函数图像专题研究
高考数学最新真题专题解析—函数的图象及性质
高考数学最新真题专题解析—函数的图象及性质考向一 由函数图像求解析式【母题来源】2022年高考全国乙卷(文科)【母题题文】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A. 3231x x y x -+=+B. 321x x y x -=+C. 22cos 1x x y x =+D.22sin 1x y x =+ 【答案】A【试题解析】设()321x x f x x -=+,则()10f =,故排除B; 设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x x h x x x =<≤++,故排除C;设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的周期性,判断图像的循环往复.(5) 从函数的特征点,排除不合要求的图象.考向二 由解析式判断图像【母题来源】2022年高考全国乙卷(文科)【母题题文】函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( ) A. B. C. D.【答案】A【试题解析】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图像的循环往复.(5)从函数的特征点,排除不合要求的图象.真题汇总及解析1.函数()22cos6x x y x -=-的图像大致是( )A .B .C .D .【答案】C【解析】【分析】利用排除法求解,先判断函数的奇偶性,再利用函数的变化情况判断即可【详解】定义域为R ,因为()()()22cos(6)22cos6()x x x x f x x x f x ---=--=--=-,所以函数为奇函数,所以排除AB , 当012x π<<时,062x π<<,则cos60x >,因为当012x π<<时,220x x -->,所以当012x π<<时,()22cos60x x y x -=->,所以排除D ,故选:C 2.从函数y x =,2y x ,2x y -=,sin y x =,cos y x =中任选两个函数,记为()f x 和()g x ,若()()()h x f x g x =+或()()()h x f x g x =-的图象如图所示,则()h x =( )A .2sin x x -B .cos x x +C .2sin x x -+D .cos x x -【答案】C【解析】【分析】 根据图象可知函数()h x 过定点(0,1),当0x <时()1h x >,为减函数;当0x >时()0h x >或()0h x <交替出现,结合排除法和选项中函数的图象与性质,即可得出结果.【详解】由图象可知,函数()h x 过定点(0,1),当0x <时,()1h x >,为减函数;当0x >时,()0h x >或()0h x <交替出现.若2()sin h x x x =-,则()00h =,不符合题意,故A 错误;若()cos h x x x =+,则(0)1h =,即函数()h x 过定点(0,1),又1cos 1x -≤≤,当1x <-时,()cos 0h x x x =+<,不符合题意,故B 错误;若()cos h x x x =-,则(0)1h =-,不符合题意,故D 错误.故选:C3.函数()2cos sin ln 2cos x f x x x-=⋅+的部分图象大致为( ) A .B .C .D .【答案】C【解析】【分析】先判断函数的奇偶性得函数为奇函数,进而排除AB 选项,再根据0,4x π⎛⎫∈ ⎪⎝⎭时的函数符号排除D 选项得答案.【详解】解:由题意可知,函数()f x 的定义域为R ,因为2cos()2cos ()sin()ln sin ln ()2cos()2cos x x f x x x f x x x----=-=-⋅=-+-+, 所以()f x 为奇函数,图象关于原点对称,排除选项A ,B ;当0,4x π⎛⎫∈ ⎪⎝⎭时,sin 0,2cos 2cos 0x x x >+>->,所以2cos 012cos x x -<<+, 所以2cos ()sin ln02cos x f x x x-=⋅<+,排除D. 故选:C.4.已知R α∈,则函数()e x x f x α=的图象不可能是( ) A . B .C .D .【答案】C【分析】 令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】 当12α=时,()e x x f x =且0x ≥,则12()e x x f x x-'=, 所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =, 所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=, 所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能;当1α=-时,1()e xf x x =且0x ≠,则21()e x x f x x +'=-, 所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >,所以D 图象可能;综上,排除A 、B 、D.故选:C5.函数()2222x xx x f x -+=+的部分图象大致是( ) A . B . C . D .【答案】B【分析】先判断()f x 的奇偶性,可排除A ,再由单调性、特值点排除选项C 、D ,即可得出答案.【详解】函数的定义域为R ,因为()()2222x x x x f x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B .6.函数()22x f x x -=⋅在区间[]22-,上的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵()()22x f x x f x --=⋅=,∴()f x 是偶函数,函数图象关于y 轴对称,排除A ,B 选项;∵()()122f f ==,∴()f x 在[0,2]上不单调,排除D 选项.故选:C7.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=-D .21x y =--【答案】A【解析】【分析】 根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项; 当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项.故选:A.8.函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <【答案】D【解析】【分析】 由函数的单调性得到a 的范围,再根据函数图像平移关系分析得到b 的范围.【详解】由函数()x b f x a -=的图像可知,函数()x b f x a -=在定义域上单调递减,01a ∴<<,排除AB 选项;分析可知:函数()x b f x a -=图像是由x y a =向左平移所得,0b ∴->,0b ∴<.故D 选项正确. 故选:D9.已知函数()f x ax b =+的图象如图所示,则函数()x g x a b =+的图象可能是( )A .B .C .D .【答案】B【解析】【分析】由函数()f x ax b =+的图象可得1a >,1b <-,从而可得()x g x a b =+的大致图象.【详解】由()f x ax b =+的图象可得(0)1f b =<-,(1)0f a b =+>,所以1a >,1b <-,故函数()x g x a b =+为增函数,相对x y a =向下平移大于1个单位故选:B10.设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( )A .y =f (|x )B .y =-|f (x )| )C .y =-f (-|x )D .y =f (-|x )【答案】C【解析】 由题意结合指数函数的图象及函数图象的变换可得函数图象对应的函数解析式,即可得解.【详解】由图象可知函数图象对应的函数解析式是||2x y -=-,所以函数图象对应的函数解析式是y =-f (-|x |).故选:C .【点睛】本题考查了指数函数的图象及函数图象变换的应用,属于基础题.11.函数()cos f x x x =的图像大致是( )A .B .C .D .【答案】A【解析】【分析】先根据函数奇偶性的概念可知()()f x f x -=-,即函数()f x 为奇函数,排除选项D ;再利用三角函数的性质排除BC 即得.【详解】()cos()cos ()f x x x x x f x -=--=-=-,∴函数()f x 为奇函数,排除选项D ; 当(0,)2x π∈时,0x >,0cos 1x <<, 0()f x x ∴<<,排除选项BC . 故选:A .12.下列各个函数图像所对应的函数解析式序号为( )①||()e sin x f x x = ②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x =A .④②①③B .②④①③C .②④③①D .④②③①【答案】A【解析】【分析】先通过函数定义域和奇偶性进行判断,再利用导数对①求导,求其在()0,π上的最大值.【详解】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0xh x x =>在定义域内恒成立,则前两个对应函数分别为④②当()0,πx ∈时,则()e sin x f x x =()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x <<()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 542f x f ≤=>①对应的为第三个函数故选:A .。
高考理科数学总复习专题14 利用函数图像研究方程根的个数
的实根,则实数 k 的取值范围是
.
【答案】 ( 1 ,1) 2
[来源:][来源:学+科+网]
3.【2014 天津高考理第 14 题】已知函数 f (x)= x2 + 3x , x Î R .若方程 f (x)- a x - 1 = 0 恰有 4 个
互异的实数根,则实数 a 的取 值范围为__________.
【答案】 (0,1) (9, +∞) .
【解析】
4.【2014 高考湖北卷理第 10 题改编】已知函数 f (x) 是定义在 R 上的奇函数,当 x ≥ 0 时, f (x) = 1 (| x − a2 | + | x − 2a2 | −3a2 ) ,若 ∀x ∈ R , f (x −1) ≤ f (x) ,则实数 a 的取值范 围为__________.
高考理科数学总复习专题 14 利用函数图像研究方程根的个数
0,0 < x ≤ 1
【原题】已知函数
f
(x)
=| ln
x |,
g(x)
=
|
x2
− 4 | −2, x
,则方程 | >1
f
(x) +
g(x) |= 1 实根的个数为
【答案】4
【考点定位】函数与方程
【命题意图】本题考查函数与方程、函数图像变换等基础知识,考查数形结合思想以及考生运算求解能力. 【方法、技巧、规律】一些对数型方程不能直接求出其零点,常通过平移、对称变换转化为相应的函数图 像问题,利用数形结合法将方程根的个数转化为对应函数零点个数,而函数 零点个数的判断通常转化为两 函数图像交点的个数.这时函数图像是解题关键,不仅要研究其走势(单调性,极值点、渐近线等),而且 要明确其变化速度快慢. 【探源、变式、扩展】若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换 作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的 顺序对变换单位及解析式的影响.
高考数学专题《函数的图象》习题含答案解析
专题3.7 函数的图象1.(2021·全国高三专题练习(文))已知图①中的图象是函数()y f x=的图象,则图②中的图象对应的函数可能是()A.(||)y f x=B.|()|y f x=C.(||)y f x=-D.(||)y f x=--【答案】C【解析】根据函数图象的翻折变换,结合题中条件,即可直接得出结果.【详解】图②中的图象是在图①的基础上,去掉函数()y f x=的图象在y轴右侧的部分,然后将y轴左侧图象翻折到y轴右侧,y轴左侧图象不变得来的,∴图②中的图象对应的函数可能是(||)y f x=-.故选:C.2.(2021·浙江高三专题练习)函数()lg1y x=-的图象是()A.B.C.练基础D .【答案】C【解析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.3.(2021·全国高三专题练习(理))我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来研究函数图象的特征.若函数()y fx =在区间[],a b 上的图象如图,则函数()y f x =在区间[],a b 上的图象可能是( )A .B .C .D .【答案】D【解析】先判断出函数是偶函数,根据偶函数的图像特征可得选项.【详解】 函数()y f x =是偶函数,所以它的图象是由()y f x =把0x ≥的图象保留,再关于y 轴对称得到的.结合选项可知选项D 正确,故选:D .4.(2021·全国高三专题练习(文))函数()5xf x x x e =-⋅的图象大致是( ). A . B .C .D .【答案】B【解析】由()20f >和()20f -<可排除ACD ,从而得到选项.【详解】由()()2223222160f e e =-=->,可排除AD ;由()()2223222160f e e ---=-+=-<,可排除C ;故选:B.5.(2021·陕西高三三模(理))函数x y b a =⋅与()log a y bx =的图像在同一坐标系中可能是()A .B .C .D .【答案】C【解析】根据指数函数和对数函数的单调性,以及特殊点函数值的范围逐一判断可得选项.【详解】令x f x b a ,()()log a g x bx =,对于A 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,所以log >0a b ,而()1log 0a g b =<,所以矛盾,故A 不正确;对于B 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,而()1log >0a g b =,所以矛盾,故B 不正确;对于C 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,又()1log 0a g b =<,故C 正确;对于D 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,而()()log a g x bx =中01a <<,所以矛盾,故D 不正确;故选:C . 6.(2021·宁夏吴忠市·高三其他模拟(文))已知函数()()()ln 2ln 4f x x x =-+-,则( ). A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】先求出函数的定义域.A :根据函数图象关于直线对称的性质进行判断即可;B :根据函数图象关于点对称的性质进行判断即可;C :根据对数的运算性质,结合对数型函数的单调性进行判断即可;D :结合C 的分析进行判断即可.【详解】 ()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+- 函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增, 在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A7.(2021·安徽高三二模(理))函数()n xf x x a =,其中1a >,1n >,n 为奇数,其图象大致为( ) A . B .C .D .【答案】B【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n n x x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.8.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( ) A . B .C .D .【答案】D【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩, 所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩, 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .9.【多选题】(2021·浙江高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过280mD .若浮萍蔓延到22m 、24m 、28m 所经过的时间分别是1t 、2t 、3t ,则2132t t t =+【答案】AD【解析】根据图象过点求出函数解析式,根据四个选项利用解析式进行计算可得答案.【详解】由图象可知,函数图象过点(1,3),所以3a =,所以函数解析式为3ty =, 所以浮萍每月的增长率为13323233t t tt t +-⨯==,故选项A 正确; 浮萍第一个月增加的面积为10332-=平方米,第二个月增加的面积为21336-=平方米,故选项B 不正确;第四个月时,浮萍面积为438180=>平方米,故C 不正确;由题意得132t =,234t =,338t =,所以13log 2t =,23log 4t =,33log 8t =,所以2133333332log 2log 8log (28)log 16log 42log 42t t t +=+=⨯====,故D 正确.故选:AD10.(2020·全国高一单元测试)函数()2x f x =和()3g x x =的图象如图所示,设两函数的图象交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出图中曲线1C ,2C 分别对应的函数;(2)结合函数图象,比较(3)f ,(3)g ,(2020)f ,(2020)g 的大小.【答案】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =;(2)(2020)(2020)(3)(3)f g g f >>>.【解析】(1)根据指数函数和一次函数的函数性质解题;(2)结合函数的单调性及增长快慢进行比较.【详解】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =.(2)(0)1f =,(0)0g =,(0)(0)f g ∴>,又(1)2f =,(1)3g =,(1)(1)f g ∴<,()10,1x ∴∈;(3)8f =,(3)9g =,(3)(3)f g ∴<,又(4)16f =,(4)12g =,(4)(4)f g ∴>,()23,4x ∴∈.当2x x >时,()()f x g x >,(2020)(2020)f g ∴>.(2020)(2020)(3)(3)f g g f ∴>>>.1.(2021·湖南株洲市·高三二模)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B【解析】令()0f x =得到1ln x n m =,再根据函数图象与x 轴的交点和函数的单调性判断.【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x m n =>,当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B2.(2021·甘肃高三二模(理))关于函数()ln |1|ln |1|f x x x =++-有下列结论,正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的图象关于直线1x =对称 练提升C .函数()f x 的最小值为0D .函数()f x 的增区间为(1,0)-,(1,)+∞【答案】D 【解析】A.由函数的奇偶性判断;B.利用特殊值判断;C.利用对数函数的值域求解判断;D.利用复合函数的单调性判断. 【详解】2()ln |1|ln |1|ln |1|f x x x x =++-=-,由1010x x ⎧+>⎪⎨->⎪⎩,解得1x ≠±,所以函数的定义域为{}|1x x ≠±, 因为()ln |1|ln |1|ln |1|ln |1|()f x x x x x f x -=-++--=++-=,所以函数为偶函数,故A 错误. 因为(0)ln |1|0,(3)ln8f f =-==,所以(0)(3)f f ≠,故B 错误;因为 ()2|1|0,x -∈+∞,所以()f x ∈R ,故C 错误;令2|1|t x =-,如图所示:,t 在(),1,[0,1)-∞-上递减,在()(1,0],1,-+∞上递增,又ln y t =在()0,∞+递增,所以函数()f x 的增区间为(1,0)-,(1,)+∞,故D 正确; 故选:D3.(2021·吉林长春市·东北师大附中高三其他模拟(理))函数ln xy x=的图象大致为( )A .B .C .D .【答案】C 【解析】 求出函数ln xy x=的定义域,利用导数分析函数的单调性,结合排除法可得出合适的选项. 【详解】 对于函数ln xy x =,则有0ln 0x x >⎧⎨≠⎩,解得0x >且1x ≠, 所以,函数ln xy x=的定义域为()()0,11,+∞,排除AB 选项;对函数ln x y x =求导得()2ln 1ln x y x -'=.当01x <<或1x e <<时,0y '<;当x e >时,0y '>. 所以,函数ln xy x=的单调递减区间为()0,1、()1,e ,单调递增区间为(),e +∞, 当01x <<时,0ln xy x =<,当1x >时,0ln x y x=>,排除D 选项. 故选:C.4.(2021·海原县第一中学高三二模(文))函数2xx xy e+=的大致图象是( )A .B .C .D .【答案】D 【解析】利用导数可求得2xx xy e+=的单调性,由此排除AB ;根据0x >时,0y >可排除C ,由此得到结果. 【详解】 由题意得:()()222211x xxxx e x x e x x y e e +-+-++'==,令0y '=,解得:1x =,2x =,∴当11,,22x ∞∞⎛⎛⎫+∈-⋃+ ⎪ ⎪⎝⎭⎝⎭时,0y '<;当11,22x ⎛+∈ ⎝⎭时,0y '>;2x x x y e +∴=在1,2⎛--∞ ⎝⎭,1,2⎛⎫++∞ ⎪ ⎪⎝⎭上单调递减,在1122⎛⎫-+ ⎪ ⎪⎝⎭上单调递增,可排除AB ; 当0x >时,0y >恒成立,可排除C. 故选:D.5.(2021·天津高三三模)意大利画家列奥纳多·达·芬奇的画作《抱银鼠的女子》(如图所示)中,女士颈部的黑色珍珠项链与她怀中的白貂形成对比.光线和阴影衬托出人物的优雅和柔美.达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,形成的曲线是什么?这就是著名的“悬链线问题”.后人研究得出,悬链线并不是抛物线,而是与解析式为2x x e e y -+=的“双曲余弦函数”相关.下列选项为“双曲余弦函数”图象的是( )A .B .C .D .【答案】C 【解析】分析函数2x xe e y -+=的奇偶性与最小值,由此可得出合适的选项.【详解】令()e e 2x x f x -+=,则该函数的定义域为R ,()()2x xe ef x f x -+-==,所以,函数()e e 2x xf x -+=为偶函数,排除B 选项.由基本不等式可得()112f x ≥⨯=,当且仅当0x =时,等号成立,所以,函数()f x 的最小值为()()min 01f x f ==,排除AD 选项. 故选:C.6.(2021·浙江高三月考)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【解析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3log a f x x ax =-,必有30x ax -≠,则0x ≠且x ≠即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =±,当3x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间,33⎛⎫- ⎪ ⎪⎝⎭上,()0g x '<,则()g x 在区间,33⎛⎫- ⎪ ⎪⎝⎭上为减函数,在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上,()0g x '>,则()g x 在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上为增函数,0g=,则()g x 存在极小值33339g a ⎛⎛⎫=-⨯=- ⎪ ⎪⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A , 故选:B.7.(2019·北京高三高考模拟(文))当x∈[0,1]时,下列关于函数y=2(1)mx -的图象与y =的图象交点个数说法正确的是( ) A .当[]m 0,1∈时,有两个交点 B .当(]m 1,2∈时,没有交点 C .当(]m 2,3∈时,有且只有一个交点 D .当()m 3,∞∈+时,有两个交点【答案】B 【解析】设f (x )=2(1)mx -,g (x ) ,其中x∈[0,1]A .若m=0,则()1f x =与()g x =[0,1]上只有一个交点(1,1),故A 错误.B .当m∈(1,2)时,111()(0)1,()(0)1()()2f x f g x g f x g x m<<∴≤=≥=>∴<即当m∈(1,2]时,函数y=2(1)mx -的图象与y =x∈[0,1]无交点,故B 正确,C .当m∈(2,3]时,2111()(1)(1),()(1)32f x f mg x g m <<∴≤=-≤=2(1)m >-时()()f x g x <,此时无交点,即C 不一定正确.D .当m∈(3,+∞)时,g (0)1,此时f (1)>g (1),此时两个函数图象只有一个交点,故D 错误,故选:B.8.(2021·浙江高三专题练习)若关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,则实数a的取值范围是()A.1,14⎡⎫⎪⎢⎣⎭B.10,4⎛⎤⎥⎝⎦C.3,14⎡⎫⎪⎢⎣⎭D.30,4⎛⎤⎥⎝⎦【答案】A 【解析】转化为当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log 22a a <<⎧⎪⎨≥⎪⎩,解得114a ≤<. 故选:A9.对a 、b ∈R ,记{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24()f x x x x x =--+∈R .(1)求(0)f ,(4)f -.(2)写出函数()f x 的解析式,并作出图像.(3)若关于x 的方程()f x m =有且仅有3个不等的解,求实数m 的取值范围.(只需写出结论) 【答案】见解析.【解析】解:(1)∵{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24f x x x x =--+,∴{}(0)max 0,44f ==,{}(4)max 4,44f -=-=.(2)(3)5m =或m 10.(2021·全国高一课时练习)函数()2xf x =和()()30g x xx =≥的图象,如图所示.设两函数的图象交于点()11A x y ,,()22B x y ,,且12x x <.(1)请指出示意图中曲线1C ,2C 分别对应哪一个函数;(2)结合函数图象,比较()8f ,()8g ,()2015f ,()2015g 的大小. 【答案】(1)1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =;(2)()()()()2015201588f g g f >>>.【解析】(1)根据图象可得结果;(2)通过计算可知1282015x x <<<,再结合题中的图象和()g x 在()0+∞,上的单调性,可比较()8f ,()8g ,()2015f ,()2015g 的大小.【详解】(1)由图可知,1C 的图象过原点,所以1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =.(2)因为11g =(),12f =(),28g =(),24f =(),()9729g =,()9512f =,()101000g =,()101024f =,所以11f g >()(),22f g <()(),()()99f g <,()()1010f g >.所以112x <<,2910x <<.所以1282015x x <<<.从题中图象上知,当12x x x <<时,()()f x g x <;当2x x >时,()()f x g x >,且()g x 在()0+∞,上是增函数,所以()()()()2015201588f g g f >>>.1. (2020·天津高考真题)函数241xy x =+的图象大致为( ) 练真题A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.2.(2019年高考全国Ⅲ卷理)函数3222x xx y -=+在[]6,6-的图像大致为( ) A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .3.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D 【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.4.(2019年高考全国Ⅱ卷理)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.5.(2017·天津高考真题(文))已知函数f(x)={|x|+2,x <1x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是 A .[−2,2] B .[−2√3,2] C .[−2,2√3] D .[−2√3,2√3] 【答案】A【解析】满足题意时f (x )的图象恒不在函数y =|x2+a|下方,当a =2√3时,函数图象如图所示,排除C,D 选项;当a =−2√3时,函数图象如图所示,排除B 选项,本题选择A 选项.6.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .。
函数的图像变换
=e-x-1.
答案 D
基础诊断
考点突破
课堂总结
考点一 作函数的图像 【例 1】 作出下列函数的图像:
1|x| (1)y=2 ;(2)y=|log2(x+1)|;
2x-1 (3)y= ; (4)y=x2-2|x|-1. x-1
基础诊断
考点突破
课堂总结
解
(1)先作出
1x y=2 的图像,保留
C.向左平移3个单位
B.向右平移6个单位
D.向右平移3个单位
基础诊断
考点突破
课堂总结
考点三:讨论函数图像的变换过程 练习:
1 3 x 7 讨论函数 y 的图象与的 y x x 2 图象的关系。
基础诊断
考点突破
课堂总结
函数 f ( x) 的图象无论经过平移还是沿直线翻折后 仍不能与 (A)
基础诊断 考点突破 课堂总结
1 1 (3)∵y=2+ ,故函数图像可由 y=x图像向右平移 1 个单 x -1 位,再向上平移 2 个单位即得,如图③.
2 x -2x-1,x≥0, (4)∵y= 2 且函数为偶函数,先用描点法 x +2x-1,x<0,
作出[0,+∞)上的图像,再根据对称性作出(-∞,0)上的 图像,得图像如图④.
基础诊断
考点突破
课堂总结
【例2】 (1)(2017· 安徽“江南十校”联考)函数y=log2(|x|+1)的
图像大致是(
)
基础诊断
考点突破
课堂总结
考点三:讨论函数图像的变换过程 例3:
函数 f (2 x 3) 的图象,可由 f (2 x 3) 的图
象经过下述变换得到( )
A.向左平移6个单位
2023年中考数学难点突破----二次函数专题研究之二次函数图象中的圆
2
【例3】(2019•日照)如图1,在平面直角坐标系中,直线y=-5x+5与轴,y轴分 别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.
(1)求抛物线解析式及B点坐标;
解:(1)直线y=-5x+5,x=0时,y=5 ,∴C(0,5) ; 当y=-5x+5=0时,x=1; ∴A(1,0)
【例2】(2020•西藏)在平面直角坐标系中,二次函数y= x2+bx+c的图象与x轴交于A (﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点. (2)如图甲,连接AC,PA,PC,若S△PAC= ,求点P的坐标;
(2)如图甲中,连接OP.设P(m, m2﹣m﹣4). 由题意,A(﹣2,0),C(0,﹣4), ∵S△PAC=S△AOC+S△OPC﹣S△AOP, ∴ = ×2×4+×4×m﹣ ×2×(﹣ m2+m+4), 整理得, m2+2m﹣15=0, 解得m=3或﹣5(舍弃), ∴P(3,﹣ ).
∴设抛物线表达式为:y=a(x+4)(x﹣2)
把C(0,4)带入得:4=a(0+4)(0﹣2)
∴a=﹣0.5
∴抛物线表达式为:y=﹣0.5(x+4)(x﹣2)=﹣0.5x2﹣x+4
【例4】(2018威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),
B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于
【例4】(2018威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-4,0), B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴 交于点F,与BC交于点E,对称轴l与x轴交于点H.
第二章 专题研究2 图像变换
第 5页
高考调研
新课标A版 ·数学 ·必修1
函数
y=f(x)
fx,fx≥0 ∵y=|f(x)|= -fx,fx<0,
y=|f(x)|
∴y=|f(x)|的图像是 y=f(x)≥0 与 y= f(x)<0 图像的组合
y=f 1(x)
-
y=f-1(x)与 y=f(x)的图像关于直线 y= x 对称
图像变换法则 函数 y=f(x+a) y=f(x) a>0 时,向左平移 a 个单位; a<0 时,向右平移|a|个单位 a>0 时,向上平移 a 个单位; a<0 时,向下平移|a|个单位 y=f(-x)与 y=f(x)的图像关于 y 轴对称
y=f(x)+a y=f(-x)
第 4页
第二章
专题研究
图像变换
(3)
(4)
第11页
第二章
专题研究
图像变换
高考调研
新课标A版 ·数学 ·必修1
例3
不画图像, 试判断下列各对函数图像之间的位置关系:
①y=|x|与 y=|x-2|+1; 1 1 ②y= 与 y=- +1. x+1 x-1
第12页
第二章
专题研究
图像变换
高考调研
新课标A版 ·数学 ·必修1
答案
①y=|x|的图像向右平移 2 个单位再向上移 1 个单位得
x3 (1)y=|x|; (3)y=|log2x-1|;
第 9页
第二章
专题研究
图像变换
高考调研
新课标A版 ·数学 ·必修1
答案
2 x x>0, (1)y= 2 -x x<0
专题:绝对值函数
专题:绝对值函数研究意义:研究绝对值函数图像有助于:①绝对值不等式求解集问题(包括解集为空或R 问题);②绝对值函数最值问题.---------------------------------------------(一)绝对值函数图像特点归纳实例1:21-+-=x x y(函数图像如右图所示)函数图像特点:①图像类似“平底锅”;②函数有最小值,但无最大值;③函数取到最小值的x 有无穷多个,即当21≤≤x 时,对应函数值均为最小值1.小结此类函数图像特点:①图像类似“平底锅”;②此类函数有最小值,但无最大值;③函数取到最小值的x 有无穷多个,即当x 介于a ,b 之间时,对应函数值均为a b y -=min .函数最值情况: ①函数有最小值,但无最大值;②函数有唯一的最小值:仅当2x x =(中间零点)时,13min x x y -=.【备注】绝对值零点:x =1x 时,01=-x x ,称1x 是零点.函数最值情况:①函数有最小值,但无最大值;②当n 为奇数时,函数有唯一的最小值:仅当x 取中间零点i x 时,min y ;当n 为偶数时,函数取到最小值的x 有无穷多个,即当x 介于中间两零点之间时,min y .举例1:43211-+-+-+-++=x x x x x y分析:零点从小到大:-1,1,2,3,4,显然2是中间零点,故仅当x =2时,=min y 74232221212=-+-+-+-++.举例2:13121-+-+-=x x x y分析:3131312*********-+-+-+-+-+-=-+-+-=x x x x x x x x x y 零点从小到大:1/3,1/3,1/3,1/2,1/2,1显然1/3,1/2是中间两零点,故当2131≤≤x 时,=≡min )(y x y 1.---------------------------------------------实例2:21---=x x y(函数图像如右图所示)函数图像特点:①图像类似“Z 字形”;②函数有最小值-1,且取到最小值的x 有无穷多个,即当1≤x 时,对应函数值均为最小值-1;③函数有最大值1,且取到最大值的x 有无穷多个,即当2≥x 时,对应函数值均为最大值1.实例3:12---=x x y(函数图像如右图所示)函数图像特点:①图像类似“Z 字形”;②函数有最小值-1,且取到最小值的x 有无穷多个,即当2≥x 时,对应函数值均为最小值-1;③函数有最大值1,且取到最大值的x 有无穷多个,即当1≤x 时,对应函数值均为最大值1.小结此类函数图像特点:①图像类似“Z 字形”; ②此类函数既有最小值b a --,也有最大值b a -;③函数取到最小、最大值的x 均有无穷多个,且这样的x 分别位于a ,b 两侧(相对a ,b 之间而言的):--------------------------------------------- (二)作形如d cx b ax y +±+=的函数图像技巧(三段论)【注意】此方法只是用于画出该类函数的大致图像以便分析问题.步骤:①描出折点,记为A ,B ;②连结A ,B 得到一条线段,即为两折点间的函数图像;③折点两侧的函数图像趋势判断是根据∞→x 来确定,即抹掉常数项d b ,,x 系数保留,再根据⎪⎩⎪⎨⎧<=>±.00,0,两侧图像向下,两侧图像呈水平;两侧图像向上;cx ax 【备注】③步骤的处理原因:如下图所示是某一此类绝对值函数,两侧x 趋势是∞±,显然此时d b ,是有限数,对x 趋势影响不大,故可抹去。
函数图像专题PPT课件图文
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称
专题17 三次函数的图像与性质(解析版)
专题17 三次函数的图像与性质一、例题选讲题型一 运用三次函数的图像研究零点问题遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的.例1,(2017某某,某某,某某,某某三调)已知函数3()3 .x x a f x x x x a ⎧=⎨-<⎩≥,,,若函数()2()g x f x ax =-恰有2个不同的零点,则实数a 的取值X 围是.【答案】3(2)2-,【解析】:函数()2()g x f x ax =-恰有2个不同的零点,即方程2()0f x ax -=恰有2个不相等的根,亦即方程(Ⅰ)20x ax ax ≥⎧⎨-=⎩和(Ⅱ)3260x a x x ax <⎧⎨--=⎩共有2个不相等的根. 首先(Ⅰ)中20x ax -=,即(2)0a x -=,若2a =,则2x ≥都是方程20x ax -=的根,不符合题意,所以2a ≠,因此(Ⅰ)中由20x ax -=解得0x =,下面分情况讨论(1)若0x =是方程(Ⅰ)的唯一根,则必须满足0a ≥,即0a ≤,此时方程(Ⅱ)必须再有唯一的一个根,即30260x a x x ax <≤⎧⎨--=⎩有唯一根,因为0x ≠,由3260x x ax --=,得226x a =+必须有满足0x a <≤的唯一根,首先60a +>,其次解得的负根需满足0a <≤,从而解得302a -<≤,(2)若0x =不是方程(Ⅰ)的唯一根,则必须满足0a <,即0a >,此时方程(Ⅱ)必须有两个不相等的根,即30260a x ax x ax ⎧>⎪<⎨⎪--=⎩有两个不相等的根,由3260x x ax --=,得0x a =<适合,另外226x a =+还有必须一满足,0x a a <>的非零实根,首先60a +>,a≥,从而解得02a <≤,但前面已经指出2a ≠,故02a <<,综合(1),(2),得实数a 的取值X 围为3(,2)2-.例2,(2017某某学情调研)已知函数f (x )=⎩⎪⎨⎪⎧12x -x3,x ≤0,-2x ,x >0.)当x ∈(-∞,m ]时,f (x )的取值X 围为[-16,+∞),则实数m 的取值X 围是________.【答案】 [-2,8]【解析】思路分析 由于f (x )的解析式是已知的,因此,可以首先研究出函数f (x )在R 上的单调性及相关的性质,然后根据f (x )的取值X 围为[-16,+∞),求出它的值等于-16时的x 的值,借助于函数f (x )的图像来对m 的取值X 围进行确定.当x ≤0时,f (x )=12x -x 3,所以f ′(x )=12-3x 2.令f ′(x )=0,则x =-2(正值舍去),所以当x ∈(-∞,-2)时,f ′(x )<0,此时f (x )单调递减;当x ∈(-2,0]时,f ′(x )>0,此时f (x )单调递增,故函数f (x )在x ≤0时的极小值为f (-2)=-16.当x >0时,f (x )=-2x 单调递减,f (0)=0,f (8)=-16,因此,根据f (x )的图像可得m ∈[-2,8].解后反思 根据函数的解析式来得到函数的相关性质,然后由此画出函数的图像,借助于函数的图像可以有效地进行解题,这就是数形结合的魅力.题型二 三次函数的单调性问题研究三次函数的单调性,往往通过导数进行研究.要特别注意含参的讨论.例3,已知函数32()3f x x x ax =-+()a ∈R ,()|()|g x f x =.(1)求以(2,(2))P f 为切点的切线方程,并证明此切线恒过一个定点;(2)若()g x kx ≤对一切[0,2]x ∈恒成立,求k 的最小值()h a 的表达式;(3)设0a >,求()y g x =的单调增区间.解析 (1)2()36f x x x a '=-+,(2)f a '=,过点P 的切线方程为()224y a x a =-+-,即4y ax =-,它恒过点(0,- 4);(2)()g x kx ≤即32|3|x x ax kx -+≤. 当0x =时,上式恒成立;当(0,2]x ∈时,即2|3|x x a k -+≤对一切(0,2]x ∈恒成立,设2max ()|3|,[0,2]h a x x a x ∈=-+, ①当94a ≥时,2max |3|x x a -+在0x =时取得,∴()h a a =;②当94a <时,2max 99(),984|3|max{,}994()48a a x x a a a a a ⎧<<⎪⎪-+=-=⎨⎪-⎪⎩≤; 由①②,得9(),8()99()48a a g a a a ⎧>⎪⎪=⎨⎪-⎪⎩≤; (3)32()3f x x x ax =-+,22()363(1)3f x x x a x a '=-+=-+-,令()0f x =,得0x =或230x x a -+=,当94a <时,由230x x a -+=,解得132x =232x =令()0f x '=,得23(1)30x a -+-=,当3a <时,由23(1)30x a -+-=,解得31x =41x =+1)当3a ≥时,()y g x =的单调增区间为(0,)+∞;2)当934a <≤时,()y g x =的单调增区间为3(0,)x 和4(,)x +∞;3)当904a <<时,()y g x =的单调增区间为3(0,)x 和14(,)x x 和2(,)x +∞.例4,(2018某某期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值X 围是________.【答案】 (-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解.函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|.令g(x)=x 3+(2-a)x 2+(1-2a)x -a,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a).令g ′(x)=0得x 1=-1,x 2=2a -13.①当2a -13<-1,即a<-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g ′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝ ⎛⎭⎪⎫-∞,2a -13,(-1,+∞),单调减区间是⎝ ⎛⎭⎪⎫2a -13,-1. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝ ⎛⎭⎪⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1). ,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g ′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,+∞,单调减区间是⎝ ⎛⎭⎪⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫-1,2a -13,(a,+∞),单调减区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a ≥72,又因为a>-1,故a ≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值X 围是(-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞.,图3)例5,(2018某某期末)已知函数f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -ax ,x ≥0,其中常数a ∈R .(1) 当a =2时,求函数f (x )的单调区间;(2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,某某数a 的取值X 围;规X 解答 (1) 当a =2时,f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -2x ,x ≥0.①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分)②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分)(2) 当x>0时,f(x)=e x -ax,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2.所以可化为a =x 2+x +3x在区间(0,+∞)上有实数解.(6分) 记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x2=(x -1)(2x2+3x +3)x2.(7分) 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分)所以g(x)的值域是[5,+∞),即实数a 的取值X 围是[5,+∞).(10分)题型三 三次函数的极值与最值问题①利用导数刻画函数的单调性,确定函数的极值;② 通过分类讨论,结合图象,实现函数的极值与零点问题的转化.函数,方程和不等式的综合题,常以研究函数的零点,方程的根,不等式的解集的形式出现,大多数情况下会用到等价转化,数形结合的数学思想解决问题,而这里的解法是通过严谨的等价转化,运用纯代数的手段来解决问题的,对抽象思维和逻辑推理的能力要求较高,此题也可通过数形结合的思想来解决问题,可以一试.例6,(2018苏锡常镇调研)已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=,① 当0a >时,求函数()f x 的极值(用a 表示);② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;规X 解答 (1)①由2()32f x x ax b '=++及02=+b a ,得22()32f x x ax a '=+-,令()0f x '=,解得3ax =或a x -=.由0>a 知,(,)()0x a f x '∈-∞->,,)(x f 单调递增,(,)()03a x a f x '∈-<,,)(x f 单调递减,(,)()03ax f x '∈+∞>,,)(x f 单调递增,因此,)(x f 的极大值为3()1f a a -=+,)(x f 的极小值为35()1327a a f =-. ② 当0a =时,0b =,此时3()1f x x =+不存在三个相异零点; 当0a <时,与①同理可得)(x f 的极小值为3()1f a a -=+,)(x f 的极大值为35()1327a a f =-. 要使)(x f 有三个不同零点,则必须有335(1)(1)027a a +-<,即332715a a <->或.不妨设)(x f 的三个零点为321,,x x x ,且321x x x <<,则123()()()0f x f x f x ===,3221111()10f x x ax a x =+-+=, ①3222222()10f x x ax a x =+-+=, ②3223333()10f x x ax a x =+-+=, ③②-①得222212121212121()()()()()0x x x x x x a x x x x a x x -+++-+--=, 因为210x x ->,所以222212121()0x x x x a x x a ++++-=, ④ 同理222332232()0x x x x a x x a ++++-=, ⑤⑤-④得231313131()()()()0x x x x x x x a x x -+-++-=,因为310x x ->,所以2310x x x a +++=,又1322x x x +=,所以23ax =-.所以()03af -=,即22239a a a +=-,即327111a =-<-,因此,存在这样实数a =满足条件.例7,(2017⋅某某)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:33b a >;(3)若(),'()f x f x 这两个函数的所有极值之和不小于72-,求a 的取值X 围.解析(1)2'()32f x x ax b =++有零点,24120a b ∆=->,即23a b >,又''()620f x x a =+=,解得3a x =-,根据题意,()03a f -=,即3210333a a a a b ⎛⎫⎛⎫⎛⎫-+-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得2239b a a =+,又203a a b >⎧⎨>⎩,所以3a >,即223(3)9b a a a =+>;(2)设2433224591()3(427)(27)81381g a b a a a a a a a =-=-+=--,而3a >,故()0g a >,即23b a >;(3)设12,x x 为()f x 的两个极值点,令'()0f x =得12122,33b ax x x x =+=-, 法一:332212121212()()()()2f x f x x x a x x b x x +=++++++ 22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++3324242232()202732739a ab a a a a =-+=-++=.记()f x ,()f x '所有极值之和为()S a ,12()()0f x f x +=,2'()33a a f b -=-, 则221237()()()'()3392a a a S a f x f x f b a =++-=-=--≥, 而23()()3a S a a =-在(3,)a ∈+∞上单调递减且7(6)2S =-,故36a <≤.法二:下面证明()f x 的图像关于(,())33a af --中心对称,233232()1()()()1333327a a a ab a f x x ax bx x b x =+++=++-++-+23()()()()3333a a a ax b x f =++-++-,所以()()2()0333a a a f x f x f --+-+=-=,所以12()()0f x f x +=,下同法一.例8,(2018某某学情调研)已知函数f(x)=2x 3-3(a +1)x 2+6ax,a ∈R .(1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值X 围;(3) 若a >1,设函数f (x )在区间[1,2]上的最大值,最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.思路分析 第(3)问,欲求函数f(x)在区间[1,2]上的最值M(a),m(a),可从函数f(x)在区间[1,2]上的单调性入手,由于f ′(x)=6(x -1)(x -a),且a >1,故只需分为两大类:a ≥2,1<a <2.当1<a <2时,函数f(x)在区间[1,2]上先减后增,进而比较f(1)和f(2)的大小确定函数最大值,由f(1)=f(2)得到分类的节点a =53.规X 解答 (1) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a,所以曲线y =f(x)在x =0处的切线的斜率k =f ′(0)=6a,所以6a =3,所以a =12.(2分)(2) f(x)+f(-x)=-6(a +1)x 2≥12ln x对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2lnxx2.(4分)令g(x)=2lnx x2,x >0,则g ′(x)=2(1-2lnx )x3.令g ′(x)=0,解得x = e.当x ∈(0,e)时,g ′(x)>0,所以g(x)在(0,e)上单调递增;当x ∈(e,+∞)时,g ′(x)<0,所以g(x)在(e,+∞)上单调递减.所以g(x)max =g(e)=1e,(6分)所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值X 围为⎝⎛⎦⎥⎤-∞,-1-1e .(8分)(3) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a =6(x -1)(x -a),令f ′(x)=0,则x =1或x =a.(10分)f(1)=3a -1,f(2)=4.由f(1)=f(2)得到分类的节点a =53.①当1<a ≤53时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)≤f(2),所以M(a)=f(2)=4,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=4-(-a 3+3a 2)=a 3-3a 2+4.因为h ′(a)=3a 2-6a =3a(a -2)<0,所以h(a)在⎝ ⎛⎦⎥⎤1,53上单调递减,所以当a ∈⎝ ⎛⎦⎥⎤1,53时,h(a)的最小值为h ⎝ ⎛⎭⎪⎫53=827.(12分)②当53<a <2时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a -1,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.因为h ′(a)=3a 2-6a +3=3(a -1)2>0.所以h(a)在⎝ ⎛⎭⎪⎫53,2上单调递增,所以当a ∈⎝ ⎛⎭⎪⎫53,2时,h(a)>h ⎝ ⎛⎭⎪⎫53=827.(14分)③当a ≥2时,当x ∈(1,2)时,f ′(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a -1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a -1-4=3a -5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.(16分)二、达标训练1,(2017某某暑假测试) 已知函数f (x )=⎩⎪⎨⎪⎧1x,x >1,x3,-1≤x ≤1,)若关于x 的方程f (x )=k (x +1)有两个不同的实数根,则实数k 的取值X 围是________.【答案】 ⎝ ⎛⎭⎪⎫0,12【解析】思路分析 方程f (x )=k (x +1)的实数根的个数可以理解为函数y =f (x )与函数y =k (x +1)交点的个数,因此,在同一个坐标系中作出它们的图像,由图像来观察它们的交点的个数.在同一个直角坐标系中,分别作出函数y =f (x )及y =k (x +1)的图像,则函数f (x )max =f (1)=1,设A (1,1),B (-1,0),函数y =k (x +1)过点B ,则由图可知要使关于x 的方程f (x )=k (x +1)有两个不同的实数根,则0<k <k AB =12.2,(2017苏北四市期末) 已知函数f (x )=⎩⎪⎨⎪⎧sinx ,x <1,x3-9x2+25x +a ,x ≥1,)若函数f (x )的图像与直线y =x 有三个不同的公共点,则实数a 的取值集合为________.【答案】 {-20,-16}【解析】当x <1时,f(x)=sin x,联立⎩⎪⎨⎪⎧y =sinx ,y =x ,得x -sin x =0,令u(x)=x -sin x(x <1),则u ′(x)=1-cos x ≥0,所以函数u(x)=x -sin x(x <1)为单调增函数,且u(0)=0,所以u(x)=x -sin x(x <1)只有唯一的解x=0,这表明当x <1时,函数f(x)的图像与直线y =x 只有1个公共点.因为函数f(x)的图像与直线y =x 有3个不同的公共点,从而当x ≥1时,函数f(x)的图像与直线y =x 只有2个公共点.当x ≥1时,f(x)=x 3-9x 2+25x +a,联立⎩⎪⎨⎪⎧y =x3-9x2+25x +a ,y =x ,得a =-x 3+9x 2-24x,令h(x)=-x 3+9x 2-24x(x ≥1),则h ′(x)=-3x 2+18x -24=-3(x -2)(x -4).令h ′(x)=0得x =2或x =4,列表如下:32数a =-20或a =-16.综上所述,实数a 的取值集合为{-20,-16}.3,(2019某某,某某二模)已知函数f(x)=⎪⎩⎪⎨⎧>+-≤+0,3120,33x x x x x 设g(x)=kx +1,且函数y =f(x)-g(x)的图像经过四个象限,则实数k 的取值X 围为________.【答案】 ⎝⎛⎭⎪⎫-9,13【解析】解法1 y =⎩⎪⎨⎪⎧|x +3|-(kx +1),x ≤0,x 3-(k +12)x +2,x>0,若其图像经过四个象限.①当x>0时,y =x 3-(k +12)x +2,当x =0时,y =2>0,故它要经过第一象限和第四象限,则存在x>0,使y=x 3-(k +12)x +2<0,则k +12>x 2+2x ,即k +12>⎝ ⎛⎭⎪⎫x2+2x min .令h(x)=x 2+2x (x>0),h ′(x)=2x -2x2=2(x3-1)x2,当x>1时,h ′(x)>0,h(x)在(1,+∞)上递增;当0<x<1时,h ′(x)<0,h(x)在(0,1)上递减,当x =1时取得极小值,也是最小值,h(x)min =h(1)=3,所以k +12>3,即k>-9.②当x ≤0时,y =|x +3|-(kx +1),当x =0时,y =2>0,故它要经过第二象限和第三象限,则存在x<0,使y =|x +3|-(kx +1)<0,则k<|x +3|-1x,即k<⎝⎛⎭⎪⎫|x +3|-1x max .令φ(x)=|x +3|-1x=⎩⎪⎨⎪⎧-1-4x ,x ≤-3,1+2x ,-3<x<0,易知φ(x)在(-∞,-3]上单调递增,在(-3,0)上单调递减,当x =-3时取得极大值,也是最大值,φ(x)max =φ(-3)=13,故k<13.综上,由①②得实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.解法2 可根据函数解析式画出函数图像,当x>0时,f(x)=x 3-12x +3,f ′(x)=3x 2-12=3(x +2)(x -2),可知f(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,且 f(2)=-13<0,当x ≤0时,f(x)=|x +3|.g(x)=kx +1恒过(0,1),若要使y =f(x)-g(x)经过四个象限,由图可知只需f(x)与g(x)在(-∞,0)和(0,+∞)上分别有交点即可(交点不可为(-3,0)和切点).①当k>0时,在(0,+∞)必有交点,在(-∞,0)区间内,需满足0<k<13.②当k<0时,在(-∞,0)必有交点,在(0,+∞)内,只需求过定点(0,1)与函数f(x)=x 3-12x +3(x>0)图像的切线即可,设切点为(x 0,x30-12x 0+3),由k =3x20-12=x30-12x 0+3-1x 0,解得x 0=1,切线斜率k =-9,所以k∈(-9,0).③当k =0也符合题意.综上可知实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.4,(2018苏中三市,苏北四市三调)已知函数310() 2 0ax x f x x ax x x -≤⎧⎪=⎨-+->⎪⎩, ,,的图象恰好经过三个象限,则实数a 的取值X 围是 ▲ .【答案】a <0或a >2【解析】当a <0时,10y ax x =-,≤的图象经过两个象限,3|2|0y x ax x =-+->在 (0,+∞)恒成立,所以图象仅在第一象限,所以a <0时显然满足题意; 当a ≥0时,10y ax x =-,≤的图象仅经过第三象限,由题意 3|2|0y x ax x x =-+->,的图象需经过第一,二象限.【解法1】(图像法)3|2|y x x =+-与y ax =在y 轴右侧的图象有公 共点(且不相切).如图,3|2|y x x =+-=332,022,2x xx x xx,设切点坐标为3000(,2)x x x ,231yx,则有32000231x x x x ,解得01x ,所以临界直线l 的斜率为2,所以a >2时,符合.综上,a <0或a >2.【解法2】(函数最值法)由三次函数的性质知,函数图象过第一象限,则存()g x 在0x,使得3|2|0,yxax x即2|2|x a xx 设函数22221,02|2|()21,2x x x x g x x xx x x,当02x,322222()2x g x xx x()g x 在(0,1)单调递减,在(1,2)单调递增,又2x时,函数为增函数,所以函数的最小值为2,所以a >2,则实数a 的取值X 围为a <0或a >2.5,(2019某某期末)已知函数f(x)=ax 3+bx 2-4a(a,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求b a的值;(3) 当a =0时,若f (x )<ln x 的解集为(m ,n ),且(m ,n )中有且仅有一个整数,某某数b 的取值X 围.解后反思 在第(2)题中,也可转化为b a =4x2-x 恰有两个不同的实数解.另外,由g(x)=x 3+kx 2-4恰有两个不同的零点,可设g(x)=(x -s)(x -t)2.展开,得x 3-(s +2t)x 2+(2st +t 2)x -st 2=x 3+kx 2-4,所以⎩⎪⎨⎪⎧-(s +2t )=k ,2st +t2=0,-st2=-4,解得⎩⎪⎨⎪⎧s =1,t =-2,k =3.解:(1)当a =b =1时,f(x)=x 3+x 2-4,f ′(x)=3x 2+2x.(2分)令f ′(x)>0,解得x>0或x<-23,所以f(x)的单调增区间是⎝⎛⎭⎪⎫-∞,-23和(0,+∞).(4分)(2)法一:f ′(x)=3ax 2+2bx,令f ′(x)=0,得x =0或x =-2b3a,(6分)因为函数f(x)有两个不同的零点,所以f(0)=0或f ⎝ ⎛⎭⎪⎫-2b 3a =0.当f(0)=0时,得a =0,不合题意,舍去;(8分)当f ⎝ ⎛⎭⎪⎫-2b 3a =0时,代入得a ⎝ ⎛⎭⎪⎫-2b 3a +b ⎝ ⎛⎭⎪⎫-2b 3a 2-4a =0,即-827⎝ ⎛⎭⎪⎫b a 3+49⎝ ⎛⎭⎪⎫b a 3-4=0,所以ba =3.(10分)法二:由于a ≠0,所以f(0)≠0,由f(x)=0得,b a =4-x3x2=4x2-x(x ≠0).(6分)设h(x)=4x2-x,h ′(x)=-8x3-1,令h ′(x)=0,得x =-2, 当x ∈(-∞,-2)时,h ′(x)<0,h(x)递减;当x ∈(-2,0)时,h ′(x)>0,h(x)递增,当x ∈(0,+∞)时,h ′(x)>0,h(x)单调递增,当x>0时,h(x)的值域为R ,故不论b a取何值,方程b a=4-x3x2=4x2-x 恰有一个根-2,此时函数f (x )=a (x +2)2(x -1)恰有两个零点-2和1.(10分)(3)当a =0时,因为f (x )<ln x ,所以bx 2<ln x ,设g (x )=ln x -bx 2,则g ′(x )=1x-2bx =1-2bx2x(x >0),当b ≤0时,因为g ′(x )>0,所以g (x )在(0,+∞)上递增,且g (1)=-b ≥0,所以在(1,+∞)上,g (x )=ln x -bx 2≥0,不合题意;(11分)当b >0时,令g ′(x )=1-2bx2x=0,得x =12b,所以g (x )在⎝ ⎛⎭⎪⎪⎫0,12b 递增,在⎝⎛⎭⎪⎪⎫12b ,+∞递减, 所以g (x )max =g ⎝⎛⎭⎪⎪⎫12b =ln12b -12,要使g (x )>0有解,首先要满足ln12b -12>0,解得b <12e. ①(13分)又因为g (1)=-b <0,g (e 12)=12-b e>0,要使f (x )<ln x 的解集(m ,n )中只有一个整数,则⎩⎪⎨⎪⎧g (2)>0,g (3)≤0,即⎩⎪⎨⎪⎧ln2-4b>0,ln3-9b ≤0,解得ln39≤b <ln24. ②(15分)设h (x )=lnx x,则h ′(x )=1-lnx x2,当x ∈(0,e)时,h ′(x )>0,h (x )递增;当x ∈(e,+∞)时,h ′(x )<0,h (x )递减.所以h (x )max =h (e)=1e>h (2)=ln22,所以12e >ln24,所以由①和②得,ln39≤b <ln24.(16分)(注:用数形结合方法做只给2分)6,(2019某某,某某一模)若函数y =f(x)在x =x 0处取得极大值或极小值,则称x 0为函数y =f(x)的极值点.设函数f(x)=x 3-tx 2+1(t ∈R ).(1) 若函数f (x )在(0,1)上无极值点,求t 的取值X 围;(2) 求证:对任意实数t ,函数f (x )的图像总存在两条切线相互平行;(3) 当t =3时,函数f (x )的图像存在的两条平行切线之间的距离为4,求满足此条件的平行线共有几组.规X 解答 (1)由函数f(x)=x 3-tx 2+1,得f ′(x)=3x 2-2tx.由f ′(x)=0,得x =0,或x =23t.因为函数f(x)在(0,1)上无极值点,所以23t ≤0或23t ≥1,解得t ≤0或t ≥32.(4分)(2)令f ′(x)=3x 2-2tx =p,即3x 2-2tx -p =0,Δ=4t 2+12p.当p >-t23时,Δ>0,此时3x 2-2tx -p =0存在不同的两个解x 1,x 2.(8分)设这两条切线方程为分别为y =(3x21-2tx 1)x -2x31+tx21+1和y =(3x22-2tx 2)x -2x32+tx22+1.若两切线重合,则-2x31+tx21+1=-2x32+tx22+1,即2(x21+x 1x 2+x22)=t(x 1+x 2),即2=t(x 1+x 2).而x 1+x 2=2t 3,化简得x 1·x 2=t29,此时(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4t29-4t29=0,与x 1≠x 2矛盾,所以,这两条切线不重合.综上,对任意实数t,函数f(x)的图像总存在两条切线相互平行.(10分)(3)当t =3时f(x)=x 3-3x 2+1,f ′(x)=3x 2-6x.由(2)知x 1+x 2=2时,两切线平行.设A(x 1,x31-3x21+1),B(x 2,x32-3x22+1),不妨设x 1>x 2,则x 1>1.过点A 的切线方程为y =(3x21-6x 1)x -2x31+3x21+1.(11分)所以,两条平行线间的距离 d =|2x32-2x31-3(x22-x21)|1+9(x21-2x 1)2=|(x2-x1)|1+9(x21-2x 1)2=4,化简得(x 1-1)6=1+92,(13分)令(x 1-1)2=λ(λ>0),则λ3-1=9(λ-1)2,即(λ-1)( λ2+λ+1)=9(λ-1)2,即(λ-1)( λ2-8λ+10)=0.显然λ=1为一解,λ2-8λ+10=0有两个异于1的正根,所以这样的λ有3解.因为x 1-1>0,所以x 1有3解,所以满足此条件的平行切线共有3组.(16分)7,(2018某某,某某一调)已知函数g(x)=x 3+ax 2+bx(a,b ∈R )有极值,且函数f (x )=(x +a )e x 的极值点是g (x )的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(1) 求b 关于a 的函数关系式;(2) 当a >0时,若函数F (x )=f (x )-g (x )的最小值为M (a ),证明:M (a )<-73.思路分析 (1) 易求得f(x)的极值点为-a -1,则g ′(-a -1)=0且g ′(x)=0有两个不等的实数解,解之得b 与a 的关系.(2) 求导得F ′(x)=(x +a +1)(e x -3x +a +3),解方程F ′(x)=0时,无法解方程e x -3x +a +3=0,构造函数h(x)=e x -3x +a +3,证得h(x)>0,所以-a -1为极小值点,而且得出M(a),利用导数法证明即可.规X 解答 (1) 因为f ′(x)=e x +(x +a)e x =(x +a +1)e x ,令f ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,f(x)取得极小值.(2分)因为g ′(x)=3x 2+2ax +b,由题意可知g ′(-a -1)=0,且Δ=4a 2-12b>0,所以3(-a -1)2+2a(-a -1)+b =0,化简得b =-a 2-4a -3.(4分)由Δ=4a 2-12b =4a 2+12(a +1)(a +3)>0,得a ≠-32.所以b =-a 2-4a -3⎝⎛⎭⎪⎫a ≠-32.(6分)(2) 因为F(x)=f(x)-g(x)=(x +a)e x -(x 3+ax 2+bx),所以F ′(x)=f ′(x)-g ′(x)=(x +a +1)e x -[3x 2+2ax -(a +1)(a +3)]=(x +a +1)e x -(x +a +1)(3x -a -3)=(x +a +1)(e x -3x +a +3).(8分)记h(x)=e x -3x +a +3,则h ′(x)=e x -3,令h ′(x)=0,解得x =ln 3.列表如下:所以x =ln 3时,h(x)取得极小值,也是最小值,此时,h(ln 3)=e ln 3-3ln 3+a +3=6-3ln 3+a=3(2-ln 3)+a=3ln e23+a>a>0.(10分)所以h(x)=e x -3x +a +3≥h(ln 3)>0,令F ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,F(x)取得极小值,也是最小值.所以M(a)=F(-a -1)=(-a -1+a)e -a -1-[(-a -1)3+a(-a -1)2+b(-a -1)]=-e -a -1-(a +1)2(a +2).(12分)令t =-a -1,则t<-1,记m(t)=-e t -t 2(1-t)=-e t +t 3-t 2,t<-1,则m ′(t)=-e t +3t 2-2t,t<-1.因为-e -1<-e t <0,3t 2-2t>5,所以m ′(t)>0,所以m(t)单调递增.(14分)所以m(t)<-e -1-2<-13-2=-73,即M(a)<-73.(16分)。
高考试题中正弦型函数图像性质专题研究
教学重点:正弦型函数y=ASin(ωx+φ)中A、ω、φ对函数图像的影响; y=sinx与y=ASin(ωx+φ)图像性质比较、图像变换规律; 教学难点:学生在几何画板中制作类型正弦图像,分析A、ω、φ 对函数图像的影响,比较归纳性质;应用性质解决求对 称轴及对称中心、最值、单增单减区间,图像变换等问题。
( ) ( )
( )
2 1 x –2 3 –1 1 –1 - - 2 2 –2 –3 1 2 1 3 b2 5 2 3 7 2 4
二、学生完成前置作业T4(一)
4、作y=ASin(ωx+φ)图像,归纳A、ω、φ对函数图像的具体影响. C 3y ◆[初始化] A = 1.30 W 2 A ◆[网格线] C = 3.29 W = 1.94 1 ◆[刻度线] x ◆[标准格] f(x) = A∙sin(W∙x + C) 3 1 1 3 5 7 –2 –1 1 2 3 4 0 ◆[控制台] 2 2 –1 2 2 2 2 f(x)=1.30sin(1.94x+3.29) –2 归纳:A------定振幅; –3 W-----定周期; ------定左右平移。
一、前置作业(一):
作下列图形,分析图形和性质:
1 1、作y=Sinx、y=2Sinx和y= sinx图像; 2 π π 2、作y=Sinx、y=Sin(x+ )和y=Sin(x- )图像; 4 4 1 3、作y=Sinx、y=Sin2x和y=Sin x图像; 2 4、作y=ASin(ωx+φ)图像,归纳A、ω、φ对函数图像的具体影响.
一、前置作业(二)T1--8题
2022年高考数学函数的微专题复习专题01 函数图象的识别与辨析(解析版)
2022年高考数学函数的微专题复习专题01函数图象的识别与辨析题型一、由函数的解析式识别图象函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例1、【2020年天津卷】.函数241xy x =+的图象大致为()A.C.变式1、【2020年浙江卷】.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为()A. B.C. D.变式2、(江苏省连云港市2021届高三调研)函数3ln |2|()(2)-=-x f x x 的部分图象大致为().A .B .C .D .变式3、(2021·山东德州市·高三期末)函数22sin 3()cos x xf x x x +=+在[,]-ππ的图象大致为()A .B .C .D .题型二、由函数的图象辨析函数的解析式由函数的图象确定解析式,首先要观察函数的图象,可以从以下几个方面入手:(1)观察函数的对称性,判断函数的奇偶性;(2)观察图象所在象限,判断函数的定义域和值域;(3)从图象中观察一些特殊位置以及图象的发展趋势;结合上面的信息进行对函数解析式的排除。
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例2、(山东省2020-2021学年高三调研)已知函数()y f x =的图象如图所示,则此函数可能是()A .()2e e 2x xf x x x --=+-B .()2e e 2x xf x x x --=+-C .()22e e x xx x f x -+-=-D .()22e e x xx x f x -+-=-变式1、(2021·江苏苏州市·高三期末)在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是()A .22sin 1x y x =+B .221xy x =+C .x xxx e e y e e ---=+D .x xxxe e y e e --+=-变式2、(山东省青岛市2020-2021学年高三模拟)已知函数()f x 的部分图象如下所示,则()f x 可能为()A .cos 1()22x xx f x -+=+B .cos sin ()22x xx x x f x -+=+C .cos sin ()22x xx x x f x -+=-D .cos sin ()22x xx x x f x -+=+题型三、情景问题中解析式情景问题中的解析式问题关键要从问题情景中挖掘有用的信息,从情景中理解所给的函数解析式所具有的特点,然后再结合具体的解析式研究性质等问题。
《函数的图像》题型专题汇编 - 副本
《函数的图像》题型专题汇编题型一作函数的图象1、分别画出下列函数的图象:(1)y =|lg(x -1)|;(2)y =2x +1-1;(3)y =x 2-|x |-2;(4)y =2x -1x -1.题型二函数图象的辨识1、函数y =x 2ln|x ||x |的图象大致是()2、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是()A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |)3、函数f (x )=1+log 2x 与g (x )=12在同一直角坐标系下的图象大致是()4、函数f (x )=21+e x -1x 的图象的大致形状为()5、若函数f (x )=(ax 2+bx )e x 的图象如图所示,则实数a ,b 的值可能为()A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-26、如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t (0≤t ≤a )经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数y =f (t )的大致图象如图所示,那么平面图形的形状不可能是()7、函数f (x )=|x |+a x 2(其中a ∈R )的图象不可能是()8、已知f (x )-2x ,-1≤x ≤0,x 0<x ≤1,则下列函数的图象错误的是()9、如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()10、已知函数f (x )的图象如图所示,则f (x )的解析式可以是()A .f (x )=ln|x |xB .f (x )=e x xC .f (x )=1x2-1D .f (x )=x -1x 11、函数f (x )=e x -e -x x 2的图象大致为()12、已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()题型三函数图象的应用命题点1研究函数的性质1、已知函数f(x)=x|x|-2x,则下列结论正确的是()A.f(x)是偶函数,单调递增区间是(0,+∞)B.f(x)是偶函数,单调递减区间是(-∞,1)C.f(x)是奇函数,单调递减区间是(-1,1)D.f(x)是奇函数,单调递增区间是(-∞,0)2、已知函数f(x)=|log3x|,实数m,n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]上的最大值为2,则nm=________.3、若函数f(x)ax+b,x<-1,ln(x+a),x≥-1的图象如图所示,则f(-3)等于___4、已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)()A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值5、已知函数f(x)||,x≤m,x2-2mx+4m,x>m,其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是____________.6、不等式3sin π2x12log x<0的整数解的个数为________.7、已知函数f(x)sinπx,0≤x≤1,log2020x,x>1,若实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是__________.8、已知点A(1,0),点B在曲线G:y=ln x上,若线段AB与曲线M:y=1x相交且交点恰为线段AB的中点,则称B为曲线G关于曲线M的一个关联点.那么曲线G 关于曲线M的关联点的个数为________.9、已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.(1)求当x<0时,f(x)的解析式;(2)作出函数f(x)的图象,并指出其单调区间;(3)求f(x)在[-2,5]上的最小值,最大值.10、已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值;(2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围.命题点2解不等式1、函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为________________.2、定义在R 上的奇函数f (x ),满足-120,且在(0,+∞)上单调递减,则xf (x )>0的解集为________.命题点3求参数的取值范围1、已知函数()12log ,020x x x f x x >⎧⎪⎨⎪≤⎩,=,,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________.2、已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是__________.3、设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是__________.4、给定min{a ,b }a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y=m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为________.5、直线y =k (x +3)+5(k ≠0)与曲线y =5x +17x +3的两个交点坐标分别为A (x 1,y 1),B (x 2,y 2),则x 1+x 2+y 1+y 2=________.6、函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.《函数的图像》课后作业1、y =2|x |sin 2x 的图象可能是()2、如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是()3、已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为()4、函数f (x )ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于()A .-12B .-54C .-1D .-25、函数f(x)的图象向右平移1个单位,所得图象与曲线y=e x关于y轴对称,则f(x)的解析式为()A.f(x)=e x+1B.f(x)=e x-1C.f(x)=e-x+1D.f(x)=e-x-16、已知函数f(x)的定义域为R,且f(x)2-x-1,x≤0,f x-1),x>0,若方程f(x)=x+a有两个不同实根,则实数a的取值范围为()A.(-∞,1)B.(-∞,1]C.(0,1)D.(-∞,+∞)7、设函数y=f(x+1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x-1)f(x)≤0的解集为______________.8、设函数y=f(x)的图象与y=2x-a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则实数a=________.9、已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,且在[-1,3]内,关于x 的方程f(x)=kx+k+1(k∈R,k≠-1)有四个实数根,则k的取值范围是__________.10、给定min{a,b}a,a≤b,b,b<a,已知函数f(x)=min{x,x2-4x+4}+4,若动直线y=m与函数y=f(x)的图象有3个交点,则实数m的取值范围为__________.11、数f(x)log2(1-x)+1,-1≤x<0,x3-3x+2,0≤x≤a的值域为[0,2],则实数a的取值范围是_____12已知函数f(x)x2+2x-1,x≥0,x2-2x-1,x<0,则对任意x1,x2∈R,若0<|x1|<|x2|,下列不等式成立的是()A.f(x1)+f(x2)<0B.f(x1)+f(x2)>0C.f(x1)-f(x2)>0D.f(x1)-f(x2)<013、函数f(x)=x|x-1|,g(x)=1+x+|x|2,若f(x)<g(x),则实数x的取值范围是____________.14、函数f(x)(x-1)2,0≤x≤2,14x-12,2<x≤6.若在该函数的定义域[0,6]上存在互异的3个数x1,x2,x3,使得f(x1)x1=f(x2)x2=f(x3)x3=k,则实数k的取值范围是__________.15、已知函数f(x)=2x,x∈R.(1)当实数m取何值时,方程|f(x)-2|=m有一个解?两个解?(2)若不等式f2(x)+f(x)-m>0在R上恒成立,求实数m的取值范围.11/1116、数()2131log 1,x x x f x x x ⎧≤⎪⎨>⎪⎩-+,,=,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,求实数k 的取值范围.。
高考数学:专题10 函数图像的判断(解析版)
【高考地位】函数图像作为高中数学一个“重头戏”,是研究函数性质、方程、不等式重要武器,已经成为各省市高考命题一个热点。
在高考中经常以几类初等函数图像为基础,结合函数性质综合考查,多以选择、填空题形式出现。
【方法点评】方法一 特值法使用情景:函数()f x 解析式已知情况下解题模板:第一步 将自变量或者函数值赋以特殊值;第二步 分别一一验证选项是否符合要求; 第三步 得出结论.例1 函数x x x y sin cos +=图象大致为( )【答案】C考点:函数图像【点评】特值法是解决复杂函数图像问题方法之一,其将复杂问题简单化,且操作性简单可行。
【变式演练1】函数()2ln y x x =+图象大致为( )A .B .C .D .【答案】A【解析】试题分析:解:令()2ln y x x =+0=,解得1,1,2--=x ,∴该函数有三个零点,故排除B ;当2-<x 时,02<+x ,2>x ,02ln ln >>∴x ,∴当2-<x 时,()2ln y x x =+0<,排除C 、D .故选A .考点:函数图象.【变式演练2】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)图象可能为( )【答案】D 【解析】考点:1.函数基本性质;2.函数图象. 【变式演练3】现有四个函数:①②③④图象(部分)如下,则按照从左到右将图象对应函数序号安排正确一组是( )A .④①②③ B.①④③② C.①④②③ D.③④②① 【答案】C【解析】试题分析:因为,所以是偶函数,图象关于轴对称,即与左1图对应,故排除选项A 、D ,因为当时,,故函数图象与左3图对应,故排除选项B ;故选C .【方法点睛】本题考查通过函数解析式和性质确定函数图象,属于中档题;已知函数解析式确定函数图象,往往从以下几方面考虑:定义域(确定图象是否连续),奇偶性(确定图象对称性),单调性(确定图象变化趋势),最值(确定图象最高点或最低点),特殊点函数值(通过特殊函数值排除选项),其主要方法是排除法.考点:1.函数奇偶性;2.函数图象.【变式演练4】函数xe x y )1(2-=图象大致是( )【答案】C 【解析】考点:偶函数图象性质.方法二 利用函数基本性质判断其图像使用情景:函数()f x 解析式已知情况下解题模板:第一步 根据已知函数解析式分析其变化特征如单调性、奇偶性、定义域和值域等;第二步 结合简单基本初等函数图像特征如对称性、周期性等进行判断即可; 第三步 得出结论.例2 函数()(1)ln ||f x x x =-图象大致为( )【答案】A 【解析】考点:1、导数在研究函数单调性中应用;2、函数图像.【思路点睛】本题主要考查了导数在研究函数单调性中应用和函数图像,具有一定综合性,属中档题.其解题一般思路为:首先观察函数表达式特征如0)1(=f ,然后运用导数在研究函数单调性和极值中应用求出函数单调区间,进而判断选项,最后将所选选项进行验证得出答案即可.其解题关键是合理地分段求出函数单调性.【变式演练5】如图,周长为1圆圆心C 在y 轴上,顶点()01A ,,一动点M 从A 开始逆时针绕圆运动一周,记走过弧长AM x =,直线AM 与x 轴交于点()0N t ,,则函数()t f x =图象大致为( )A .B .C .D .【答案】D 【解析】试题分析:由圆对称性可知,动点N 轨迹关于原点对称,且在原点处,21=x ,0=y ;当点M 位于左半圆时,随着弧AM 长递增,t 值递增,且变化由快到慢,由给定图象可知选D . 考点:函数图象.【变式演练6】如图可能是下列哪个函数图象( )A .221xy x =-- B .2sin 41x xy x =+C .ln x y x=D .2(2)xy x x e =- 【答案】D 【解析】考点:函数图象和性质.【变式演练7】如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x 轴直线:(0)l x t t a =≤≤经过原点O 向右平行移动,l 在移动过程中扫过平面图形面积为y (图中阴影部分),若函数()y f x =大致图像如图,那么平面图形形状不可能是( )【答案】C【解析】试题分析:由函数图象可知,几何体具有对称性,选项A ,B ,D ,l 在移动过程中扫过平面图形面积为y ,在中线位置前,都是先慢后快,然后相反.选项C ,后面是直线增加,不满足题意. 考点:函数图象与图形面积变换关系. 【变式演练8】函数()21x f x e-=(e 是自然对数底数)部分图象大致是( )【答案】C 【解析】【变式演练9】函数2ln x x y x=图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象对称性可知应选D. 考点:函数图象性质及运用.【变式演练10】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭图象大致形状是( ) A . B .C .D .【答案】B 【解析】考点:函数奇偶性及函数图象. 【变式演练11】若函数()2(2)m xf x x m-=+图象如图所示,则m 范围为( )A .(),1-∞-B .()1,2-C .()0,2D .()1,2 【答案】D考点:1.函数奇偶性;2.函数单调性;3.导数应用.【高考再现】1. 【2016高考新课标1卷】函数22xy x e =-在[]2,2-图像大致为(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中识图题多次出现在高考试题中,也可以说是高考热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中难点,解决这类问题方法一般是利用间接法,即由函数性质排除不符合条件选项.2.【2015高考安徽,理9】函数()()2ax bf x x c +=+图象如图所示,则下列结论成立是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】 C【考点定位】1.函数图象与应用.【名师点睛】函数图象分析判断主要依据两点:一是根据函数性质,如函数奇偶性、单调性、值域、定义域等;二是根据特殊点函数值,采用排除方法得出正确选项.本题主要是通过函数解析式判断其定义域,并在图形中判断出来,另外,根据特殊点位置能够判断,,a b c 正负关系.3.【2015高考新课标2,理10】如图,长方形ABCD 边2AB =,1BC =,O 是AB 中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 函数()f x ,则()y f x =图像大致为( )(D)(C)(B)(A)yπ4π23π4ππ3π4π2π4yyπ4π23π4ππ3π4π2π4yDPCOAx【答案】B【考点定位】函数图象和性质.【名师点睛】本题考查函数图像与性质,表面看觉得很难,但是如果认真审题,读懂题意,通过点P 运动轨迹来判断图像对称性以及特殊点函数值比较,也可较容易找到答案,属于中档题.4.【2015高考北京,理7】如图,函数()f x 图象为折线ACB ,则不等式()()2log 1f x x +≥解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【解析】如图所示,把函数2log y x =图象向左平移一个单位得到2log (1)y x =+图象1x =时两图象相交,不等式解为11x -<≤,用集合表示解集选C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.【名师点睛】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,本题属于基础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)图象,要求正确画出画出图象,利用数形结合写出不等式解集.5.【2014年.浙江卷.理7】在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=图像可能是( )答案: D考点:函数图像.【名师点睛】本题主要考查了函数指数与对数函数图像和性质,属于常见题目,难度不大;识图常用方法:(1)定性分析法:通过对问题进行定性分析,从而得出图象上升(或下降)趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量计算来分析解决问题;(3)函数模型法:由所提供图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.6. 【2014福建,理4】若函数log (0,1)a y x a a =>≠且图像如右图所示,则下列函数图像正确是( )13OxyDC BAy=log a (-x)y=(-x)ay=x ay=a -x-1-3113OO OO1y x1xy1xyxy【答案】B 【解析】考点:函数图象.【名师点睛】本题主要考查函数图像识别问题及分析问题解决问题能力,求解此题首先要根据图像经过特殊点,确定参数值,然后利用函数单调性确定正确选项,解决此类问题要重视特殊点及单调性应用.【反馈练习】1. 【2017届河北武邑中学高三上周考8.14数学试卷,文5】函数111y x =--图象是( )【答案】B 【解析】试题分析:将1y x =-图象沿x 轴向右平移1个单位得到11y x =--图象,再沿y 轴向上平移1个单位得到111y x =--图象.故选B . 考点:函数图象平移变换.2. 【2017届广东华南师大附中高三综合测试一数学试卷,文10】函数2ln xy x=图象大致为( )A .B .C .D .【答案】B3. 【2017届广东佛山一中高三上学期月考一数学试卷,理6】函数22x y x -=图象大致是( )【答案】A 【解析】试题分析:当1x <-时,22x x <,即220x x -<,排除C 、D ,当3x =时,322310y =-=-<,排除B ,故选A .考点:函数图象.4. 【2016-2017学年山西榆社中学高一10月月考数学试卷,理7】已知函数()f x 定义域为[],a b ,函数()y f x =图象如图甲所示,则函数(||)f x 图象是图乙中( )【答案】B 【解析】考点:函数图象与性质.5. 【2016-2017学年河北徐水县一中高一上月考一数学试卷,理5】下列图中,画在同一坐标系中,函数2y ax bx =+与y ax b =+(0a ≠,0b ≠)函数图象只可能是( )【答案】B【解析】试题分析:()2f x ax bx =+图象是抛物线,()g x ax b =+图象是直线.A 选项()f x 开口向上,说明0a >,直线应斜向上,故A 错误.D 选项()f x 开口向下,说明0a <,直线应斜向下,故D 错误. C 选项()f x 图象不过原点,错误.故选B. 考点:函数图象与性质.6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】已知函数()y f x =大致图象如图所示,则函数()y f x =解析式应为( )A .()ln x f x e x =B .()ln(||)xf x ex -=C .()ln(||)xf x e x = D .||()ln(||)x f x e x = 【答案】C 【解析】考点:函数性质.7. 【2017届湖南长沙长郡中学高三上周测十二数学试卷,文8】函数22()(44)log x x f x x -=-图象大致为( )【答案】A 【解析】试题分析:因为22()(44)log x x f x x -=-,()2222()(44)log (44)log x x x x f x x x f x ---=-=--=-,所以22()(44)log x x f x x -=-是奇函数,排除B 、C ,又因为0x →时,0y →,所以排除D ,故选A.考点:1、函数图象;2、函数奇偶性.8. 【2017届重庆市第八中学高三上适应性考试一数学试卷,理10】如图1,圆O 半径为1,A 是圆上定点,P 是圆上动点,角x 始边为射线OA ,终边为射线OP ,过点P 作直线OA 垂线,垂足为M ,将点M 到直线OP 距离与O 到M 距离之和表示成x 函数()f x ,则()y f x =在[]0,π上图象大致是( )A .B .C .D .【答案】B 【解析】考点:函数实际应用.9.【 2017届河南新乡一中高三9月月考数学试卷,文7】设曲线2()1f x x =+在点(,())x f x 处切线斜率为()g x ,则函数()cos y g x x =部分图象可以为( )【答案】A 【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A .考点:1、函数图象及性质;2、选择题“特殊值”法.10. 【2017届湖北襄阳五中高三上学期开学考数学试卷,文6】已知函数)(x f 是定义在R 上增函数,则函数1|)1(|--=x f y 图象可能是( )A .B .C .D .【答案】B 【解析】考点:函数图象,图象变换.。
专题11 函数的图象(学生版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等)高中数学53个题型归纳与方法技巧总结篇专题11函数的图象.2.图像的变换(1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的;②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的;③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的;④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的;(2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称;函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称;②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y f x -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到.【方法技巧与总结】(1)若)()(x m f x m f -=+恒成立,则)(x f y =的图像关于直线m x =对称.(2)设函数)(x f y =定义在实数集上,则函数)(m x f y -=与)(x m f y -=)0(>m 的图象关于直线m x =对称.(3)若)()(x b f x a f -=+,对任意∈x R 恒成立,则)(x f y =的图象关于直线2ba x +=对称.(4)函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ba x +=对称.(5)函数)(x f y =与函数)2(x a f y -=的图象关于直线a x =对称.(6)函数)(x f y =与函数)2(2x a f b y --=的图象关于点)(b a ,中心对称.(7)函数平移遵循自变量“左加右减”,函数值“上加下减”.【题型归纳目录】题型一:由解析式选图(识图)题型二:由图象选表达式题型三:表达式含参数的图象问题题型四:函数图象应用题题型五:函数图像的综合应用【典例例题】题型一:由解析式选图(识图)例1.(2022·浙江·赫威斯育才高中模拟预测)函数2()sin12xf x x=++的图象可能是()A.B.C.D.例2.(2022·陕西·汉台中学模拟预测(理))函数2lnxyx=的图象大致是()A.B.C.D.例3.(2022·天津·二模)函数sine xx xy=的图象大致为()A.B.C.D.例4.(2022·全国·模拟预测)已知函数()) ln sinf x x x=-⋅则函数()f x的大致图象为()A.B.C.D.例5.(2022·全国·模拟预测)函数()22 e xx xf x-=的图象大致是()A.B.C.D.例6.(2022·河北·模拟预测)函数4cos3()cos(ππ)33xf x x x=---≤≤的部分图象大致为()A.B.C.D.【方法技巧与总结】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型二:由图象选表达式例7.(2022·全国·模拟预测)已知y关于x的函数图象如图所示,则实数x,y满足的关系式可以为()A .311log 0x y --=B .321xx y-=C .120x y --=D .ln 1x y =-例8.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式()A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭例9.(2022·浙江·模拟预测)已知函数()f x 的大致图象如图所示,则函数()y f x =的解析式可以是()A .()()2211--=xxe x y e B .()21sin -=xxex y e C .()()2211-+=xxex y e D .()21cos -=xxex y e 例10.(2022·全国·模拟预测)已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为()A .()sin πf x x x =B .()()1πsin f x x x =-C .()()sin π1f x x x =+D .()()1cos πf x x x=-例11.(2022·河北沧州·模拟预测)下列图象对应的函数解析式正确的是()A .()cos f x x x =B .()sin f x x x =C .()sin cos f x x x x=+D .()cos sin f x x x x=+例12.(2022·浙江绍兴·模拟预测)已知函数()sin f x x =,()e e x x g x -=+,下图可能是下列哪个函数的图象()A .()()2f x g x +-B .()()2f x g x -+C .()()⋅f x g xD .()()f xg x 【方法技巧与总结】1.从定义域值域判断图像位置;2.从奇偶性判断对称性;3.从周期性判断循环往复;4.从单调性判断变化趋势;5.从特征点排除错误选项.题型三:表达式含参数的图象问题(多选题)例13.(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为()A .B .C .D .(多选题)例14.(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是()A .B .C .D .(多选题)例15.(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是()A .B .C .D .(多选题)例16.(2022·湖北武汉·高一期末)设0a >,函数21axx y e ++=的图象可能是()A .B .C .D .(多选题)例17.(2022·广东东莞·高一期末)已知函数()af x x x=+()a R ∈,则其图像可能为()A .B .C .D .(多选题)例18.(2021·山西省长治市第二中学校高一阶段练习)在同一直角坐标系中,函数()()()10,1,x f x a a a g x a x =->≠=-且的图象可能是()A .B .C .D .(多选题)例19.(2021·河北·高三阶段练习)函数()211ax f x x +=+的大致图象可能是()A .B .C .D .(多选题)例20.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是()A .B .C .D .【方法技巧与总结】根据函数的解析式识别函数的图象,其中解答中熟记指数幂的运算性质,二次函数的图象与性质,以及复合函数的单调性的判定方法是解答的关键,着重考查分析问题和解答问题的能力,以及分类讨论思想的应用.题型四:函数图象应用题例21.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|PA |2,则y =f (x )的图象大致为()A .B .C .D .例22.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是()A .B .C .D .例23.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是()A .B .C.D.例24.(2021·山东济南·高三阶段练习)如图,公园里有一处扇形花坛,小明同学从A点出发,沿花坛外侧→→),则小明到O点的直线距离y与他从A点出发后运的小路顺时针方向匀速走了一圈(路线为AB BO OA动的时间t之间的函数图象大致是()A.B.C.D.例25.(2021·江苏·常州市西夏墅中学高三开学考试)如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP =x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y=f(x)的大致图像是A .B .C .D .【方法技巧与总结】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.题型五:函数图像的综合应用例26.(2022·四川·宜宾市教科所三模(理))定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为()A .e 1e 1,65--⎛⎫⎪⎝⎭B .e 1e 1,64--⎛⎫⎪⎝⎭C .e 1e 1,86--⎛⎫⎪⎝⎭D .()0,e 1-例27.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是()A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞例28.(2022·全国·高三专题练习)已知函数()2ln ,0,43,0x x f x x x x >⎧=⎨---≤⎩若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是()A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦例29.(2022·甘肃省武威第一中学模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足()A .0m >且0n >B .0m <且0n >C .01m <<且0n =D .10m -<<且0n =例30.(2022·天津市滨海新区塘沽第一中学模拟预测)已知函数21244,1(),1x x x x f x e x x -⎧-+>=⎨+≤⎩,若不等式1()||022mf x x --<的解集为∅,则实数m 的取值范围为()A .1,52ln 34⎡⎤-⎢⎥⎣⎦B .1,53ln 33⎡⎤-⎢⎥⎣⎦C .1,62ln 34⎡⎤-⎢⎥⎣⎦D .1,63ln 32⎡⎤-⎢⎥⎣⎦例31.(2022·安徽·巢湖市第一中学高三期中(理))已知函数()11,11ln ,1x f x xx x ⎧-<⎪=-⎨⎪≥⎩,若函数()()()1g x f x k x =--有4个零点,则实数k 的取值范围为_______________.例32.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.例33.(2022·全国·高三专题练习)已知函数f (x )=244,01,43,1x x x x x -<≤⎧⎨-+>⎩和函数g (x )=2log x ,则函数h (x )=f (x )-g (x )的零点个数是________.例34.(2022·全国·高三专题练习(理))如图,在等边三角形ABC 中,AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9;③关于x 的方程()3f x kx =+最多有5个实数根.其中,所有正确结论的序号是____.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解的个数.2.利用函数图像求解不等式的解集及参数的取值范围.先作出所研究对象的图像,求出它们的交点,根据题意结合图像写出答案3.利用函数图像求函数的最值,先做出所涉及到的函数图像,根据题目对函数的要求,从图像上寻找取得最值的位置,计算出结果,这体现出了数形结合的思想。
双勾函数的图像与性质
专题研究:双勾函数()(0,0)bf x ax a b x=+>>的图象与性质 一般地,我们把形如:()(0,0)bf x ax a b x=+>>的函数叫做双勾函数,下面我们来研究它的图象与性质. 一、预备知识①基本不等式:若R b a ∈,,则ab b a 222≥+,当且仅当b a =时等号成立;②均值不等式:若+∈R b a ,,则ab b a 2≥+,当且仅当b a =时等号成立.二、图象与性质1.定义域:D =______________________.2.奇偶性:因为____________________,所以()f x 是______函数,其图象关于________对称.3.值域:当(0,)x ∈+∞时,由均值不等式有:ab xbax x b ax x f 22)(=⋅≥+=,(当且仅当x =;同理可知,当(,0)x ∈-∞时,由均值不等式有: ab x b x a x b x a x b ax x f 2)()(2)()()(-=-⋅--≤⎥⎦⎤⎢⎣⎡-+--=+=,(当且仅当x =时,等号成立).综合可知函数的值域为:U =_____________________. 4.单调性:请你根据求值域的过程猜想出该函数的单调区间,并给出证明. 双勾函数()(0,0)bf x ax a b x=+>>在区间_____________和___________上是增函数, 在区间_____________和___________上是减函数.求证:双勾函数()(0,0)bf x ax a b x =+>>在区间⎫+∞⎪⎪⎭上是增函数. 证明:5.渐近线:双勾函数()(0,0)bf x ax a b x=+>>的图象有两条渐近线,它们是 直线0x =和直线y ax =. 6.函数的图象:7.双勾函数()(0,0)bf x ax a b x=+>>在闭区间[,](0)p q p q <<上的最值定理: (请你结合图象和性质给出证明). (1q >时,min ()()f x f q =,max ()()f x f p =; (2)当p q ≤≤时,min ()f x f ==,{}max ()max (),()f x f p f q =; (3)当p <时,min ()()f x f p =,max ()()f x f q =. 三、知识运用1.已知函数x x x f 9)(+=,则它的定义域为_________________,值域为__________________,在区间_____________和___________上是增函数,在区间_____________和___________上是减函数. 函数)(x f 在区间[1,6]上的最大值为_________,最小值为_________. 2.若正数,a b 满足3ab a b =++,则ab 的取值范围是________________. 3.求函数43)(2+=x xx f 的值域.4.已知函数3(1)()(1)a f x x a x-=+>. (1)讨论函数()f x 在(0,)+∞上的单调区间及单调性; (2)当02x <≤时,求函数()f x 的最小值.5.某商店经销一种洗衣粉,年销售总量为6000包,每包进价为2.8元,销售价为3.4.全年分若干次进货,每次进货均为x 包,已知每次进货的运输费为62.5元,全年的保管费用为1.5x 元. (1)把全年利润y (元)表示成每次进货均为x 包的函数,并指出这个函数的定义域; (2)为了使运全年利润最大,每次进货应定为多少包?6.甲乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过C千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度V(千米/小时)的平方成正比,比例系数为b,固定部分为a元.(1)把全程运输成本y(元)表示成速度V(千米/小时)的函数,并指出这个函数的定义域;(2)为了使运输成本最小,汽车应以多大速度行驶?四、类比研究。
专题08 一元二次函数的图像和性质(解析版)
专题08 一元二次函数的图像和性质一、知识点精讲【问题1】函数y=ax2与y=x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y=2x2,y=12x2,y=-2x2的图象,通过这些函数图象与函数y=x2的图象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系.先画出函数y=x2,y=2x2的图象.先列表:从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了.再描点、连线,就分别得到了函数y=x2,y=2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y=2x2的图象可以由函数y=x2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y=12x2,y=-2x2的图象,并研究这两个函数图象与函数y=x2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y=ax2(a≠0)的图象可以由y=x2的图象各点的纵坐标变为原来的a倍得到.在二次函数y=ax2(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小.【问题2】函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:二次函数y =a(x +h)2+k(a≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c(a≠0)的图象的方法:由于y =ax 2+bx +c =a(x 2+b x a )+c =a(x 2+b x a +224b a )+c -24b a 224()24b ac b a x a a-=++, 所以,y =ax 2+bx +c(a≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c(a≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2b a-时,函数取最大值y =244ac b a-.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.一元二次不等式与相应的一元二次函数及一元二次方程的关系表二、典例精析【典例1】求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.【答案】见解析【解析】∵y=-3x2-6x+1=-3(x+1)2+4,∴函数图象的开口向下;对称轴是直线x=-1;顶点坐标为(-1,4);当x=-1时,函数y取最大值y=4;当x<-1时,y随着x的增大而增大;当x>-1时,y随着x的增大而减小;采用描点法画图,选顶点A(-1,4)),与x轴交于点B和C(,与y轴的交点为D(0,1),过这五点画出图象(如图2-5所示).【说明】:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.【典例2】某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销售量y(件)之间关系如下表所示:若日销售量y是销售价x的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?【答案】见解析【分析】:由于每天的利润=日销售量y×(销售价x-120),日销售量y又是销售价x的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.【解析】由于y 是x 的一次函数,于是,设y =kx +b 将x =130,y =70;x =150,y =50代入方程,有70130,50150,k b k b =+⎧⎨=+⎩ 解得 k =-1,b =200. ∴ y =-x +200.设每天的利润为z (元),则z =(-x+200)(x -120)=-x 2+320x -24000=-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.【典例3】把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值. 【答案】见解析 【解析】解法一:y =x 2+bx +c =(x+2b )224b c +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩解得b =-8,c =14. 解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像.由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x 2-8x +14的图像,∴函数y =x 2-8x +14与函数y =x 2+bx +c 表示同一个函数,∴b =-8,c =14.【说明】:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.【典例4】已知函数y=x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值.【答案】见解析【分析】本例中函数自变量的范围是一个变化的范围,需要对a的取值进行讨论。
高考数学复习考点题型解题技巧专题讲解06 函数图像辨析
高考数学复习考点题型解题技巧专题讲解 第6讲 函数图像识别辨析专项突破高考定位函数图象作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已经成为各省市高考命题的一个热点。
在高考中经常以几类初等函数的图象为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。
考点解析(1)知图选式的方法 (2)知式选图的方法(3)同一坐标系中辨析不同函数图像的方法(4)解决需要我们利用图像所提供的信息来分析解决问题这类题目的常用方法 定性分析法,也就是通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征来分析解决问题;定量计算法,也就是通过定量的计算来分析解决问题;函数模型法,也就是由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 题型解析类型一、由解析式判定图像例1-1(含参型).(2022·全国·高三专题练习)函数()3log 01a y x ax a =-<<的图象可能是()A .B .C .D .【答案】B 【分析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3loga f x x ax =-,必有30x ax -≠,则0x ≠且x ≠, 即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =,当x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间⎛⎝⎭上,()0g x '<,则()g x 在区间⎛ ⎝⎭上为减函数,在区间⎫+∞⎪⎪⎝⎭上,()0g x '>,则()g x 在区间⎫+∞⎪⎪⎝⎭上为增函数,0g =,则()g x 存在极小值3g a =-=⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A ,故选:B. 知式选图的方法(1)从函数的定义域,判断图像左右的位置;从函数的值域,判断图像上下的位置; (2)从函数的单调性(有时可借助导数判断),判断图像的变化趋势; (3)从函数的奇偶性,判断图像的对称性; (4)从函数的周期性,判断图像的循环往复; (5)从函数的极值点判断函数图像的拐点.练.(2021•重庆模拟)函数()(kx f x e lnx k =⋅为常数)的图象可能是()A .B .C .D .【解答】解:令()0kx f x e lnx =⋅=,解得1x =,即函数()f x 有且只有一个零点,故D 不可能,()(1)kxe f x kxlnx x'=+,令y xlnx =,则1y lnx '=+,令0y '>,则1x e>,即函数y 在1(e,)+∞上单调递增,令0y '<,则1x e<,即函数y 在1(0,)e上单调递减,∴当1x e =时,y 取得最小值,为1e -,即1[xlnx e∈-,)+∞,且0x →时,0xlnx →,x →+∞时,xlnx →+∞,故当0k e 剟时,()0f x '…,()f x 单调递增,选项A 可能,当k e >时,()f x '存在两个零点1x ,2x ,且12101x x e<<<<,()f x ∴在1(0,)x 和2(x ,)+∞上单调递增,在1(x ,2)x 上单调递减,选项B 可能,当0k <时,()f x '存在唯一零点0x ,且01x >,()f x ∴在0(0,)x 上单调递增,在0(x ,)+∞上单调递减,选项C 可能,故选:ABC . 练.函数()mf x x x=-(其中m ∈R )的图像不可能是() A . B .C .D .【答案】C【解析】易见,0(),0m x x m xf x x m x x x x ⎧->⎪⎪=-=⎨⎪--<⎪⎩,① 当0m =时()=f x x ()0x ≠,图像如A 选项;②当0m >时,0x >时()m f x x x =-,易见,my x y x==-在()0,+?递增,得()f x 在()0,+?递增; 0x <时()m f x x x =--,令x t -=,得(),0mf t t t t=+>为对勾函数, 所以()f t在)+∞递增,(递减,所以根据复合函数单调性得()f x在(,-∞递减,()递增,图像为D ; ③当0m <时,0x <时()m f x x x =--,易见,my x y x=-=-在(),0-?递减,故()f x 在(),0-?递减;0x >时()m m f x x x x x-=-=+为对勾函数, 所以()f x在(递减,)+∞递增,图像为B. 因此,图像不可能是C. 故选:C. 【点睛】本题考查了利用对勾函数单调性来判断函数的图像,属于中档题.例1-2(原导混合型)(2021·重庆市南坪中学校高二月考)函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为()A .B .C .D .【答案】A 【分析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项. 【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误,故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象. .同一坐标系中辨析不同函数图像的方法解决此类问题时,常先假定其中一个函数的图像是正确的,然后再验证另一个函数图像是否符合要求,逐项进行验证排查.练.函数()()20f x ax bx c a =++≠和函数()()g x c f x '=⋅(其中()f x '为()f x 的导函数)的图象在同一坐标系中的情况可以为()A .①④B .②③C .③④D .①②③【答案】B【解析】易知()2f x ax b '=+,则()2g x acx bc =+. 由①②中函数()g x 的图象得0ac bc >⎧⎨<⎩, 若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a <,所以()f x 的图象开口向下,此时①②均不符合要求; 若0c >,则00a b >⎧⎨<⎩,此时()00f c =>,02ba ->,又0a >,所以()f x 的图象开口向上,此时②符合要求,①不符合要求;由③④中函数()g x 的图象得0ac bc <⎧⎨>⎩,若0c >,则00a b <⎧⎨>⎩,此时()00f c =>,02ba ->,又0a <,所以()f x 的图象开口向下,此时③符合要求,④不符合要求;若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a >,所以()f x 的图象开口向上,此时③④均不符合要求. 综上,②③符合题意, 故选:B .类型二、由图像判定解析式例2-1(2019·甘肃·兰州五十一中高一期中)若函数()y f x =的图象如图所示,则函数()f x 的解析式可以为()A .21()xf x x+=B .()2ln 2()x f x x+=C .33()xf x x+= D .ln ()x f x x=【答案】A 【分析】根据函数图象的基本特征,利用函数定义域、值域、奇偶性等排除可得答案. 【详解】选项B 根据图象可知:函数是非奇非偶函数,B 排除; 选项C 根据图象x 趋向于-∞,函数值为负,与C 矛盾故排除; 选项D 函数图象在第三象限,0x <,与D 的定义域矛盾,故排除; 由此可得只有选项A 正确; 故选:A. 【点睛】本题考查函数图象判断解析式,此类问题主要利用排除法,排除的依据为函数的基本要素和基本性质,如定义域、值域、零点、特殊点、奇偶性、单调性等,属于中等题. 例2-2.函数y =f (x )的图象如图所示,则函数y =f (x )的解析式可能为()A .ln 1xy x =+ B .cos 1xy x =+ C .1xe y x =+D .1x y x =+【答案】C【分析】结合函数的图象,从函数的定义域,0x =和0x >时判断.【详解】由()y f x =图象得函数的定义域为{}1,x x x ≠-∈R ∣,排除A ;由()00f >,排除D ;由0x >时,()0f x >,排除B .故选:C.例2-3(2020·浙江·台州市黄岩中学高三月考)某函数的部分图像如下图,则下列函数中可作为该函数的解析式的是()A .sin 2sin 2xxy e =B .cos2cos 2xxy e =C .cos2cos 2xx y e =D .cos cos xxy e =【答案】C 【分析】利用函数值恒大于等于0,排除选项A 、B 、D ,则答案可得.【详解】当x ∈R 时,函数值恒大于等于0,而A 选项中,当,02x π⎛⎫∈- ⎪⎝⎭时,sin 2sin 20xxy e=<,故排除A ;当x ∈R 时,函数值恒大于等于0,而B 选项中,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,cos2cos20x xy e =<,故排除B ;当x ∈R 时,函数值恒大于等于0,而D 选项中,当3,22x ππ⎛⎫∈ ⎪⎝⎭时,cos cos 0x xy e =<,故排除D ; 因此,C 选项正确; 故选:C . 【点睛】本题考查由函数图象判断函数的解析式,考查运算求解能力、数形结合思想,体现了数学运算的核心素养,破解此类问题的技巧:一是活用性质,常利用函数的单调性与奇偶性来排除不适合的选项;二是利用特殊点排除不适合的选项,从而得出合适的选项.本题属于中等题.例2-4(2019·全国·高三月考(理))已知函数()y f x =图象如下,则函数解析式可以为()A .()()()sin 2ln 1f x x x π=+B .()()2sin 222xxx x f x π-=-C .()()()sin 222x x f x x π-=-D .()()()sin 222x x f x x π-=+【答案】C 【分析】根据图象可知函数()y f x =为偶函数,且定义域为R ,然后分析各选项中各函数的定义域与奇偶性,结合排除法可得出正确选项. 【详解】由图象可知,函数()y f x =的定义域为R ,且为偶函数.对于A 选项,()()()sin 2ln 1f x x x π=+的定义域为{|0}x x ≠,不合乎题意; 对于B 选项,令220xx--≠,得0x ≠,则函数()()2sin 222xxx x f x π-=-的定义域不为R ,不合乎题意;对于C 选项,函数()()()sin 222x x f x x π-=-的定义域为R ,且()()()()()()sin 222sin 222x x x x f x x x f x ππ---=--=-=,该函数为偶函数,合乎题意; 对于D 选项,函数()()()sin 222x x f x x π-=+的定义域为R ,且()()()()()()sin 222sin 222x x x x f x x x f x ππ---=-+=-+=-,该函数为奇函数,不合乎题意. 故选:C. 【点睛】本题考查根据函数图象选择解析式,一般要分析函数的定义域、奇偶性、单调性、零点与函数值符号,结合排除法求解,考查推理能力,属于中等题. 总结:知图选式的方法(1)从图像的左右、上下分布,观察函数的定义域、值域 (2)从图像的变化趋势,观察函数的单调性;(3)从图像的对称性方面,观察函数的奇偶性; (4)从图像的循环往复,观察函数的周期性.类型三、读图提取性质求参例3-1.若函数()2()mx f x e n =-的大致图象如图所示,则()A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B 【分析】 令()0f x =得到1ln x n m=,再根据函数图象与x 轴的交点和函数的单调性判断. 【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x mn =>, 当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C ,故选:B练.已知常数a 、b 、R c ∈,函数()2bx cf x x a+=-的图象如图所示,则a 、b 、c 的大小关系用“<”可以表示为_______.【答案】b c a <<【解析】若0a <,则函数()f x 的定义域为R ,不合乎题意, 若0a =,则函数()2bx cf x x +=的定义域为{}0x x ≠,不合乎题意,若0a >,则函数()2bx cf x x+=的定义域为{x x ≠,合乎题意. 由图可知()00c f a==-,可得0c =,则()2bx f x x a =-,当0x <<20x a -<,则20x x a <-,则()20bxf x x a=>-,所以0b <. 因此,b c a <<. 故答案为:b c a <<.例3-2.(2021·全国·高三专题练习)已知函数()()4cos xx f ex ωϕ+=(0ω>,0ϕπ<<)的部分图象如图所示,则ωϕ=()A .12B .1C .2D .2π【答案】C 【分析】由函数零点代入解析式待定系数ϕ、ω. 【详解】由图象可知,由(0)0f =得cos 0ϕ=,又0ϕπ<<,解得2ϕπ=.则()4cos 4sin 2x xx x ee f x πωω⎛⎫+ ⎪⎝⎭==-, 法一:由(1)0f =得sin 0ω=,解得()k k Z ωπ=∈, 又当(0,1)x ∈,(0,)x ωω∈时,恒有()0f x <, 即sin 0x ω>恒成立,故0ωπ<≤,1k ∴=,即ωπ=,则2ωϕ=. 法二:由sin 0x ω=,解得()k x k Z πω=∈,故两相邻零点的距离为πω,由图象可知1πω=,则ωπ=,则2ωϕ=. 故选:C. 【点睛】已知函数图象待定解析式,一是从函数的特征点入手,代入点的坐标从而待定系数,如函数的零点、极值点、与纵轴的交点、已知横纵坐标的点等等;二是从函数的特征量入手,找到等量(不等量)关系待定系数(范围),如函数的周期、对称轴、切线斜率、图象上两点间的距离、相关直线所成角等等. 练.已知函数sin()()xx f x a ωϕπ+=(0,0,)a R ωϕπ><<∈,在[]3,3-的大致图象如图所示,则a ω可取A .2πB .πC .2πD .4π【答案】B【解析】()f x 为[]3,3-上的偶函数,而x y a π=为[]3,3-上的偶函数,故()()sin g x x ωϕ=+为[]3,3-上的偶函数,所以,2k k Z πϕπ=+∈. 因为0ϕπ<<,故2ϕπ=,()()sin cos 2x xx x f x a a πωωππ⎛⎫+ ⎪⎝⎭==. 因()10f =,故cos 0ω=,所以2k πωπ=+,k ∈N .因()02f =,故0cos 012a a π==,所以12a =. 综上()21k aωπ=+,k ∈N ,故选B .类型四、实际情景提取图像例4-1.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线12,l l 之间,12l l //,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于点E 、D ,设弧FG 的长为x (0)x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是()A .B .C .D .【答案】D【解析】依题意,正ABC 的高为1,则其边长BC =,如图,连接OF ,OG ,过O 作ON ⊥l 1于N ,交l 于点M ,过E 作EH ⊥l 1于H ,因OF =1,弧FG 的长为x (0)x π<<,则F O G x ∠=,又12////l l l ,即有1122FON FOG x ∠=∠=,于是得cos cos 2xOM OF FON =⋅∠=,1cos 2x EH MN ON OM ==-=-,2cos )sin 6032EH xEB ==-,因此,2cos )22x xy EB BC CD EB BC =++=+=-=,即()2xf x=,0πx<<,显然()f x在(0,)π上单调递增,且图象是曲线,排除选项A,B,而2312432fππ⎛⎫==<=⎪⎝⎭⎭,C选项不满足,D选项符合要求,所以函数()y f x=的图像大致是选项D.故选:D练.已知P是圆22(1)1x y-+=上异于坐标原点O的任意一点,直线OP的倾斜角为θ,若||OP d=,则函数()d fθ=的大致图象是A.B.C.D.【答案】D【解析】π2cos,[0,)2π2cos,(,π)2dθθθθ⎧∈⎪⎪=⎨⎪-∈⎪⎩,所以对应图象是D练。
一次函数图像复习专题
-1
0M
3
x
3.已知直线y=kx+12和两坐标轴相交所围
成的三角形的面积为24,求k的值 y
解:由图象知,AO=12,根据面积 得到,BO=4即B点坐标为(4,0)
A(0,12)
OB
x
所以k= -3 B的坐标还有可能为(-4,0)
所以k= 3
y = 2x﹣4 与y 轴交于( 0 , - 4 )
11
o
x
-2 ●(1, ﹣2)
∴ y = 2x﹣4
y = ﹣3x + 1与y 轴交于( 0 , 1)
-4
S△=
5 2
例4、某医药研究所开发了一种新药,在试验药效时发现,如果
成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达 每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液 中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间 x(小时)的变化如图所示,当成人按规定剂量服药后,
解:(1)由题意: 2=﹣(m+1)+2m﹣6
(3) 由题意得
y 2x 4
y
3x
1
y = ﹣3 x + 1
y
y = 2x﹣4
解得 m = 9
∴ y = 10x+12
x1
解得:
y
2
(2) 由题意,m +1= 2 ∴ 这两直线的交点是(1 ,﹣2)
解得 m = 1
3)乙从出发起,经过 h与甲相遇;
A
4)甲的速度为 的速度为
km/h , 乙骑车 km/h
5)甲行走的路程s(千米)与时间t(小时) 之间的函数关系式是
高一数学函数图像专题(含详解)
高一数学函数图像专题(含详解)一、函数的概念函数是一种数学关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
在数学中,我们用函数来描述数量之间的关系。
二、函数图像的绘制为了更好地理解函数的性质和规律,我们可以通过绘制函数图像来进行观察和分析。
绘制函数图像时,我们需要确定函数的定义域和值域,并选取一些代表性的输入值,计算出对应的输出值,然后将这些点连接起来,即可得到函数图像。
三、常见函数图像1.直线函数图像:直线函数的图像通常是一条直线,可以通过确定直线的斜率和截距来确定。
2.平方函数图像:平方函数的图像是一条抛物线,开口的方向由平方项的系数决定,开口向上为正,开口向下为负。
3.正弦函数图像:正弦函数的图像是一条波浪形曲线,表现周期性的特点。
4.指数函数图像:指数函数的图像呈现出递增或递减的趋势,斜率随着自变量的增大而增大或减小。
5.对数函数图像:对数函数的图像通常是一条曲线,呈现出随着自变量的增大,函数值增长趋缓的特点。
四、函数图像的性质1.奇偶性:函数图像关于原点对称的称为奇函数,图像关于y轴对称的称为偶函数。
2.单调性:函数图像上的点随着自变量的增大或减小而具有递增或递减的趋势。
3.零点与极值点:函数图像与x轴相交的点称为零点,图像上的极值点包括最大值和最小值。
五、总结函数图像是研究函数性质和规律的重要工具。
通过绘制函数图像,我们可以直观地了解函数的特点,并进行更深入的分析和推理。
在研究函数图像时,需要注意函数的定义域、值域以及一些常见函数的特点和性质。
这对于理解和应用函数概念都非常重要。
以上是关于高一数学函数图像专题的详细解释和内容总结,希望对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A、 2 sin x
C、 sin 2 x
B、 2 cos x
D、 cos 2 x
2
点的任意一点,直线OP的倾斜角为 , 若 的大致图 d,则函数 f OP d) 像是( D
名题赏析: 2 2 1.已知P是圆 x 1 y 1 上异于坐标原
x 2 2 x, 0 2、已知函数 f ( x) ,若 ln( x 1), x>0 f ( x) ax ,则 的取值范围是(D)
3
x
函数图像的平移变换规律: 本质上是函数图像上的每个点的平移
y f ( x)
y f ( x)
y f ( x a)
y f ( x) k
a0
向左平移 向右平移
a0
k k
0 0
a 个单位 向上平移 k 个单位
a 个单位 左右平移
左加右减
上下平移 向下平移 k 个单位 上加下减
1 A、 ,16ln 2 e
ln 2 ,16 ln 2 C、 2
0
0
1 B、 e ,
ln 2 ,16 ln 2 D、 2
0
0
4、函数 y
f ( x) 向左平移 4个单位, 再向上平移1个单位后得到的函数对应 表达式为 y 2 cos2 x ,则函数 f ( x) 的表达式可以是(C )
y cos x
正切函数 y tan x
y tan x
2
2
二、函数图象的三大变换
平移
对称
伸缩
问题1:如何由 f ( x) x 2 4x 3 的图象得到 y 下列各函数的图象?
f ( x) x 2 4x 3 ( x 2) 2 1
y=f(x)+1
0 1 -1 -2 -3
x
-2
-1
0 1 -1 -2 -3
x
y 2
x
y 2 x
关于y轴对称
函数图像的对称变换规律:
关于x轴对称
关于原点对称
2、y f ( x) 关于x轴对称 y f ( x) (x,y)换成(x,-y) 3、y f ( x) 关于原点对称
关于y轴对称 y f ( x) 1、 y f ( x) (x,y)换成(-x,y)
2 2
4b -12ac 4(b -3ac)
a>0 Δ >0 Δ ≤0 Δ >0 a<
x x1 x2
x
x0
3、幂函数 y x y
y x2
1
(是常数)
y x3
y x
(1,1)
y
x
1 y x
o
1
x
4、指数函数 y a
1 x y( ) a
a
A C
, 0
B D
, 1
2, 1
2, 0
3.已知函数
ln x, f ( x) 2 ln x,
1 x 4 1 ,若函数 x 1 4
1 , 4 4
F ( x) f ( x) kx 在区间
上恰有一
个零点,则k的取值范围为(A )
-4 -3 -2 -1 0 1 -1 -2 -3
1
x
-4 -3 -2
-1
y log2
x
y log2
y log2
x
0 1 -1 -2 -3
x
y log2
x
log2 x ( x 0) x log2 ( x 0)
y log2
x
x
函数图像的翻折变换规律:
log2 x ( x 1) x log2 (0 x 1)
y=f(x-1)
(1) f ( x 1) ( x 3) 2 1 (2) f ( x 1) ( x 1) 2 1
(3) f ( x) 1 ( x 2) 2
y=f(x+1)
(4) f ( x) 1 ( x 2) 2
2
-1 O
y=f(x)-1 1 2
由 y f ( x)
保留y轴右侧图像,再将y轴 右方图像对称翻折到y轴左方
y f ( x)
由 y f ( x)
保留x轴上方图像,再将x轴
下方图像对称翻折到x轴上方
y f ( x)
五、适应练习Ⅱ 分别作出下列函数的图像:
1、
y x 4x 3
2
2、
y x 4 x 3
x
(a 0, a 1)
ya
x
(a 1)
(0,1)
5、对数函数 y loga x
(a 0, a 1)
y log a x
(1,0)
(a 1)
y log 1 x
a
6、三角函数
正弦函数 y sin x
y sin x
2
2
余弦函数 y cos x
一、常见的基本函数图象
1、一次函数图象 y ax b
y
递减的 一次函数
递增的 一次函数
o
x
常数函数
2、二次函数的一般式:y=ax2+bx+c(a≠0)
y
a>0
a<0
y
0
x
0
x
X=
b 2a
X=
b 2a
3、三次函数f(x)=ax3+bx2+cx+d(a≠0)的 图象 ' 2
f ( x) 3ax 2bx c
二、问题探究Ⅰ
在同一坐标系下作出函数
y
4 3
2 2 y 2,的图像, y 2 与yy
x
4 3 2 1
x xx
观察函数图像的特征,你能得出什么结论?
y2
x
x
y
y2
2
x
y
4 3 2 1
y 2x
2
y 2 x
-2 -1
2 1 0 1 -1 -2 -3 2 -2 -1
y f ( x)
(x,y)换成(-x,-y)
四、问题探究Ⅱ
画出函数
x yy log log22 的图像,并指出它与
x
y log2
y
4 3 2 1
x
的图像有何联系?
x
y log2
x
y
4 3 2
y log2
2 3 4
x
y log2
1,0
2 3 4
1,0 1,0