复变函数习题答案第4章习题详解

合集下载

(2021年整理)复变函数第四章答案

(2021年整理)复变函数第四章答案

复变函数第四章答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(复变函数第四章答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为复变函数第四章答案的全部内容。

复变函数作业12 复数项级数 幂级数1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限:(1)1i 1i n n a n +=- (2)i 12nn a -⎛⎫=+ ⎪⎝⎭;(3)i (1)1n n a n =-++ (4)i /2e n n a π-=; (5)i /21e n n a nπ-=. 解 (1)1i0i 110i in n n a n→∞++=−−−→=---,lim 1n n a →∞=-,即{}n a 收敛于1-。

(2)i|0|102nnn n a --→∞-=+=−−−→⎝⎭,1i lim 02nn -→+∞+⎛⎫= ⎪⎝⎭,即{}n a 收敛于0。

(3)因n a 的实部(1)n -不收敛,虚部11n +收敛于零,所以{}n a 不收敛。

(4)cos isin22n n n a ππ=-,lim cos 2n n π→∞与lim sin 2n n π→∞均不存在(分n 为奇数与偶数便知),所以{}n a 不收敛.(5)i /2i /2111|0|||e 0,lim e 0n n n n n a a n nn ππ--→∞-===→=,即{}n a 收敛于零.2. 下列级数是否收敛? 是否是绝对收敛?(1)2111i n n n +∞=+∑;(2)1(1i)2nn n n ∞=+∑;(3)1(35i)!n n n ∞=+∑;(4)/21(1i)2cosi n n n n ∞=+∑.解 (1)原式=1111i (1)n n n n n ∞∞==+-⋅∑∑,显然11n n ∞=∑发散,而11(1)n n n ∞=-∑收敛.故原级数发散。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一谜底之勘阻及广创作2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此, 31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此, 35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此, Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6= 5.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-, 所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++, 那时0,1,2,3k =, 对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 7. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次, 因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥. (2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可, 首先左端221212()()x x y y =+++,而右端2222112211222Re[()()]x y x y x iy x iy =+++++-2222112212122()x y x y x x y y =+++++221212()()x x y y =+++, 由此, 左端=右端, 即原式成立.(3)若a bi +是实系数代数方程101100n n n a z a z a z a --++++=的一个根, 那么a bi -也是它的一个根.证明:方程两端取共轭, 注意到系数皆为实数, 而且根据复数的乘法运算规则, ()n n z z =, 由此获得:10110()()0n n n a z a z a z a --++++=由此说明:若z 为实系数代数方程的一个根, 则z 也是.结论得证.(4)若1,a =则,b a ∀≠皆有1a b a ab-=- 证明:根据已知条件, 有1aa =, 因此:11()a b a b a b a ab aa ab a a b a---====---, 证毕. (5)若1, 1a b <<, 则有11a b ab -<- 证明:222()()a b a b a b a b ab ab -=--=+--,2221(1)(1)1ab ab ab a b ab ab -=--=+--,因为1, 1a b <<, 所以, 2222221(1)(1)0a b a b a b +--=--< ,因而221a b ab -<-, 即11a b ab-<-, 结论得证. 7.设1,z ≤试写出使n z a +到达最年夜的z 的表达式, 其中n 为正整数, a 为复数.解:首先, 由复数的三角不等式有1n n z a z a a +≤+≤+, 在上面两个不等式都取等号时n z a +到达最年夜, 为此, 需要取n z 与a 同向且1n z =, 即n z 应为a 的单元化向量, 由此, n a z a=, 8.试用123,,z z z 来表述使这三个点共线的条件.解:要使三点共线, 那么用向量暗示时, 21z z -与31z z -应平行, 因而二者应同向或反向, 即幅角应相差0或π的整数倍, 再由复数的除法运算规则知2131z z Argz z --应为0或π的整数倍, 至此获得: 123,,z z z 三个点共线的条件是2131z z z z --为实数. 9.写出过1212, ()z z z z ≠两点的直线的复参数方程.解:过两点的直线的实参数方程为:121121()()x x t x x y y t y y =+-⎧⎨=+-⎩, 因而, 复参数方程为:其中t 为实参数.10.下列参数方程暗示什么曲线?(其中t 为实参数)(1)(1)z i t =+ (2)cos sin z a t ib t =+ (3)i z t t=+ 解:只需化为实参数方程即可.(1),x t y t ==, 因而暗示直线y x =(2)cos ,sin x a t y b t ==, 因而暗示椭圆22221x y a b+= (3)1,x t y t==, 因而暗示双曲线1xy = 11.证明复平面上的圆周方程可暗示为 0zz az az c +++=, 其中a 为复常数, c 为实常数证明:圆周的实方程可暗示为:220x y Ax By c ++++=, 代入, 22z z z z x y i+-==, 并注意到222x y z zz +==, 由此 022z z z z zz A B c i+-+++=, 整理, 得 022A Bi A Bi zz z z c -++++= 记2A Bi a +=, 则2A Bi a -=, 由此获得 0zz az az c +++=, 结论得证.12.证明:幅角主值函数arg z 在原点及负实轴上不连续. 证明:首先, arg z 在原点无界说, 因而不连续.对00x <, 由arg z 的界说不难看出, 当z 由实轴上方趋于0x 时, arg z π→, 而当z 由实轴下方趋于0x 时, arg z π→-, 由此说明0lim arg z x z →不存在, 因而arg z 在0x 点不连续, 即在负实轴上不连续, 结论得证.13.函数1w z=把z 平面上的曲线1x =和224x y +=分别映成w 平面中的什么曲线?解:对1x =, 其方程可暗示为1z yi =+, 代入映射函数中,得211111iy w u iv z iy y-=+===++, 因而映成的像曲线的方程为 221, 11y u v y y-==++, 消去参数y , 得 2221,1u v u y +==+即22211()(),22u v -+=暗示一个圆周. 对224x y +=, 其方程可暗示为2cos 2sin z x iy i θθ=+=+代入映射函数中, 得因而映成的像曲线的方程为 11cos , sin 22u v θθ==-, 消去参数θ, 得2214u v +=, 暗示一半径为12的圆周. 14.指出下列各题中点z 的轨迹或所暗示的点集, 并做图: 解:(1)0 (0)z z r r -=>, 说明动点到0z 的距离为一常数, 因而暗示圆心为0z , 半径为r 的圆周.(2)0,z z r -≥是由到0z 的距离年夜于或即是r 的点构成的集合, 即圆心为0z 半径为r 的圆周及圆周外部的点集.(3)138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数, 因而暗示一个椭圆.代入,z x iy ==化为实方程得(4),z i z i +=-说明动点到i 和i -的距离相等, 因而是i 和i -连线的垂直平分线, 即x 轴.(5)arg()4z i π-=, 幅角为一常数, 因而暗示以i 为极点的与x 轴正向夹角为4π的射线. 15.做出下列不等式所确定的区域的图形, 并指出是有界还是无界, 单连通还是多连通.(1)23z <<, 以原点为心, 内、外圆半径分别为2、3的圆环区域, 有界, 多连通(2)arg (02)z αβαβπ<<<<<, 极点在原点, 两条边的倾角分别为,αβ的角形区域, 无界, 单连通(3)312z z ->-, 显然2z ≠, 而且原不等式等价于32z z ->-, 说明z 到3的距离比到2的距离年夜, 因此原不等式暗示2与3 连线的垂直平分线即x =x =2后的点构成的集合, 是一无界, 多连通区域.(4)221z z --+>,显然该区域的鸿沟为双曲线221z z --+=, 化为实方程为 2244115x y -=, 再注意到z 到2与z 到-2的距离之差年夜于1, 因而不等式暗示的应为上述双曲线左边一支的左侧部份, 是一无界单连通区域.(5)141z z -<+, 代入z x iy =+, 化为实不等式, 得 所以暗示圆心为17(,0)15-半径为815的圆周外部, 是一无界多连通区域.习题二谜底1.指出下列函数的解析区域和奇点, 并求出可导点的导数.(1)5(1)z - (2)32z iz + (3)211z + (4)13z z ++ 解:根据函数的可导性法则(可导函数的和、差、积、商仍为可导函数, 商时分母不为0), 根据和、差、积、商的导数公式及复合函数导数公式, 再注意到区域上可导一定解析, 由此获得:(1)5(1)z -处处解析, 54[(1)]5(1)z z '-=-(2)32z iz +处处解析, 32(2)32z iz z i '+=+(3)211z +的奇点为210z +=, 即z i =±, (4)13z z ++的奇点为3z =-, 2.判别下列函数在何处可导, 何处解析, 并求出可导点的导数.(1)22()f z xy x yi =+ (2)22()f z x y i =+(3)3223()3(3)f z x xy i x y y =-+- (4)1()f z z= 解:根据柯西—黎曼定理:(1)22, u xy v x y ==,四个一阶偏导数皆连续, 因而,u v 处处可微, 再由柯西—黎曼方程, x y y x u v u v ==-解得:0x y ==,因此, 函数在0z =点可导, 0(0)0x x z f u iv ='=+=, 函数处处不解析.(2)22, u x v y ==,四个一阶偏导数皆连续, 因而,u v 处处可微, 再由柯西—黎曼方程, x y y x u v u v ==-解得:x y =,因此, 函数在直线y x =上可导,()2x x y x f x ix u iv x ='+=+=,因可导点集为直线, 构不成区域, 因而函数处处不解析.(3)32233, 3u x xy v x y y =-=-,四个一阶偏导数皆连续, 因而 ,u v 处处可微, 而且 ,u v 处处满足柯西—黎曼方程 , x y y x u v u v ==-因此, 函数处处可导, 处处解析, 且导数为(4)2211()x iy f z x iy x yz +===-+, 2222, x y u v x y x y ==++, 2222222222, ()()x y y x x y u v x y x y --==++, 22222222, ()()y x xy xy u v x y x y --==++, 因函数的界说域为0z ≠, 故此, ,u v 处处不满足柯西—黎曼方程, 因而函数处处不成导, 处处不解析.3.当,,l m n 取何值时3232()()f z my nx y i x lxy =+++在复平面上处处解析?解:3232, u my nx y v x lxy =+=+22222, 2, 3, 3x y y x u nxy v lxy u my nx v x ly ===+=+, 由柯西—黎曼方程得:由(1)得 n l =, 由(2)得3, 3n m l =-=-, 因而, 最终有4.证明:若()f z 解析, 则有 222(())(())()f z f z f z x y∂∂'+=∂∂ 证明:由柯西—黎曼方程知, 左端22=+222222()()x x x x uu vv uu vv uv vu u v +++-=+=+ 2()f z '==右端, 证毕. 5.证明:若()f z u iv =+在区域D 内解析, 且满足下列条件之一, 则()f z 在D 内一定为常数.(1)()f z 在D 内解析 , (2)u 在D 内为常数,(3)()f z 在D 内为常数, (4)2v u = (5)231u v +=证明:关键证明,u v 的一阶偏导数皆为0!(1)()f z u iv =-, 因其解析, 故此由柯西—黎曼方程得 , x y y x u v u v =-= ------------------------(1)而由()f z 的解析性, 又有, x y y x u v u v ==- ------------------------(2)由(1)、(2)知, 0x y x y u u v v ===≡, 因此12, ,u c v c ≡≡即 12()f z c ic ≡+为常数(2)设1u c ≡, 那么由柯西—黎曼方程得 0, 0x y y x v u v u =-≡=≡,说明v 与,x y 无关, 因而 2v c ≡, 从而12()f z c ic ≡+为常数.(3)由已知, 2220()f z u v c =+≡为常数, 等式两端分别对,x y 求偏导数, 得 220220x x y y uu vv uu vv +=+=----------------------------(1)因()f z 解析, 所以又有 , x y y x u v u v ==--------------------------(2)求解方程组(1)、(2), 得 0x y x y u u v v ===≡, 说明,u v 皆与,x y 无关, 因而为常数, 从而()f z 也为常数. (4)同理, 2v u =两端分别对,x y 求偏导数, 得 再联立柯西—黎曼方程, x y y x u v u v ==-, 仍有(5)同前面一样, 231u v +=两端分别对,x y 求偏导数, 得 考虑到柯西—黎曼方程, x y y x u v u v ==-, 仍有0x y x y u u v v ===≡, 证毕.6.计算下列各值(若是对数还需求出主值)(1)2i eπ- (2)()Ln i - (3)(34)Ln i -+(4)sin i (5)(1)i i + (6)2327解:(1)2cos()sin()22i ei i πππ-=-+-=-(2)1()ln arg()2(2)2Ln i i i k i k i ππ-=-+-+=-+,k 为任意整数,主值为:1()2ln i i π-=-(3)(34)ln 34arg(34)2Ln i i i k i π-+=-++-++ 4ln5(arctan 2)3k i ππ=+-+, k 为任意整数主值为:4ln(34)ln5(arctan )3i i π-+=+-(4)..1sin 22i i i i e e e e i i i ----== (5)(2)2(1)44(1)i i k i k iiLn i i eeeππππ++--++===24(cosln sin k ei ππ--=+, k 为任意整数(6)22224427(272)27333333279Ln ln k i ln k i k i e e e e e πππ+====, 当k 分别取0, 1, 2时获得3个值:9, 4399(1)2i e π=-+, 8399(1)2i e π=-+7.求2z e 和2z Arge 解:2222z x y xyie e-+=, 因此根据指数函数的界说, 有2z e22x y e-=, 222z Arge xy k π=+, (k 为任意整数)8.设i zre θ=, 求Re[(1)]Ln z -解:(1)ln 1[arg(1)2]Ln z z i z k i π-=-+-+, 因此9.解下列方程:(1)1ze =+ (2)ln 2z i π=(3)sin cos 0z z += (4)shz i =解:(1)方程两端取对数得:1(1)ln 2(2)3z Ln k i π=+=++(k 为任意整数)(2)根据对数与指数的关系, 应有(3)由三角函数公式(同实三角函数一样), 方程可变形为 因此,4z k ππ+= 即 4z k ππ=-, k 为任意整数(4)由双曲函数的界说得 2z ze e shz i --==, 解得 2()210z z e ie --=, 即z e i =, 所以(2)2z Lni k i ππ==+ , k 为任意整数10.证明罗比塔法则:若()f z 及()g z 在0z 点解析, 且000()()0, ()0f z g z g z '==≠, 则000()()lim()()z z f z f z g z g z →'=', 并由此求极限 00sin 1lim ; lim z z z z e z z→→-证明:由商的极限运算法则及导数界说知000000000000()()()()lim ()lim lim ()()()()()lim z z z z z z z z f z f z f z f z z z z z f z g z g z g z g z g z z z z z →→→→----==----00()()f zg z '=', 由此, 00sin cos lim lim 11z z z zz →→==11.用对数计算公式直接验证:(1)22Lnz Lnz ≠ (2)12Lnz =解:记i z re θ=, 则(1)左端22()2ln (22)i Ln r e r k i θθπ==++,右端2[ln (2)]2ln (24)r m i r m i θπθπ=++=++, 其中的,k m 为任意整数.显然, 左端所包括的元素比右真个要多(如左端在1k =时的值为2ln (22)r i θπ++, 而右端却取不到这一值), 因此两端不相等.(2)左端221]ln (2)22m i Ln rer m k i θπθππ+==+++右端11[ln (2)]ln ()222r n i r n i θθππ=++=++其中,k n 为任意整数, 而 0,1m =不难看出, 对左端任意的k , 右端n 取2k 或21k +时与其对应;反之, 对右端任意的n , 当2n l =为偶数时, 左端可取,0k l m ==于其对应, 而当21n l =+为奇数时, 左端可取2,1k l m ==于其对应.综上所述, 左右两个集合中的元素相互对应, 即二者相等.12.证明sin sin , cos cos z z z z == 证明:首先有(cos sin )(cos sin )z x x x iy z e e y i y e y i y e e -=+=-== , 因此sin 2i z i z e e z i--==, 第一式子证毕.同理可证第二式子也成立.13.证明Im Im sin z z z e ≤≤ (即sin yy z e ≤≤) 证明:首先, sin 222iz izizizy y ye e e e e e z e i ---+-+=≤=≤, 右端不等式获得证明.其次, 由复数的三角不等式又有sin 2222iz izy yy yiz ize e e e e ee e z i--------=≥==,根据高等数学中的单调性方法可以证明0x ≥时2x xe e x --≥, 因此接着上面的证明, 有sin 2y y e ez y --≥≥, 左端不等式获得证明.14.设z R ≤, 证明sin , cos z chR z chR ≤≤证明:由复数的三角不等式, 有sin 2222iz iz y y iz iz y y e e e e e e e ez ch y i ----+-++=≤===,由已知, y z R ≤≤, 再主要到0x ≥时chx 单调增加, 因此有sin z ch y chR ≤≤,同理,cos 2222iz izy yizizy y e e e e e e e ez ch y chR----++++=≤===≤ 证毕.15.已知平面流场的复势()f z 为(1)2()z i + (2)2z (3)211z +试求流动的速度及流线和等势线方程.解:只需注意, 若记()(,)(,)f z x y i x y ϕψ=+, 则 流场的流速为()v f z '=, 流线为1(,)x y c ψ≡, 等势线为2(,)x y c ϕ≡, 因此, 有(1)2222()[(1)](1)2(1)z i x y i x y x y i +=++=-+++ 流速为()2()2()v f z z i z i '==+=-,流线为1(1)x y c +≡, 等势线为 222(1)x y c -+≡ (2)333223()3(3)z x iy x xy x y y i =+=-+- 流速为22()33()v f z z z '===,流线为2313x y y c -≡, 等势线为 3223x xy c -≡(3)22221111()112z x iy x y xyi==+++-++ 流速为222222()(1)(1)z zv f z z z --'===++, 流线为 122222(1)4xyc x y x y ≡-++, 等势线为 222222221(1)4x y c x y x y-+≡-++ 习题三谜底 1.计算积分2()cx y ix dz -+⎰, 其中c 为从原点到1i +的直线段解:积分曲线的方程为, x t y t ==, 即z x iy t ti =+=+, :01t →, 代入原积分表达式中, 得2.计算积分z ce dz ⎰, 其中c 为 (1)从0到1再到1i +的折线 (2)从0到1i +的直线解:(1)从0到1的线段1c 方程为:, :01z x iy x x =+=→,从1到1i +的线段2c 方程为:1, :01z x iy iy y =+=+→, 代入积分表达式中, 得11(sin1cos1)(cos1sin1)11i e ei i i e i e +=-+-+=+-=-;(2)从0到1i +的直线段的方程为z x iy t ti =+=+, :01t →, 代入积分表达式中, 得1100()(1)(cos sin )zt titce dz e t ti dt i e t i t dt +'=+=++⎰⎰⎰,对上述积分应用分步积分法, 得3.积分2()cx iy dz +⎰, 其中c 为(1)沿y x =从0到1i + (2)沿2y x =从0到1i + 解:(1)积分曲线的方程为z x iy t ti =+=+, :01t →, 代入原积分表达式中, 得(2)积分曲线的方程为 2z x iy x x i =+=+, :01t →, 代入积分表达式中, 得4.计算积分cz dz ⎰, 其中c 为(1)从-1到+1的直线段 (2)从-1到+1的圆心在原点的上半圆周解:(1)c 的方程为z x =, 代入, 得(2)c 的方程为cos sin , :0z x iy i θθθπ=+=+→, 代入, 得5.估计积分212c dz z +⎰的模,其中c 为+1到-1的圆心在原点的上半圆周.解:在c 上, z =1, 因而由积分估计式得222111222c c c cdz ds ds ds z z z ≤≤=++-⎰⎰⎰⎰c =的弧长π= 6.用积分估计式证明:若()f z 在整个复平面上有界, 则正整数1n >时其中R c 为圆心在原点半径为R 的正向圆周. 证明:记()f z M ≤, 则由积分估计式得122n n M M R R Rππ-==, 因1n >, 因此上式两端令R →+∞取极限, 由夹比定理, 得()lim 0Rn R c f z dz z →+∞=⎰, 证毕. 7.通过分析被积函数的奇点分布情况说明下列积分为0的原因, 其中积分曲线c 皆为1z =.(1)2(2)c dzz +⎰ (2)224cdzz z ++⎰(3)22cdzz +⎰(4)cos c dzz ⎰ (5)z cze dz ⎰解:各积分的被积函数的奇点为:(1)2z =-, (2)2(1)30z ++=即1z =-±, (3)z = (4), 2z k k ππ=+为任意整数,(5)被积函数处处解析, 无奇点不难看出, 上述奇点的模皆年夜于1, 即皆在积分曲线之外, 从而在积分曲线内被积函数解析, 因此根据柯西基本定理, 以上积分值都为0. 8.计算下列积分:(1)240ize dz π⎰ (2)2sin iizdz ππ-⎰(3)10sin z zdz ⎰解:以上积分皆与路径无关, 因此用求原函数的方法:(1)4220240111()(1)222ii izz e dz ee e i πππ==-=-⎰ (2)21cos2sin 2sin []224iiii i iz z zzdz dz ππππππ----==-⎰⎰(3)111100sin cos cos cos z zdz zd z z z zdz =-=-+⎰⎰⎰9.计算22cdzz a-⎰, 其中c 为不经过a ±的任一简单正向闭曲线.解:被积函数的奇点为a ±, 根据其与c 的位置分四种情况讨论:(1)a ±皆在c 外, 则在c 内被积函数解析, 因而由柯西基本定理(2)a 在c 内, a -在c 外, 则1z a+在c 内解析, 因而由柯西积分公式:22112z a c c dz z a dz i i z a z a a z a ππ=+===-+-⎰⎰ (3)同理, 当a -在c 内, a 在c 外时, (4)a ±皆在c 内此时, 在c 内围绕,a a -分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:注:此题若分解221111()2a z a z a z a=--+-, 则更简单! 10. 计算下列各积分解:(1)11()(2)2z dz i z z =-+⎰, 由柯西积分公式 (2)23221izz i e dz z -=+⎰, 在积分曲线内被积函数只有一个奇点i , 故此同上题一样:(3)2232(1)(4)z dzz z =++⎰在积分曲线内被积函数有两个奇点i ±, 围绕,i i -分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:(4)4221z zdz z -=-⎰, 在积分曲线内被积函数只有一个奇点1,故此 (5)221sin 41z zdz z π=-⎰, 在积分曲线内被积函数有两个奇点1±, 围绕1,1-分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:(6)22, (1)nnz z dz n z =-⎰为正整数, 由高阶导数公式 11. 计算积分312(1)zc e dz i z z π-⎰, 其中c 为 (1)12z = (2)112z -= (3)2z =解:(1)由柯西积分公式 (2)同理, 由高阶导数公式 (3)由复合闭路原理30(1)z z e z ==-11()2!z z e z =''+12e=-, 其中, 12,c c 为2z =内分别围绕0, 1且相互外离的小闭合曲线.12.积分112z dz z =+⎰的值是什么?并由此证明012cos 054cos d πθθθ+=+⎰解:首先, 由柯西基本定理, 1102z dz z ==+⎰, 因为被积函数的奇点在积分曲线外.其次, 令(cos sin )z r i θθ=+, 代入上述积分中, 得 考察上述积分的被积函数的虚部, 便获得2012cos 054cos d πθθθ+==+⎰, 再由cos θ的周期性, 得 即012cos 054cos d πθθθ+=+⎰, 证毕.13. 设(),()f z g z 都在简单闭曲线c 上及c 内解析, 且在c 上 ()()f z g z =, 证明在c 内也有()()f z g z =. 证明:由柯西积分公式, 对c 内任意点0z ,00001()1()(), ()22c c f z g z f z dz g z dz i z z i z z ππ==--⎰⎰, 由已知, 在积分曲线c 上, ()()f z g z =, 故此有 再由0z 的任意性知, 在c 内恒有()()f z g z =, 证毕. 14. 设()f z 在单连通区域D 内解析, 且()11f z -<, 证明(1)在D 内()0f z ≠;(2)对D 内任一简单闭曲线c , 皆有()0()cf z dz f z '=⎰ 证明:(1)显然, 因为若在某点处()0,f z =则由已知 011-<, 矛盾!(也可直接证明:()1()11f z f z -<-<, 因此1()11f z -<-<, 即0()2f z <<, 说明()0f z ≠)(3)既然()0f z ≠, 再注意到()f z 解析, ()f z '也解析, 因此由函数的解析性法则知()()f z f z '也在区域D 内解析, 这样,根据柯西基本定理, 对D 内任一简单闭曲线c , 皆有()0()cf z dz f z '=⎰, 证毕. 15.求双曲线22y x c -= (0c ≠为常数)的正交(即垂直)曲线族.解:22u y x =-为调和函数, 因此只需求出其共轭调和函数(,)v x y , 则(,)v x y c =即是所要求的曲线族.为此, 由柯西—黎曼方程2x y v u y =-=-, 因此(2)2()v y dx xy g y =-=-+⎰, 再由 2y x v u x ==-知, ()0g y '≡, 即0()g y c =为常数, 因此02v xy c =-+, 从而所求的正交曲线族为xy c ≡(注:实际上, 本题的谜底也可观察出, 因极易想到 222()2f z z y x xyi =-=--解析)16.设sin px v e y =, 求p 的值使得v 为调和函数. 解:由调和函数的界说2sin (sin )0px px xx yy v v p e y e y +=+-=,因此要使v 为某个区域内的调和函数, 即在某区域内上述等式成立, 必需210p -=, 即1p =±.17.已知22255u v x y xy x y +=-+--, 试确定解析函数 解:首先, 等式两端分别对,x y 求偏导数, 得225x x u v x y +=+-----------------------------------(1)225y y u v y x +=-+- -------------------------------(2)再联立上柯西—黎曼方程x y u v =------------------------------------------------------(3)y x u v =-----------------------------------------------------(4)从上述方程组中解出,x y u u , 得这样, 对x u 积分, 得25(),u x x c y =-+再代入y u 中, 得 至此获得:2205,u x x y c =--+由二者之和又可解出 025v xy y c =--, 因此200()5f z u iv z z c c i =+=-+-, 其中0c 为任意实常数. 注:此题还有一种方法:由定理知 由此也可很方便的求出()f z .18.由下列各已知调和函数求解析函数()f z u iv =+ 解:(1)22, ()1u x xy y f i i =+-=-+, 由柯西—黎曼方程,2y x v u x y ==+, 对y 积分, 得212()2v xy y c x =++, 再由x y v u =-得2()2y c x x y '+=-+, 因此201(), ()2c x x c x x c '=-=-+, 所以22011222v xy y x c =+-+,因()1f i =-, 说明0,1x y ==时1v =, 由此求出012c =, 至此获得:2222111()(2)222f z u iv x xy y y x xy i =+=+-+-++,整理后可得:211()(1)22f z i z i =-+(2)22yv x y=+, (2)0f = 此类问题, 除上题采纳的方法外, 也可这样:222222222222()1()()()x y xy z i x y x y z zz -=-==++, 所以 1()f z c z=-+,其中c 为复常数.代入(2)0f =得, 12c =, 故此(3)arctan , (0)yv x x=>同上题一样, ()x x y x f z u iv v iv '=+=+22221x y z i zx y x y zz -=+==++, 因此0()ln f z z c =+,其中的ln z 为对数主值, 0c 为任意实常数. (4)(cos sin )x u e x y y y =-, (0)0f =(sin sin cos )x x y v u e x y y y y =-=++, 对x 积分, 得再由y x v u =得()0c x '=, 所以0()c x c =为常数, 由(0)0f =知, 0x y ==时0v =, 由此确定出00c =, 至此获得:()f z u iv =+=(cos sin )x e x y y y -(sin cos )x ie x y y y ++,整理后可得 ()z f z ze =19.设在1z ≤上()f z 解析, 且()1f z ≤, 证明 (0)1f '≤ 证明:由高阶导数公式及积分估计式, 得1112122z ds πππ=≤==⎰, 证毕. 20.若()f z 在闭圆盘0z z R -≤上解析, 且()f z M ≤, 试证明柯西不等式 ()0!()n n n f z M R≤, 并由此证明刘维尔定理:在整个复平面上有界且处处解析的函数一定为常数. 证明:由高阶导数公式及积分估计式, 得11111!!!!()2222n n n n z z n n M n M n M f z ds ds R R R R R ππππ+++===≤==⎰⎰, 柯西不等式证毕;下证刘维尔定理:因为函数有界, 无妨设()f z M ≤, 那么由柯西不等式, 对任意0z 都有0()Mf z R'≤, 又因()f z 处处解析, 因此R 可任意年夜, 这样, 令R →+∞, 得0()0f z '≤, 从而0()0f z '=, 即 0()0f z '=, 再由0z 的任意性知()0f z '≡, 因而()f z 为常数, 证毕.习题四谜底1. 考察下列数列是否收敛, 如果收敛, 求出其极限.(1)1n n z i n=+解:因为lim n n i →∞不存在, 所以lim n n z →∞不存在, 由定理4.1知, 数列{}nz 不收敛.(2)(1)2n n i z -=+解:1sin )22i i θθ+=+, 其中1arctan 2θ=, 则()sin )cos sin nnn z i n i n θθθθ-⎤=+=-⎥⎣⎦.因为lim 0nn →∞=,cos sin 1n i n θθ-=, 所以()lim cos sin 0nn n i n θθ→∞-=由界说4.1知, 数列{}n z 收敛, 极限为0.(3)21n i n z e nπ-=解:因为21n i eπ-=, 1lim 0n n →∞=, 所以21lim 0n i n enπ-→∞= 由界说4.1知, 数列{}n z 收敛, 极限为0. (4)()n n zz z=解:设(cos sin )z r i θθ=+, 则()cos 2sin 2n n z z n i n zθθ==+, 因为lim cos 2n n θ→∞, lim sin 2n n θ→∞都不存在, 所以lim n n z →∞不存在, 由定理4.1知, 数列{}n z 不收敛.2. 下列级数是否收敛?是否绝对收敛?(1)1!nn i n ∞=∑解:1!!n i n n =, 由正项级数的比值判别法知该级数收敛, 故级数1!nn i n ∞=∑收敛, 且为绝对收敛. (2)2ln nn i n∞=∑解:222cos sin 22ln ln ln n n n n n n i i n n n ππ∞∞∞====+∑∑∑, 因为2cos11112ln ln 2ln 4ln 6ln 8n n n π∞==-+-++∑是交错级数, 根据交错级数的莱布尼兹审敛法知该级数收敛, 同样可知,2sin111121ln ln 3ln 5ln 7ln 9n n n π∞==-+-++∑也收敛, 故级数2ln nn i n∞=∑是收敛的. 又22111,ln ln ln 1n n n i n n n n ∞∞===>-∑∑, 因为211n n ∞=-∑发散, 故级数21ln n n ∞=∑发散, 从而级数2ln nn i n ∞=∑条件收敛.(3)0cos 2n n in∞=∑解:1110000cos 2222n n n nn n n n n n n n in e e e e --∞∞∞∞+++====+==+∑∑∑∑, 因级数102nn n e ∞+=∑发散, 故cos 2nn in∞=∑发散. (4)()35!nn i n ∞=+∑解:()035!!nn n i n n ∞∞==+=∑∑, 由正项正项级数比值判别法知该级数收敛, 故级数()035!nn i n ∞=+∑收敛, 且为绝对收敛.3.试确定下列幂级数的收敛半径.(1)()01n n n i z ∞=+∑解:1lim 1n n n c i c +→∞=+=故此幂级数的收敛半径R =. (2)0!n nn n z n∞=∑解:11(1)!11lim lim lim 1(1)!(1)n n n n n n n n c n n c n n e n++→∞→∞→∞+=⋅==++, 故此幂级数的收敛半径R e =.(3)1in n n e z π∞=∑解:11lim lim 1in n n n innc e c e ππ++→∞→∞==, 故此幂级数的收敛半径1R =.(4)221212n nn n z ∞-=-∑解:令2z Z =, 则22111212122n n n n n n n n z Z ∞∞--==--=∑∑112112lim lim 2122n n n n nnn c n c ++→∞→∞+==-, 故幂级数11212n n n n Z ∞-=-∑的收敛域为2Z <, 即22z <, 从而幂级数221212n n n n z ∞-=-∑的收敛域为z <, 收敛半径为R =.4.设级数0n n α∞=∑收敛, 而0n n α∞=∑发散, 证明0n n n z α∞=∑的收敛半径为1. 证明:在点1z =处,nnnn n z αα∞∞===∑∑, 因为0n n α∞=∑收敛, 所以n nn z α∞=∑收敛, 故由阿贝尔定理知, 1z <时, 0n nn z α∞=∑收敛, 且为绝对收敛, 即0n n n z α∞=∑收敛.1z >时, 0nn n n n z αα∞∞==>∑∑, 因为0n n α∞=∑发散, 根据正项级数的比力准则可知, 0nn n z α∞=∑发散, 从而0n n n z α∞=∑的收敛半径为1, 由定理4.6, 0n n n z α∞=∑的收敛半径也为1.5.如果级数0n n n c z ∞=∑在它的收敛圆的圆周上一点0z 处绝对收敛, 证明它在收敛圆所围的闭区域上绝对收敛. 证明:0z z <时, 由阿贝尔定理, 0n n n c z ∞=∑绝对收敛.0z z =时, 00nnn n n n c z c z ∞∞===∑∑, 由已知条件知, 00n n n c z ∞=∑收敛,即0nn n c z ∞=∑收敛, 亦即0n n n c z ∞=∑绝对收敛.6.将下列函数展开为z 的幂级数, 并指出其收敛区域.(1)221(1)z + 解:由于函数221(1)z +的奇点为z i =±, 因此它在1z <内处处解析, 可以在此圆内展开成z 的幂级数.根据例4.2的结果, 可以获得24211(1),11n n z z z z z=-+-+-+<+.将上式两边逐项求导, 即得所要求的展开式221(1)z +='24122211123(1),112n n z z nz z z z +-⋅-=-+++-+<+()(). (2)1(0,0)()()a b z a z b ≠≠-- 解:①a b =时, 由于函数1(0,0)()()a b z a z b ≠≠--的奇点为z a =, 因此它在z a <内处处解析, 可以在此圆内展开成z 的幂级数.='1(1)nn z z a a a⋅++++=111()n n n z a a a -⋅+++=1211,n n n z z a a a -++++<. ②a b ≠时, 由于函数1(0,0)()()a b z a z b ≠≠--的奇点为12,z a z b ==,因此它在min{,}z a b <内处处解析, 可以在此圆内展开成z 的幂级数.=2121111()nnn n z z z z a b a aa b bb ++-----++++-=22111111111[()()],min{,}nn n z z z a b a b b a b a b a ++-+-++-+<-.(3)2cos z解:由于函数2cos z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.4822cos 1(1),2!4!(2)!nnz z z z z n =-+-+-+<+∞.(4)shz解:由于函数shz 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.321321()()()()sin ((1)),3!(21)!3!(21)!n n niz iz z z shz i iz i iz z z n n ++=-=--++-+=++++<+∞++(5)2sin z解:由于函数2sin z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.=221(2)(2)(1),22!2(2)!nn z z z n +++-+<+∞⨯⨯.(6)sin z e z解:由于函数sin z e z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.(1)(1)sin 22iz iz i z i zzze e e e e z e i i-+---=⋅==22221(1)(1)(1)(1)(1(1)1(1))22!!2!!n n n n i z i z i z i z i z i z i n n ++--++++++-------=2122(1)(1)(2)22!!n n n i i i iz z z i n ⋅+--++++=32,3z z z z +++<+∞. 7. 求下列函数展开在指定点0z 处的泰勒展式, 并写出展式成立的区域.(1)0,2(1)(2)zz z z =++解: 21(1)(2)21z z z z z =-++++, 022111(2)222422414nnn z z z z ∞=-==⋅=-+-++∑, 011111(2)212333313nnn z z z z ∞=-==⋅=-+-++∑. 由于函数(1)(2)zz z ++的奇点为121,2z z =-=-, 所以这两个展开式在23z -<内处处成立.所以有:210001(2)1(2)11()(2),23(1)(2)243323n n n n n n nn n n z z z z z z z ∞∞∞+===--=-=---<++∑∑∑.(2)021,1z z = 解:由于2111(1)(1)(1)(1),1111n n z z z z z z ==--+-++--+-<-+ 所以'11211()12(1)(1)(1),11n n z n z z z z --=-=--++--+-<.(3)01,143z i z=+- 解:1111134343(1)33133(1)131(1)13z z i i i z i i z i i===⋅--------------- =100133(1)(1)13(13)(13)n n n n n n n n z i z i i i i ∞∞+==⋅--=-----∑∑.展开式成立的区域:3(1)113z i i--<-, 即13z i --< (4)0tan ,4z z π=解:'2tan sec z z =,''2tan 2sec tan z z z=,'''22tan 2sec (2tan 1)z z z =+, ……,'24tan sec 24z z ππ===, ''244tan 2sec tan 2z z zz zππ====,'''22448tan 2sec (2tan 1)3z z zz z ππ===+=……, 故有因为tan z 的奇点为,2z k k Z ππ=+∈, 所以这个等式在44z ππ-<的范围内处处成立.8. 将下列函数在指定的圆域内展开成洛朗级数.(1)21,12(1)(2)z z z <<+- 解:2221112()(1)(2)5211z z z z z z =--+--++,222222002221212(1)(1)111n nn n n n z z z z z z∞∞+====-=-++∑∑, 故有2121220001112((1)(1))(1)(2)52n nn n n n n n n z z z z z ∞∞∞+++====-+-+-+-∑∑∑(2)21,01,1(1)z z z z z +<<<<+∞- 解:222112(1)(1)z z z z z z +=+--①在01z <<内 ②在1z <<+∞内 (3)1,011,12(1)(2)z z z z <-<<-<+∞--解:①在011z <-<内, ②在12z <-<+∞内20111111111(1)(1)1(1)(2)22122(2)(2)(2)12nnn n n n z z z z z z z z z z ∞∞+===⋅=⋅=-=-----+-----+-∑∑(4)1sin ,011z z<-<+∞- 解:在01z <-<+∞内(5)cos,011zz z <-<+∞- 解:111cos cos(1)cos1cos sin1sin 1111z z z z z =+=----- 在01z <-<+∞内故有9.将221()(1)f z z =+在z i =的去心邻域内展开成洛朗级数.解:因为函数221()(1)f z z =+的奇点为z i =±, 所以它以点z i =为心的去心邻域是圆环域02z i <-<.在02z i <-<内又11001111()()(1)(1)()222(2)(2)12n n n n n n n n z i z i z i z i i i i i i i∞∞++==---=-⋅=--=---++∑∑ 故有222222001111()(1)()(1)()(1)()(2)(2)n n n n n n n n n n f z z i z i z z i i i ∞∞-++==++==⋅--=--+-∑∑ 10.函数()ln f z z =能否在圆环域0(0)z R R <<<<+∞内展开为洛朗级数?为什么?答:不能.函数()ln f z z =的奇点为,0,z z R ≤∈, 所以对,0R R ∀<<+∞, 0z R <<内都有()f z 的奇点, 即()f z 以0z =为环心的处处解析的圆环域不存在, 所以函数()ln f z z =不能在圆环域0(0)z R R <<<<+∞内展开为洛朗级数.习题五谜底1. 求下列各函数的孤立奇点, 说明其类型, 如果是极点, 指出它的级. (1)221(1)z z z -+解:函数的孤立奇点是0,z z i ==±, 因222222221111111(1)(1)()()()()z z z z z z z z z i z z i z i z z i ----=⋅=⋅=⋅++-++- 由性质5.2知, 0z =是函数的1级极点, z i =±均是函数的2级极点. (2)3sin zz 解:函数的孤立奇点是z =, 因32133sin 1((1))3!(21)!n nz z z z z z n +=-++-+, 由极点界说知, 0z =是函数的2级极点. (3)ln(1)z z+ 解:函数的孤立奇点是0z =, 因0ln(1)lim1z z z→+=, 由性质5.1知,0z =是函数可去奇点.(4)21(1)z z e -解:函数的孤立奇点是2z k i π=,①0k =, 即0z =时, 因4223(1)2!!n zz z z e z n +-=++++所以0z =是2(1)z z e -的3级零点, 由性质5.5知, 它是21(1)z z e -的3级极点②2z k i π=, 0k ≠时, 令2()(1)z g z z e =-, '2()2(1)z z g z z e z e =-+, 因(2)0g k i π=, '2(2)(2)0g k i k i ππ=≠, 由界说 5.2知,2(0)z k i k π=≠是()g z 的1级零点, 由性质5.5知, 它是21(1)z z e -的1级极点 (5)2(1)(1)zzz e π++ 解:函数的孤立奇点是(21),z k i k Z =+∈,令2()(1)(1)z g z z e π=++,'2()2(1)(1)z z g z z e e z πππ=+++, ''22()2(1)4(1)z z z g z e ze e z πππππ=++++①0z i =±时, 0()0g z =, '0()0g z =, ''0()0g z ≠, 由界说5.2知,0z i =±是()g z 的2级零点, 由性质5.5知, 它是21(1)(1)z z e π++的2级极点, 故0z i =±是2(1)(1)zzz e π++的2级极点.②1(21),1,2,z k i k =+=±时, 1()0g z =, '1()0g z ≠, 由界说5.2知, 1(21),1,2,z k i k =+=±是()g z 的1级零点, 由性质5.5知, 它是21(1)(1)z z e π++的1级极点, 故是2(1)(1)z zz e π++的1级极点.(6)21sin z解:函数的孤立奇点是0z =, 1,2,z z k ==±= 令2()sin g z z =, '2()2cos g z z z =,①0z =时, 因64222()sin (1)3!(21)!n nz z g z z z n +==-++-++, 所以0z =是()g z 的2级零点, 从而它是21sin z 的2级极点.②1,2,z z k ==±=时, ()0g z =, '()0g z ≠, 由界说5.2知,1,2,z z k ==±=是()g z 的1级零点, 由性质5.5知,它是21sin z的1级极点. 2. 指出下列各函数的所有零点, 并说明其级数.(1)sin z z解:函数的零点是,z k k Z π=∈, 记()sin f z z z =,'()sin cos f z z z z =+①0z =时, 因4222sin (1)3!(21)!n nz z z z z n +=-++-++, 故0z =是sin z z的2级零点.②,0z k k π=≠时, ()0z k f z π==, '()0z k f z π=≠, 由界说5.2知,,0z k k π=≠是sin z z 的1级零点. (2)22z z e解:函数的零点是0z =, 因242222(1)2!!n z z z z e z z n =+++++, 所以由性质5.4知, 0z =是22z z e 的2级零点.(3)2sin (1)z z e z -解:函数的零点是00z =, 1z k π=, 22z k i π=, 0k ≠,记2()sin (1)z f z z e z =-, '22()cos (1)sin [2(1)]z z z f z z e z z e z z e =-++-①0z =时, 0z =是sin z 的1级零点, , 1z e -的1级零点, 2z 的2级零点, 所以0z =是2sin (1)z z e z -的4级零点.②1z k π=, 0k ≠时, 1()0f z =, '1()0f z ≠, 由界说 5.2知, 1z k π=, 0k ≠是()f z 的1级零点.③22z k i π=, 0k ≠时, 1()0f z =, '1()0f z ≠, 由界说 5.2知, 22z k i π=, 0k ≠是()f z 的1级零点.3. 0z =是函数2(sin 2)z shz z -+-的几级极点?答:记()sin 2f z z shz z =+-, 则'()cos 2f z z chz =+-, ''()sin f z z shz =-+,'''()cos f z z chz =-+, (4)()sin f z z shz =+, (5)()cos f z z chz =+, 将0z =代入, 得:''''''(4)(0)(0)(0)(0)(0)0f f f f f =====, (5)()0f z ≠, 由界说5.2知, 0z =是函数()sin 2f z z shz z =+-的5级零点, 故是2(sin 2)z shz z -+-的10级极点.4. 证明:如果0z 是()f z 的(1)m m >级零点, 那么0z 是'()f z 的1m -级零点.证明:因为0z 是()f z 的m 级零点, 所以'''10000()()()()0m f z f z f z f z -=====,0()0m f z ≠, 即''''2000()(())(())0m f z f z f z -====, '10(())0m f z -≠, 由界说5.2知, 0z 是'()f z 的1m -级零点.5. 求下列函数在有限孤立奇点处的留数. (1)212z z z+- 解:函数的有限孤立奇点是0,2z z ==, 且0,2z z ==均是其1级。

参考答案 复变函数与积分变换 第四版 西安交通大学 课后答案

参考答案 复变函数与积分变换 第四版 西安交通大学 课后答案

参考答案复变函数与积分变换第四版西安交通大学课后答案一、复数的定义与运算复数是由实数和虚数组成,可以表示为 a + bi 的形式,其中 a 和 b分别为实数部分和虚数部分。

复数的加减乘法运算与实数类似,需要注意的是虚数单位 i 的平方等于 -1。

在复数的加减法中,实数部分和虚数部分分别相加减即可;在复数的乘法中,实数部分与实数部分相乘,虚数部分与虚数部分相乘,并注意虚数单位 i 的平方等于 -1;在复数的除法中,需要将除数与被除数进行共轭复数的乘法,然后除以共轭复数的模的平方。

二、复变函数的定义与性质复变函数是由复数变量和复数结果构成的函数。

复变函数具有实部和虚部两个部分,分别表示在复平面上的实轴和虚轴上的取值。

复变函数的性质包括解析性、连续性和可微性。

对于解析函数来说,它在定义域内部处处可微;对于连续函数来说,它在定义域内部处处连续;对于可微函数来说,它在定义域内的每一点上都存在导数。

三、复变函数的积分变换复变函数的积分变换是通过积分运算来对复变函数进行变换的过程。

常见的积分变换有拉普拉斯变换、傅里叶变换和Z变换等。

1. 拉普拉斯变换拉普拉斯变换是将时域函数 f(t) 变换到复频域函数 F(s) 的一种积分变换方法。

拉普拉斯变换的定义如下:F(s) = L[f(t)] = ∫[0,∞] e^(-st) f(t) dt其中,s 是一个复数参数,t 是时间变量,f(t) 是一个定义在非负实数域上的函数。

2. 傅里叶变换傅里叶变换是将时域函数 f(t) 变换到频域函数F(ω) 的一种积分变换方法。

傅里叶变换的定义如下:F(ω) = FT[f(t)] = ∫[-∞,+∞] e^(-jωt) f(t) dt其中,ω 是一个实数参数,t 是时间变量,f(t) 是一个定义在全实数域上的函数。

3. Z变换Z变换是将离散时间函数 f[n] 变换到复频域函数 F(z) 的一种积分变换方法。

Z变换的定义如下:F(z) = Z[f[n]] = ∑[n=0,∞] z^(-n) f[n]其中,z 是一个复数参数,n 是离散时间变量,f[n] 是一个定义在非负整数域上的序列。

第四章 级数(答案)

第四章 级数(答案)

复变函数练习题 第四章 级数系 专业 班 姓名 学号§1 复数项级数 §2 幂级数23521242211(1)1(1)sin ()3!5!(21)!(1)cos 1()2!4!2!1()2!!n n n n nn zz z z z zz z z z z z n z z z z z n z z e z z n +=+++++<--=-+-++<+∞+-=-+-++<+∞=+++++<+∞L L L L L L L L 一些重要的级数一、选择题:1.下列级数中绝对收敛的是 [ ](A)11(1)n in n ∞=+∑ (B)1(1)[]2n n n i n ∞=-+∑ (C) 2ln n n i n ∞=∑ (D)1(1)2n n n n i ∞=-∑ 2.若幂级数nn n c z∞=∑在12z i =+处收敛,那么该级数在2z =处的敛散性为 [ ](A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定()122i Abel +=>,由定理易得3.幂级数10(1)1n n n z n ∞+=-+∑在||1z <内的和函数为 [ ] (A) ln(1)z + (B )ln(1)z - (C ) 1ln1z + (D ) 1ln 1z- '100'110000(1)1(1)11(1)(1)1=ln(1)111n n n nn n n n z z n n n n z z n z z z dz dz z n n z∞∞+==∞∞++==⎧⎫⎛⎫-=-=⎪⎪⎪++⎪⎪⎝⎭⎨⎬⎛⎫⎪⎪--==+ ⎪⎪⎪+++⎝⎭⎩⎭∑∑∑∑⎰⎰ 二、填空题:1.设(1)2nn i α-=+,则lim n n α→∞= 0 。

2.设幂级数nn n c z ∞=∑的收敛半径为R ,那么幂级数0(21)n n n n c z ∞=-∑的收敛半径为2R 3.幂级数!nn n n z n ∞=∑的收敛半径是 e 。

复变函数习题及答案解析(东南大学版)

复变函数习题及答案解析(东南大学版)

第1章 复数与复变函数1.1 复数及复平面1-1若1||1,n nz z z ω==+(n 是正整数),则(). (A )Re()0ω=(B )Im()0ω=(C )arg()0ω=(D )arg()πω=解由||1z =知1z z=,因此1n n n n z z z z+=+为实数,故Im()0ω=. 选(B )||1z =时n z =1/.n n z z =1-23311()()22n n--+=(). (A )(1)2n -(B )1(1)2n --(C )2 (D )2-解2i π3e =2i π3e =知,等式中两项皆为1. 选(C )1-3i |(1e )|n θ+=().(A )2cos2n nθ(B )2sin2n nθ(C )/222(1cos )n n θ+(D )/222(1sin )n n θ+解i 222|1e |(1cos )sin 2(1cos )θθθθ+=++=+故i /22|(1e )|2(1cos ).n nn θθ+=+选(C )本题容易错选(A)项,因为2(1+2cos )4cos 2θθ=得i |1e |θ+=2cos .2θ错在cos 2θ应加上绝对值.1-442max{|i |||1}z z z +≤=(). (A(BC(D )2 解由4242|i |||||2,z z z z +≤+≤而当i4e z π=时,πi4i π2422e 1,i ie 1,|i |2z z z z ==-==-+=,故最大值为2.选(D )用不等式确定最大值是常用方法. 1-5对任意复数12,z z ,证明不等式121212||||||||||||.z z z z z z -≤±≤+证1121212*********|||()|||||||||||||||||z z z z z z z z z z z z z z z -=+-≤+-=+=+-≤++故1212||||||z z z z -≤+,同理2112||||||z z z z -≤+ 即121212||||||||z z z z z z -+≤-≤+ 也就是1212||||||||.z z z z -≤+证2(代数法)设i (1,2)k k k z x y k =+= 则只要证222121122||||2||||||z z z z z z +≤++即只要证1212x x y y +≤1) 只要证2222212121122()()()x x y y x y x y +≤++ 此不等式等价于22221221112220x y x y x y x y +-≥由于,k k x y 皆是实数,上式左边是完全平方式,故此不等式成立,也就是1212||||||z z z z +≤+成立,以下同证1.证3(三角法).设12i i 1122e ,e ,z r z r θθ==则2221211221122||(cos cos )(sin sin )z z r r r r θθθθ+=+++222212*********cos()2r r r r r r r r θθ=+-≤+ 21212()(||||)r r z z =+=+即1212||||||z z z z +≤+成立,以下同证1.1-6 当1||≤z 时,求||α+nz 的最大与最小值,n 是正整数,a 是复常数. 解1(代数法).由1-5题知.||1||||||||||||αα+≤+≤+≤-a z z z z n n n我们知道,当1||=nz ,且向量n z 与α夹角为0°时右边不等式等号成立.故||α+nz 的最大值是.||1α+对左边不等式,要分情况讨论.(1)若1||>α,则.1||||||||-≥-≥+αααnnz z 等号当,1||=z 且nz 与α方向相反时成立.这时最小值是.1||-α(2)若1||≤α,则由0||≥+αn z ,当α-=nz 时等号成立,最小值为0.总之,不论α为何复数,|1|+nz 的最大值是||1α+;而当1||>α时,最小值为1||-α.当1||≤α时,最小值为0.解2 (几何法).我们仅就1||>α加以证明.由1||≤z 知1||≤nz 。

复变函数与积分变(北京邮电大学)课后的习题答案

复变函数与积分变(北京邮电大学)课后的习题答案
π i 2 2 4 解: 3 3i= 6 i 6 e 2 2
(1) arg z π; (2) z 1 z ; (3)1 z i | 2; (4) Re z Im z;
k 0,1

3 3i 6 e
1 π 2 i 4


ie2
i
π
③解: 1 eiπ eπi
2 ④解: 8π 1 3i 16π π . 3
z z z w w z w w z zw z w w z w

2
2 2 2
2 Re z w



2
∴ 8π 1 3i 16π e
① 则 :∵设 z=x+iy
3
3
∴当 n 2k 时, Re in 1k , Im in 0 ; 当
k
n 2k 1


R
e i
n
,0
x a iy x a iy z a x iy a x a iy 2 2 z a x iy a x a iy x a y
1 i 3 , ∴ Re 1 2
2.求下列各复数的实部和虚部(z=x+iy)
k n 2k 1 , n i k . ⑤解: ∵ k n 2k 1 1 i,
za (a ); z 3 ; 1 i 3 ; 1 i 3 ; i n . za 2 2
2π 2π ⑤解: cos i sin 9 9

《复变函数》第四章习题全解钟玉泉版

《复变函数》第四章习题全解钟玉泉版

第四章 解析函数的幂级数表示法(一)1.解:(1)其部分和数列 14151311()414121(4--++-++++-=n i n S n由交错级数收敛性判别及极限运算法则知n n S 4lim ∞→存在,设为l S n n =∞→4lim ,又有,0241,0142414→+-=→+=++n a n i a n n由此得知l S n n =∞→lim ,因此级数收敛,但非绝对收敛.(2)∑∑∑∞=∞=∞=≤=+111!)34(!1!)53(n nn nn n n bn n i ,可知原级数绝对收敛.(3)由于1226251251limlim>=+=+=∞→∞→i i a nnn nn n ,故原级数发散.2.解:(1)11limlim1=+==∞→+∞→n n c c R n n n n(2)212lim lim 1=+==∞→+∞→n nc c R n n n n(3)01lim lim1==∞→∞→nc R n nnn3.证明:(1)如果∞≠=+∞→λnn n c c 1lim,则∞≠=+∞→λnn n c c 1lim,则级数的收敛半径为⎪⎩⎪⎨⎧∞+==+∞→n n n c cR 1lim 1λ 00=≠λλ(2)由(1)可证其收敛半径为R .(3)由(1)可证其收敛半径为R .4.证明:因为∑∑∞=∞==n nn n n n Rc zc 收敛,而当R z ≤时, ∑∑∞=∞=≤n nn n nn Rc zc ,因此级数在R z ≤上绝对收敛且一致收敛. 5.解:(1)因为1<u 时,∑∞=-=+0)1(11n nnuu,所以当1<z ba 时,有∑∞=-=+=+0)()1(1)1(11n nnz ba bz b a b baz(2)因为∑∞=+∞<=,!n nz z n ze ,而 2ze在z 平面解析,所以∑∞=+∞<=2)(,!2n nzz n ze逐项积分得 )()12(!00122+∞<+=⎰∑∞=+z n n zdz e zn n z(3)因为∑∑∞=∞=++-=+-=2012)!12()1()!12()1(1sin n nnn n nn zn zzzz如果1sin lim=→zz z ,则0=z 为可去奇点,可补充定义被积函数1)0(=f ,于是上式收敛范围为+∞<z ,合于逐项积分条件,所以 ⎰⎰∑∑∞=∞=++∞<++-=+-=zzn n n nn nz i n n zdz n zdz zz 0000122)()!2)(12()1()!12()1(sin(4))()!2()2()1(21)!2()2()1(212122cos 1sin 02122+∞<-=--=-=∑∑∞=-∞=z n z n z zz n nn n nn(5)因为2()()(1),(0)(1)!n f z z f n -=-=+从而()(1),(||1)nn of z n zz ∞==+<∑6.解:因为23451 (2)624120zz zzzze =++++++2345ln(1) (2)345z z zzzz+=-+-++所以23453452ln(1)()()2345234zz z zzzzzzze z +=-+-++-+-++ 345455()()...24661224z z z z z z -++-++523...(1)23403z z z z z =++++<7.解:(1) sin sin[(1)1]sin(1)cos1cos(1)sin 1z z z z =-+=-+-=212(1)(1)cos1(1)sin (1)(21)!(2)!n nn n n z z n n ∞∞+==---+-+∑∑=01sin(1)(1),|1|!2kk k z z k π∞=+--<+∞∑(2)21112111-+⋅-=+-z z z z ,再由公式)1()1(110<-=+∑∞=z zzn nn(3)22)21(11]1)1[(4152-++-=+-z z z z z ,结合)1()1(11022<-=+∑∞=z zzn nn(4)由于3z 的支点为∞,0,沿负实轴)0,(-∞割开平面,则指定分支就在11<-z内单值解析, 3133)]1(1[1-+⋅=z z ,再利用二项式展开.8.解:(1)∑∑∞=∞=-=-=-01)1(24222!)1!()1(2n n n n zn zzn zz ez ,故为4级零点.(2)∑∞=+-++⋅-=-+16312633)6()12()1(6)6(sin 6n nn nz z n zz z z)!7!51(6615+-=zz故为15级零点.9.证明:因为0z 为)(z f 的m 阶零点+-+-=++1010)()()(m m m m z z a z z a z f 又因为0z 为)(z g 的n 阶零点,+-+-=++1010)()()(n n n b z z b z z b z g 如果n m >,则])([)()()(010 +-+-=++z z b b z z z g z f n n n 故0z 为)()(z g z f +的n 阶零点.如果m n >,同理可得0z 为)()(z g z f +的m 阶零点.如果n m =,当0≠+m m b a 时, 0z 为)()(z g z f +的m 阶零点; 当0=+m m b a 时,零点0z 的阶数大于n .+-++-=+++++10110))(()()()(n m n m n m n m n m z z b a b a z z b a z g z f 故0z 为)()(z g z f 的n m +阶零点.+-++-+-=++-)()()()()(01010z z a a z z b b z z z f z g m m n n mn由此可见如果m n >,则0z 为)(/)(z g z f 的m n -阶零点, 如果n m >,则0z 为)(/)(z g z f 的n m -阶零点, 如果n m =,则0z 为)(/)(z g z f 的可去奇点.10.证明:利用定理4.17,因0z 为解析函数)(z f 的至少n 级零点,则有 n m z g z z z f m ≥-=)()()(0 其中0!)()(0)(0≠=m z fz g m .同理 )()()(00z z z z nϕϕ-=,其中0!)()(00≠=n z z nϕϕ,则本题得证.11.解:(1)不存在 (2)不存在 (3)不存在 (4)存在12.证明:因为)(z f 在0z 点解析,由泰勒定理),:()(!)()(0000)(D K R z z K z z z n z fz f nn n ⊂<-∈-=∑∞=再由题设 ,2,1,0)(0)(==n z fn ,则)(),()(0D K z z f z f ⊂∈=由唯一性定理得 )(),()(0D z z f z f ∈≡.13.证明:(反证法)假设)(0z f 是)(z f 在D 内的最小值,因0)(0≠z f ,则)(10z f是)(1z f 在D 内的最大值, )(z f 为解析函数,由最大模原理,)(1z f 在D 内恒为常数,与题设矛盾,故)(0z f 不可能是)(z f 在D 内的最小值.14.证明:(反证法)设)(z f 在D 内处处不为零,则由最小,最大模原理,在D 内)(z f 既不能达到最小值,也不能达到最大值.而题设)(z f 在闭域D 上连续,故)(z f 在闭域D 上有最大值M 和最小值m ,而由上所述,这些都只能在边界C 上达到,但题设)(z f 在C 上为常数,故 C z mz f M ∈==)(再由最大,最小模原理,D z m M z f m ∈=<<)(,即D z mz f ∈=)(由上, )(z f 在闭域D 上恒为常数,由第二章习题(一)6(3)知, )(z f 在D 内必为常数,矛盾.(二)1.证明:由于级数∑∞=1)(n n z f 收敛于)(z f ,故)(,0εεN ∃>∀,当N n >及一切E z ∈,有Mz f z s n ε<-)()(.由题设)(,)(+∞<<M M z g 推得ε<-)()()()(z g z f z g z s n 故得证.2.证明:该级数的部分和n n n n z z z z z z z s =-++-+=-)()()(12 显然,对任何)1(<z z ,有0)(lim =∞→z s n n .另一方面,对于任何固定的n ,取121<=nz ,有21=nz,因而nz 不可能任意小,这就证得级数在圆1<z 内非一致收敛.3.证明:(1) n n n v v v v v +≤+++=121σ,两边取极限 ++≤=∞→n n n v v 1lim σδ(2) 1!!2!!2122-=++++≤++++=-znnzen zzz n zzz e)!!21(!!2112++++≤++++=--n zz z n zzz en nzznez n zz z =++++≤)!1( (3)因为在0||1z <<内任意一点z ,11!nzn n z e ∞=-=∑ 所以3213|1|||||2213||||zz z z z e -≤++-≤117||(1)||244z z ++=另一方面:321||||13|1|||||||||2224413zzzz z e z z z z -≥+-≥--=-4.证明:由柯西不等式||,n nMa ρ≤当||z ρ<时,01|||()|||||,||n n z f z a a z Mz ρ∞=-≤≤-∑因此 |()f z |0000|()||||()|f z a a a f z a =-+≥--000000||||||||||||||||a a Mz a Ma Ma z a Mρρρρ+≥->---+=0||a -0||a =0故()f z 在00||||||a z a Mρ<+上无零点.5.证明:因为2201()2i f re d πθθπ⎰=201()()2i i f re f re d πθθθπ⋅⎰=201()()2nin nin n n n n a r ea r ed πθθθπ∞∞-==⋅∑∑⎰对任意自然数,m k 若m k ≠,则20ik im eed πθθθ-⋅⎰=2()()021|()i k m i k m d k m ieeπθθπθ--==-⎰因此,根据逐项可积公式即得:222222011222|||()|||nni n i d d n n f r r ra e a ππθθθππ∞===∑⎰⎰6.证明:取,r R >则对一切正整数k n >时,()1||!()!|(0)|||||2nk k kz rk f z k M r fdz zrπ+=≤≤⎰于是由r 的任意性知对一切k n >均有()(0)k f =0故()f z 0nnnk c z ==∑,即()f z 是一个至多n 次的多项式或常数.7.证明:(1)设0z 是)(z f 的m 阶零点,于是在0z 的某邻域K 内)0()()()(1010≠+-+-=++m m m mm c z z c z z c z f取)0(,δδδ<'<',于是在区域),(0δ''z N 内)0()()()(1010≠+-+-=++m m m mm c z z c z z c z f一致收敛,逐项积分可得ζζζζζd z c z c d f zz zz m m mm ])()([)(001010 +-+-=⎰⎰++⎰⎰+-+-=++zz m m zz mm d z c d z c 01010)()(ζζζζ+-++-+=+++20110)(2)(1m m m m z z m c z z m c令 +-++-+=+++20110)(2)(1)(m m m m z z m c z z m c z F故0z 是)(z F 的1+m 阶零点. (2)设⎰=zz d f z 1)()(ζζϕ,作函数⎰-=zz d f z z F 1)()()(ζζϕ,则⎰⎰⎰=-=zz z z zz d f d f d f z F 011)()()()(ζζζζζζ由(1)知0z 是)(z F 的1+m 阶零点,故 ⎰-01z )( )(z d f z ζζϕ以0z 为1+m 阶零点.8.证明:设),(),()(1y x iv y x u z f += )0,()0,()(2x iv x u z f +=依唯一性定理,在L 上有)()(1z f z f =,而L 每一点都是L 的极限点,而且)(),(,21z f z f G L ⊂都在G 内解析,由唯一性定理有)()(21z f z f =.9.证明:(反证法)设存在这样的周线C ,D C I ⊂)(,且有一复数A ,使得A z f =)(,在C 内部)(C I 有无穷多个根,即0)(=-A z f 在C 内部)(C I 有无穷多个零点,必存在零点列{}D z z n ∈→0,从而由唯一性定理,)()(D z A z f ∈≡,与题设矛盾.10.证明:由最大模原理)(max )(z f r M rz <=,显然)(r M 是单调上升函数,若存在21r r <,使得)()(21r M r M =,即在2r z <内存在点θi e r z 11=使得)()(21r M z f =,即在内点达到最大模,由最大模原理知)(z f 恒为常数.。

史济怀《复变函数》第四章若干习题解答,4.1节

史济怀《复变函数》第四章若干习题解答,4.1节

史济怀《复变函数》第四章若⼲习题解答,4.1节可能是因为当年本科学的是微积分,级数部分讲的不多,现在这部分习题做起来真的很困难,有不少题⽬想了很长时间,现在在这⾥练⼀练,做个记录.4.设0<α<π2,arg z n ≤α,∀n ∈N.证明级数∑z n ,∑Re z n ,∑|z n |有相同的敛散性.证明 假设∑z n 收敛,显然∑Re z n 也收敛,来证明∑|z n |也收敛.因为|z n |Re z n =1cos θn ≤1cos α所以∑|z n |收敛.再假设∑Re z n 收敛,则有前⾯的过程可得∑|z n |收敛,进⼀步∑z n 也收敛.上⾯的论述说明了三个级数同时收敛.⾃然也就同时发散.5.设Re z n ≥0,∀n ∈N,证明若∑z n ,∑z 2n 都收敛,则∑|z n |2也收敛.证明 设z n =r n e i θn ,θn ∈−π2,π2,由∑z n 收敛可以知道∑r n cos θn 也收敛,⽽他是正项级数,因⽽∑r 2n cos 2θn 也收敛;再根据∑z 2n 收敛知如下级数收敛∑r 2n cos2θn =∑r 2n cos 2θn −sin 2θn 收敛,因此∑r 2n sin 2θn 也收敛,相加即得∑r 2n =∑|z n |2收敛.11.证明∑∞n =1(−1)n −11n −z 在C ∖N 上内闭⼀致收敛.证明 任取紧集K ⊂C ∖N,我们来证明级数在K 上⼀致收敛.任取z 0∈K,存在充分⼩的邻域B 0=B (z 0,r 0)⊂C ∖N,来证级数在B 0上⼀致收敛.如果令z =x +iy ,则(−1)n −11n −z =(−1)n −1n −x n 2−2nx −|z |2+i (−1)n −1y n 2−2nx −|z |2根据函数项级数的Dirchlet 判别法可以知道上⾯的级数的实部和虚部均在B 0中⼀致收敛.所以∑(−1)n −11n −z 也在B 0中⼀致收敛.当z 0遍历K 时可得到K 的⽆限开覆盖B,由K 的紧性知道可从B 中取出有限个B k ,(k =1,2,⋯,n )覆盖住K,⽽级数在每个B k 上⼀致收敛,所以在∪n k =1B k 上⼀致收敛,也在K 上⼀致收敛.由K 的任意性,所以原来的级数在C ∖N 中内闭⼀致收敛.12.设∑f n (z )是区域D 中的全纯函数项级数,设∑Re f n (z )在D 中内闭⼀致收敛,则∑Im f n (z )在D 上或者内闭⼀致收敛,或者在D 上处处发散.证明 还没想出来!以解决!利⽤Schwarz 积分公式可以证明||[]()Processing math: 100%。

复变函数习题解答(第4章)

复变函数习题解答(第4章)

p178第四章习题(一)[ 3, 4, 6, 7(4), 10, 12, 13, 14 ]3. 如果lim n→∞ (c n + 1/c n)存在( ≠∞ ),试证下列三个幂级数有相同的收敛半径:(1) ∑n≥ 0c n z n;(2) ∑n≥ 0 (c n/(n + 1))z n + 1;(3) ∑n≥ 0 (n c n)z n– 1.【解】事实上,我们只要证明下面的命题:若∑n≥ 0c n z n的收敛半径为R,则∑n≥ 0 (n c n)z n– 1的收敛半径也为R.从这个命题,就可以得到幂级数(1)的收敛半径与幂级数(2)的收敛半径相同,幂级数(3)的收敛半径与幂级数(1)的收敛半径相同.step1. 当R是正实数或+∞时.若| z | < R,则存在r∈ 使得| z | < r < R.因∑n≥ 0c n z n的收敛半径为R,根据收敛半径定义及Abel定理,知∑n≥ 0 | c n r n |收敛.因| (n c n)z n– 1 | = ( | n/r | · ( | z |/r)n – 1 ) · | c n r n |;而lim n→∞ ( | n/r | · ( | z |/r)n – 1 ) = 0,故∃M > 0使得0 ≤ | n/r | · ( | z |/r)n – 1≤M.所以| (n c n)z n– 1 | ≤M · | c n r n |.由Weierstrass判别法知∑n≥ 0 | (n c n)z n– 1 |收敛,所以∑n≥ 0 (n c n)z n– 1收敛.因此∑n≥ 0 (n c n)z n– 1的收敛半径R1≥R.特别地,若∑n≥ 0c n z n的收敛半径为+∞,则∑n≥ 0 (n c n)z n– 1的收敛半径也为+∞.step2. 当R是非负实数时.对任意的满足R < r < | z |的实数r,根据收敛半径定义,∑n≥ 0c n r n发散.从而∑n≥ 0 | c n r n |发散.当n > r + 1时,| c n r n | = | r/n | · | (n c n)r n– 1 | ≤ | (n c n)r n– 1 |;因此,∑n≥ 0 | (n c n)r n– 1 |发散.由Abel定理,∑n≥ 0 (n c n)z n– 1的收敛半径R1≤r.由r的任意性,得R1≤R.特别地,若∑n≥ 0c n z n的收敛半径为0,则∑n≥ 0 (n c n)z n– 1的收敛半径也为0.step3. 综合step1和step2的结论,当R为正实数时,也有R1 = R.即若∑n≥ 0c n z n的收敛半径为R,则∑n≥ 0 (n c n)z n– 1的收敛半径也为R.[这个证明中,我们没有用到条件lim n→∞ (c n + 1/c n)存在( ≠∞ ),说明该条件是可以去掉的.因为一般的幂级数并不一定满足这个条件,因此去掉这个条件来证明结论是有意义的.]4. 设∑n≥ 0c n z n的收敛半径为R (0 < R < +∞),并且在收敛圆周上一点绝对收敛,试证明这个级数对所有的点z : | z | ≤R为绝对收敛且一致收敛.【解】设z0在收敛圆周上,且∑n≥ 0 | c n z0 n |绝对收敛.那么对于点z : | z | ≤R,都有| z | ≤ | z0|.因此级数∑n≥ 0 | c n z n |收敛,即∑n≥ 0c n z n绝对收敛.而由Weierstrass判别法知知级数∑n≥ 0c n z n对所有的在闭圆| z | ≤R上一致收敛.6. 写出e z ln(1 + z)的幂级数展式至含z5项为止,其中ln(1 + z)|z = 0 = 0.【解】在割去射线L = { z∈ | Im(z) = 0,Re(z) ≤-1}的z平面上,能分出Ln(1 + z)的无穷多个单值解析分支(Ln(1 + z))k = ln| (1 + z) | + i arg(1 + z) + 2kπi ,k∈ .由条件ln(1 + z)|z = 0 = 0,知arg(1) + 2kπ = 0,即k = 0.所以,满足条件的分支为ln(1 + z) = ln| (1 + z) | + i arg(1 + z).因为(ln(1 + z))’= 1/(1 + z) = ∑n≥ 0 (-1)n z n,| z | < 1.∀z : | z | < 1,从沿0到z的曲线逐项积分得ln(1 + z) - ln(1 + z)|z = 0 = ∑n≥ 0 ((-1)n/(n + 1)) z n + 1,| z | < 1;即ln(1 + z)= ∑n≥ 0 ((-1)n/(n + 1)) z n + 1,| z | < 1.因e z= ∑n≥ 0 (1/n!) z n,z∈ ,故∀z : | z | < 1,幂级数∑n≥ 0 (1/n!) z n,∑n≥ 0 ((-1)n/(n + 1)) z n都绝对收敛.故它们的Cauchy乘积收敛于它们的和函数的乘积,所以e z ln(1 + z) = z · (∑n≥ 0 (1/n!) z n)(∑n≥ 0 ((-1)n/(n + 1)) z n),| z | < 1.设e z ln(1 + z) = z ·∑n≥ 0 c n z n,| z | < 1.则c n = ∑0 ≤k≤n(1/k!) · (-1)n -k/(n -k + 1),n∈ .故c0 = 1,c1 = 1/2,c2 = 1/3,c3 = 0,c4 = 3/40,....所以e z ln(1 + z) = z+ (1/2)z2 + (1/3) z3 + (3/40) z5 + ...,| z | < 1.7. 将下列函数按z– 1的幂展开,并指出其收敛范围.(4) z1/3 ( 11/3 = (– 1 + √3 i )/2 ).【解】在割去射线L = { z∈ | Im(z) = 0,Re(z) ≤-1}的z平面上,能分出z1/3的三个单值解析分支( z1/3)k = | z |1/3 · exp((arg(z) + 2kπ)i/3),k = 0, 1, 2.设要展开的分支为z1/3 = | z |1/3 · exp((arg(z) + 2k0π)i/3),0 ≤k0 ≤ 2.因为| 1|1/3 = 1,arg(1) = 0,故exp(2πi/3) = (– 1 + √3 i )/2 = exp(2k0πi/3),所以k0 = 1.即要展开的分支为z1/3 = | z |1/3 · exp((arg(z) + 2π)i/3).因为z1/3 = exp(2πi/3) · | z |1/3 · exp(arg(z)/3 ·i),而主值支(1 + (z– 1))1/3 = | z |1/3 · exp(arg(z)/3 ·i)的展式为(1 + (z– 1))1/3 = ∑n≥ 0 C(1/3, n)(z– 1)n,| z– 1| < 1.所以,要展开的分支z1/3 = exp(arg(z)/3 ·i) ·∑n≥ 0 C(1/3, n)(z– 1)n= ∑n≥ 0 (– 1 + √3 i )/2 ·C(1/3, n)(z– 1)n,| z– 1| < 1.10. 设a为解析函数f(z)的至少n阶零点,又为解析函数ϕ(z)的n阶零点,试证:lim x→a f(z)/ϕ(z) = f(n)(a)/ϕ(n)(a).【解】设f(z)与ϕ(z)在a的某邻域U= { z∈ | | z–a | < R}内的Taylor展式分别为f(z) = ∑k≥ 0 c k (z–a) k,ϕ(z) = ∑k≥ 0 d n (z–a) k,z∈U,因a为f(z)的至少n阶零点,又为ϕ(z)的n阶零点,故当k≤n – 1时,f(k)(a) = ϕ(k)(a) = 0,且ϕ(n)(a) ≠ 0.因∀k∈ ,c k = f(k)(a)/k!,d k = ϕ(k)(a)/k!;故当k≤n – 1时,c k = d k = 0,且d n≠ 0.因此,f(z) = ∑k≥n c k (z–a) k,ϕ(z) = ∑k≥n d k (z–a) k.注意到幂级数c n + c n + 1 z+ c n + 2 z2 + ...以及幂级数d n + d n + 1 z+ d n + 2 z2 + ...都在U 内收敛,设它们的和函数分别为f1(z), ϕ1(z).则f(z) = (z–a)m f1(z),ϕ(z) = (z–a)nϕ1(z) ( z∈U ),且f1(a) = c n,ϕ1(a) = d n ≠ 0.所以,lim x→a f(z)/ϕ(z) = lim x→a f1(z)/ϕ1(z) = f1(a)/ϕ1(a) = c n/d n = f(n)(a)/ϕ(n)(a).12. 设f(z)在区域D内解析;在某一点z0∈D有f(n)(z0) = 0,n = 1, 2, ....试证f(z)在D内必为常数.【解】设U = { z∈ | | z–z0| < R}⊆D,则f(z)在U内能展成(z–z0)的幂级数f(z) = ∑k≥ 0 c k (z–z0) k,其中c k = f(k)(z0)/k!.因为f(k)(z0) = 0,k = 1, 2, ....故c k = 0,k = 1, 2, ....因此f(z)在U内恒为常数c0.由唯一性定理,f(z)在区域D内恒为常数c0.13. (最小模原理)若区域D内不恒为常数的解析函数f(z)在D内的点z0有f(z0) ≠ 0,则| f(z0) |不可能是| f(z) |在区域D内的最小值,试证之.【解】存在z0的邻域U = { z∈ | | z–z0| < R}⊆D,使得f(z)在U内恒不为零.倘若| f(z0) |是| f(z) |在区域D内的最小值,则| f(z0) |是| f(z) |在U内的最小值.那么,| 1/f(z0) |是| 1/f(z) |在U内的最大值.而1/f(z)在U内解析,由最大模原理,1/f(z)在U内恒为常数.故f(z)在U内也恒为常数.由唯一性定理,f(z)在区域D内也恒为常数,这与题目的条件相矛盾.所以| f(z0) |不可能是| f(z) |在区域D内的最小值.14. 设D是周线C的内部,函数f(z)在区域D内解析,在闭域cl(D) = D⋂C上连续,其模| f(z) |在C上为常数.试证:若f(z)不恒等于一个常数,则f(z)在D内至少有一个零点.【解】因f(z)在cl(D)上连续,故| f(z) |在cl(D)有最大值,即存在z0∈cl(D),使得| f(z0) | = max z∈cl(D) | f(z) |.因连续函数f(z)在闭域cl(D)上不恒为常数,故f(z)在D上也不恒为常数.由最大模原理,∀z∈D,有| f(z) | < | f(z0) |.因此z0∈∂D = C.设| f(z) |在C上为常数m,则m = | f(z0) | > 0.(反证法)若f(z)在D内恒不为零,则1/f(z)在D内解析.而在周线C上,| f(z) | = m > 0.故1/f(z)在cl(D)上连续.因1/f(z)在D内不恒为常数,因此1/f(z)也满足f(z)所满足的条件.由最大模原理,对∀z∈D,| 1/f(z) | < 1/m.由此得到m < | f(z) | < m,矛盾.[从本题的证明中可以看出,用最大模原理,可以得到如下结论:设f(z)在区域D 内解析,在cl(D)连续且不恒为常数,若| f(z) |在cl(D)上有最大值,那么| f(z) |在cl(D)上的最大值M必然在D的某个边界点取到,并且在D内总有| f(z) | < M.这时也必然有∂D ≠∅,max z∈cl(D) | f(z) | = max z∈∂D| f(z) |.我们特别强调的是条件“| f(z) |在cl(D)上有最大值”.这点对有界区域D来说,因| f(z) |是紧集cl(D)上的连续函数,因此| f(z) |在cl(D)上总是有最大值的.例如本题中的区域D是周线C的内部,当然就是有界集.但当D是无界区域时,有可能| f(z) |在cl(D)上没有最大值,也有可能∂D = ∅.另外,我们还用到了一个从分析的角度看来是很明显的结论:若f(z)在闭域cl(D)连续且不恒为常数,则f(z)在D上也不恒为常数.]p178第四章习题(二)[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ]1. 设级数∑n≥ 1f n(z)在点集E上一致收敛于f(z),且在E上| g(z) | < M ( M < +∞),则级数∑n≥ 1g(z)f n(z)在E上一致收敛于g(z) ·f(z).试证之.【解】∀ε > 0,∃N∈ +,使得当n > N时,∀z∈E,| ∑ 1 ≤k≤n f k(z) -f(z) | < ε/M.此时,| ∑ 1 ≤k≤n g(z)f k(z) -g(z) ·f(z) | = | g(z) | · | ∑ 1 ≤k≤n f k(z) -f(z) | < M ·ε/M = ε.所以级数∑n≥ 1g(z)f n(z)在E上一致收敛于g(z) ·f(z).2. 试证:在单位圆| z | < 1内,级数z + (z 2–z) + (z 3–z 2) + ... + (z n–z n– 1) + ... 收敛于函数f(z) ≡ 0,但它并不是一致收敛的.【解】当| z | < 1时,| S n(z) | = | ∑ 1 ≤k≤n (z k–z k– 1) | = | z |n → 0 ( n→∞ ).故级数在单位圆| z | < 1内收敛于函数f(z) ≡ 0.而∀n∈ +,在z = (1/2)1/n处,有| ∑n + 1 ≤k≤ 2n (z k–z k– 1) | = | z 2n–z n | = | ( z n)2–z n | = | 1/4 – 1/2 | = 1/4.因此级数在| z | < 1内不是一致收敛的.或取z n= 1 – 1/n,则| S n(z n) – 0 | = ( 1 – 1/n )n→ 1/e ( n→∞ ).因此级数在| z | < 1内不是一致收敛的.3. 试证(1) 如果∑n≥ 1v n(z) = δ绝对收敛,则| δ| ≤∑n≥ 1 | v n(z) |.(2) 对任一复数z,| e z– 1 | ≤ e | z |– 1 ≤ | z | e | z |.(3) 当0 < | z | < 1时,| z |/4 < | e z– 1 | < 7| z |/4.【解】(1) | ∑ 1 ≤k≤n v k(z) | ≤∑ 1 ≤k≤n | v k(z) | ≤∑k≥ 1 | v k(z) |.令n →∞得| δ| ≤∑k≥ 1 | v k(z) |.(2) 对任一复数z,e z– 1 = ∑n≥ 1z n/n!,其中右边的级数绝对收敛.根据(1)我们有| e z– 1| ≤∑n≥ 1 | z n/n! | = ∑n≥ 1 | z | n/n! = e | z |– 1.而e | z | = ∑n≥ 0 | z | n/n! = 1 + ∑n≥ 1 | z | n/n! = 1 + | z | ∑n≥ 1 | z | n – 1/n!≤ 1 + | z | ∑n≥ 1 | z | n – 1/(n – 1)! = 1 + e | z |,即e | z |– 1 ≤ | z | e | z |.(3) 当0 < | z | < 1时,注意到∑n≥ 1 | z | n – 1/n! ≤∑n≥ 1 1/n! = e - 1 < 7/4,因此有e | z |– 1 = | z | ∑n≥ 1 | z | n – 1/n! < 7| z |/4.因e z– 1 = ∑n≥ 1z n/n!,故(e z– 1)/z = ∑n≥ 0z n/(n + 1)! = 1 + ∑n≥ 1z n/(n + 1)!,而| ∑n≥ 1z n/(n + 1)! | ≤∑n≥ 1 | z |n/(n + 1)! ≤∑n≥ 1 1/(n + 1)! = e - 2.所以,| (e z– 1)/z | ≥ 1 - | ∑n≥ 1z n/(n + 1)! | ≥ 1 – (e - 2) = 3 - e > 1/4.故| z |/4 < | e z– 1 |.[注意(2)中e | z |– 1 ≤ | z | e | z |实际上是关于实数| z |的不等式,用数学分析容易得到∀t∈ ,e t≥ 1 + t.令t = – | z |,则e– | z |≥ 1 – | z |,即e | z |– 1 ≤ | z | e | z |.]4. 设f(z) = ∑n≥ 0a n z n (a0≠ 0)的收敛半径R > 0,且M = max | z | ≤ρ| f(z)| ( ρ< R ).试证:在圆| z | < | a0 |ρ/(| a0 | + M)内,f(z)无零点.【解】在Cauchy不等式,| f(n)(0) | ≤n! M/ρ n,故| a n| ≤M/ρ n.若| z | < ρ,| f(z) -a0 | = | ∑n≥ 1a n z n | ≤∑n≥ 1 | a n | | z | n≤∑n≥ 1M/ρ n · | z | n= M ∑n≥ 1 (| z |/ρ)n = M | z |/ρ· 1/(1 - | z |/ρ) = M | z |/(ρ- | z |).当| z | < | a0 |ρ/(| a0 | + M)时,有| z | < ρ,并注意到函数g(t) = t/(ρ-t) = ρ/(ρ-t) - 1在区间(0, ρ)上是严格单调增的,就得到,| f(z) -a0 | ≤M | z |/(ρ- | z |)< M | a0 |ρ/(| a0 | + M) · 1/(ρ- | a0 |ρ/(| a0 | + M))= M | a0 |ρ · 1/(ρM) = | a0 |.故| f(z) | ≥ | a0 | - | f(z) -a0 | > 0,所以,f(z)在圆| z | < | a0 |ρ/(| a0 | + M)内无零点.5. 设在| z | < R内解析的函数f(z)有Taylor展式∑n≥ 0a n z n.试证:当0 ≤ r < R时,(1/(2π))⎰[0, 2π] | f(r e iθ)|2dθ= ∑n≥ 0 | a n |2r2n.【解】当| z | = r时,因为∑n≥ 0a n z n绝对收敛,故∑n≥ 0 | a n | · | z | n收敛.即∑n≥ 0 | a n | ·r n收敛,.故∑n≥ 0a n*(z*) n也绝对收敛.由Cauchy乘积定理,∑n≥ 0 | a n | ·r n与∑n≥ 0 | a n | ·r n的Cauchy乘积∑n≥ 0d n绝对收敛,其中d n = ∑ 0 ≤k≤n | a k | · | a n – k | r n.设∑n≥ 0a n z n的部分和为S n(z),则∑n≥ 0a n*(z*) n的部分和为(S n(z))*,所以∑n≥ 0a n*(z*) n和为( f(z))*,即( f(z))*= ∑n≥ 0a n*(z*) n.由Cauchy乘积定理,∑n≥ 0a n z n与∑n≥ 0a n (z*) n的Cauchy乘积∑n≥ 0c n(z)绝对收敛于f(z) · ( f(z))* = | f(z)|2,其中c n(z) = ∑ 0 ≤k≤n a k z k·a n – k*(z*)n – k.因| c n(z) | = | ∑ 0 ≤k≤n a k z k·a n – k*(z*)n – k | ≤∑ 0 ≤k≤n | a k z k·a n – k*(z*)n – k | = d n,故∑n≥ 0c n(z)在| z | = r上一致收敛于| f(z)|2.设z = r e iθ,把| f(z)|2,c n(z)等都看成θ的函数(θ∈[0, 2π]),那么它们都是连续的.并且,∑n≥ 0c n(z(θ))在[0, 2π]上一致收敛于| f(z(θ))|2.故⎰[0, 2π] | f(z(θ))|2dθ= ∑n≥ 0⎰[0, 2π]c n(z(θ))dθ.因为在| z | = r上有z ·z* = r2,故c n(z) = ∑ 0 ≤k≤n a k z k·a n – k*(z*)n – k = ∑ 0 ≤k≤n a k z k·a n – k*(r2/z)n – k= ∑ 0 ≤k≤n a k z k·a n – k*r2(n – k) ·z k – n = ∑ 0 ≤k≤n (a k a n – k* ·r2(n – k))·z2k – n.故⎰[0, 2π] c n(z(θ)) dθ = ⎰[0, 2π] c n(z(θ)) d(z(θ))/z’(θ)= ⎰[0, 2π] c n(z(θ)) · 1/(r i e iθ)·d(z(θ)) = (1/i)⎰[0, 2π] c n(z(θ)) ·z(θ) –1·d(z(θ))= (1/i)⎰| z | = r c n(z) ·z –1·dz = (1/i)⎰| z | = r(∑ 0 ≤k≤n (a k a n – k* ·r2(n – k))·z2k – n – 1·dz.若n为奇数,则∑ 0 ≤k≤n (a k a n – k* ·r2(n – k))·z2k – n – 1中没有z–1项,因此⎰[0, 2π] c n(z(θ)) dθ = 0.若n为偶数2m,则⎰[0, 2π] c n(z(θ)) dθ= (1/i)⎰| z | = r(∑ 0 ≤k≤ 2m (a k a2m – k* ·r2(2m – k))·z2k –2m – 1·dz= (1/i)⎰| z | = r(a m a2m – m* ·r2(2m – m))·z– 1·dz= (1/i) (2πi) (a m a m*)·r2m = (2π) | a m |2 ·r2m,所以,⎰[0, 2π] | f(r e iθ)|2dθ= (2π) ∑m≥ 0 | a m |2 ·r2m.[这里我们用到了一个想法,把对实变量θ的积分,转化为对复数z的积分,是通过把θ作为积分变量z所在的曲线的参数来实现的.这种办法在后面的章节将会系统地给出.]6. 设f(z)是一个整函数,且假定存在着一个非负整数n,以及两个正数R与M,使当| z | ≥R时,| f(z) | ≤M | z |n.证明:f(z)是一个至多n次的多项式或一常数.【解】取r > R,考虑圆周| z | = r,由Cauchy不等式,当m > n时,| f(m)(0)/m! | ≤M r n/r m,令r → +∞,得f(m)(0) = 0.故f(z)在原点的Taylor展式为f(z) = ∑0 ≤k≤n f(k)(0)/k! ·z k.因此f(z)是一个至多n次的多项式或一常数.7. 设(1)f(z)在邻域K : | z–a | < R内解析,a是f(z)的m阶零点;(2)b≠a,b∈K.问函数F(z) = ⎰[a, z] f(ζ)dζ及函数Φ(z) = ⎰[b, z] f(ζ)dζ在点a的性质如何?(这里的积分路径都假定在K内.)【解】∀z∈K,我们有F’(z) = f(z),Φ’(z) = f(z).因此,F’(a) = ... = F(m )(a) = 0,F(m + 1)(a) ≠ 0,且F(a) = 0,故a是F(z)的m + 1阶零点.也有Φ’(a) = ... = Φ(m )(a) = 0,Φ(m + 1)(a) ≠ 0,但不一定有Φ(a) = 0.因此,a是Φ’(z)的m阶零点.[此题题意不够明确,可能是属于所谓的开放性问题或探究性问题.似乎放在积分部分更合适,当然在这里也可以用幂级数来作.]8. 设(1) 区域D含有实轴的一段L;(2) 函数u(x, y) + i v(x, y)及u(z, 0) + i v(z, 0) (z = x + i y )都在区域D内解析.试证在D内u(x, y) + i v(x, y) ≡u(z, 0) + i v(z, 0).【解】这两个函数在L上的限制都是u(x, 0) + i v(x, 0),因此它们在L上的限制相同.由唯一性定理,这两个函数在区域D内是完全相同的.[思考:究竟u, v是定义那个集合上的函数?]9. 设(1) 函数f(z)在区域D内解析,且不恒为常数;(2) 设C为D内任一周线,cl(I(C)) ⊆D;(3) A为任一复数.试证f(z) = A在C的内部I(C)内只有有限个根.【解】设g(z) = f(z) -A,则g(z)在区域D内解析,且不恒为常数;我们来证明g(z)在I(C)内只有有限个零点.注意到I(C)是有界集,因此cl(I(C))也是有界集,且cl(I(C))是闭集.倘若g(z)在I(C)内有无穷多个零点,那么,根据聚点原理,这些零点构成的集合Z必有聚点.而cl(I(C))是闭集,故Z的聚点仍在cl(I(C))内,因此也在D内.由唯一性定理,g(z)在区域D内为常数,矛盾.故g(z)在I(C)内只有有限个零点,即f(z) = A在C的内部I(C)内只有有限个根.10. 问| e z |在闭圆| z–z0 | ≤ 1上的何处达到最大?并求出最大值.【解】因e z 在圆| z–z0 | < 1内不恒为常数,故| e z |在圆| z–z0 | < 1内无最大值.因此,| e z |在闭圆| z–z0 | ≤ 1上最大值必然在边界| z–z0 | = 1上达到.设z0 = a + i b,a, b∈ .设z–z0 = x + i y,x, y∈ .在| z–z0 | = 1上,x, y满足x2 + y2 = 1.| e z | = | e a + i b · e x + i y | = | e a + i b | · | e x + i y | = e a · e x.故当x = 1时(此时y = 0),| e z |最大,且最大值为e a + 1.因此,| e z |在点z0 + 1处达到最大值,且最大值为e a + 1.11. 设函数f(z)在| z | < R内解析,令M(r) = max | z | = r | f(z) | ( 0 ≤r < R).试证:M(r)在区间[0, R)上是一个上升函数,且若存在r1及r2 (0 ≤r1 < r2 < R),使得M(r1) = M(r2),则f(z)在| z | < R内是常数.【解】只要证明若f(z)在| z | < R内不恒为常数,则M(r)在[0, R)上严格单调增.∀r, s∈[0, R),r < s.若r = 0,则M(r) = | f(0) |.因f(z)在| z | < s内不恒为常数(否则f(z)在| z | < R内恒为常数),由最大模原理,满足| a | < s的点a不是| f(z) |在| z | < s内的最大值点.因此| f(a) |更不是| f(z) |在| z | ≤s上的最大值点.| f(z) |在| z | ≤s上的最大值必然在边界| z | = s上达到.所以M(s) = max | z | = s | f(z) | > | f(a) |.特别地,取a = 0,就有M(s) > | f(a) | = M(r).若r > 0,设a满足| z | = r,| f(a) | = M(r).与前面同样的论证,知M(s) = max | z | = s | f(z) | > | f(a) | = M(r).故M(r)在[0, R)上严格单调增.。

复变函数习题答案第4章习题详解

复变函数习题答案第4章习题详解

复变函数习题答案第4章习题详解第四章习题详解1. 下列数列{}na 是否收敛?如果收敛,求出它们的极限:1) mi nia n -+=11;2) nn i a -⎪⎭⎫ ⎝⎛+=21;3) ()11++-=n ia n n ;4) 2in n e a π-=;5) 21in n e n a π-=。

2. 证明:⎪⎪⎩⎪⎪⎨⎧≠==>∞<=∞→1111110a a a a a a n n ,,,,lim 不存在,3. 判别下列级数的绝对收敛性与收敛性:1) ∑∞=1n n ni ;2)∑∞=2n n n i ln ;3) ()∑∞=+0856n n n i ;4) ∑∞=02n n in cos 。

4. 下列说法是否正确?为什么?1) 每一个幂级数在它的收敛圆周上处处收敛;2) 每一个幂级数的和函数在收敛圆内可能有奇点;3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。

5. 幂级数()∑∞=-02n n n z c能否在0=z 收敛而在3=z 发散?6. 求下列幂级数的收敛半径:1)∑∞=1n p n n z (p 为正整数);2) ()∑∞=12n n n z n n !;3) ()∑∞=+01n n n z i ;4) ∑∞=1n n n i z eπ;5) ()∑∞=-⎪⎭⎫ ⎝⎛11n nz n i ch ;6)∑∞=⎪⎭⎫ ⎝⎛1n n in z ln 。

7. 如果∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n nnz c Re 的收敛半径R ≥。

[提示:()n n n n z c z c <Re ]8. 证明:如果n n n c c1+∞→lim 存在∞≠,下列三个幂级数有相同的收敛半径∑n n z c ;∑+++111n n z n c ;∑-1n nz nc 。

9. 设级数∑∞=0n n c 收敛,而∑∞=0n n c 发散,证明∑∞=0n nnz c 的收敛半径为1。

复变函数第四版(第四章)

复变函数第四版(第四章)

1 n 1) a n 1 e ; n
i

2) a n n cos in
}
[解] 1) 因
1 n 1 a n 1 e 1 cos i sin n n n n 1 1 an 1 cos , bn 1 sin . n n n n lim an 1, lim bn 0
第4章
级数
§4.1 复数项级数 §4.2 幂级数 §4.3 泰勒级数 §4.4 洛朗级数
}
n
n
n
任意给定e>0, 相应地能找到一个正数N(e), 使|an-
a|<e在n>N时成立 则a称为复数列{an}当n时的 §4.1 ,复数项级数
极限, 记作
lim a n a
n
此时也称复数列{an}收敛于a.
(-1) n n n 1

(8i ) 8 , 由正项级数的比值审敛法知 n! n!
故原级数收敛 . 但因 n n
}
§4.2 幂级数
1. 幂级数的概念 设{fn(z)}(n=1,2,...)为一复变函数 序列,其中各项在区域D内有定义.表达式
f
n 1

n
( z ) f1 ( z ) f 2 ( z ) f n ( z ) (4.2.1)
z
n
在圆 |
1

内收敛.
}
再证当
| z |
| z |
1

时, 级数

n0
cn z n
发散. 假设在
n0
圆 收敛. 在圆外再取一点 z1, 使|z1|<|z0|, 那么根据阿

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、假设Z 1=〔a, b 〕,Z 2=(c, d),那么Z 1·Z 2=〔C 〕 A 〔ac+bd, a 〕 B (ac-bd, b) C 〔ac-bd, ac+bd 〕 D (ac+bd, bc-ad)2、假设R>0,那么N 〔∞,R 〕={ z :〔D 〕} A |z|<R B 0<|z|<R C R<|z|<+∞ D |z|>R3、假设z=x+iy, 那么y=(D)A B C D4、假设A= ,那么|A|=〔C 〕A 3B 0C 1D 2二、填空题1、假设z=x+iy, w=z 2=u+iv, 那么v=〔 2xy 〕2、复平面上满足Rez=4的点集为〔 {z=x+iy|x=4} 〕3、〔 设E 为点集,假设它是开集,且是连通的,那么E 〕称为区域。

2zz +2z z -iz z 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),那么{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。

三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。

解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|=2、写出复数-i 的三角式。

解:3、写出复数 的代数式。

解:4、求根式 的值。

+∞→n lim +∞→n limππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明假设 ,那么a 2+b 2=1。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案1.求以下复数的实部、虚部、模、幅角主值及共轭复数:( 1)1(2)i2i1)(i2)3(i(3)13i(4)i84i 21i i1i解:( 1)z132i 32i13,所以: Re z 3,Im z2,13 13( 2)z(ii2)1i3i ,1)(i3i10所以, Re z 3 ,Im z1,1010( 3)z 13ii33i35i i1i2,2所以, Re z 3 ,Im z5,32( 4)z i 84i 21i 1 4i i 1 3i 所以, Re z1,Im z3,2.将以下复数化为三角表达式和指数表达式:( 1)i ()13i() r (sin i cos ) 23( 4)r (cos i sin) (5)1 cos i sin(02)解:( 1)i cos i sini e2222(cos 2i sin22(2)13i)i 2e333( 3)r (sin i cos) r[cos()i sin()]() i re 222( ) r (cosi sin )r[cos( ) i sin( )] rei4(5) 1 cosi sin2sin 22i sin cos2 2 23. 求以下各式的值:(1)( 3i)5( 2) (1 i )100(1 i)100(13i )(cosi sin)(cos5 i sin 5 )2 (3)i )(cosi sin ) (4)(cos3 i sin 3 )3(1(5) 3i ( 6)1 i解:( 1) ( 3 i )5[2(cos() i sin())] 56 6(2) (1 i )100(1i)100(2i )50( 2i )502(2)50251(1 3i )(cos i sin )(3)i )(cosi sin )(1(4) (cos5i sin 5 ) 2 (cos3i sin 3 )3(5) 3i3cosi sin22(6) 1i2(cosi sin )444. 设z 1 1i, z 23 i, 试用三角形式表示 z z 与z 121 2z 2解: zcos i sin, z 22[cos() i sin( )] ,所以14466z 1z 2 2[cos(4) i sin(4)] 2(cos i sin ) ,6 612 125. 解以下方程:(1) (z i )51z4a 40 ( a 0)( 2)解:( 1) zi51,由此z51i2k ii , (k0,1,2,3,4)e5( 2)z4a44 a4 (cos i sin)a[cos 1(2k)i sin1(2k)] ,当 k0,1,2,3 时,对应的4个根分别为:44a(1i ),a(1i),a( 1 i ),a(1i)22226.证明以下各题:( 1)设z x iy, 则x yz x y 2证明:第一,明显有z x2y2x y ;其次,因 x2y2 2 x y , 固此有 2( x2y2 )( x y )2 ,进而 z x2y2x y2。

复变函数课后习题答案(全)之欧阳法创编

复变函数课后习题答案(全)之欧阳法创编

习题一答案2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5(6)解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5= (6=5.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4个根分别为:),1),1),)i i i i+-+---7.证明下列各题:(1)设,z x iy=+则z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。

复变函数课后答案习题四解答

复变函数课后答案习题四解答

in ;
n=1 n
n=2 ln n
∑ ∑ 3)
∞ n=1
(6+5i)n 8n

4)
∞ n=2
cos in 2n

∑ ∑ 解
1)由 in = cos nπ
+ i sin nπ


cos nπ 2


sin nπ 2
为收敛的交错项实级数,
2
2 n=1 n
n=1 n
∑ ∑ 所以 ∞ in 收敛,但 in = 1 ,故 ∞ in 发散,原级数条件收敛;
n→∞ n
2
= 0, lim 1 sin n→∞ n
nπ 2
=0,

α
n
收敛,
lim
n→∞
α
n
=
0
2.证明:
⎧0,
|α |<1,
limα n
n→∞
=
⎪⎪∞, ⎨⎪1,
|α |>1, α = 1,
⎪⎩不存在, |α|=1,α ≠ 1.
3.判断下列级数的绝对收敛性与收敛性:
∑ ∑ 1) ∞ in ;

2)
,而
lim
n→∞
chn 2n

0
,故
∞ n=2
cos in 2n
发散。
4.下列说法是否正确?为什么?
(1)每一个幂级数在它的收敛圆周上处处收敛;
(2)每一个幂级数的和函数在收敛圆内可能有奇点;
(3)每一个在 z0 连续的函数一定可以在 z0 的邻域内展开成 Taylor 级数。

∑ 解(1)不对。如 zn 在收敛圆 z < 1内收敛,但在收敛圆周 z = 1上并不收敛; n=0

复变函数习题答案解析第4章习题详解

复变函数习题答案解析第4章习题详解

.WORD.格式..专业资料.整理分享.第四章习题详解1. 下列数列{{}}n a 是否收敛?如果收敛,求出它们的极限:1) minia n -+=11;2) nn i a -÷øöçèæ+=21;3) ()11++-=n ia nn ; 4) 2in n e a p -=;5) 21i n n ena p -=。

2. 证明:ïïîïïíì¹==>¥<=¥®1111110a a a a a a nn ,,,,lim 不存在,3. 判别下列级数的绝对收敛性与收敛性:1) å¥=1n nni ;2) å¥=2n n n i ln ;3) ()å¥=+0856n nni ;4)å¥=02n n in cos 。

4. 下列说法是否正确?为什么? 1) 每一个幂级数在它的收敛圆周上处处收敛;2) 每一个幂级数的和函数在收敛圆内可能有奇点;3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。

5. 幂级数()å¥=-02n n n z c 能否在0=z 收敛而在3=z 发散?6. 求下列幂级数的收敛半径:1) å¥=1n p nn z (p 为正整数);2) ()å¥=12n n nz nn !;3) ()å¥=+01n nnz i ;4) å¥=1n n ni z ep;5) ()å¥=-÷øöçèæ11n n z n i ch ;6) å¥=÷øöçèæ1n nin z ln 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章习题详解
1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限:
1) mi
ni a n -+=
11; 2) n n i a -⎪⎭
⎫ ⎝
⎛+=21; 3) ()11++
-=n i a n n ;
4) 2i n n e
a π-=;
5) 21i n n e n
a π-=。

2. 证明:⎪⎪⎩
⎪⎪⎨⎧≠==>∞<=∞→1111110a a a a a a n n ,,,,lim 不存在,
3. 判别下列级数的绝对收敛性与收敛性:
1) ∑∞
=1n n
n i ;
2) ∑∞
=2n n
n i ln ;
3)
()∑∞=+0856n n n i ;
4) ∑∞=0
2n n in cos 。

4. 下列说法是否正确?为什么?
1) 每一个幂级数在它的收敛圆周上处处收敛;
2) 每一个幂级数的和函数在收敛圆内可能有奇点;
3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。

5. 幂级数()∑∞
=-02n n
n z c 能否在0=z 收敛而在3=z 发散?
6. 求下列幂级数的收敛半径:
1) ∑∞
=1n p n
n z (p 为正整数);
2)
()∑∞=12n n n z n n !;
3)
()∑∞=+01n n n z i ;
4)
∑∞=1n n n i z e π;
5)
()∑∞=-⎪⎭⎫ ⎝⎛1
1n n z n i ch ; 6) ∑∞=⎪⎭⎫ ⎝
⎛1n n in z ln 。

7. 如果
∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n n n z c Re 的收敛半径R ≥。

[提示:()n n n n z c z c <Re ]
8. 证明:如果n
n n c c 1+∞→lim 存在∞≠,下列三个幂级数有相同的收敛半径∑n n z c ;∑+++111n n z n c ;∑-1n n z nc 。

9. 设级数
∑∞=0
n n c 收敛,而∑∞=0n n c 发散,证明∑∞=0n n n z c 的收敛半径为1。

10. 如果级数
∑∞=0n n n z c 在它的收敛圆的圆周上一点0z 处绝对收敛,证明它在收敛圆所围的闭区域上绝对收
敛。

11. 把下列各函数展开成z 的幂级数,并指出它们的收敛半径:
1)
311z +;
2)
()2211z +;
3) 2z cos ;
4) shz ;
5) chz ;
6) 22z e
z sin ;
7) 1-z z e

8) z -11sin。

12. 求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径:
1)
11+-z z ,10=z ;
2) ()()21++z z z
,20=z ;
3)
21z ,10-=z ;
4)
z
341-,i z +=10; 5) tgz ;40π=
z ;
6) arctgz ;00=z 。

13. 为什么在区域R z <内解析且在区间()R R ,-取实数值的函数()z f 展开成z 的幂级数时,展开式的
系数都是实数?
14. 证明在()⎪⎭
⎫ ⎝⎛
+=z z z f 1cos 以z 的各幂表出的洛朗展开式中的各系数为()⎰=π
ϑϑϑπ20221d n c n cos cos cos ,() ,,,210±±=n 。

[提示:在公式()844..中,取C 为1=z ,
在此圆上设积分变量ϑζi e
=。

然后证明n c 的积分的虚部等于零。

]
15. 下列结论是否正确?
用长除法得 ++++=-4321z z z z z
z ++++=-3211111z
z z z z 因为 01
1=-+-z z z z 所以 0111143232=+++++++++
z z z z z z z
16. 把下列各函数在指定的圆环域内展开成洛朗级数:
1) ()()
2112-+z z ,21<<z ;
2)
()211z z -,11<<z ,110<-<z ;
3)
()()
211--z z ,110<-<z ,+∞<-<21z ; 4) z e
-11,+∞<<z 1;
5)
()
i z z -21,在以i 为中心的圆环域内; 6) z -11sin
,在1=z 的去心邻域内;
7)
()()()()
4321----z z z z ,43<<z ,+∞<<z 4。

17. 函数⎪⎭⎫
⎝⎛z tg 1能否在圆环域()+∞<<<<R R z 00展开成洛朗级数?为什么?
18. 如果k 为满足关系12
<k 的实数,证明 ()∑∞=+-=
+0
2211n n k k n k ϑϑϑcos sin sin ()∑∞=+--=+02
211n n k k k n k ϑϑϑcos cos cos [提示:对k z >展开()1--k z 成洛朗级数,并在展开式的结果中置ϑi e z =,再令两边的实部与实部
相等,虚部与虚部相等。

]
19. 如果C 为正向圆周3=z ,求积分()⎰C
dz z f 的值。

设()z f 为:
1) ()
21+z z ;
2)
()z z z 12++;
3)
()211+z z ;
4)
()()21++z z z 。

20. 试求积分⎰∑⎪⎪⎭⎫ ⎝⎛∞-=C n n dz z 2
的值,其中C 为单位圆1=z 内的任何一条不经过原点的简单闭曲线。

21. 22. 23. 24. (注:文档可能无法思考全面,请浏览后下载,供参考。

) 25. 26. 27. 28. 29.
30.。

相关文档
最新文档