b=+示意图(草图)经过的象限变化趋势性质(增减性)0 k>b=从左向右_______y随x的增大而_____,y随x的减小而______ 0b>b<0 k<b=从左向右_______y随x的增大而_____,y随x的减小而______ 0b>b<【解析】(学生版不出现)y kx b=+示意图(草图)经过的象限变化趋势性质(增减性)0 k>b=y0x一、三从左向右上升y随x的增大而增大,y随x的减小而减小0b>y0x一、二、三思路导航题型一:复杂条件下求解析式230b <xy一、三、四0k <0b =x0y二、四从左向右下降y 随x 的增大而减小,y 随x 的减小而增大0b >y0x一、二、四 0b <y0x二、三、四【引例】 如图,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的表达式为( ). A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--【解析】 由题意可知()02A ,,()11B -, 设该一次函数解析式为y kx b =+,将A B 、点坐标代入,解得12k b ==,,所以选B【例1】 阅读下面材料:小伟遇到这样一个问题:如图1,C 为线段BD 上一点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC ,已知AB =6,DE =1,BD =8,高CB =x ,试求使AC +CE 的值最小的x 值. 小伟是这样思考的:当点C 在AE 、BD 交点处时,AC +CE 的值最小,他先后尝试了各种方法,发现建立平面直角坐标系,通过函数的方法可以解决这个问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数图象的变换——平移求一次函数图像平移后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住点的坐标变化解决问题。
知识点:“已知一个点的坐标和直线的斜率 k,我们就可以写出这条直线的解析式”。
我们知道:y =kx+b经过点(0,b),而(0,b)向上平移m 个单位得到点(0,b+m),向下平移m个单位得到点(0,b-m),向左平移m个单位得到点(0-m,b),向右平移m个单位得到点(0+m,b),直线y =kx+b平移后斜率不变仍然是k,设出平移后的解析式为y =kx+h,把平移后得到的点的坐标带入这个解析式求出h,就可以求出平移后直线的解析式。
下面我们通过例题的讲解来反馈知识的应用:
例1:把直线y=2x-1向右平移1个单位,求平移后直线的解析式。
分析:y=2x-1经过点(0,-1),向右平移1个单位得到(1,-1)。
平移后斜率不变,即k=2,所以可以设出平移后的解析式为y =2x+h,再将点(1,-1)代入求出解析式中的h,就可以求出平移后直线的解析式。
解:设平移后的直线解析式为y=2x+h
点(0,-1)在y=2x-1上,向右平移1个单位得到(1,-1),
将点(1,-1)代入y=2x+h中得:
-1=2×1+h
h=-3
所以平移后直线的解析式为y=2x-3
例2:把直线y=2x-1向上平移3个单位,再向右平移1个单位,求平移后直线的解析式。
分析:点(0,-1)在直线y=2x-1上,当直线向上平移3个单位,点变为(0,-1+3),即为(0 , 2 );再向右平移1个单位后,点(0,2)变为点(0+1,2),即点变为(1 , 2 )。
设出平移后的解析式为y =kx+h,根据斜率k=2不变,以及点(1 , 2 )就可以求出h,从而就可以求出平移后直线的解析式。
解:设平移后的直线解析式为y=2x+h.
易知点(0,-1)在直线y=2x-1上,
则此点按要求平移后的点为:
( 0,-1 )
平移后得到的点( 1 , 2 )在直线y=2x+h 上
则:2=2×1+h
h=0
所以平移后的直线解析式为y=2x
总结:求直线平移后的解析式时,只要找出一个点坐标,求出按要求平移后此点的坐标变为多少,再根据斜率不变和变化后的点来求解析式。
练习:1、点(0,1)向下平移2个单位后的坐标是________,
直线y 2x 1向下平移2个单位后的解析式是_____________.
2、直线y=2x 1向右平移2个单位后的解析式是_____________.
3、直线y=8x+13既可以看作直线y=8x-3向______平移(填“上”或“下”)____单位长度得到;也可以看作直线y=8x-3______平
移(填“左”或“右”)_____单位长度得到.
答案:1、(0,-1);y=2x-1 2、 y=2x-3 3、上 16 左 2
2 向上平移3个单位
向右平移1个单位 ( , )
一次函数图象的变换——对称
江苏省兴化市竹泓初级中学225716 徐荣圣
求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。
知识点:
1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。
设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。
2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。
设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。
下面我们通过例题的讲解来反馈知识的应用:
例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。
分析:关于x轴对称时,横坐标不变纵坐标互为相反数;
关于y轴对称时,纵坐标不变横坐标互为相反数;
关于某条直线(垂直坐标轴)对称时,则相关点
解:1、关于x轴对称
设点(x , y )在直线l上,则点(x , -y )在直线y=2x+6上。
即:-y=2x+6
y=-2x-6
所以关于x轴对称的直线l的解析式为:y=-2x-6.
关于直线对称。
2、关于y轴对称
设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。
即:y=2(-x) +6
y=-2x+6
所以关于y轴对称的直线l的解析式为:y=-2x+6.
3、关于直线x=5对称(作图)
由图可知:AB=BC则C点横坐标:-x+5+5=-x+10
所以点C (-x+10, y)
设点(x,y)在直线l上,
则点(-x+10, y)在直线y=2x+6上。
即:y=2(-x+10)+6
y=-2x+26
所以关于直线x=5对称的直线l的解析式为:y=-2x+26.
总结:根据对称求直线的解析式关键在找对称的坐标点。
关于x轴对称,横坐标不变纵坐标互为相反数;
关于y轴对称,纵坐标不变横坐标互为相反数;
关于某条直线(垂直对称轴)对称,可见例题
中分析的方法去求对称点。
练习:1、和直线y=5x-3关于y轴对称的直线解析式为,和直线y=-x-2关于x轴对称的直线解析式为。
2、已知直线y=kx+b与直线y= -2x+8关于y轴对称,
求k、b的值。
答案:1、y=-5x-3;y=x+2
分析:设点(x,y)在直线上,则点(-x,y)在关于y轴对称的直线y=5x-3上,所以直线为y=-5x-3;设点(x,y)在直线上,则点(x,-y)在关于x轴对称的直线y=-x-2上,所以直线为y=x+2.
2、y=2x+8
分析:设点(x,y)在直线y=kx+b上,而直线y=kx+b与直线y= -2x+8关于y轴对称,则(-x,y)在直线y= -2x+8上,所以有y=-2(-x)+8,即:y=2x+8 所以k=2,b=8
一次函数图象的变换——旋转
江苏省兴化市竹泓初级中学225716 徐荣圣
求一次函数图像平移后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住点的坐标绕着某一点旋转一定角度变化解决问题。
知识点:当旋转的角度为180°时,两条直线关于这点成中心对称。
设旋转后直线上任一点(x , y),则关于旋转点(m , n)成中心的对称的点为(2m-x,2n-y),此点在旋转前的直线上。
若旋转的角度不是180°,则需根据已知的条件求出两个点的坐标,再用待定系数法求解。
例1、已知直线y=6x+6,将直线绕着坐标原点o旋转180°,求旋转后的直线的解析式。
分析:直线绕着坐标原点o旋转180°,即绕点(0,0)旋转180°。
可设点(x , y)在旋转后的直线上,则点(-x , -y)在直线y=6x+6上,带入就可以求出旋转后的直线解析式。
解:设旋转后直线上任一点的坐标为(x , y),由关于原点(0 , 0)成中心对称的坐标关系,则(-x , -y)在直线y=6x+6上。
所以-y=6(-x)+6,
即y=-6x+6
所以旋转后的直线的解析式为y=-6x+6。
例2、已知直线y=-x+8与x轴,y轴分别交于A,B两点。
点C在
直线y=-x+8上,点C的横坐标为6。
将直线绕着C点逆时针旋转一
个角度后,交x轴于点D,且CA=CD。
求旋转后的直线的解析式。
分析:从图中可知,若知道点C和点D的坐标,
再用待定系数法就可以求出旋转后的
直线的解析式。
解:过点C作CE⊥x轴于点E。
显然△ACD为等腰三角形。
把x=6代入y=-x+8,得y=2,故点C(6,2),E(6,0)。
易知A(8,0),由等腰三角形的性质知D点坐标为(4,0)。
旋转后的直线过C、D两点,利用待定系数法可知y=x-4,
所以旋转后的直线的解析式为y=x-4。
总结:若直线是绕着某一点旋转180°,则设点(x , y)在旋转后的直线上,再根据中心对称求中心对称的点的坐标代入旋转前的直线求出直线的解析式;若旋转一点的角度,可根据已知条件求出两个点的坐标,再用待定系数法求出直线的解析式。
练习:1、点(2,-1)关于原点中心对称的点为___________。
2、点(-2 , 3)关于点(1 , 1)中心对称的点为___________。
3x+4分别交x轴,y轴于点A,B。
将△AOB绕
3、如图,直线y=-
4
点O顺时针旋转90°到△A′OB′的位置。
求直线A′B′的
解析式。
答案:1、(-2,1)2、(4,-1)
3x-3
3、y=
4
分析:易知A(3,0),B(0,4)。
则OA=3,OB=4由旋转知△AOB≌△A′OB′.
∴OA′=OA=3,OB′=OB=4.
∴A′(0,-3),B′(4,0).
3x-3
∴直线A′B′的解析式为y=
4
如有侵权请联系告知删除,感谢你们的配合!。