2019年安徽省中考数学试题分类解析专题8:平面几何基础

合集下载

2019年安徽省中考数学试卷及答案

2019年安徽省中考数学试卷及答案

2019年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2B.﹣1C.0D.12.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a43.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×10125.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60B.50C.40D.157.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6B.4C.4.8D.58.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥010.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T ,求的值.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b尺寸(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C 两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2B.﹣1C.0D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意161亿用科学记数法表示为1.61×1010 .故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(1,3),然后把A′的坐标代入y=中即可得到k的值.【解答】解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60B.50C.40D.15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选:C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6B.4C.4.8D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EF A=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况,本题得以解决.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac的正负情况.10.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8【分析】作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,可得点H到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM==4则在线段BC存在点H到点E和点F的距离之和最小为4<9在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,4<PE+PF≤12在点H左侧,当点P与点B重合时,BF==2∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴BE=BF=2∴PE+PF=4∴点P在BH上时,4<PE+PF<4∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.【点评】本题考查了正方形的性质,最短路径问题,在BC上找到点N使点N到点E和点F的距离之和最小是本题的关键.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b互为相反数,那么a+b=0.【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.【解答】解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是a >1或a<﹣1.【分析】由y=x﹣a+1与x轴的交点为(a﹣1,0),可知当P,Q都在x轴的下方时,直线l与x轴的交点要在(a﹣1,0)的左侧,即可求解;【解答】解:y=x﹣a+1与x轴的交点为(a﹣1,0),∵平移直线l,可以使P,Q都在x轴的下方,∴当x=a﹣1时,y=(1﹣a)2﹣2a(a﹣1)<0,∴a2﹣1>0,∴a>1或a<﹣1;故答案为a>1或a<﹣1;【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x=1﹣a时,二次函数y<0是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.【分析】利用直接开平方法,方程两边直接开平方即可.【解答】解:两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【解答】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)【分析】连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD求出CD的长即可.【解答】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=,即OA===4(米),tan41.3°=,即OD=AD•tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED =S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b尺寸(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.【分析】(1)由15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格可得答案;(2)(i )由可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)不合格.因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=.【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C 两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.【分析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+4=2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD 是解本题的关键.。

2019年安徽省中考数学试卷以及解析版

2019年安徽省中考数学试卷以及解析版

2019年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A .﹣2B .﹣1C .0D .12.(4分)计算a 3?(﹣a )的结果是()A .a2B .﹣a2C .a4D .﹣a43.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A .B .C .D .4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A .1.61×109B .1.61×1010C .1.61×1011D .1.61×10125.(4分)已知点A (1,﹣3)关于x 轴的对称点A'在反比例函数y =的图象上,则实数k的值为()A .3B .C .﹣3D .﹣6.(4分)在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h )为()A .60B .50C .40D .157.(4分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =12,点D 在边BC 上,点E 在线段AD 上,EF ⊥AC 于点F ,EG ⊥EF 交AB 于点G .若EF =EG ,则CD 的长为()A .3.6B .4C .4.8D .58.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长 6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A .2019年B .2020年C .2021年D .2022年9.(4分)已知三个实数a ,b ,c 满足a ﹣2b+c =0,a+2b+c <0,则()A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥010.(4分)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE+PF =9的点P 的个数是()A .0B .4C .6D .8二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是.12.(5分)命题“如果a+b =0,那么a ,b 互为相反数”的逆命题为.13.(5分)如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为.14.(5分)在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x ﹣a+1和y =x 2﹣2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x ﹣1)2=4.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB .(1)将线段AB 向右平移5个单位,再向上平移3个单位得到线段CD ,请画出线段CD .(2)以线段CD 为一边,作一个菱形CDEF ,且点E ,F 也为格点.(作出一个菱形即可)四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O 为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.(10分)如图,点E在?ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设?ABCD的面积为S,四边形AEDF的面积为T,求的值.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩?????尺寸(cm)8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为?的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax 2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W 的最小值.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB =∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2?h3.2019年安徽省中考数学试卷答案与解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3?(﹣a)=﹣a3?a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意161亿用科学记数法表示为 1.61×1010 .故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(1,3),然后把A′的坐标代入y=中即可得到k的值.【解答】解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.【分析】根据中位数的定义求解可得.【解答】解:由条形图知,车速40km/h的车辆有15辆,为最多,所以众数为40,故选:C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.8.【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况,本题得以解决.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac的正负情况.10.【分析】作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,可得点H到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM==4则在线段BC存在点H到点E和点F的距离之和最小为4<9在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,4<PE+PF≤12在点H左侧,当点P与点B重合时,BF==2∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴BE=BF=2∴PE+PF=4∴点P在BH上时,4<PE+PF<4∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.【点评】本题考查了正方形的性质,最短路径问题,在BC上找到点H,使点H到点E 和点F的距离之和最小是本题的关键.二、填空题(共4小题,每小题5分,满分20分)11.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.13.【分析】连接CO,OB,则∠O=2∠A=60°,得到△BOC是等边三角形,求得BC=2,根据等腰直角三角形的性质即可得到结论.【解答】解:连接CO,OB,则∠O=2∠A=60°,∵OC=OB,∴△BOC是等边三角形,∵⊙O的半径为2,∴BC=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.【分析】令y=x﹣a+1<0,x<﹣1+a;当a>0时,x<﹣1+a与0<x<2a有解,则a>1;当a<0时,x<﹣1+a与2a<x<0有解,a﹣1>2a,则a<﹣1;即可求解.【解答】解:∵平移直线l,可以使P,Q都在x轴的下方,令y=x﹣a+1<0,∴x<﹣1+a,令y=x2﹣2ax<0,当a>0时,0<x<2a;当a<0时,2a<x<0;①当a>0时,x<﹣1+a与0<x<2a有解,则a>1,②当a<0时,x<﹣1+a与2a<x<0有解,a﹣1>2a,则a<﹣1;∴a<﹣1;故答案为a<﹣1或则a>1;【点评】本题考查二次函数图象及性质,一次函数图象及性质以及函数与不等式的关系;数形结合的分析问题,将问题转化为不等式的解是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.【分析】利用直接开平方法,方程两边直接开平方即可.【解答】解:两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【解答】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.18.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共2小题,每小题10分,满分20分)19.【分析】连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD求出CD的长即可.【解答】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=,即OA===4(米),tan41.3°=,即OD=AD?tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在?ABCD内部,可知:S△BEC+S△AED=S?ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在?ABCD内部,∴S△BEC+S△AED=S?ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S?ABCD,∵?ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12分)21.【分析】(1)由15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格可得答案;(2)(i)由可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)不合格.因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~?,中位数在⑧8.98,⑨a之间,∴,解得a=9.02(ii)大于9cm的有⑨⑩?,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=.【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.【分析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax 2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+4=2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.八、(本题满分14分)23.【分析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△PAB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2?h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP =∠PCD是解本题的关键.。

2019年安徽中考数学试卷分析(含word版试卷及答案)

2019年安徽中考数学试卷分析(含word版试卷及答案)

2019安徽中考数学试卷分析一、试卷结构和难度较前两年有所变化试卷对于一些知识点的考查方式和分值较前两年有所变化,比如:对于圆的考查以往一般以选择或填空呈现,今年将圆与三角形结合起来,以10分的解答题出现,综合性较以往有所提高;统计问题前几年一直作为解答题,占据10或12分的分值,今年把统计以选择题的形式进行简单的考查,把概率作为12分的问题进行考查,且不仅考查了学生联系实际的想象能力,而且题目摒弃常规的解答和思考方式,具有一定的新颖性;另外,往年一直把对于三角形和四边形的综合考查作为压轴问题,今年将它们与正多边形结合起来,以14分的问题分步考查,对学生的综合能力有了更高的要求。

二、试卷考查重点分析1、试题注重学生数学实际应用能力的考查。

全卷考查学生数学实际应用的有六道试题(第5 、11 、12 、18 、20、21题),约占总分的1/3 。

这些题目涉及工农业、信息产业、交通、环境保护、正确决策等方面,具有时代气息。

这些问题都要求学生能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。

2、试题具有一定创新性与操作性,全面考查学生的探究能力。

试卷第8、14、18、21、22、23题等都具有探究性,需要学生通过“观察、思考、猜测、推理”等思维活动分析并解决问题。

其中第22题是一个“新概念题”,题目定义了一个“同簇二次函数”的概念,然后以这个概念展开两个问题,题目很新颖,其中第(2)问学生感觉有些难度,需要较好的计算能力和丰富的解题经验。

第23题(压轴题)要求学生能将多边形问题转化为三角形问题进行研究,体现了“化归”的数学思想;同时要求学生能够合理运用图形变换,正确添加辅助线,体现出学生的创新思维。

启示:1、关注学生思考方法的培养,提高学生思维水平。

今年试卷第9、10、14、21、23题都对学生的思维广度和思维深度有一定的要求,所以平常在练习过程中一定要关注思考方法,切忌缺乏思考只追求答案的题海练习。

【附20套名校中考真题】安徽省2019年中考数学试题及答案解析(Word版)

【附20套名校中考真题】安徽省2019年中考数学试题及答案解析(Word版)

2019年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2019年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=00000,00000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2019年我省有效发明专利数比2019年增长22.1%假定2019年的平均增长率保持不变,2019年和2019年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2019年我省有效发明专利数为(1+22.1%)a万件,2019年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2019年我省有效发明专利数为(1+22.1%)a万件,2019年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx 使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD 是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键.16. 《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10格中,已知点O,A,B均为格线的交点. (1)在给定的格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM 的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.2019年广西贵港市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3.00分)﹣8的倒数是()A.8 B.﹣8 C.D.2.(3.00分)一条数学信息在一周内被转发了0次,将数据0用科学记数法表示为()A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×1053.(3.00分)下列运算正确的是()A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a54.(3.00分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3.00分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.16.(3.00分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣37.(3.00分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥38.(3.00分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3.00分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°10.(3.00分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.2411.(3.00分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3C.2 D.4.512.(3.00分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分13.(3.00分)若分式的值不存在,则x的值为.14.(3.00分)因式分解:ax2﹣a=.15.(3.00分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.16.(3.00分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.17.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).18.(3.00分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为().三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10.00分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.20.(5.00分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.21.(6.00分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8.00分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.23.(8.00分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?24.(8.00分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.25.(11.00分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y 轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.26.(10.00分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO 的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l 相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.2019年广西贵港市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3.00分)﹣8的倒数是()A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.2.(3.00分)一条数学信息在一周内被转发了0次,将数据0用科学记数法表示为()A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据0用科学记数法表示为2.18×106.故选:A.3.(3.00分)下列运算正确的是()A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a5【分析】根据合并同类项,幂的乘方与积的乘方,同底数幂的乘法的计算法则解答.【解答】解:A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.(3.00分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.【分析】由标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,利用概率公式计算可得.【解答】解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.5.(3.00分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【解答】解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.6.(3.00分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣3【分析】据根与系数的关系α+β=﹣1,αβ=﹣2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】解:∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,故选:D.7.(3.00分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.【解答】解:∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.8.(3.00分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【解答】解:A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.9.(3.00分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【解答】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.10.(3.00分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出则S△ABC的值.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,∴S△ABC=18,故选:B.11.(3.00分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3C.2 D.4.5【分析】作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M 知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD=AC•BD=AB•E′M求二级可得答案.【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.12.(3.00分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()。

安徽省2019年中考数学试卷(解析版)

安徽省2019年中考数学试卷(解析版)

安徽省2019年中考数学试卷(解析版)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011D.1.61×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意161亿用科学记数法表示为1.61×1010 .故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y =的图象上,则实数k的值为()A.3 B.C.﹣3 D.﹣【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(1,3),然后把A′的坐标代入y=中即可得到k的值.【解答】解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60 B.50 C.40 D.15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选:C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF 交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EF A=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况,本题得以解决.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac的正负情况.10.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0 B.4 C.6 D.8【分析】作点F关于BC的对称点M,连接FM交BC于点N,连接EM,可得点N到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC 于点N,连接EM,∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM==4则在线段BC存在点N到点E和点F的距离之和最小为4<9 ∴在线段BC上点N的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.【点评】本题考查了正方形的性质,最短路径问题,在BC上找到点N使点N到点E和点F的距离之和最小是本题的关键.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b互为相反数,那么a+b=0.【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A =30°,∠EBC=90°,解直角三角形即可得到结论.【解答】解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y =x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是a>1或a <﹣1.【分析】由y=x﹣a+1与x轴的交点为(1﹣a,0),可知当P,Q 都在x轴的下方时,x直线l与x轴的交点要在(1﹣a,0)的左侧,即可求解;【解答】解:y=x﹣a+1与x轴的交点为(1﹣a,0),∵平移直线l,可以使P,Q都在x轴的下方,∴当x=1﹣a时,y=(1﹣a)2﹣2a(1﹣a)<0,∴a2﹣1>0,∴a>1或a<﹣1;故答案为a>1或a<﹣1;【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x=1﹣a时,二次函数y<0是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.【分析】利用直接开平方法,方程两边直接开平方即可.【解答】解:两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【解答】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x ﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,co s41.3°≈0.75,tan41.3°≈0.88)【分析】连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD求出CD的长即可.【解答】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=,即OA===4(米),tan41.3°=,即OD=AD•tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EAB+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸(cm )8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10 非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.【分析】(1)由15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格可得答案;(2)(i)由可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)不合格.因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=.【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.【分析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m ﹣4=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+4=﹣2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m ﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC 内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.。

2019年安徽省中考数学试卷附分析答案

2019年安徽省中考数学试卷附分析答案

A.3.6
B.4
C.4.8
【解答】解:作 DH∥EG 交 AB 于点 H,则△AEG∽△ADH,
t


tt
第 8页(共 20页)
D.5
∵EF⊥AC,∠C=90°, ∴∠EFA=∠C=90°, ∴EF∥CD, ∴△AEF∽△ADC,


tt
t


t
t
∵EG=EF,
∴DH=CD,
设 DH=x,则 CD=x,
六、(本题满分 12 分) 21.(12 分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量
其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表 格:
编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮
尺寸 8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b (cm)
第 7页(共 20页)
故选:B.
5.(4 分)已知点 A(1,﹣3)关于 x 轴的对称点 A'在反比例函数 y 的图象上,则实数 k 的值为( )
A.3
B.
C.﹣3
D.
【解答】解:点 A(1,﹣3)关于 x 轴的对称点 A'的坐标为(1,3),
把 A′(1,3)代入 y 得 k=1×3=3. 故选:A. 6.(4 分)在某时段由 50 辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所 示的条形统计图,则这 50 辆车的车速的众数(单位:km/h)为( )
∵BC=12,AC=6,
∴BD=12﹣x,
∵EF⊥AC,EF⊥EG,DH∥EG,

2019年安徽中考数学试卷(详解版)

2019年安徽中考数学试卷(详解版)

1在2计算3一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是().45已知点6在某时段由7如图,在答案解析A.年B.年C.年D.年.据国家统计局数据,年全年国内生产总值为万亿,比年增长.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破万亿的年份是().8B年全年国内生产总值为:(万亿),年全年国内生产总值为:(万亿),∴国内生产总值首次突破万亿的年份是年.故选.答案解析A.,B.,C.,D.,已知三个实数,,满足,,则().9D ∵,,∴,,∴,∴,∴即,.故选.10如图,在正方形11计算12命题13如图,14在平面直角坐标系中,垂直于15解方程16如图,在边长为17为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中观察以下等式:18筒车是我国古代发明的一种水利灌溉工具.如图1920如图,点答案解析证明见解析.(1).(2)∵四边形是平行四边形,∴,,∴,∵,∴,∴,同理得,在和中,∵,∴≌.(1)∵点在平行四边形内部,∴平行四边形,由()知:≌,∴,∴四边形平行四边形,∵平行四边形的面积为,四边形的面积为,∴.(2)六、解答题(共12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸21∴抽到两种产品都是特等品的概率.七、解答题(共12分)答案解析一次函数与二次函数的图象的一个交点坐标为,另一个交点是该二次函数图象的顶点22求,,的值.(1)过点且垂直于轴的直线与二次函数的图象相交于,两点,点为坐标原点,记,求关于的函数解析式,并求的最小值.(2);;.(1).(2)由题意得,,解得,又∵二次函数顶点为,∴,把带入二次函数表达式得,解得.(1)由()得二次函数解析式为,令,得∴,设,两点的坐标分别为,,则,∴,,∴当时,取得最小值.(2)八、解答题(共14分)如图,中,,,为内部一点,且.23∴,,,∵,∴,∴,又∵,∴,∴,∴,即,∴,∵,∴,∴,∴.即:.。

(新)2019年安徽省中考数学试卷及答案.docx

(新)2019年安徽省中考数学试卷及答案.docx

2019 年安徽省中考数学试卷一、选择题(本大题共10 小题,每小题 4 分,满分 40 分)每小题都给出 A ,B ,C, D 四个选项,其中只有一个是正确的.1.( 4分)在﹣ 2,﹣ 1,0, 1 这四个数中,最小的数是()A .﹣ 2B .﹣ 1C.0 D .12.( 4分)计算 a 3?(﹣ a)的结果是()A . a 2B .﹣ a2C.a4D .﹣ a43.( 4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A .B .C. D .4.( 4 分) 2019 年“五一”假日期间,我省银联网络交易总金额接近161 亿元,其中161 亿用科学记数法表示为()A . 1.61× 109B . 1.61×1010C.1.61× 1011D .1.61× 10125.( 4 分)已知点A( 1,﹣ 3)关于 x 轴的对称点A'在反比例函数 y=的图象上,则实数k 的值为()A . 3B .C.﹣ 3 D .﹣6.( 4 分)在某时段由50 辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50 辆车的车速的众数(单位:km/h)为()A . 60B . 50C.40 D .157.( 4 分)如图,在Rt△ ABC 中,∠ ACB= 90°, AC =6,BC= 12,点 D 在边 BC 上,点 E 在线段AD 上, EF⊥ AC 于点 F, EG⊥ EF 交 AB 于点 G.若 EF = EG,则 CD 的长为()A . 3.6B . 4C .4.8D .58.(4 分)据国家统计局数据, 2018 年全年国内生产总值为 90.3 万亿,比 2017 年增长 6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破 100 万亿的年份是()A . 2019 年B . 2020 年C .2021 年D .2022 年9.( 4 分)已知三个实数 a , b , c 满足 a ﹣ 2b+c = 0, a+2 b+c < 0,则()A . b > 0, b 2﹣ ac ≤0 B .b < 0, b 2﹣ac ≤ 0 C . b > 0, b 2﹣ ac ≥0D .b < 0, b 2﹣ ac ≥ 010.( 4 分)如图,在正方形 ABCD 中,点 E , F 将对角线 AC 三等分,且 AC = 12,点 P 在正方形的边上,则满足 PE+PF = 9 的点 P 的个数是()A . 0B . 4C .6D .8二、填空题(共 4 小题,每小题 5 分,满分 20 分)11.( 5 分)计算÷的结果是.12.(5 分)命题“如果 a+b = 0,那么 a , b 互为相反数”的逆命题为 .13.(5 分)如图,△ ABC 内接于 ⊙O ,∠ CAB = 30°,∠ CBA = 45°, CD ⊥ AB 于点 D ,若 ⊙ O 的半径为 2,则 CD 的长为.14.( 5 分)在平面直角坐标系中, 垂直于 x 轴的直线 l 分别与函数y = x ﹣ a+1 和 y = x 2﹣2ax 的图象相交于 P ,Q 两点.若平移直线 l ,可以使 P ,Q 都在三、(本大题共 2 小题,每小题 8 分,满分 16 分)x 轴的下方, 则实数 a 的取值范围是 .15.(8 分)解方程: ( x ﹣1) 2= 4.16.( 8 分)如,在 1 个位度的小正方形成的12× 12 的网格中,出了以格点(网格的交点)端点的段AB.(1)将段AB 向右平移 5 个位,再向上平移 3 个位得到段CD,画出段CD.(2)以段CD 一,作一个菱形CDEF ,且点 E,F 也格点.(作出一个菱形即可)四、(本大共 2 小,每小8 分,分16 分)17.( 8 分)施村振略,解决某山区老百姓出行的,当地政府决定修建一条高速公路.其中一段146 米的山体隧道穿工程由甲乙两个工程施工.甲工程独立工作 2 天后,乙工程加入,两工程又合工作了 1 天, 3 天共掘 26 米.已知甲工程每天比乙工程多掘 2 米,按此速度完成隧道穿工程,甲乙两个工程需合工作多少天?18.(8 分)察以下等式:第 1 个等式:=+,第 2 个等式:=+,第 3 个等式:=+,第 4 个等式:=+,第 5 个等式:=+,⋯⋯按照以上律,解决下列:(1)写出第 6 个等式:;(2)写出你猜想的第n 个等式:(用含 n 的等式表示),并明.五、(本大共 2 小,每小10 分,分20 分)19.( 10 分)筒是我国古代明的一种水利灌工具.如1,明朝科学家徐光启在《政全》中用图画描绘了筒车的工作原理.如图 2,筒车盛水桶的运行轨迹是以轴心 O 知圆心在水面上方,且圆被水面截得的弦 AB 长为 6 米,∠ OAB = 41.3°,若点为圆心的圆.已C 为运行轨道的最高点( C, O 的连线垂直于AB),求点 C 到弦 AB 所在直线的距离.(参考数据: sin41.3°≈ 0.66, cos41.3°≈ 0.75,tan41.3°≈ 0.88)20.( 10 分)如图,点E 在 ? ABCD 内部, AF∥ BE, DF ∥CE.(1)求证:△ BCE ≌△ ADF ;(2)设 ? ABCD 的面积为 S,四边形 AEDF 的面积为 T,求的值.六、(本题满分12 分)21.( 12 分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩????并测量其尺寸,?尺寸8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08b (cm)按照生产标准,产品等次规定如下:尺寸(单位: cm)产品等次8.97 ≤ x≤9.03特等品8.95 ≤ x≤9.05优等品8.90 ≤ x≤9.10合格品x< 8.90 或 x> 9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.( 1)已知此次抽检的合格率为80%,请判断编号为 ? 的产品是否为合格品,并说明理由.( 2)已知此次抽检出的优等品尺寸的中位数为9cm .( i )求 a 的值;( i i )将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于 9cm ,从这两组中各随机抽取 1 件进行复检,求抽到的2 件产品都是特等品的概率.七、(本题满分 12 分)22.( 12 分)一次函数 y = kx+4 与二次函数y = ax 2+c 的图象的一个交点坐标为(1, 2),另一个交点是该二次函数图象的顶点(1)求 k ,a , c 的值;(2)过点 A ( 0,m )( 0< m < 4)且垂直于 y 轴的直线与二次函数 y = ax 2+c 的图象相交于 B ,C 两点,点 O 为坐标原点,记 W = OA 2+BC 2,求 W 关于 m 的函数解析式,并求 W 的最小值.八、(本题满分 14 分)23.( 14 分)如图, Rt △ ABC 中,∠ ACB =90°, AC =BC ,P 为△ ABC 内部一点,且∠ APB =∠BPC = 135°.( 1)求证:△ PAB ∽△ PBC ; ( 2)求证: PA = 2PC ;( 3)若点 P 到三角形的边 AB , BC ,CA 的距离分别为 h 1, h 2,h 3,求证 h 12= h 2?h 3.参考答案与试题解析一、选择题(本大题共10 小题,每小题 4 分,满分40 分)每小题都给出 A ,B ,C, D四个选项,其中只有一个是正确的.1.( 4 分)在﹣2,﹣ 1,0, 1 这四个数中,最小的数是()A .﹣ 2B .﹣ 1【分析】有理数大小比较的法则:C.0①正数都大于0;②负数都小于D .10;③ 正数大于一切负数;④ 两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣ 1<0< 1,∴在﹣ 2,﹣ 1, 0,1 这四个数中,最小的数是﹣2.故选: A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;② 负数都小于0;③ 正数大于一切负数;④ 两个负数,绝对值大的其值反而小.2.( 4 分)计算a 3?(﹣ a)的结果是()A . a 2B .﹣ a2C.a4D .﹣ a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解: a 3(? ﹣ a)=﹣ a3?a=﹣ a4.故选: D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.( 4 分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A .B .C. D .【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选: C.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.( 4 分) 2019 年“五一”假日期间,我省银联网络交易总金额接近161 亿元,其中161 亿用科学记数法表示为()A . 1.61× 109B . 1.61×1010C.1.61× 1011D .1.61× 1012【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤ |a|< 10, n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.【解答】解:根据题意161 亿用科学记数法表示为 1.61×1010.故选: B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a× 10n的形式,其中 1≤ |a|<10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.5.( 4 分)已知点 A( 1,﹣ 3)关于 x 轴的对称点A'在反比例函数y=的图象上,则实数 k 的值为()A . 3B .C.﹣ 3 D .﹣【分析】先根据关于x 轴对称的点的坐标特征确定A'的坐标为(1,3),然后把 A′的坐标代入y=中即可得到 k 的值.【解答】解:点A( 1,﹣ 3)关于 x 轴的对称点 A'的坐标为(1, 3),把 A′( 1, 3)代入 y=得 k= 1× 3= 3.故选: A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k 为常数, k≠ 0)的图象是双曲线,图象上的点(x, y)的横纵坐标的积是定值k,即 xy= k.6.( 4 分)在某时段由50 辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50 辆车的车速的众数(单位:km/h)为()A . 60B . 50C.40 D .15【分析】根据中位数的定义求解可得.【解答】解:由条形图知, 50 个数据的中位数为第25、26 个数据的平均数,即中位数为==40,故选: C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.( 4 分)如图,在Rt△ ABC 中,∠ ACB= 90°, AC =6,BC= 12,点 D 在边 BC 上,点 E 在线段AD 上, EF⊥ AC 于点 F, EG⊥ EF 交 AB 于点 G.若 EF = EG,则 CD 的长为()A . 3.6B . 4C.4.8 D .5【分析】根据题意和三角形相似的判定和性质,可以求得CD 的长,本题得以解决.【解答】解:作DH ∥EG 交 AB 于点 H,则△ AEG∽△ ADH ,∴,∵E F ⊥AC,∠ C=90°,∴∠ EFA=∠ C= 90°,∴EF ∥CD,∴△ AEF ∽△ ADC,∴,∴,∵EG= EF,∴DH = CD ,设DH =x,则CD =x,∵BC =12, AC= 6,∴BD = 12﹣ x,∵EF ⊥AC, EF ⊥EG, DH ∥ EG,∴EG∥ AC∥ DH ,∴△ BDH ∽△ BCA,∴,即,解得, x= 4,∴CD = 4,故选: B.【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.8.(4 分)据国家统计局数据,2018 年全年国内生产总值为90.3 万亿,比 2017 年增长 6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100 万亿的年份是()A . 2019 年B . 2020 年C.2021 年 D .2022 年【分析】根据题意分别求出2019 年全年国内生产总值、2020 年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×( 1+6.6% )= 96.2598(万亿),2020 年全年国内生产总值为:96.2598 ×( 1+6.6% )≈ 102.6(万亿),∴国内生产总值首次突破100 万亿的年份是2020 年,故选: B.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.( 4 分)已知三个实数a, b, c 满足 a﹣ 2b+c= 0, a+2 b+c< 0,则()A . b> 0, b 2﹣ ac≤0B.b< 0, b2﹣ac≤ 0C. b> 0, b 2﹣ ac≥0D.b< 0, b2﹣ ac≥ 0【分析】根据 a﹣ 2b+c=0, a+2b+c< 0,可以得到 b 与 a、c 的关系,从而可以判断 b 的正负和2b ﹣ac 的正负情况,本题得以解决.【解答】解:∵a﹣ 2b+c= 0, a+2 b+c< 0,∴a+c= 2b, b=,∴a+2b+c=( a+c) +2b= 4b< 0,∴b< 0,∴b2﹣ ac==﹣ ac==≥ 0,即 b< 0, b2﹣ac≥ 0,故选: D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出 b 和b2﹣ac的正负情况.10.( 4 分)如图,在正方形ABCD中,点E, F 将对角线AC 三等分,且AC= 12,点P 在正方形的边上,则满足PE+PF = 9 的点 P 的个数是()A . 0B . 4C.6 D .8【分析】作点 F 关于 BC 的对称点M,连接 FM 交 BC 于点点 H 到点 E 和点 F 的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点 F 关于 BC 的对称点M,连接 FM 点 H N,连接 EM,交 BC交 BC 于点 N,连接于点 H ,可得EM ,交 BC 于∵点 E,F 将对角线AC 三等分,且AC= 12,∴EC =8, FC = 4=AE,∵点 M 与点 F 关于 BC 对称∴C F =CM = 4,∠ ACB=∠ BCM = 45°∴∠ ACM = 90°∴EM == 4则在线段 BC 存在点 H 到点 E 和点 F 的距离之和最小为 4 < 9在点 H 右侧,当点 P 与点 C 重合时,则 PE +PF = 12∴点 P 在 CH 上时, 4< PE+PF≤ 12在点 H 左侧,当点 P 与点 B 重合时, BF== 2∵AB =BC, CF = AE,∠ BAE=∠ BCF∴△ ABE≌△ CBF( SAS)∴BE =BF =2∴PE +PF = 4∴点 P 在 BH 上时, 4< PE+PF< 4∴在线段 BC 上点 H 的左右两边各有一个点P 使 PE +PF= 9,同理在线段AB, AD, CD 上都存在两个点使PE+PF= 9.即共有 8 个点 P 满足 PE+PF= 9,故选: D.【点评】本题考查了正方形的性质,最短路径问题,在BC 上找到点 N 使点 N 到点 E 和点 F 的距离之和最小是本题的关键.二、填空题(共 4 小题,每小题 5 分,满分20 分)11.( 5 分)计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为: 3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.( 5 分)命题“如果a+b= 0,那么 a, b 互为相反数”的逆命题为如果a,b互为相反数,那么a+b= 0 .【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果 a+b= 0,那么 a, b 互为相反数”的逆命题为:如果 a, b 互为相反数,那么a+b= 0;故答案为:如果a,b 互为相反数,那么a+b= 0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.13.(5 分)如图,△ABC 内接于⊙O,∠ CAB= 30°,∠ CBA= 45°, CD⊥ AB 于点 D ,若⊙ O 的半径为 2,则 CD 的长为.【分析】连接 CO 并延长交⊙ O 于 E,连接 BE,于是得到∠ E=∠ A= 30°,∠ EBC= 90°,解直角三角形即可得到结论.【解答】解:连接CO 并延长交⊙ O 于 E,连接 BE,则∠ E=∠ A= 30°,∠ EBC= 90°,∵⊙ O 的半径为2,∴CE =4,∴BC =CE= 2,∵CD ⊥ AB,∠ CBA= 45°,∴CD =BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.( 5 分)在平面直角坐标系中,垂直于 x 轴的直线 l 分别与函数 y = x ﹣ a+1和 y = x 2﹣2ax 的图象 相交于 P ,Q 两点.若平移直线 l ,可以使 P , Q 都在 x 轴的下方,则实数a 的取值范围是a>1 或 a <﹣ 1 .【分析】由 y = x ﹣ a+1 与 x 轴的交点为( a ﹣ 1,0),可知当 P , Q 都在 x 轴的下方时,直线 l 与x 轴的交点要在( a ﹣ 1, 0)的左侧,即可求解;【解答】解: y = x ﹣ a+1 与 x 轴的交点为( a ﹣ 1, 0),∵平移直线 l ,可以使 P , Q 都在 x 轴的下方,∴当 x = a ﹣1 时, y =( 1﹣ a ) 2﹣2a ( a ﹣ 1)< 0,∴ a 2﹣ 1> 0,∴ a > 1 或 a <﹣ 1;故答案为 a > 1 或 a <﹣ 1;【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当 x = 1﹣ a 时,二次函数 y < 0 是解题的关键.三、(本大题共 2 小题,每小题 8 分,满分 16 分)15.(8 分)解方程: ( x ﹣1) 2= 4.【分析】利用直接开平方法,方程两边直接开平方即可.【解答】解:两边直接开平方得:x ﹣ 1=± 2,∴x ﹣ 1= 2 或 x ﹣ 1=﹣ 2,解得: x 1= 3, x 2=﹣ 1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成 x 2=a ( a ≥ 0)的形式,利用数的开方直接求解. ( 1)用直接开方法求一元二次方程的解的类型有:x 2= a ( a ≥ 0); ax 2= b ( a , b 同号且a ≠0);( x+a )2= b (b ≥ 0);a ( x+b )2= c ( a ,c 同号且 a ≠ 0).法则:要把方程化为“左平方,右常数,先把系数化为 1,再开平方取正负,分开求得方程解” .(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.( 8 分)如图,在边长为 1 个单位长度的小正方形组成的12× 12 的网格中,给出了以格点(网格线的交点)为端点的线段 AB .(1)将线段(2)以线段AB 向右平移 5 个单位,再向上平移 3 个单位得到线段 CD,请画出线段 CD.为一边,作一个菱形 CDEF ,且点 E,F 也为格点.(作出一个菱形即可) CD【分析】( 1)直接利用平移的性质得出C, D 点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【解答】解:( 1)如图所示:线段 CD 即为所求;(2)如图:菱形 CDEF 即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共 2 小题,每小题8 分,满分16 分)17.( 8 分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146 米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作 2 天后,乙工程队加入,两工程队又联合工作了 1 天,这 3 天共掘进26 米.已知甲工程队每天比乙工程队多掘进 2 米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x 米,则乙工程队每天掘进(x﹣ 2)米.根据“甲工程队独立工作 2 天后,乙工程队加入,两工程队又联合工作了 1 天,这 3 天共掘进26 米”列出方程,然后求工作.【解答】解:甲工程每天掘x 米,乙工程每天掘(x 2)米,由意,得 2x+( x+x 2)= 26,解得 x= 7,所以乙工程每天掘 5 米,(天)答:甲乙两个工程需合工作10 天.【点】此主要考了一元一次方程的用,根据意得出两的工效,而得出等量关系是解关.18.(8 分)察以下等式:第 1 个等式:=+,第 2 个等式:=+,第 3 个等式:=+,第 4 个等式:=+,第 5 个等式:=+,⋯⋯按照以上律,解决下列:(1)写出第 6 个等式:;(2)写出你猜想的第n 个等式:(用含 n 的等式表示),并明.【分析】( 1)根据已知等式即可得;(2)根据已知等式得出律,再利用分式的混合运算法即可.【解答】解:( 1)第 6 个等式:,故答案:;(2)=左.明:∵右=∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共 2 小题,每小题10 分,满分20 分)19.( 10 分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O 为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB 长为 6 米,∠ OAB = 41.3°,若点 C 为运行轨道的最高点( C, O 的连线垂直于AB),求点 C 到弦 AB 所在直线的距离.(参考数据: sin41.3°≈ 0.66, cos41.3°≈ 0.75,tan41.3°≈ 0.88)【分析】连接CO 并延长,与AB 交于点 D,由 CD 与 AB 中点,在直角三角形AOD 中,利用锐角三角函数定义求出CD 的长即可.垂直,利用垂径定理得到OA,进而求出 OD,由D 为 AB 的CO+OD 求出【解答】解:连接CO 并延长,与AB 交于点 D ,∵CD ⊥ AB,∴ AD= BD =AB= 3(米),在Rt △ AOD 中,∠ OAB= 41.3°,∴cos41.3°=,即OA===4(米),tan41.3°=,即OD=AD?tan41.3°=3× 0.88=2.64(米),则CD = CO+OD= 4+2.64 = 6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.( 10 分)如图,点E 在 ? ABCD 内部, AF∥ BE, DF ∥CE.(1)求证:△ BCE ≌△ ADF ;(2)设 ? ABCD 的面积为 S,四边形 AEDF 的面积为 T,求的值.【分析】( 1)根据 ASA 证明:△ BCE≌△ ADF ;(2)根据点 E 在 ? ABCD 内部,可知:S△BEC+S△AED=S? ABCD,可得结论.【解答】解:( 1)∵四边形ABCD 是平行四边形,∴AD = BC, AD ∥ BC,∴∠ ABC+∠ BAD= 180°,∵A F ∥BE,∴∠ EBA+∠ BAF =180°,∴∠ CBE=∠ DAF ,同理得∠ BCE=∠ ADF ,在△ BCE 和△ ADF 中,∵,∴△ BCE≌△ ADF ( ASA);(2)∵点 E 在 ?ABCD 内部,∴S△BEC+S△AED= S? ABCD,由( 1)知:△ BCE ≌△ ADF ,∴S△BCE= S△ADF,∴S 四边形AEDF= S△ADF+S△AED= S△BEC+S△AED=S? ABCD,∵? ABCD 的面积为 S,四边形 AEDF 的面积为 T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12 分)21.( 12 分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩????并测量其尺寸,?尺寸8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08b (cm)按照生产标准,产品等次规定如下:尺寸(单位: cm)产品等次8.97 ≤ x≤9.03特等品8.95 ≤ x≤9.05优等品8.90 ≤ x≤9.10合格品x< 8.90 或 x> 9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为 ? 的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求 a 的值;(i i )将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于 9cm,从这两组中各随机抽取 1 件进行复检,求抽到的 2 件产品都是特等品的概率.【分析】( 1)由 15× 80%= 12,不合格的有 15﹣ 12= 3 个,给出的数据只有①②两个不合格可得答案;(2)( i )由可得答案;( ii )由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:( 1)不合格.因为 15× 80%=12,不合格的有15﹣ 12= 3 个,给出的数据只有①② 两个不合格;(2)( i )优等品有 ⑥ ~ ? ,中位数在 ⑧ 8.98 , ⑨ a 之间,∴,解得 a = 9.02( i i )大于 9cm 的有 ⑨⑩? ,小于 9cm 的有 ⑥⑦⑧ ,其中特等品为 ⑦⑧⑨⑩ 画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4 种.∴抽到两种产品都是特等品的概率P = .【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分 12 分)22.( 12 分)一次函数 y = kx+4 与二次函数y = ax 2+c 的图象的一个交点坐标为(1, 2),另一个交点是该二次函数图象的顶点(1)求 k ,a , c 的值;(2)过点A ( 0,m )( 0< m < 4)且垂直于y 轴的直线与二次函数y = ax 2+c 的图象相交于B ,C两点,点 O 为坐标原点,记W = OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值.【分析】( 1)由交点为( 1, 2),代入 y = kx+4,可求得 k ,由 y = ax 2+c 可知,二次函数的顶点在 y 轴上,即 x = 0,则可求得顶点的坐标,从而可求c 值,最后可求 a 的值( 2)由( 1)得二次函数解析式为 y =﹣ 2x 2+4,令 y = m ,得 2x 2+m ﹣ 4= 0,可求 x 的值,再利用根与系数的关系式,即可求解.【解答】解:( 1)由题意得, k+4 = 2,解得 k =﹣ 2,又∵二次函数顶点为( 0, 4),∴ c = 4把( 1, 2)带入二次函数表达式得 a+c = 2,解得 a =﹣ 2(2)由( 1)得二次函数解析式为 y =﹣ 2x 2+4,令 y =m ,得 2x 2+m ﹣ 4= 0∴,设 B , C 两点的坐标分别为( x 1 ,m )( x 2, m ),则 ,∴W = OA 2+BC 2=∴当 m = 1 时, W 取得最小值 7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.八、(本题满分 14 分)23.( 14 分)如图, Rt △ ABC 中,∠ ACB =90°, AC =BC ,P 为△ ABC 内部一点,且∠ APB =∠BPC = 135°.( 1)求证:△ PAB ∽△ PBC ;( 2)求证: PA = 2PC ;( 3)若点 P 到三角形的边 AB , BC ,CA 的距离分别为 h 1, h 2,h 3,求证 h 12= h 2?h 3.【分析】( 1)利用等式的性质判断出∠PBC =∠ PAB ,即可得出结论;(2)由( 1)的结论得出,进而得出 ,即可得出结论;(3)先判断出 Rt △ AEP ∽ Rt △ CDP ,得出,即 h 3= 2h 2,再由△ PAB ∽△ PBC ,判断出,即可得出结论.【解答】解:( 1)∵∠ ACB = 90°, AB = BC ,∴∠ ABC = 45°=∠ PBA+∠ PBC又∠ APB = 135°,∴∠ PAB+∠ PBA =45°∴∠ PBC =∠ PAB又∵∠ APB =∠ BPC = 135°,∴△ PAB ∽△ PBC( 2)∵△ PAB ∽△ PBC∴在 Rt △ ABC 中, AB = AC ,∴∴∴ P A = 2PC(3)如图,过点 P 作 PD ⊥ BC , PE ⊥ AC 交 BC 、AC 于点 D , E ,∴P F = h1, PD= h2,PE=h3,∵∠ CPB+∠ APB= 135° +135°= 270°∴∠ APC= 90°,∴∠ EAP+∠ ACP= 90°,又∵∠ ACB =∠ ACP+∠ PCD= 90°∴∠ EAP=∠ PCD,∴R t△ AEP∽ Rt△CDP ,∴,即,∴h3= 2h2∵△ PAB∽△ PBC,∴,∴∴.即: h12= h2?h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠ EAP=∠ PCD 是解本题的关键.。

2019年安徽省中考数学试卷(带解析)

2019年安徽省中考数学试卷(带解析)

亿用科学记数法表示为( )
A.1.61×109
B.1.61×1010
C.1.61×1011
D.1.61×1012
【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n
的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相
同.当原数绝对值大于 10 时,n 是正数;当原数的绝对值小于 1 时,n 是负数.


第 9页(共 22页)


解得,x=4, ∴CD=4, 故选:B.
8.(4 分)据国家统计局数据,2018 年全年国内生产总值为 90.3 万亿,比 2017 年增长 6.6%.假
设国内生产总值的年增长率保持不变,则国内生产总值首次突破 100 万亿的年份是( )
A.2019 年
B.2020 年
11.(5 分)计算
的结果是

12.(5 分)命题“如果 a+b=0,那么 a,b 互为相反数”的逆命题为

13.(5 分)如图,△ABC 内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB 于点 D,若
⊙O 的半径为 2,则 CD 的长为

第 2页(共 22页)
14.(5 分)在平面直角坐标系中,垂直于 x 轴的直线 l 分别与函数 y=x﹣a+1 和 y=x2﹣2ax
19.(10 分)筒车是我国古代发明的一种水利灌溉工具.如图 1,明朝科学家徐光启在《农
政全书》中用图画描绘了筒车的工作原理.如图 2,筒车盛水桶的运行轨迹是以轴心 O
为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦 AB 长为 6 米,∠OAB=41.3°,

2019年中考数学平面几何基础试题解析

2019年中考数学平面几何基础试题解析

2019年中考数学平面几何基础试题解析本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!以下是中国()为您推荐的xxxx年中考数学平面几何基础试题解析,希望本篇对您学习有所帮助。

xxxx年中考数学平面几何基础试题解析一、选择题1.下列命题中,为真命题的是【】A.对顶角相等B.同位角相等c.若,则D.若,则【答案】A。

【考点】真命题,对顶角的性质,同位角的定义,平方根的意义,不等式的性质。

【分析】根据对顶角的性质,同位角的定义,平方根的意义,不等式的性质分别作出判断:A.对顶角相等,命题正确,是真命题;B.两平行线被第三条直线所截,同位角才相等,命题不正确,不是真命题;c.若,则,命题不正确,不是真命题;D.若,则,命题不正确,不是真命题。

故选A。

2.下列几何图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形B.矩形c.平行四边形D.等腰梯形【答案】B。

【考点】轴对称图形和中心对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,只有矩形既是轴对称图形又是中心对称图形。

故选B。

3.正多边形的一个外角等于30°.则这个多边形的边数为【】【答案】c。

【考点】多边形的外角性质。

【分析】正多边形的一个外角等于30°,而多边形的外角和为360°,则:多边形边数=多边形外角和÷一个外角度数=360°÷30°=12。

故选c。

4.下列两个电子数字成中心对称的是【】【答案】A。

【考点】中心对称图形。

【分析】根据轴中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,符合条件的只有A。

故选A。

5.已知正n边形的一个内角为135º,则边数n的值是【】【答案】c。

2019年安徽省中考数学试卷(含答案解析)

2019年安徽省中考数学试卷(含答案解析)

2019年安徽省中考数学试卷一、选择题(本大题共10小题,共40.0分)1.在−2,−1,0,1这四个数中,最小的数是()A. −2B. −1C. 0D. 12.计算a3⋅(−a)的结果是()A. a2 B. −a2C. a4D. −a43.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.4.2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A. 1.61×109 B. 1.61×1010 C. 1.61×1011 D. 1.61×10125.已知点A(1,−3)关于x轴的对称点A′在反比例函数y=kx的图象上,则实数k的值为()A. 3B. 13C. −3 D. −136.在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/ℎ)为()A. 60B. 50C. 40D. 157.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为()A. 3.6B. 4C. 4.8D. 58.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A. 2019年B. 2020年C. 2021年D. 2022年9.已知三个实数a,b,c满足a−2b+c=0,a+2b+c<0,则()A. b>0,b2−ac≤0B. b<0,b2−ac≤0C. b>0,b2−ac≥0D. b<0,b2−ac≥010.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A. 0B. 4C. 6D. 8二、填空题(本大题共4小题,共20.0分)11.计算√18÷√2的结果是______.12.命题“如果a+b=0,那么a,b互为相反数”的逆命题为______.13.如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________.14.在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x−a+1和y=x2−2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a 的取值范围是______.三、解答题(本大题共9小题,共90.0分)15.解方程:(x−1)2=4.16.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)17.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.观察以下等式:第1个等式:21=11+11,第2个等式:23=12+16,第3个等式:25=13+115,第4个等式:27=14+128,第5个等式:29=15+145,……按照以上规律,解决下列问题:(1)写出第6个等式:______;(2)写出你猜想的第n个等式:______(用含n的等式表示),并证明.19.筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O 为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.如图,点E在▱ABCD内部,AF//BE,DF//CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求S的值.T21.为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸(cm)8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.22.一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.23.如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为ℎ1,ℎ2,ℎ3,求证ℎ12=ℎ2⋅ℎ3.答案和解析1.【答案】A【解析】【分析】此题主要考查了有理数大小比较的方法,属于基础题.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得−2<−1<0<1,∴在−2,−1,0,1这四个数中,最小的数是−2.故选:A.2.【答案】D【解析】【分析】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3⋅(−a)=−a3⋅a=−a4.故选:D.3.【答案】C【解析】【分析】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.4.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.把161亿化为16100000000再用科学记数法表示,注意0的个数.【解答】解:根据题意161亿=16100000000,用科学记数法表示为1.61×1010 .故选:B.5.【答案】A【解析】【试题解析】【分析】(k为常数,k≠0)的图本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.中先根据关于x轴对称的点的坐标特征确定A′的坐标为(1,3),然后把A′的坐标代入y=kx 即可得到k的值.【解答】解:点A(1,−3)关于x轴的对称点A′的坐标为(1,3),把A′(1,3)代入y=k得k=1×3=3.x故选:A.6.【答案】C【解析】【分析】本题主要考查众数,熟练掌握众数的定义是解题的关键.根据众数的定义求解可得.【解答】解:由条形图知,车速40km/ℎ的车辆有15辆,为最多,所以众数为40.故选C.7.【答案】B【解析】【分析】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH//EG交AB于点H,则△AEG∽△ADH,∴AEAD =EGDH,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF//CD,∴△AEF∽△ADC,∴AEAD =EFCD,∴EGDH =EFCD,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12−x,∵EF⊥AC,EF⊥EG,DH//EG,∴EG//AC//DH,∴△BDH∽△BCA,∴DHAC =BDBC,即x6=12−x12,解得,x=4,∴CD=4,故选:B.8.【答案】B【解析】【分析】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B.9.【答案】D【解析】【试题解析】【分析】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2−ac的正负情况.根据a−2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2−ac的正负情况,本题得以解决.【解答】解:∵a−2b+c=0,a+2b+c<0,∴a+c=2b,b=a+c2,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2−ac=(a+c2)2−ac=a2+2ac+c24−ac=a2−2ac+c24=(a−c2)2≥0,即b<0,b2−ac≥0,故选:D.10.【答案】D【解析】【分析】本题考查了正方形的性质,最短路径问题,在BC上找到点H,使点H到点E和点F的距离之和最小是本题的关键.作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,可得点H到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称,∴CF=CM=4,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=√EC2+CM2=4√5,则在线段BC存在点H到点E和点F的距离之和最小为4√5<9,在点H右侧,当点P与点C重合时,则PE+PF=12,∴点P在CH上时,4√5<PE+PF≤12,在点H左侧,当点P与点B重合时,BF=√FN2+BN2=2√10,∵AB=BC,CF=AE,∠BAE=∠BCF,∴△ABE≌△CBF(SAS),∴BE=BF=2√10,∴PE+PF=4√10,∴点P在BH上时,4√5<PE+PF<4√10,∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.11.【答案】3【解析】【分析】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.根据二次根式的性质把√18化简,再根据二次根式的性质计算即可.【解答】解:√18÷√2=3√2÷√2=3.故答案为:3.12.【答案】如果a,b互为相反数,那么a+b=0【解析】【分析】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.13.【答案】√2【解析】【试题解析】【分析】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,等边三角形的判定,正确的作出辅助线是解题的关键.连接CO,OB,则∠COB=2∠CAB=60°,得到△BOC是等边三角形,求得BC=2,根据等腰直角三角形的性质即可得到结论.【解答】解:连接CO,OB,则∠COB=2∠CAB=60°,∵OC=OB,∴△BOC是等边三角形,∵⊙O的半径为2,∴BC=2,∵CD⊥AB,∠CBA=45°,∴CD=√2BC=√2,2故答案为:√2.14.【答案】a>1或a<−1【解析】【分析】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为不等式的解是解题的关键.对a进行分类讨论,再根据图象判断即可求解.【解答】解:∵平移直线l,可以使P,Q都在x轴的下方,令y=x−a+1<0,∴x<a−1,令y=x2−2ax<0,当a>0时,要使x<a−1与0<x<2a有解,a−1>0,则a>1;当a<0时,要使x<a−1与2a<x<0有解,a−1>2a,则a<−1;∴a>1或a<−1;故答案为a>1或a<−1;15.【答案】解:两边直接开平方得:x−1=±2,∴x−1=2或x−1=−2,解得:x1=3,x2=−1.【解析】利用直接开平方法,方程两边直接开平方即可.此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.【答案】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求(答案不唯一).【解析】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.17.【答案】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x−2)米,由题意,得2x+(x+x−2)=26,解得x=7,所以乙工程队每天掘进5米,146−267+5=10(天)答:甲乙两个工程队还需联合工作10天.【解析】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.设甲工程队每天掘进x米,则乙工程队每天掘进(x−2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.18.【答案】(1)211=16+166;(2)22n−1=1n+1n(2n−1).【解析】解:(1)第6个等式为:211=16+166,故答案为:211=16+166;(2)22n−1=1n+1n(2n−1)证明:∵右边=1n+1n(2n−1)=2n−1+1n(2n−1)=22n−1=左边.∴等式成立,故答案为:22n−1=1n+1n(2n−1).【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律22n−1=1n+1n(2n−1),再利用分式的混合运算法则验证即可.本题主要考查数字的变化规律,解题的关键是根据已知等式得出22n−1=1n+1n(2n−1)的规律,并熟练加以运用.19.【答案】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=12AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=ADOA ,即OA=3cos41.3∘=30.75=4(米),tan41.3°=ODAD,即OD=AD⋅tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).【解析】此题考查了解直角三角形的应用,垂径定理,熟练掌握各自的性质是解本题的关键.连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD 求出CD的长即可.20.【答案】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠ABC+∠BAD=180°,∵AF//BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵{∠CBE=∠DAF BC=AD∠BCE=∠ADF,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=12S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF =S△ADF+S△AED=S△BEC+S△AED=12S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴ST =S12S=2.【解析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=12S▱ABCD,可得结论.此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.21.【答案】解:(1)不合格.因为15×80%=12,不合格的有15−12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴8.98+a2=9,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=49.【解析】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.(1)由15×80%=12,不合格的有15−12=3个,给出的数据只有①②两个不合格可得答案;(2)(i)由8.98+a2=9可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.22.【答案】解:(1)由题意得,k+4=2,解得k=−2,又∵二次函数顶点为(0,4),∴c=4,把(1,2)带入二次函数表达式得a+c=2,解得a=−2,(2)由(1)得二次函数解析式为y=−2x2+4,令y=m,得2x2+m−4=0∴x=±√4−m2,设B,C两点的坐标分别为(x1,m)(x2,m),则|x1|+|x2|=2√4−m2,∴W=OA2+BC2=m2+4×4−m2=m2−2m+8=(m−1)2+7,∴当m=1时,W取得最小值7.【解析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=−2x2+4,令y=m,得2x2+m−4=0,可求x的值,再利用根与系数的关系式,即可求解.此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.23.【答案】解:(1)证明:∵∠ACB=90°,AC=BC,∴∠ABC=45°=∠PBA+∠PBC,又∠APB=135°,∴∠PAB+∠PBA=45°,∴∠PBC=∠PAB,又∵∠APB=∠BPC=135°,∴△PAB∽△PBC;(2)证明:∵△PAB∽△PBC,∴PAPB =PBPC=ABBC,在Rt△ABC中,AC=BC,∴ABBC=√2,∴PB=√2PC,PA=√2PB,∴PA=2PC;(3)如图,过点P作PD⊥BC于D,PE⊥AC于E,PF⊥AB于点F,∴PF=ℎ1,PD=ℎ2,PE=ℎ3,∵∠CPB+∠APB=135°+135°=270°,∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°,∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴PEDP =APPC=2,即ℎ3ℎ2=2,∴ℎ3=2ℎ2,∵△PAB∽△PBC,∴ℎ1ℎ2=ABBC=√2,∴ℎ1=√2ℎ2∴ℎ12=2ℎ22=2ℎ2⋅ℎ2=ℎ2ℎ3,即:ℎ12=ℎ2⋅ℎ3.【解析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;(2)由(1)的结论得出PAPB =PBPC=ABBC,进而由ABBC=√2即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出PEDP =APPC=2,即ℎ3=2ℎ2,再由△PAB∽△PBC,判断出ℎ1=√2ℎ2,即可得出结论.此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质.。

2019年安徽省中考数学试卷(含答案解析)

2019年安徽省中考数学试卷(含答案解析)

2019年安徽省中考数学试卷(含答案解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2B.﹣1C.0D.12.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a43.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012 5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k 的值为()A.3B.C.﹣3D.﹣6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60B.50C.40D.157.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E 在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6B.4C.4.8D.58.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥010.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax 的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O 为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b尺寸(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W 的最小值.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB =∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.2019年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2B.﹣1C.0D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意161亿用科学记数法表示为1.61×1010 .故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k 的值为()A.3B.C.﹣3D.﹣【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(1,3),然后把A′的坐标代入y=中即可得到k的值.【解答】解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60B.50C.40D.15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,车速40km/h的车辆有15辆,为最多,所以众数为40,故选:C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E 在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6B.4C.4.8D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EF A=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况,本题得以解决.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac的正负情况.10.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8【分析】作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,可得点H到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM==4则在线段BC存在点H到点E和点F的距离之和最小为4<9在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,4<PE+PF≤12在点H左侧,当点P与点B重合时,BF==2∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴BE=BF=2∴PE+PF=4∴点P在BH上时,4<PE+PF<4∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.【点评】本题考查了正方形的性质,最短路径问题,在BC上找到点N使点N到点E和点F的距离之和最小是本题的关键.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b互为相反数,那么a+b=0.【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.【解答】解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax 的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是a>1或a<﹣1.【分析】令y=x﹣a+1<0,x<1﹣a;令y=x2﹣2ax<0,2a<x<0;当a>0时,x<1﹣a与2a<x<0有解,a﹣1>0,则a>1;当a<0时,x<1﹣a与2a<x<0有解,a﹣1>2a,则a<﹣1;即可求解.【解答】解:∵平移直线l,可以使P,Q都在x轴的下方,令y=x﹣a+1<0,∴x<1﹣a,令y=x2﹣2ax<0,∴2a<x<0;当a>0时,x<1﹣a与2a<x<0有解,a﹣1>0,则a>1;当a<0时,x<1﹣a与2a<x<0有解,a﹣1>2a,则a<﹣1;∴a>1或a<﹣1;故答案为a>1或a<﹣1;【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为不等式的解是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.【分析】利用直接开平方法,方程两边直接开平方即可.【解答】解:两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【解答】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)【分析】连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD求出CD的长即可.【解答】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=,即OA===4(米),tan41.3°=,即OD=AD•tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.【分析】(1)由15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格可得答案;(2)(i )由可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)不合格.因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=.【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W 的最小值.【分析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+4=2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB =∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.。

2019年安徽中考数学试题(解析版)

2019年安徽中考数学试题(解析版)

{来源}2019年安徽省中考数学试卷{适用范围:3. 九年级}{标题}2019年安徽省中考数学试卷考试时间:120分钟 满分:150分{题型:1-选择题}一、选择题:本大题共10小题,每小题4,合计40分.{题目}1.(2019年安徽省1)在-2,-1,0,1这四个数中,最小的数是( )A .-2B .-1C .0D .1{答案}A{解析}本题考查了有理数大小的比较,根据正数大于0,负数小于0,正数大于负数,这四个数中-2,-1较小,又根据两个负数大小比较方法,由于,所以,所以这四个数中-2最小,因此本题选A .{分值}4{章节:[1-1-2-4]绝对值}{考点:有理数的大小比较}{类别:常考题}{难度:1-最简单}{题目}2.(2019年安徽省2)计算a 3·(-a)的结果是( )A .a 2B .-a 2C .a 4D .-a 4{答案}D{解析}本题考查了幂的运算性质,a 3·(-a)=-a 3+1=-a 4,因此本题选D .{分值}4{章节:[1-14-1]整式的乘法}{考点:同底数幂的乘法}{类别:常考题}{难度:1-最简单}{题目}3.(2019年安徽省3)一个由圆柱体和长方体组成的几何体如图水平放置,它的俯视图是( ){答案}C{解析}本题考查了三视图的俯视图知识,该几何体的俯视图是选项C 中的平面图形,因此本题选C .{分值}4{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:2-简单}{题目}4.(2019年安徽省4)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为( )A .1.61×109B .1.61×1010C .1.61×1011D .1.61×1012{答案}B{解析}本题考查了科学记数法,161亿=16100000000=1.61×1010,因此本题选B .{分值}412->-12-<-{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:2-简单}{题目}5.(2019年安徽省5)已知点A (1,-3)关于x 轴的对称点A /在反比例函数y=的图象上,则实数k 的值为( )A .3B .C .-3D .-{答案}A {解析}本题考查了轴对称的点的坐标特征及反比例函数表达式的确定,点A (1,-3)关于x 轴的对称点A /的坐标为(1,3),又A /(1,3)在反比例函数y =的图象上,所以3=,k =3,因此本题选A .{分值}4{章节:[1-26-1]反比例函数的图像和性质}{考点:反比例函数的解析式}{类别:常考题}{难度:3-中等难度}{题目}6.(2019年安徽省6)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h )为 ( )A .60B .50C .40D .15{答案}C{解析}本题考查了条形统计图和众数的知识,由条形统计图可知,这组数据中出现次数最多的数据是40km/h ,因此本题选C .{分值}4{章节:[1-20-1-2]中位数和众数}{考点:条形统计图}{考点:众数}{类别:思想方法}{难度:3-中等难度}{题目}7.(2019年安徽省7)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =12,点D 在边BC 上,点E 在线段AD 上,EF ⊥AC 于点F ,EG ⊥EF 交AB 于点G ,若EF =EG ,则CD 的长为( )A .3.6B .4C .4.8D .5x k 3131x k 1k{答案}B{解析}本题考查了相似三角形的判定与性质,过点D 作DM ⊥BC 交AB 于点M ,易证DC =DM ,设CD =x ,则DM =x ,又DM ∥AC ,所以△BDM ∽△BCA,所以,即,解得x =4,因此本题选B .{分值}4{章节:[1-27-1-1]相似三角形的判定}{考点:相似三角形的性质}{考点:由平行判定相似}{类别:常考题}{难度:3-中等难度}{题目}8.(2019年安徽省8)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是( )A .2019年B .2020年C .2021年D .2022年{答案}B{解析}本题考查了增长率问题,根据题意,2019年全年国内生产总值为90.3×(1+6.6%)≈96.3万亿,2020年全年国内生产总值为90.3×(1+6.6%)2≈102.7万亿>100万亿,因此本题选B .{分值}4{章节:[1-2-1]整式}{考点:代数式求值}{类别:高度原创}{难度:3-中等难度}{题目}9.(2019年安徽省9)已知三个实数a ,b ,c 满足a -2b +c =0,a +2b +c <0,则A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0{答案}D{解析}本题考查了不等式的性质、整体思想和完全平方公式,由a -2b +c =0得2b =a +c ,又a +2b +c <0,所以4b <0,b <0,又b =,所以b 2-ac =()2-ac =AC DM BC BD =61212x x =-2c a +2c a +≥0,因此本题选D .{分值}4{章节:[1-22-2]二次函数与一元二次方程}{考点:完全平方公式}{考点:不等式的性质}{考点:二次函数y =ax2+bx+c 的性质}{类别:高度原创}{难度:4-较高难度}{题目}10.(2019年安徽省10)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )A .0B .4C .6D .8{答案}D{解析}本题考查了正方形的性质、勾股定理、最值问题以及分类讨论等知识,由AC =12,点E ,F 将对角线AC 三等分,求得AE =EF =FC =4,分四种情况:当点P 在AB上时,作点F 关于AB 的轴对称点G,连接EG 交AB 于点P ,此时PE +PF 的值最小,可求得最小值为4,而点P与点A 重合时,PE+PF =4+8=12>9,点P 与点B 重合时,PE +PF >12>9,所以在AB 上满足条件的点有2个;同理,在BC ,CD ,DA 上满足条件的点P 分别有2个,所以满足条件的点P 一共有8个,因此本题选D .{分值}4{章节:[1-18-2-3] 正方形}{考点:正方形的性质}{考点:勾股定理的应用}{考点:几何选择压轴}{类别:思想方法}{难度:5-高难度}{题型:2-填空题}二、填空题:本大题共4小题,每小题5分,合计20分.{题目}11.(2019年安徽省11)的结果是{答案}3.{解析}==3,因此本题填3.4)(44)(22c a ac c a -=-+95<9{分值}5分{章节:[1-16-2]二次根式的乘除}{考点:二次根式的除法法则}{类别:常考题}{难度:2-简单}{题目}12.(2019年安徽省12)命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为_____________________.{答案}如果a ,b 互为相反数,那么a +b =0.{解析}本题考查了互逆命题,命题“如果a +b =0,那么a ,b 互为相反数”的逆命题是“如果a ,b 互为相反数,那么a +b =0.”.{分值}5分{章节:[1-17-2]勾股定理的逆定理}{考点:互逆命题}{类别:易错题}{难度:2-简单}{题目}13.(2019年安徽省13)如图,△ABC 内接于☉O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为{答案}.{解析}本题考查了圆周角性质和解直角三角形的知识,连接CO 并延长交☉O 于点E ,连接AE ,则∠E =∠B =45°,∵CE 是☉O 的直径,∴∠CAE =90°,∵sin45°=,∴AC =4,∵∠CAB =30°,CD ⊥AB 于点D ,∴CD =.{分值}5{章节:[1-24-1-4]圆周角}{考点:圆周角定理}{考点:直径所对的圆周角}{考点:特殊角的三角函数值}{类别:常考题}{难度:3-中等难度}{题目}14.(2019年安徽省14)在平面直角坐标系中,垂直于x 轴的直线分别于函数y =x -a +1和y =x 2-2ax 的图像相交于P ,Q 两点.若平移直线,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是{答案}a >1或a <-1.2CE AC 2222=⨯221=AC l l{解析}本题考查了二次函数与一次函数的图象与性质,对于函数y =x 2-2ax 的图象是抛物线,抛物线的开口向上,与x 轴的交点坐标为(0,0)和(2a ,0),由题意知a ≠0,应分两种情况:(1)当a >0时,若平移直线,使得P ,Q 都在x 轴的下方,如图1,此时当x =0时,y =0-a +1<0,解得a >1,故a >1;(2)当a <0时,若平移直线,使得P ,Q 都在x 轴的下方,此时当x =2a 时,y =2a -a +1<0,解得a <-1,故a <-1.综上可得a >1或a <-1.{分值}5分{章节:[1-22-2]二次函数与一元二次方程}{考点:一次函数的图象}{考点:抛物线与一元二次方程的关系}{考点:代数填空压轴}{类别:思想方法}{难度:5-高难度}{题型:3-解答题}三、解答题:本大题共9小题,合计90分.{题目}15.(2019年安徽省15)解方程{解析}本题考查了一元二次方程的解法,根据平方根的意义求解即可.{答案}解:x -1=,x -1=2或x -1=-2,∴x 1=3,x 2=-1.{分值}8分{章节:[1-21-2-1] 配方法}{难度:2-简单}{类别:常考题}{考点:直接开平方法}{题目}16.(2019年安徽省16)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB .(1)将线段AB 向右平移5个单位,再向上平移3个单位得到线段CD ,请画出线段CD .(2)以线段CD 为一边,作一个菱形CDEF ,且点E ,F 也为格点.(作出一个菱形即可){解析}本题考查了利用网格的平移作图,(1)先画出点A ,B 平移后的对应点,然后连接即可;(2)根据菱形的判定方法,将线段CD 先向右平移2个单位长度,再向上平移3个单位长度即可(本题答案不唯一).{答案}解:l l 2x 1=4-()4±{分值}8分{章节:[1-18-2-2]菱形}{难度:2-简单}{类别:网格作图}{考点:平移作图}{考点:菱形的判定}{题目}17.(2019年安徽省17)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?{解析}本题考查了一元一次方程的实际应用,可设乙工程队每天掘进x 米,根据题意列方程求得甲、乙工程队每天掘进的隧道长度,最后根据工程问题的数量关系求解.{答案}解:设乙工程队每天掘进x 米,则甲工程队每天掘进(x +2)米,根据题意得3(x +2)+x =26,解得x =5,所以x +2=7米.所以(146-26)÷(5+7)=10(天)答: 完成这项隧道贯穿工程,甲乙两个工程队还需联合工作10天.{分值}8{章节:[1-3-2-2]解一元一次方程(二)去括号与去分母}{难度:2-简单}{类别:常考题}{考点:一元一次方程的应用(工程问题)}{题目}18.(2019年安徽省T18)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:211=111+612132+=211=5315+211=7428+211=9545+(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.{解析}本题考查了数与式的规律探究,(1)观察给出的等式发现,等式左边是分数,分子都是2,分母依次是1,3,5,……,的连续奇数,等式右边是两个分数的和,每个分数的分子都是1,第1个分数的分母与等式的序号相同,第2个分数的分母是第1个分母与等式左边分数的分母的积,据此写出第6个等式;(2)根据(1)的规律写出第n 个等式,并根据分式的运算法则进行证明.{答案}解:(1);(2).证明:因为等式右边= ==等式左边,所以猜想成立.{分值}8分{章节:[1-15-1]分式}{难度:2-简单}{类别:常考题}{考点:两个分式的加减}{考点:规律-数字变化类}{题目}19.(2019年安徽省19)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O 为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB 长为6米,∠OAB =41.3°,若点C 为运行轨道的最高点(C ,O 的连线垂直于AB ),求点C 到弦AB 所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88){解析}本题以传统文化为背景考查了垂径定理和解直角三角形的知识,连接CO 并延长交AB 于D ,先根据垂径定理求得AD ,再在Rt △AOD 中求得OD ,OA 即可.{答案}解:连接CO 并延长交AB 于D , ∵OD ⊥AB ,∴AD =BD =AB =3,∵cos41.3°=,∴OA ≈=4,∵tan41.3°=,∴OD =3,∴CD =OC +OD ≈4+2.64=6.64(米).即点C 到弦AB 所在直线的距离约为6.64米.66161112+=)12(11122-+=-n n n n )12(11-+n n n 122)12(112)12(11-=-+-=-+n n n n n n n 21OA AD 75.03ADOD 64.288.0≈⨯{分值}10分{章节:[1-24-1-2]垂直于弦的直径}{难度:3-中等难度}{类别:数学文化}{考点:垂径定理的应用}{考点:解直角三角形}{题目}20.(2019年安徽省20)如图,点E 在 ABCD 内部,AF ∥BE ,DF ∥CE .(1)求证:△BCE ≌△ADF ;(2)设□ABCD 的面积为S ,四边形AEDF 的面积为T,求的值{解析}本题考查了平行四边形的性质、全等三角形的判定及四边形面积的计算等.(1)由平行四边形得到对边平行且相等,再根据已知条件证得角相等进而证得结论;(2)把四边形的面积转化为三角形的面积的和求得T ,并与S 向比较即可.{答案}解:(1)∵ ABCD ,∴AD =BC ,AD ∥BC ,∵AF ∥BE ,DF ∥CE ,∴∠EBC =∠FAD ,∠ECB =∠FDA ,∴ △BCE ≌△ADF ;(2)过点E 作EM ⊥BC 于M ,交AD 于N ,则MN ⊥AD .由(1)△BCE ≌△ADF ,∴S △BCE =S △ADF ,∴T =S △ADE +S △ADF =S △ADE =S △BCE =,∵S =,∴==2.{分值}10分{章节:[1-18-1-1]平行四边形的性质}{难度:3-中等难度}{类别:常考题}{考点:平行四边形边的性质}S TMN AD EN NE AD EM BC NE AD ⨯=+⨯=⨯+⨯21)(212121MN AD ⨯S T MN AD MN AD ⨯⨯21{考点:全等三角形的判定ASA ,AAS}{题目}21.(2019年安徽省21)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:按照生产标准,产品等次规定如下:注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)仅算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由(2)已知此次抽检出的优等品尺寸的中位数为9cm .(Ⅰ)求a 的值(Ⅱ)将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.{解析}本题是统计与概率的综合题,考查了频率、中位数和等可能情况下概率的计算等知识.(1)先根据合格率求出合格品的个数,再进行判断;(2)(Ⅰ)先确定优等品产品的编号,再根据中位数概念求a 的值;(Ⅱ)先找到优等品中尺寸大于9cm 的编号和尺寸不大于9cm 的编号,用树状图或列表法分析求概率.{答案}解:(1)编号为⑮的产品不是合格品.理由:合格品有15×80%=12个,表中编号①②产品为非合格品,所以编号为⑮的产品不是合格品;(2)(Ⅰ) 这批产品中优等品的编号为⑥⑦⑧⑨⑩○11,其中位数是编号⑧⑨的平均数,即9,a =9.02;(Ⅱ)大于9cm 的有⑨⑩○11,小于9 cm 的有⑥⑦⑧,其中特等品的为⑦⑧⑨⑩.画树状图为:共有9种等可能的情况,其中抽到两种产品都是特等品的情况有4种,∴抽到两种产品都是特等品的概率.{分值}12分{章节:[1-25-2]用列举法求概率}{难度:3-中等难度}{类别:常考题}{考点:中位数}{考点:频数与频率}{考点:两步事件不放回}=+298.8a 49P ={题目}22.(2019年安徽省22)一次函数y =kx +4与二次函数y =ax 2+c 的图像的一个交点坐标为(1,2),另一个交点是该二次函数图像的顶点(1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图像相交于B ,C 两点,点O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值.{解析}本题考查了一次函数与二次函数表达式的确定、二次函数最值的确定等.(1)把点(1,2)代入y =kx +4确定k 的值,根据二次函数y =ax 2+c 的图像经过点(1,2)和顶点(0,c )在直线y =-2x +4上建立关于a ,c 的方程组求解;(2)先用含m 的代数式表示点B ,C 之间的距离,再根据条件建立W 关于x 的二次函数关系并用配方法求W 的最小值.{答案}解:(1)由题意得,k +4=-2,解得k =-2,又二次函数顶点为(0,c ),根据题意得,解得a =-2,c =4;(2)由(1)得二次函数解析式为y =-2x 2+4,令y =m ,得2x 2+m -4=0∴,即B ,C两点的坐标分别为(,m )(-,m ),则2,∴W =OA 2+BC 2=,又抛物线开口向上,且0<m <4,∴当m =1时,W 取得最小值7.{分值}12{章节:[1-22-2]二次函数与一元二次方程}{难度:4-较高难度}{类别:高度原创}{考点:待定系数法求一次函数的解析式}{考点:二次函数y =ax 2+bx +c 的性质}{考点:其他二次函数综合题}{题目}23.(2019年安徽省23如图,Rt △ABC 中,∠ACB =90°,AC =BC ,P 为△ABC 内部一点,且∠APB =∠BPC =135°(1)求证:△PAB ∽△PBC ;(2)求证:PA =2PC ;(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为h 1,h 2,h 3,求证h 12=h 2·h 3.⎩⎨⎧+==c a c 24x=24m -24m -=BC 24m -2224-m m 4=m -2m+8=m-172+⨯+(){解析}本题以等腰直角三角形为背景考查了相似三角形的判定与性质,以及运用相似三角形的性质解决数学问题.(1)通过证两个角对应相等得到相似三角形;(2)由(1)中的相似三角形得到对应边成比例,分别建立PA ,CP 与PB 之间的关系得证;(3)分别作点P 到AC ,BC 之间的距离,通过证Rt △AEP ∽Rt △CDP 得到h 3与h 2之间的关系,由(1)的结论得到h 1与h 2的关系,通过变形得出结论.{答案}解:(1)∵∠ACB =90°,AB =BC ,∴∠ABC =45°=∠PBA +∠PBC ,又∠APB =135°,∴∠PAB +∠PBA =45°,∴∠PBC =∠PAB ,又∵∠APB =∠BPC =135°,∴△PAB ∽△PBC ;(2)在Rt △ABC 中,AB =AC,∴,由(1)得△PAB∽△PBC ∴=,∴PB =PC ,PA =PB , ∴PA =2PC ;(3)过点P 分别作PD ⊥BC ,PE ⊥AC ,垂足分别为点D ,E.∵∠CPB +∠APB=135°+135°=270°∴∠APC =90°,∴∠EAP +∠ACP =90°,又∵∠ACB =∠ACP +∠PCD =90°∴∠EAP =∠DCP ,∴Rt △AEP ∽Rt △CDP ,∴,即,∴由(1)得△PAB ∽△PBC ,∴,即.{分值}14{章节:[1-27-1-2]相似三角形的性质}{难度:5-高难度}{类别:高度原创}{考点:相似三角形的判定(两角相等)}{考点:相似三角形的性质}{考点:几何综合}AB BCPA PB AB ==PB PC BC 222PE AP ==2DP PC 32h =2h 32h =2h 1122h AB =h h BC22122223h =2h =2h h =h h。

2019年安徽省中考数学试题解析(完美解析,可编辑)

2019年安徽省中考数学试题解析(完美解析,可编辑)
(2)已知此次抽检出的优等品尺寸的中位数为9cm. (i)求a的值 (ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不 大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品 都是特等品的概率.
2019年安徽省中考数学试题第22题解析(A)
2019年安徽省中考数学试题第22题解析(B)
2019年安徽省中考数学试题第15题解析
2019年安徽省中考数学试题第16题解析
2019年安徽省中考数学试题第17题解析
应用题千万不要 忘记写“答句”
2019年安徽省中考数学试题第18题解析(A)
2019年安徽省中考数学试题第19题解析(A)
2019年安徽省中考数学试题第19题解析(B)
x<8.90或x> 9.10
非合格品
2019年安徽省中考数学试题第14题解析(C)
注:在统计优等品个数时,将特等品计算在内;在统计合格品个 数时,将优等品(含特等品)仅算在内. (1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是 否为合格品,并说明理由
2019年安徽省中考数学试题第14题解析(D)
A.
B.
C.
D.
【 答 案 】C
【 考 点 】简 单 组 合 体 的 三 视 图
【 分 析 】找 到 从 上 面 看 所 得 到 的 图 形 即 可 , 注 意 所 有 的看到的棱都应表现题 】 2019年“五一”假日期间,我省银联网络交易总金额 接近161亿元,其中161亿用科学记数法表示为( ) A. 1.61109 B. 1.611010 C. 1.611011 D. 1.611012
2019年安徽省中考数学试题第2题解析
【 原 题】 计 算 a3 g(a) 的 结 果 是

2019年安徽省中考数学试卷及答案【名师推荐】

2019年安徽省中考数学试卷及答案【名师推荐】

2019年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2B.﹣1C.0D.12.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a43.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×10125.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60B.50C.40D.157.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6B.4C.4.8D.58.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥010.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T ,求的值.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b尺寸(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C 两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2B.﹣1C.0D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意161亿用科学记数法表示为1.61×1010 .故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(1,3),然后把A′的坐标代入y=中即可得到k的值.【解答】解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60B.50C.40D.15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选:C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6B.4C.4.8D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EF A=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况,本题得以解决.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac的正负情况.10.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8【分析】作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,可得点H到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM==4则在线段BC存在点H到点E和点F的距离之和最小为4<9在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,4<PE+PF≤12在点H左侧,当点P与点B重合时,BF==2∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴BE=BF=2∴PE+PF=4∴点P在BH上时,4<PE+PF<4∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.【点评】本题考查了正方形的性质,最短路径问题,在BC上找到点N使点N到点E和点F的距离之和最小是本题的关键.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b互为相反数,那么a+b=0.【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.【解答】解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是a >1或a<﹣1.【分析】由y=x﹣a+1与x轴的交点为(a﹣1,0),可知当P,Q都在x轴的下方时,直线l与x轴的交点要在(a﹣1,0)的左侧,即可求解;【解答】解:y=x﹣a+1与x轴的交点为(a﹣1,0),∵平移直线l,可以使P,Q都在x轴的下方,∴当x=a﹣1时,y=(1﹣a)2﹣2a(a﹣1)<0,∴a2﹣1>0,∴a>1或a<﹣1;故答案为a>1或a<﹣1;【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x=1﹣a时,二次函数y<0是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.【分析】利用直接开平方法,方程两边直接开平方即可.【解答】解:两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【解答】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)【分析】连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD求出CD的长即可.【解答】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=,即OA===4(米),tan41.3°=,即OD=AD•tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED =S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b尺寸(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.【分析】(1)由15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格可得答案;(2)(i )由可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)不合格.因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=.【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C 两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.【分析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+4=2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD 是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学精品复习资料安徽省中考数学试题分类解析汇编(12专题)专题8:平面几何基础一、选择题1. (2001安徽省4分)如图,长方体中,与棱AA′平行的面是▲ 。

【答案】面BC′和面CD′。

【考点】认识立体图形。

【分析】在长方体中,面与棱之间的关系有平行和垂直两种,且与棱平行的面有两个:面BC′和面CD′。

2. (2001安徽省4分)如图所示,要把角钢(1)弯成120°的钢架(2),则在角钢(1)上截去的缺口是▲ 度。

【答案】60。

【考点】角的计算,平角的定义。

【分析】因为在截取之前的角是平角180°,截完弯折后左右两边重合,所组成的新角是120°,所以缺口角等于180°﹣120°=60°。

3. (2002安徽省4分)如图,AB、CD相交于点O,OB平分∠DOE.若∠DOE=60°,则∠AOC 的度数是▲ .【答案】30°。

【考点】角平分线的定义,对顶角的性质【分析】∵AB、CD相交于点O,∠DOE=60°,OB平分∠DOE,∴∠BOD=12∠DOE=12×60°=30°。

又∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=30°。

4. (2003安徽省4分)如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有【】A:1个 B:2个 C:3个 D:4个【答案】C。

【考点】平行线的性质,余角和补角,对顶角的性质,直角三角形两锐角的关系。

【分析】∵AB∥CD,∴∠ABC=∠BCD。

设∠ABC的对顶角为∠1(如图),则∠ABC=∠1。

又∵AC⊥BC,∴∠ACB=90°。

∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°。

∴与∠CAB互余的角为∠ABC,∠BCD,∠1。

故选C。

5. (2005安徽省课标4分)下列图中能够说明的是【】A.B.C.D.【答案】D。

【考点】对顶角的性质,圆周角定理,直角三角形的内角,三角形的外角性质。

【分析】根据对顶角、圆周角、直角三角形的内角、三角形的外角性质等分析作出判断:A、根据对顶角相等,得∠1=∠2;B、根据同弧所对的圆周角相等,得∠1=∠2;C、直角三角形中,直角最大,则∠1<∠2;D、由于三角形的任何一个外角>和它不相邻的内角,故∠1>∠2。

故选D。

6. (2006安徽省课标4分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2的度数为【】A.35° B.45° C.55° D.125°【答案】A。

【考点】平行线的的性质,平角的定义。

【分析】∵a∥b,∠1=55°,∴∠3=∠1=55°(两条直线平行,同位角相等)。

又AB⊥BC,∴∠ABC=180°。

∴根据平角的定义,得∠2=180°-90°-55°=35°。

故选A。

7. (2006安徽省课标4分)如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为【】A.36° B.42° C.45° D.48°【答案】D。

【考点】多边形内角和定理,等腰三角形的性质。

【分析】如图,折扇的顶角的度数是:360°÷3=120°,两底角的和是:180°-120°=60°,正五边形的每一个内角=(5-2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°-60°=48°。

故选D。

8. (2007安徽省4分)下列图形中,既是中心对称又是轴对称的图形是【】A. B. C. D.【答案】C。

【考点】轴对称图形和中心对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形。

故选C。

9. (2009安徽省4分)如图,直线l1∥l2,则α为【】A.150°B.140°C.130°D.120°【答案】D。

【考点】平行线的性质,对顶角的性质。

【分析】∵l1∥l2,∴130°所对应的同旁内角为∠1=180°-130°=50°。

又∵α与(70°+50°)的角是对顶角,∴∠α=70°+50°=120°。

故选D。

10. (2009安徽省4分)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为【】A.50° B.55° C.60° D.65°【答案】C。

【考点】平行线的性质,对顶角的性质,三角形内角和定理。

【分析】如图所示:∵l1∥l2,∠2=65°,∴∠6=65°。

∵∠1=55°,∴∠1=∠4=55°。

在△ABC中,∠6=65°,∠4=55°,∴∠3=180°-65°-55°=60°。

故选C。

二、填空题1. (2002安徽省4分)下列图案既是中心对称,又是轴对称的是【】A.B.C.D.【答案】D。

【考点】轴对称图形和中心对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A.是轴对称图形,不是中心对称图形;B.既不是轴对称图形,也不是中心对称图形;C.不是轴对称图形,是中心对称图形;D.既是轴对称图形,也是中心对称图形。

故选D。

2. (2004安徽省4分)(华东版教材实验区试题)如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BC D= ▲ .【答案】40°。

【考点】平行线的的性质,平角定义,三角形的外角性质。

【分析】如图,反向延长DE交BC于M,∵AB∥DE,∠ABC=80°,∴∠BMD=∠ABC=80°。

∴∠CMD=180°-∠BMD=100°。

又∵∠CDE=∠CMD+∠C,∠CDE=140°,∴∠BCD=∠C DE-∠CMD=140°-100°=40°。

3. (2007安徽省5分)如图,已知∠1=100°,∠2=140°,那么∠3=▲ 度。

【答案】60。

【考点】多边形的外角性质,平角定义。

【分析】根据多边形的外角性质,三角形三个外角的和为360°,因此,如图,∵∠4=360°-∠1-∠2=360°-100°-140°=120°,∴∠3=180°-120°=60°。

4. (2008安徽省5分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=▲ 。

【答案】70°。

【考点】平行线的性质,对顶性质,三角形内角和定理。

【分析】由对顶角相等可得∠ACB=∠2=40°。

在△ABC 中,由三角形内角和知∠ABC=180°-∠1-∠ACB=70°。

又∵a∥b,∴∠3=∠ABC=70°。

三、解答题1. (2003安徽省10分)如图,在五边形A 1A 2A 3A 4A 5中,B 1是A 1对边A 3A 4的中点,连结A 1B 1,我们称A 1B 1是这个五边形的一条中对线。

如果五边形的每条中对线都将五边形的面积分成相等的两部分。

求证:五边形的每条边都有一条对角线和它平行。

【答案】证明:取A 1A 5中点B 3,连接A 3B 3、A 1A 3、A 1A 4、A 3A 5,∵A 3B 1=B 1A 4,∴131114A A B A B A S S ∆∆=。

又∵四边形A 1A 2A 3B 1与四边形A 1B 1A 4A 5的面积相等,∴123145A A A A A A S S ∆∆=。

同理123345A A A A A A S S ∆∆=。

∴145345A A A A A A S S ∆∆=。

∴△A 3A 4A 5与△A 1A 4A 5边A 4A 5上的高相等。

∴A 1A 3∥A 4A 5。

同理可证A 1A 2∥A 3A 5,A 2A 3∥A 1A 4,A 3A 4∥A 2A 5,A 5A1∥A 2A 4。

相关文档
最新文档