机械工程材料综合实验心得体会
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械工程材料综合实验心得体会
篇一:机械工程材料总结
第01章材料的力学性能
静拉伸试验:材料表现为弹性变形、塑性变形、颈缩、断裂。
弹性:指标为弹性极限?e,即材料承受最大弹性变形时的应力。
刚度:材料受力时抵抗弹性变形的能力。指标为弹性模量E。表示引起单位变形所需要的应力。
强度:材料在外力作用下抵抗变形和破坏的能力。
断裂的类型:韧性断裂与脆性断裂、穿晶断裂与沿晶断裂、剪切断裂与解理断裂
布氏硬度 HB:符号HBS或HBW之前的数字表示硬度值, 符号后面的数字按顺序分别表示球体直径、载荷及载荷保持时间。洛氏硬度 HR 、维氏硬度HV
冲击韧性:A k = m g H – m g h (J)(冲击韧性值)a k= AK/ S0 (J/cm2)
疲劳断口的三个特征区:疲劳裂纹产生区、疲劳裂纹扩展区、断裂区。
断裂韧性:表征材料阻止裂纹扩展的能力,是度量材料的韧性好坏的一个定量指标,是应力强度因子的临界值。K ? C a C 工程应用要求:? YIC
磨损过程分:跑和磨损、稳定磨损、剧烈磨损三个阶段阶段
蠕变性能:钢材在高温下受外力作用时,随着时间的延长,缓慢而连续产生塑性变形的现象,称为蠕变。(选用高温材料的主要依据)
材料的工艺性能:材料可生产性:得到材料可能性和制备方法。铸造性:将材料加热得到熔体,注入较复杂的型腔后冷却凝固,获得零件的方法。锻造性:材料进行压力加工(锻造、压延、轧制、拉拔、挤压等)的可能性或难易程度的度量。
决定材料性能实质:构成材料原子的类型:材料的成分描述了组成材料的元素种类以及各自占有的比例。材料中原子的排列方式:原子的排列方式除了和元素自身的性质有关以外,还和材料经历的生产加工过程有密切的关系。
第02章晶体结构
晶体:是指原子呈规则排列的固体。常态下金属主要以晶体形式存在。晶体有固定的熔点,具有各向异性。非晶体:是指原子呈无序排列的固体。各向同性。在一定条件下晶体和非晶体可互相转化。
晶格:晶体中,为了表达空间原子排列的几何规律,把粒子(原子或分子)在空间的平衡位置作为节点,人为地将节点用一系列相互平行的直线连接起来形成的空间格架称
为晶格。
晶胞:能够完全代表晶格结构特征的最小的几何单元。晶胞在三维空间重复堆砌可构成整个空间点阵,通常为小的平行六面体。晶胞要顺序满足①能充分反映整个空间点阵的对称性,②具有尽可能多的直角,③体积要最小。
体心立方:常见金属有:α-Fe、铬(Cr) 、钨(W) 、钼(Mo) 、钒(V)、Na、K等
面心立方:常见金属有:γ -Fe、金(Au) 、银(Ag) 铜(Cu) 、铝(Al)、镍(Ni)等
密排六方:常见金属有:铍(Be) 、镁(Mg) 、锌(Zn) 、镉(Cd)、α-Ti 等
单晶体:其内部的晶体位向完全一致时,即整个材料是一个晶体,这块晶体就称之为“单晶体”
晶界:晶粒与晶粒之间的分界面叫“晶粒间界”,或简称“晶界”。为了适应两晶粒间不同晶格位向的过渡,在晶界处的原子排列总是不规则的
伪各向同性:晶体应该是各向异性,但在多晶体材料中,尽管每个晶粒内部象单晶体那样呈现各向异性,每个晶粒在空间取向是随机分布,大量晶粒的综合作用,整个材料宏观上不出现各向异性,这个现象称为多晶体的伪各向同性。
点缺陷:空位、间隙原子、置换原子(提高材料的电阻、加快原子的扩散迁移、形成其他晶体缺陷、改变
材料的力学性能)
线缺陷:位错:在晶体的某处,有一列或若干列发生原子有规律的错排现象。(位错线附近的晶格有相应的畸变,有高于理想晶体的能量;位错线附近异类原子浓度高于平均水平;位错在晶体中可以发生移动,即可动性是材料塑性变形基本方式之一;位错与异类原子的作用,位错之间的相互作用,对材料的力学性能有明显
的影响)
面缺陷:在三维空间的两个方向上的尺寸很大(晶粒数量级),另外一个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。
细晶强化:通过细化晶粒而使材料强度提高的方法称为细晶强化。
固溶体:合金结晶时若组元相互溶解,所形成固相的晶格结构与组成合金的某一组元相同,此固相称为固溶体。与固溶体的晶格相同的组成元素称为溶剂;其它的组成元素称为溶质,其含量与溶剂相比为较少。置换固溶体:溶质原子取代了部分溶剂晶格中某些节点上的溶剂原子而形成的固溶体。
间隙固溶体:溶质原子嵌入溶剂晶格的空隙中,不占据晶格结点位置。
固溶体的性能(来自: 小龙文档网:机械工程材料综
合实验心得体会)特点:保持溶剂的晶格类型、产生了固溶强化作用,并且晶格常数发生了变化、固溶体总是作为基体存在。
固溶强化:溶质原子使固溶体的强度和硬度升高的现象叫固溶强化(以金属元素为溶剂的固溶体)。溶质的溶入可造成晶格畸变,材料的塑性变形的阻力加大,同时塑性略有下降,但不明显。
化合物:当溶质的含量超过了其溶解度,在材料中将出现新相。若新相为另一组元的晶体结构,则也是另一固溶体。若其晶体结构与组元都不相同,表明生成了新的物质-化合物。所以,化合物是合金组元间发生相互作用而形成的一种新相,其晶格类型及性能均不同于任一组元。
金属化合物的类型:正常价化合物、电子化合物、间隙化合物。
过冷现象:熔体材料冷却到理论结晶温度时,并不是立即就形成晶体,而是实际结晶温度要低于理论结晶温度,这种现象称为过冷。过冷度:ΔT = T0 – Tn
3/4形核:有两种方式,即自发形核和非自发形核。NZ??()晶体的长大方式主要有:均匀长大和树枝状长大。 G 晶粒度:晶粒总数Z与形核率N和长大速度G的关系:凡是增大N/G的方法,都会细化晶粒。
金属铸锭的组织:三种不同的晶区:表层细晶区、柱状
晶区、中心等轴晶粒区。
铸锭的缺陷:缩孔:凝固过程中,液态金属不能有效补充,最后凝固的地方形成缩孔。疏松:凝固以树枝晶方式生长时,树枝枝干间的液体得不到补充,形成疏松。气泡:液态金属中往往溶解和卷入一些气体,气体来不及溢出,形成气泡。
第03章金属材料的塑性变形
金属塑性变形的分类:高于再结晶温度是热加工,低于再结晶温度是冷加工。
单晶体金属的塑性变形:变形的方式:滑移和孪生。常以滑移方式发生。
滑移是指晶体的一部分沿一定的晶面和晶向相对于另一部分发生滑动位移的现象。实质:是由位错的移动来实现的。滑移系越多,塑性越好,且滑移方向比滑移面的作用更大;由于面心立方的滑移方向为3,而体心为2,面心的塑性比体心的好。密排的塑性最差。滑移的同时伴随着晶体的转动。滑移是通过滑移面上位错的运动来实现的,位错线从一端移动到另一端。位错在运动时,只是位错附近的一部分原子移动。
多晶体金属的塑性变形:在外力作用下,变形首先发生在有利滑移的晶粒内,处于不利滑移的晶粒逐渐向有利方向转动,互相协调,由少量晶粒的变形扩大到大量晶粒的变