高中数学计算题专项练习
2024高考数学计算题型训练
专题1 集合的运算 1专题2 解一元二次不等式 7专题3 复数的四则运算 14专题4 函数定义域的相关计算 20专题5 指数与对数运算 26专题6 数列求和的运算 36专题7 导数计算 43专题8 向量运算的坐标表示 50专题9 诱导公式的化简求值 55专题10 三角恒等变换 63专题11 排列组合数的计算 67专题12 二项式定理的相关计算 72专题1集合的运算1已知集合A =x ∣x 2-4x ≤0,x ∈Z ,B ={x ∣-1≤x <4},则A ∩B =()A.[-1,4] B.[0,4) C.{0,1,2,3,4}D.{0,1,2,3}2设全集U =-2,-1,0,1,2 ,集合A =x ∈N y =lg 2-x +1x +2,则∁U A =()A.-2,-1,2 B.-2,2 C.∅D.-2,-1,0,2 3已知集合A =0,1,a 2 ,B =0,2-a ,A ∪B =A ,则a =()A.1或-2 B.-2 C.-1或2D.24已知集合A =x |x 2<2x ,集合B =x log 2x -1 <1 ,则A ∩B =()A.x 0<x <3 B.x 1<x <2 C.x 2≤x <3D.x 0<x <2 5已知集合A =x x 2-x -6<0 ,B =x 2x +3>0 ,则A ∩B =()A.-2,-32 B.32,3 C.-32,3 D.-32,2 6已知集合A ={x |-2≤x <7},B =x 2x≥1 ,则A ∩∁R B 为()A.{x |-2≤x <7} B.{x |-2≤x <0或2<x <7}C.{x |-2≤x ≤0或2<x <7}D.{x |-2≤x <0或2≤x <7}7已知集合A ={x ∣-2<x ≤3,x ∈R },B =0,2,4,6 ,则A ∩B =.计算专题训练1集合的运算临渊羡鱼不如退而结网8已知集合A =1,3 ,B =2,+∞ ,则A ∩B =.9已知A =x x -1x ≤0 ,B =x x ≥1 ,则A ∩B =.10已知集合A =x x 2-x -2≤0 ,B =x x -1≤2 ,则A ∩B =11设全集U =R ,集合A =x y =1-lg 1-2x ,B =x ∈Z x 2+2x -3≤0 ,则B ∩∁U A =12若集合A =x x -x >0 ,B =x x >2 ,则A ∩∁R B =13已知集合A =x x <3 ,B =x y =2-x ,则A ∪B =.14设集合A ={1,3,5,7,9},B ={x ∣2≤x ≤5},则A ∩B =.15已知集合A =x ∈N x ≤2 ,B =y |y =e 2x -x 2,x ∈A ,则A ∩∁R B =16设集合U =x ∈N x ≤6 ,M =1,2,3,5 ,N =2,3,4 ,则∁U M ∪N =.17已知集合A ={1,2,3},B ={x |-3x +a =0},若A ∩B ≠∅,则a 的值为.18已知集合A =x ∣x 2-6x +8≤0 ,B =x x -3 <2,x ∈Z ,则A ∩B =.19已知集合A =x |x >1,x ∈Z ,B =x |0<x <4 ,则A ∩B =.20已知集合A ={1,2,3},B ={x |x <2},则A ∩B =.21已知全集U =R ,集合A =x y =lg x ,集合B =y y =x +1 ,那么A ∩∁U B =.22若集合A =x |3x 2-14x +16≤0 ,B =x 3x -7x >0 ,则A ∩B =.23已知全集U =R ,集合A =x 1+x >2x +4 ,则∁U A =.24已知集合A ={x |x ≤1},集合B ={x |x ≥-2},则A ∩B =.25已知集合A =x 1<x <3 ,B =x 2<x <4 ,则A ∩B =.26设集合A =x 2+x ≥4 ,集合B =x -1≤x ≤5 ,则A ∩B =.27函数y =2x +1+log 22-x 的定义域为.计算专题训练1集合的运算临渊羡鱼不如退而结网28已知集合A =x |-2≤x ≤5 ,集合B =x |m +1≤x ≤2m -1,m ∈R ,若A ∩B =B ,则实数m 的取值范围是.29已知集合A =x -2<x <1 ,B =x x >-1 ,则A ∪B =.30设集合M =1,2,3,4,5 ,集合N =2,4,6 ,集合T =4,5,6 ,则M ∩T ∪N =.31集合M =y ∣y =-x 2+2 ,N ={x ∣y =3x -1},则M ∩N =.32已知集合A ={-1,0,1},B =[0,+∞),则A ∩B =.33若A =1,a ,B =a 2 ,且A ∩B =B ,则实数a 的值为.34设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则∁U A ∩B =.35定义M -N ={x x ∈M 且x ∉N },若集合A =1,3,5,6,8 ,B =2,3,4,6 ,A -B =.36已知全集U =R ,A =x 2x -1x +1≥1 ,则∁U A =.37设集合A =x x +1≤0 ,B =x lg x 2-2 =lg x ,则A ∪B =.38已知A =y y =3x ,B =x y =ln (2-x ) ,则A ∩B =.39设集合A =x ||2x -1|≤3 ,B =x y =lg x -1 ,则A ∩B =.40设全集U =R ,若集合A ={0,1,2},B ={x |-1<x <2},A ∩(∁U B )=.41已知集合A =x x >1 ,B =x -1≤x ≤3 ,则A ∩B =;42若集合A ={x ∣1≤x ≤3,x ∈R },B =Z ,则A ∩B =.43已知全集为R ,A =x log 2x +1 <2 ,则∁R A =.44已知集合A =x ∣x 2+4x +3=0 ,B =x ∣x 2=1 ,则A ∩B =.45已知集合A =x x x -1≥0,x ∈R ,B =y y =x 2+1,x ∈R ,则A ∩B =.46集合A ={x |0≤x <3且x ∈Z },B ={x |x 2≤9且x ∈Z },则A ∩B =.47已知全集U =R ,A =x x -3x ≤0 ,B ={x |x >2},则A ∩∁U B =.计算专题训练1集合的运算临渊羡鱼不如退而结网48已知集合M ={x ||x -1|≤3},N =x |3x ≥1 ,则M ∩N =.(用区间作答)49已知集合A =x x 2-3x -18≤0 ,B =x y =ln x -2 ,则A ∩B =.50已知集合A =x -2<x <0 ,集合B =x 0≤x ≤1 ,则A ∪B =.51已知集合A ={-1,0,1,2},B ={x ∈R ||3x -2∣≤4},则A ∪B =.52已知集合A ={x ∣x 2-x -2<0},B =x ∣y =11-x ,则A ∩B =.53已知全集U ={x ∈Z |-1≤x ≤3},集合A ={x ∈Z |0≤x ≤3},则∁U A =54若集合A =0,1,2,3 ,B =x x <2 ,则A ∩B =.专题2解一元二次不等式1解不等式(1)-x2+3x+40>0(2)3x+1<12解不等式:(1)-x2+x≥3x+1;(2)x2-2x>2x2+2.3解一元二次不等式:(1)4x2+4x+1>0;(2)2x2-x-3≤0.4解下列不等式:(1)x-13+2<x-3<2x+32;(2)3x+4-x2<0.5求解下列不等式的解集:(1)-x2+4x+5<0;(2)2x2-5x+2≤0;(3)4x-1-7≤0;(4)x+1x-52x-2<0;(5)4-x2x+3≥1. 6解下列不等式:(1)x2-5x+6<0;(2)-x2+2x+3<0;(3)3x+13-x >-1;(4)x+1x-3≥0.7解下列不等式(1)log2x2-2≤1;(2)x-1x-4≥0;(3)-3x2-2x+8≥0;计算专题训练1解一元二次不等式临渊羡鱼不如退而结网8解下列关于x的不等式:(1)-x2+2x+4>0;(2)2x-3x+1≥1 9求下列不等式的解集:(1)4x+3x-1>5;(2)2x-3<3x-210解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)x+5x-3≤12;(4)x-1x-2<x2x-5+311解下列不等式:(1)x2<3x+4;(2)2+x-x2≥0;(3)x9-x>0.12求下列不等式的解集:(1)x2-3x-10>0;(2)-3x2+5x-4>013解下列不等式:(1)2+3x-2x2>0;(2)x2-2x+3>0.14解不等式:(1)x2+x-6≤0;(2)6-2x2-x<0.15解下列不等式:(1)2+3x-2x2>0;(2)x3-x≤x x+2-1.16解下列不等式.(1)x2-5x+6>0;(2)-3x2+5x-2>0.17解下列不等式:(1)2x2+x-3>0;(2)-4x2+4x-1≥0;(3)-4x2+3x-2<0 18求下列不等式的解集:(1)-x2+3x+2<6x-2;(2)2x+1x-3>3x2+219解下列不等式:(1)2x-1x+2≤0;(2)|1-2x|>3.20解下列关于x的不等式:(1)-x2+4x-4<0;(2)1-xx-5>021(1)4x-2x-2<0;(2)log2x2-5log2x+6≥0.22求下列不等式的解集:(1)-3x2-2x+8≥0;(2)3x2x+1≤1.23解下列不等式的解集:(1)x2-4x+4>0;(2)-3x2+5x-2>0;(3)2x2+7x+3>0;(4)2x2<x-1.计算专题训练1解一元二次不等式临渊羡鱼不如退而结网24解下列不等式:(1)4x 2-4x +1>0;(2)x 2-6x +9≤0;(3)-x 2+2x -3>0;(4)(x +2)(x -3)<6.25解下列不等式.(1)-2x 2+3x -1<0;(2)x 2+x +2<0.26求下列不等式的解集.(1)-2x 2+5x -3≤0;(2)x +4x +1≥227解下列不等式:(1)x 2+x -2<0;(2)x +2 3-x ≤028解下列不等式(1)-2x 2+x +3<0;(2)2x -13-4x≥1;(3)x -2 x -1 <x .29求下列不等式的解集(1)x -1x>2;(2)-x 2+5x +6x -1≥0.30解下列不等式(组)(1)-2<1-3x ≤4;(2)1-2x ≤52x -3 >1;(3)2x +5>5x -1-x 2+23x ≤331解关于x 的不等式.(1)2x 2-x -6>0;(2)-2x 2+x +3≥0;(3)x 2-3x -2<0.32解下列不等式:(1)-2x2+x+1<0;(2)x-2x-1≥2.33求下列不等式的解集:(1)2x 2-5x+3<0;(2)3x+12-x<0.34求下列不等式的解集:(1)(x+1)(x-4)>0;(2)-x2+4x-4<035解下列关于x的不等式:(1)x2-3x+2>0;(2)x2+x+1>0.36利用函数解下列不等式:(1)2x2+7x+3>0;(2)x2-4x-5≤0;(3)-12x2+3x -5>0;(4)x-3x+7<0;(5)x-43-x≥137解关于x的不等式:(1)x2-14x+45≤0;(2)2x+1x-1≤1 38求下列不等式和不等式组的解集(1)2x-1x+3≤1(2)x x+2>0x2<1计算专题训练1解一元二次不等式临渊羡鱼不如退而结网39解不等式:(1)x2-2x-3>0;(2)x-12x<140解不等式-x2+2x+3<0.41解下列不等式(1)2x2-x<4;(2)2x-13x+1>142解下列不等式5-xx+3>043解下列不等式:(1)3x2+5x-2>0;(2)-2x2x-1>1.44求下列不等式的解集(1)x-1x-2<0;(2)x2-5x+4≤0;(3)1-2x≥3;(4)2x+1x-3>045求下列不等式的解集:(1)x2-5x+6>0;(2)-12x2+3x-5>0;(3)2x+3x-1≥146解下列关于x的不等式:(1)x2-3x<10;(2)1-2xx+2≥047解下列不等式(1)1x <4;(2)2x-1<7.48解下列不等式:(1)x-2x+1<4;(2)x-2x +1≥0.49解下列不等式;(1)-x2+2x-3>0;(2)x-21-3x>2;(3)x+1x-2≥3计算专题训练1解一元二次不等式临渊羡鱼不如退而结网专题3复数的四则运算1i3+i4的共轭复数为()A.1+iB.1-iC.-1+iD.-1-i2若z =2i+i21+i,则z=()A.12+32i B.12-32i C.-12+32i D.-12-32i3已知z+i=z i,则z =()A.22B.0 C.12D.14已知iz=1+i(其中i为虚数单位),若z 是z的共轭复数,则z-z =()A.-1B.1C.-iD.i554-3i=()A.-4+3iB.4+3iC.-45+35i D.45+35i6若复数z满足i⋅z=4+3i,则z =()A.2B.5C.3D.57若a 为实数,且7+a i3+i=2-i ,则a =()A.2B.1C.-1D.-28(1+3i )2=()A.2+23iB.2-23iC.-2+23iD.-2-23i9已知复数z =3+i1+2i+2i ,则z =()A.1B.2C.2D.2210z 1-i =1-3i ,则z=()A.1+iB.1-iC.2+2iD.2-2i11设z =11+i,则z -z =()A.-iB.iC.1D.012已知i 为虚数单位,复数z =1-3i2+i ,则z =()A.2B.3C.2D.513已知i 为虚数单位,复数z 满足(1+3i )z=3+i ,则z =()A.-iB.3-iC.32-12i D.32+12i 计算专题训练3复数的四则运算临渊羡鱼不如退而结网14若复数z=4-3ii,则z =()A.25B.20C.10D.515设复数z满足z1-i=4,则z =()A.22B.1C.2D.216已知复数z=1-i2+a ia∈R在复平面对应的点在实轴上,则a=()A.12B.-12C.2D.-217已知复数z满足(z-1)(2-3i)=3+2i,则z=()A.0B.iC.-1+iD.1+i18若复数z满足i⋅z =1-2i,则z=()A.-2-iB.-2+iC.2+iD.2-i19设i为虚数单位,若复数z满足zi =3-i1-i,则z的虚部为()A.-2B.-1C.1D.220已知复数z满足(2+i)z=2-4i,则z的虚部为()A.-2iB.2iC.-2D.221已知z1-2i=i,i为虚数单位,则z=()A.-2+iB.2-iC.2+iD.-2-i22已知复数z 满足1-i z -2i =2i ,则z 的虚部为()A.-1B.-iC.3D.3i23已知复数z =a +i a ∈R 满足z ⋅z=5,则a 的值为()A.6B.2C.±6D.±224已知复数z 是方程x 2-2x +2=0的一个根,则z =()A.1B.2C.2D.325若复数z =a -2i2+ia ∈R 是纯虚数,则a =()A.-2B.2C.-1D.126已知复数z 满足1+i z =3-i ,则复数z =()A.2B.5C.22D.1027已知复数z =32+12i ,则z 3 =()A.34B.32C.1D.7228已知复数z 满足z⋅i =4+3i ,则z =.293+ii=计算专题训练3复数的四则运算临渊羡鱼不如退而结网30复数z 满足2z +z=6-i (i 是虚数单位),则z 的虚部为.31设复数z 满足1+i z =2i (i 为虚数单位),则z =.32复数z 1,z 2在复平面上对应的点分别为Z 12,1 ,Z 21,-2 ,则z 1+z 2=.33若复数z =21+i(i 为虚数单位),则z -i =.34若复数z 满足z (1-i )=1+2i (i 是虚数单位),则复数z =.35若z 1+2i =1+3i ,则z 1+i =36若复数z 满足2z-1=3+6i (其中i 是虚数单位),则z =.37已知复数i z2+i=-1+2i ,则z 的虚部为.38已知复数z 满足z 2+z +1=0,则z ⋅z=.39已知复数z 满足z 1-i =i (i 为虚数单位),则z 的虚部为.40在复平面内,复数z所对应的点为(1,1),则z⋅z =.41已知复数z满足z1+2i=|4-3i|(其中i为虚数单位),则复数z的共轭复数为.42复数1+2i3+i3的值是.计算专题训练3复数的四则运算临渊羡鱼不如退而结网专题4函数定义域的相关计算1函数f (x )=x -1x 2+1的定义域为.2函数f x =tan x -1+lg 1-x 2 的定义域为.3函数f x =13-x +ln x -1 的定义域为.4函数y =5-5x 的定义域是.(结果写成集合或区间)5求函数f (x )=1-2cos x +ln sin x -22 的定义域为.6函数f x =2x 2-4x +4+x 2-2x 的最小值为.7求函数y =lg sin x -22 +1-2cos x 的定义域为.8函数y =tan x -1tan x +π6 的定义域为.9函数y =3-1x 的定义域为.10函数y =12+cos x 的定义域为.11函数y =1-3x 2-2x -3的定义域为.12函数y =x +1 0x -x +1-6x 2+x -2的定义域是.13若y =x 2-9+9-x 2x -2+1,则3x +4y =.14函数y =lgsin x +12-cos x 的定义域是.15函数y =1log 52x -1 的定义域是.16函数y =1x -1+(x -3)0的定义域是.17函数f (x )=11-x 2的定义域为.计算专题训练4定义域的相关计算临渊羡鱼不如退而结网18函数f (x )=x +1x 的定义域是.19已知函数f x =16-x 2log 3(2-x )的定义域为.20函数f x =3-3-x +ln x 的定义域为.21函数f (x )=3-x 的定义域是.22函数y =x -1的定义域为.23函数f x =1e x -2+lg (2x -x 2)的定义域为.24函数y =12 x -1的定义域为.25函数y =lg (-x )+2x 2-1的定义域为.26函数f x =lg x -1 x -2的定义域为.27函数f x =3-xx+2的定义域是.28函数f(x)=8-2x+log3x-3的定义域为.29函数f(x)=ln(2x-1)的定义域为.30函数f x =1-x+1x的定义域为.31函数y=lg x+12-x的定义域是.32函数y=1x-1的定义域为.33函数f x =lg x +2+12-x的定义域为.34函数y=lg3x-1的定义域是.35函数y=4-x2+1lg2x-3的定义域为.计算专题训练4定义域的相关计算临渊羡鱼不如退而结网36函数f x =4-3x-x22x+1的定义域为.37函数y=2ln2-x的定义域是.38函数y=2x+1+log22-x的定义域为.39已知函数f x =x-2·x+5的定义域是.40函数f x =x-2+1x-3的定义域是.41函数f x =log22-x+9-x2的定义域为.42函数f x =1-2x+1x+3的定义域为.43函数f x =4-x2+1x-1的定义域为.44函数f x =x-1+1x-2的定义域为.45函数f(x)=lg4-x2+1-tan x的定义域是.46已知函数y=f2x-1的定义域为-1,2,则函数y=f x+1的定义域为.47已知函数f x =lg ax2-ax+1的定义域是R,则实数a的取值范围是.48函数f x =log3x-2+6-x的定义域为.49函数y=x+1+1-x2-x+2的定义域是.50函数y=xx-1-log24-x2的定义域是.计算专题训练4定义域的相关计算临渊羡鱼不如退而结网专题5指数与对数运算1求值:(1)23-2+5-π 0-3116 0.5;(2)e 2ln3-log 149⋅log 278+lg4+lg25.2计算(1)823-214-12+π0+-23 2(2)log 218-lg2-lg5+2log 233求值:(1)7+43 0+3235-2×18 -23+32×4-13 -1;(2)e 2ln3-log 49⋅log 278+lg4+lg25.4计算:(1)lg2-lg14+3lg5-log 32×log 49;(2)lg 1100-log 23×log 52×log 35+ln e +21+log 23.5求下列各式的值:(1)0.027 23+27125-13-279 0.5;(2)log 535-2log 573+log 57-log 51.8.6计算:(1)lg8+lg125-lg2-lg5lg 10×lg0.1;(2)log 62 2+log 63 2+3log 62×log 6318-13log 62 7计算或化简下列各式:(1)22 23-61412+ln e +3⋅33⋅63(2)(log 23+log 89)(log 34+log 98+log 32)+(lg2)2+lg20×lg58计算下列各式的值:(1)823--780+43-π 4+2-2;(2)log 327+lg 1100+ln e +2log 23.9计算下列各式的值:(1)2713-0.25+12 -2-16 0;(2)2log 32-log 332+log 38.10计算下列两个小题:(1)e ln3+2lg 2+lg15+lg 13;(2)80.25×42+(2×33)6+π0.11求下列式子的值:(1)21412+9.6 0--8 -23-31.5 6.(2)lg25+2lg2-log 316⋅log 43+e ln3.计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网12计算与化简:(1)log 427×log 58×log 325(2)a 12b 13 ⋅-2-2a 23b 12 ÷8-23a 76b -16 .(3)135 0+2-2×9412-(0.01)0.5(4)2lg5+23lg8+lg5⋅lg20+(lg2)2.13(1)214 12-(-9.6)0-338 23+(1.5)2;(2)log 535-2log 573+log 57-log 595.14化简求值:(1)8 -23-34×213+350;(2)log 327+lg25+lg4+7log 72.15化简或求值:(1)279 0.5+0.1-2-π0+13;(2)lg14-2lg 73+lg7-lg18;(3)3-2 2+3-1 2.16计算:(1)16912-3-1 0-0.25 -1+6-3 6;(2)lg4+2lg5+log 25×log 58+lg10.17计算下列各式的值:(1)6423+13-2-2e -π 0+413×512 6;(2)log 327-lg2-lg5-log 516⋅log 25+e ln2.18计算下列各题:(1)8116 0.5+-1 -1÷0.75-2+6427-23;(2)log 327+lg25+lg4+7log 72+-9.8 0.19化简求值(1)27813+(0.002)-12-10(5-2)-1;(2)1-log 63 2+log 62×log 618 ÷log 64.20(1)计算:21412-(-2.5)0-338 23+23 -2;(2)已知a x =log 327+lg25+2lg2-7log 72,求a 3x +a -3x a x +a -x的值.21求值:(1)0.027-13+25912-2-1 0;(2)log 227×log 38-2log 510-log 0.24.22求值:(1)532+823+π-4 0+49-12;(2)log 354-log 32+log 23⋅log 34.23计算下列式子(1)log 327+lg25+lg4+7log 72+-9.8 0(2)lg8+lg125lg 10×lg0.1-log 23×log 34计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网24计算:(1)3164--3220--8 13+16-34;(2)lg2+lg5+log 234-log 26.25计算:(1)3-4 3-3⋅2723+422 2+2;(2)43lg2+log 1002 +lg5 2-lg2 2.26求值:(1)0.027-13+17 0-116;(2)lg20-lg4+lg 15+e ln2.27求值:(1)-2764-23+4-29 4+3-2 20223+2 2022;(2)log 49×log 2764+3log 916+lg2×lg5+lg 21+20220 +lg5.28计算(1)2log 23-lg100+2-1 lg1(2)214 -0.5+43-π 4+8 2329计算下列各式的值:(1)412+327-18114;(2)2log 32-log 312+log 25×log 58.30求下列各式的值:(1)0.064-13--450-2-4⋅3 4(2)lg25+23lg8-log 227×log 32+2log 23.31求解下列问题:(1)(2-1)0+6427-23+(8)-43;(2)lg 1100-ln e +2log 23-log 427⋅log 98.32计算下列各式的值:(1)log 33+lg5+lg2+2log 22.(2)cos20°sin50°-cos50°cos70°.33计算下列各式,写出演算过程(1)214 12+-2 2-827 23+32-2;(2)lg4+2lg5+2log 510-log 520-ln e -log 25⋅log 58.34化简求值:(1)0.252×0.5-4-338-23-(3-π)0+0.064-13+4(-2)4;(2)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e .35求值:(1)94 12--9.3 0-23-1+log 24(2)lg2+lg5+lg1+5log 52计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网36化简求值:(1)(2-3)2+0.512+(-4)02;(2)2lg5-log 322+1lg4 -1+5log 0.25.37计算下列各式的值:(1)54 -13×-23 0+913×33-45 23;(2)log 34273+lg25-3log 3314+lg438化简求值:(1)49-12+lg2+lg5-2log 31;(2)sin 76π+cos 113π+tan 134π.39化简或求值(1)(0.064)-13--78 0+811614+|-0.1|(2)lg14-2lg 73+lg7-lg18(3)(3-π)2+3(-2)340计算求值(1)log 827×log 96÷log 166+e 2ln3;(2)log 48-log 193-log 2441计算:(1)0.01-12-3215-π+1 0+3-2 3;(2)log 28+lg2+lg5-3log 32.42计算:(1)214 12-827-13+-32 4;(2)lg2+lg2⋅lg5+(lg5)2.43化简求值:(1)3-54 3+827-23+5-2 -1+43-π 4;(2)1+12lg9-lg2401-23lg27+lg 365+9log 32.44求值:(1)332×13-(-8)23+(2-π)0;(2)(lg5)2+(lg2)2-log 827log 49+lg5×lg log 216 .45计算:(1)lg25+2lg2+e ln2(2)82723-949 -0.5+0.125 -1346(1)求值:(3)2+1634+(3-1)0;(2)求值:lg25+lg4+5log 52+log 327.47求值:(1)18-13+53×345-π-3 0;(2)log 28+log 27×log 7log 381 .计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网48(1)8116 14+316 32+120220-e ln 32(2)log 34+log 132 log 43+log 163 49计算:(1)(-1)0+32 -2⋅27823+[(-3)2]12;(2)2lg5+lg4-log 23⋅log 34+log 327.50计算下列各式的值:(1)e 2ln2-lg 12-lg20;(2)lg25+23lg8-log 227×log 32.51化简下列各式:(1)sin 7π2+cos 5π2+cos (-5π)+tan π4;(2)log 20.25+ln e +24⋅log 23+lg4+2⋅lg5-4(-2)4.52计算下列各式的值:(1)823--9.6 0-278 -23+32-2;(2)log 327+lg25+lg4+7log 72+(-9.8)0.53计算求值:(1)1200-12-102-1 +103-2 0+-8 43;(2)lg2×lg2500+8×lg 5 2+2log 49+log 29⋅log 34.54计算下列各式的值:(1)23 -3+2-3 0-21432(2)2log 34-log 33227+log 32+5log 5355求下列各式的值:(1)235 0+2-2×214 -12-42×80.25;(2)lg 1100+log 139-log 5125-log 8132.56化简求值:(1)ab -1 3a 3b -3 12a >0,b >0 ;(2)lg5+lg 22+lg2lg5+log 25×log 254+7log 75.57计算:(1)827-23-1614+π0-3125;(2)2lg4+lg 58+log 25⋅log 54+e 3ln2.58计算:(1)5log 53-log 311⋅log 1127+log 82+log 48;(2)若3m -3-m =23,求9m +9-m 的值.计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网专题6数列求和的运算1等比数列a n 的公比为2,且a 2,a 3+2,a 4成等差数列.(1)求数列a n 的通项公式;(2)若b n =log 2a n ⋅a n +1 +a n ,求数列b n 的前n 项和T n .2正项数列a n 的前n 项和为S n ,已知2a n S n =a 2n +1.(1)求证:数列S 2n 为等差数列,并求出S n ,a n ;(2)若b n =(-1)n a n,求数列b n 的前2023项和T 2023.3已知数列a n 为:1,1,2,1,1,2,3,1,1,2,1,1,2,3,4⋯.即先取a 1=1,接着复制该项粘贴在后面作为a 2,并添加后继数2作为a 3;再复制所有项1,1,2并粘贴在后面作为a 4,a 5,a 6,并添加后继数3作为a 7,⋯依次继续下去.记b n 表示数列a n 中n 首次出现时对应的项数.(1)求数列b n 的通项公式;(2)求a 1+a 2+a 3+⋯+a 63.4已知等差数列a n 的前n 项和为S n ,a 5=5,S 5=15,(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前2023项和.5已知a n 是首项为2,公差为3的等差数列,数列b n 满足b 1=4,b n +1=3b n -2n +1.(1)证明b n -n 是等比数列,并求a n ,b n 的通项公式;(2)若数列a n 与b n 中有公共项,即存在k ,m ∈N *,使得a k =b m 成立.按照从小到大的顺序将这些公共项排列,得到一个新的数列,记作c n ,求c 1+c 2+⋯+c n .6设数列a n 的前n 项和为S n ,已知S n +1=2a n n ∈N * .(1)求a n 的通项公式;(2)设b n =a n ,n =2k -1n ,n =2k 且k ∈N *,求数列b n 的前n 项和为T n .7已知数列a n 满足:a 1=2,且对任意的n ∈N *,a n +1=a n 2n,n 是奇数,2n +1a n +2,n 是偶数.(1)求a 2,a 3的值,并证明数列a 2n -1+23 是等比数列;(2)设b n =a 2n -1n ∈N * ,求数列b n 的前n 项和T n .8已知正项数列a n 的前n 项和为T n ,a 1=2且对任意n ≥2,a n T n ,a 1,a n T n -1成等差数列,又正项等比数列b n 的前n 项和为S n ,S 2=43,S 3=139.(1)求数列a n 和b n 的通项公式;(2)若数列c n 满足c n =T 2n ⋅b n ,是否存在正整数n ,使c 1+c 2+⋯+c n >9.若存在,求出n 的最大值;若不存在,请说明理由.9已知各项均为正数的等比数列a n ,其前n 项和为S n ,满足2S n =a n +2-6,(1)求数列a n 的通项公式;(2)记b m 为数列S n 在区间a m ,a m +2 中最大的项,求数列b n 的前n 项和T n .10已知等差数列a n 的公差d >0,且满足a 1=1,a 1,a 2,a 4成等比数列.(1)求数列a n 的通项公式;(2)若数列b n 满足b n =2a n,n 为奇数1a n a n +2,n 为偶数 求数列b n 的前2n 项的和T 2n .计算专题训练6数列求和计算临渊羡鱼不如退而结网11设S n 是数列a n 的前n 项和,已知a 3=0,a n +1+(-1)n S n =2n .(1)求a 1,a 2;(2)令b n =a n +1+2a n ,求b 2+b 4+b 6+⋯+b 2n .12已知a n 是递增的等差数列,b n 是等比数列,且a 1=1,b 2=a 2,b 3=a 5,b 4=a 14.(1)求数列a n 与b n 的通项公式;(2)∀n ∈N ∗,数列c n 满足c 1b 2+c 2b 3+⋅⋅⋅+c n b n +1=a n +13,求c n 的前n 项和S n .13已知数列a n 的前n 项和为S n ,且S n =2a n +2n -5.(1)求数列a n 的通项公式;(2)记b n =log 2a n +1-2 ,求数列1b n ⋅b n +1的前n 项和T n .14已知S n 为数列a n 的前n 项和,a 1=1,且na n -S n =n 2-n ,n ∈N *.(1)求数列a n 的通项公式;(2)若b n =2a n 2a n -1 2a n +1-1 ,求数列b n 的前n 项和T n .15已知函数a n 的首项a 1=35,且满足a n +1=3a n 2a n +1.(1)求证1a n-1 为等比数列,并求a n .(2)对于实数x ,x 表示不超过x 的最大整数,求1a 1+2a 2+3a 3+⋯+100a 100的值.16已知各项均为正数的数列{a n }满足a 1=1,a n =2a n -1+3(正整数n ≥2)(1)求证:数列a n +3 是等比数列;(2)求数列{a n }的前n 项和S n .17已知在数列a n 中,a 1=12,且1a n 是公差为1的等差数列.(1)求数列a n 的通项公式;(2)设b n =a n +1a n +a n ,数列b n 的前n 项和为T n ,求使得T m ≤425的最大整数m 的值;(3)设c n =1-an 2n ⋅a n,求数列c n 的前n 项和Q n18已知数列a n 各项都不为0,前n 项和为S n ,且3a n -2=S n ,数列b n 满足b 1=-1,b n +1=b n +n .(1)求数列a n 和b n 的通项公式;(2)令c n =2a n bn n +1,求数列c n 的前n 项和为T n19已知等比数列a n 的公比为2,数列b n 满足b 1=2,b 2=3,a n b n +1-a n =2n b n .(1)求a n 和b n 的通项公式;(2)记S n 为数列b na n 的前n 项和,证明:1≤S n <3.20在数列a n 中,a 1=-1,a n =2a n -1+3n -6n ≥2,n ∈N * .(1)求证:数列a n +3n 为等比数列,并求数列a n 的通项公式;(2)设b n =a n +n ,求数列b n 的前n 项和T n .21记S n 为数列a n 的前n 项和,已知a 1=1,2n a n 是公差为2的等差数列.(1)求a n 的通项公式;(2)证明:S n <4.22已知数列a n 满足a n =2a n -1-2n +4(n ≥2,n ∈N *),a 1=4.(1)求证:数列a n -2n 为等比数列,并求a n 的通项公式;(2)求数列-1 n a n 的前n 项和S n .计算专题训练6数列求和计算临渊羡鱼不如退而结网23已知数列a n 是公差为d d ≠0 的等差数列,且满足a 1=1,a n +1=xa n +2.(1)求a n 的通项公式;(2)设b n =(-1)n ⋅4na n a n +1,求数列b n 的前10项和S 10.24已知数列a n 的前n 项和为S n ,且S n =2a n -4.(1)求a n 的通项公式;(2)求数列nS n 的前n 项和T n .25已知等比数列a n 的各项均为正数,且a 2+a 3+a 4=39,a 5=2a 4+3a 3.(1)求a n 的通项公式;(2)数列b n 满足b n =n ⋅a n ,求b n 的前n 项和T n .26已知数列a n 中,a 1=1,a n =a n +12n ,n ∈N *.(1)求数列a n 的通项公式;(2)设b n =log 2a 2n +3n ,数列1b n的前n 项和S n ,求证:S n <34.27数列a n 满足a 1=3,a n +1-a 2n =2a n ,2b n=a n +1.(1)求证:b n 是等比数列;(2)若c n =nb n+1,求c n 的前n 项和为T n .28已知正数数列a n ,a 1=1,且满足a 2n -n -1 a n a n -1-na 2n -1=0n ≥2 .(1)求数列a n 的通项公式;(2)设b n =n -1a n,求数列b n 的前n 项和S n .29已知数列a n 、b n ,满足a 1=100,a n +1=a 2n ,b n =lg a n .(1)求数列b n 的通项公式;(2)若c n =log 2b n +log 2b n +1+⋯+log 2b 2n ,求数列1c n的前n 项和S n .30已知数列a n 中,a 1=1,S n 是数列a n 的前n 项和,数列2S na n是公差为1的等差数列.(1)求数列a n 的通项公式;(2)证明:1S 1+1S 2+⋯+1S n<2.31已知在等差数列a n 中,a 1+a 4+a 7=-24,a 2+a 5+a 8=-15.(1)求数列a n 的通项公式;(2)求数列-1 n a n 的前n 项和T n .32记数列a n 的前n 项和为S n ,已知a n +1=a n +1,n =2k -1,a n +t ,n =2k ,k ∈N *,S 3=7a 1,a 4=a 2+3.(1)求a 1,t ;(2)求数列a n 的通项公式;(3)求数列a n 的前n 项和S n .33数列a n 中,a 1=1,且a n +1=2a n +n -1.(1)证明:数列a n +n 为等比数列,并求出a n ;(2)记数列b n 的前n 项和为S n .若a n +b n =2S n ,求S 11.34已知数列a n 满足a 1=3,2a n +1-a n a n +1=1.(1)记b n =1a n -1求数列b n 的通项公式;(2)求数列1b n b n +1 的前n 项和.计算专题训练6数列求和计算临渊羡鱼不如退而结网35已知等比数列a n 的前n 项和为S n ,且2n +1,S n ,a 成等差数列.(1)求a 的值及数列a n 的通项公式;(2)若b n =2n -1 a n 求数列b n 的前n 项和T n36已知数列a n 和b n ,a 1=2,1b n-1a n =1,a n +1=2b n .(1)求数列a n 和b n 的通项公式;(2)求数列n b n的前n 项和T n .37等比数列a n 的前n 项和为S n ,已知a 1=1,且3a 2-1,a 3,S 3成等差数列.(1)求a n 的通项公式;(2)若a n +1=2a nb n,数列b n 的前n 项和T n .38已知数列a n 的前n 项和为S n ,a n >0,且满足4S n =a n +1 2.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1的前n 项和为T n ,求T n .39已知数列{a n }满足:a 1=3,a n +1=n +1n2a n +n .(1)证明:数列a nn+1是等比数列;(2)设c n =a n +n ,求数列{c n }的前n 项和T n .40已知正项等差数列a n 的前n 项和为S n ,其中a n +2-a n =4,4(S 2+1)=(a 2+1)2.(1)求数列a n 的通项公式及S n ;(2)若b n =a n ⋅34n -1,求数列b n 的前n 项和T n .专题7导数计算1求下列函数的导数:(1)y =cos xsin x -cos x;(2)y =x e 2x 2+1.2求下列函数的导数.(1)f x =-2x +1 2;(2)f x =ln 4x -1 ;(3)f x =23x +2;(4)f x =5x +4;3求下列函数的导数:(1)y =2x 3-3x 2+5;(2)y =2x +4x +1;(3)y =log 2x ;(4)y =x n e x ;(5)y =x 3-1sin x ;(6)y =sin xsin x +cos x.4求下列函数的导数:(1)y =(x +1)1x -1 ;(2)y =3ln x +a x (a >0,a ≠1);(3)y =x sin 2x +π2 cos 2x +π2(4)y =ln (2x +3)x 2+1.5求下列函数的导数:(1)y =3x 2+cos x ;(2)y =x +1 ln x ;(3)y =x -sinx 2cos x 2;6求下列函数的导数.(1)y =x -2+x 2;(2)y =ln xx 2+1计算专题训练7导数计算临渊羡鱼不如退而结网7求下列函数的导数:(1)f (x )=(1+sin x )(1-x 2);(2)f (x )=xx +1-3x .8求下列函数的导数:(1)y =x 2log 2(3x );(2)y =cos (2x +1)x.9求下列函数的导数:(1)y =1+x 1-x +1x;(2)y =x ln (2x +1).10求下列函数的导数:(1)y =ln 2x +1x;(2)y =ln 2x -5 ;(3)y =x sin 2x +π2 cos 2x +π2.11求下列函数的导函数.(1)y =4x 3+x 2-ln x +1;(2)y =4-cos xx 2+2;(3)y =e 2x +1sin x .12求下列函数的导数.(1)y =1-x 1+1x; (2)y =ln xx.13求下列函数的导数:(1)y =log 52x ;(2)y =8x ;(3)y =cos2x ;(4)y =2x 43.14求下列函数的导数:(1)y=x8;(2)y=4x;(3)y=log3x;(4)y=sin x+π2;(5)y=e2.15求下列函数的导数.(1)y=x12;(2)y=1x4;(3)y=3x;(4)y=ln x;(5)y=cos x.16求下列函数的导函数(1)y=x4-3x2-5x+6;(2)y=x+1x2;(3)y=x2cos x;(4)y=tan x17求下列函数的导函数.(1)f x =-2x3+4x2;(2)f x =13x3-x2+ax+1(3)f(x)=x +cos x,x∈(0,1);(4)f(x)=-x2+3x-ln x(5)y=sin x;(6)y=x+1x-118求下列函数的导数:(1)y=(2x2-1)(3x+1);(2)y=e x cos x;19求下列函数在指定点处的导数.(1)f x =xπ,x=1;(2)f x =sin x,x=π2.20求下列函数的导数.(1)y=x12;(2)y=1x4;(3)y=3x;(4)y=log5x.计算专题训练7导数计算临渊羡鱼不如退而结网21求下列函数的导数:(1)y =3x 2+cos x ;(2)y =x +1 ln x ;22求下列函数的导数.(1)y =2x 2+3 3x -1 ;(2)y =1-sin x1+cos x.23求下列函数的导数.(1)f x =x ln x +sin x ;(2)f x =2x +15e x.24求下列函数的导数:(1)f x =sin xx 2+2x(2)f x =e 3x ln 2x +425求下列函数的导数:(1)f x =ln 1+x 2;(2)y =cos 2x +1x.26求下列函数的导函数.(1)y =2x 2+3 3x -1 ;(2)y =x +3x 2+3.27求下列函数的导数:(1)y =2x 3-3x 2-4;(2)y =ln xx.28求下列函数的导数:(1)y =x 3-1e x(2)y =ln (5x +2)(3)y =cos (2x +1)x29求下列函数的导数.(1)y=ln x+1x ;(2)y=x-sin x2cos x2;(3)y=cos xe x30求下列函数的导数:(1)y=x+1x2;(2)y =e x sin x;(3)y=x ln x2+3x.31y=x ln x2+3x.32y=x+1x 2;33求下列函数的导数(1)y=(x-2)(3x+1)2;(2)y=x2cos2x34求下列函数的导数(1)f x =12x2-x-1x;(2)f x =e x+ln x+sin x35求下列函数的导数.(1)y=ln(2x+1);(2)y=sin xcos x;(3)y=x ln1+x2;(4)y=(x+1)(x+2)(x+3). 36求下列函数的导函数.(1)f x =x4+ln x;(2)f x =sin xx -cos x;(3)f x =e2x-1.计算专题训练7导数计算临渊羡鱼不如退而结网37求下列函数的导数.(1)y =x +x 5+sin xx 2;(2)y =x +1 x +2 x +3 ;(3)y =11-x +11+x.38求下列函数的导数:(1)y =x -1 x 3-1 ;(2)y =sin3x ;(3)y =x 2+1e x.39求下列函数的导数:(1)y =sin x +tan x x ∈0,π2;(2)y =ln 3x 2+5 .40求下列函数的导数:(1)y =x +1x2;(2)y =x ln x 2+3x .41求下列函数的导数.(1)f x =ln x +2xx 2;(2)f x =ln 4x +5 3.42求下列函数的导数:(1)y =3x 2+2x +1 cos x ;(2)y =3x 2+x x -5x +1x;(3)y =x 18+sin x -ln x ;(4)y =2x cos x -3x log 3x ;(5)y =3x sin x -3log 3x ;(6)y =e x cos x +tan x .43求下列函数的导数:(1)y =e -ax 2+bx ;(2)y =2sin (1-3x );(3)y =3cos 2x +x ;(4)y =ln 1+sin x ;(5)y =lg sin x 2+x 2;(6)y =cos 21+x 2e x.。
高中数学练习题及答案
高中数学练习题及答案高中数学练习题及答案高中数学是学生们学习过程中的一大挑战。
掌握数学的基本概念和解题技巧对于学生们来说是至关重要的。
然而,要真正掌握数学,仅仅依靠理论知识是不够的。
实践和练习是提高数学能力的关键。
本文将介绍一些高中数学练习题及其答案,帮助学生们更好地巩固和应用所学的知识。
一、代数题1. 解方程:2x + 5 = 17答案:x = 62. 化简表达式:(3x + 2y)²答案:9x² + 12xy + 4y²3. 因式分解:x² + 6x + 9答案:(x + 3)²二、几何题1. 计算三角形面积:已知三角形的底边长为8cm,高为6cm,求其面积。
答案:三角形的面积为24平方厘米。
2. 判断三角形形状:已知三条边长分别为3cm、4cm和5cm,判断该三角形是什么形状?答案:该三角形是直角三角形。
3. 计算圆的面积:已知圆的半径为5cm,求其面积。
答案:圆的面积为25π平方厘米。
三、函数题1. 求函数的定义域:已知函数f(x) = √(2x - 1),求f(x)的定义域。
答案:2x - 1 ≥ 0,即x ≥ 1/2。
所以f(x)的定义域为[x ≥ 1/2)。
2. 求函数的值域:已知函数g(x) = x² + 3x + 2,求g(x)的值域。
答案:首先,g(x)是一个二次函数,开口向上,所以最小值为函数的顶点。
顶点的横坐标为-x/2a,即x = -3/2。
代入函数得到g(-3/2) = 1/4。
所以g(x)的值域为[g(x) ≥ 1/4)。
四、概率题1. 计算概率:从一副扑克牌中随机抽取一张牌,求抽到红心的概率。
答案:一副扑克牌中有52张牌,其中红心有13张。
所以抽到红心的概率为13/52,即1/4。
2. 计算条件概率:在一副扑克牌中,已知抽到的牌是红心,求下一张牌是梅花的概率。
答案:由于已知抽到的牌是红心,所以剩下的牌中只有26张梅花牌。
2024年高考数学计算题型精练系列(新高考通用版)专题08-诱导公式的化简求值
诱导公式的化简求值1.已知π0,2α⎛⎫∈ ⎪⎝⎭,3sin 5α=,则9πsin sin(8π)25πsin sin(7π)2αααα⎛⎫+++ ⎪⎝⎭=⎛⎫+++ ⎪⎝⎭______.2.若π2cos 123α⎛⎫+= ⎪⎝⎭,则2πsin 23α⎛⎫+= ⎪⎝⎭__________.3.计算7π5πcossin 644πtan3的结果为__________.4.点()3,4A 在角θ的终边上,则sin(π)2cos πcos()cos 2θθθθ++=--__________.5.若1sin 3α=,则πcos 2α⎛⎫+= ⎪⎝⎭__________.6.已知角α终边上一点()2,3P -,则()()πcos sin π23πcos πcot 2αααα⎛⎫+- ⎪⎝⎭=⎛⎫++ ⎪⎝⎭________.7.23πtan 3⎛⎫-= ⎪⎝⎭____.8.cos660︒=________.9.化简:()()()()sin 2πcos 6πcos πsin 5πθθθθ---=-+_____.10.若()sin π3α-=,则πcos 2α⎛⎫+= ⎪⎝⎭______.11.()()cos πππsin cos sin π22αααα-⎛⎫⎛⎫-+ ⎪ -⎝⎭⎝⎭=____________12.已知()1cos π2α+=-,3π2π2α<<,则()sin 3πα+=_________.13.()()()()tan 2πsin 2πcos 6πcos π3ππsin cos 22x x x x x x -----=⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭__________14.若α的终边过点()1,2-,则()()sin ππsin cos π2ααα-=⎛⎫+-+ ⎪⎝⎭______.15.已知()1sin π3α+=,则πcos()2α+=_________________.16.若角α的终边过点()1,2-,则πsin 2α⎛⎫-= ⎪⎝⎭__________.17.1717cos πsin π44⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭______.18.7πsin3的值为__________19.已知5sin 13α=,则πcos 2α⎛⎫+= ⎪⎝⎭______.20.已知tan 3α=,求sin(4)3cos()92sin()sin(7)2παπαπαπα-+--=-+-+_________21.已知角x 在第二象限,且π4cos ,25x ⎛⎫+=- ⎪⎝⎭则tan 2x =______.22.若()1sin π2A +=-,则3πcos 2A ⎛⎫-= ⎪⎝⎭____________.23.化简:()()tan cos 3ππ2co i πt 2πs n 2αααα⎛⎫- ⎪-⎝⎭⋅=+⎛⎫+ ⎪⎝⎭_________.24.已知α是第二象限角,1sin 3α=,则πsin 2α⎛⎫+= ⎪⎝⎭________.25.已知1tan 2α=,则()cos ππcos 2αα-=⎛⎫+ ⎪⎝⎭__________.26.已知1cos 2α=,3π2π2α<<,则()sin 2πα-=______.27.化简:()()()π11πcos πcos cos 229πcos πsin πsin 2αααααα⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭______.28.化简πsin(5π)cos()cos(8π)23πsin()sin(4π)2θθθθθ---=---__.29.化简222sin(π)cos(π)cos(2π)3π3π1cos cos sin 222παααααα+-+-⎛⎫⎛⎫⎛⎫+-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果为______.30.已知角θ的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点()()8,60P m m m -->.(1)求sin θ,cos θ的值;(2)求()()()()()()3πsin sin 3πcos πcos 25πsin 2πcos 3πsin sin π2θθθθθθθθ⎛⎫-⋅-⋅+⋅- ⎪⎝⎭⎛⎫-⋅-⋅-⋅-⎪⎝⎭的值.31.已知角θ的始边为x 轴非负半轴,终边过点(A -.(1)3ππcos 22θθ⎛⎫⎛⎫-+++ ⎪ ⎪.(2)已知角α的始边为x 轴非负半轴,角θ和α的终边关于y 轴对称,求πsin 6α⎛⎫- ⎪⎝⎭的值.32.已知()()ππsin cos 223πcos πsin 2f ααααα⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫-+ ⎪⎝⎭.(1)若角α的终边经过点(),2m m ,0m ≠,求()f α的值;(2)若()2f α=,求sin cos sin cos αααα+-的值.33.已知()()()()()πsin sin tan π2tan 2πsin π+f αααααα⎛⎫--- ⎪⎝⎭=-(1)化简()f α.(2)若α为第三象限角,且3π1cos 25⎛⎫-= ⎪⎝⎭α,求()f α的值.34.已知()()()3πsin 2πsin 2πsin cos π2f ααααα⎛⎫-⋅- ⎪⎝⎭=⎛⎫+⋅- ⎪⎝⎭.(1)化简()f α;(2)若()2f α=,求2222sin 1sin 2cos ααα-+的值35.(1)化简:3πtan(π)cos(2π)sin()2cos(π)sin(π)ααααα---+----;(2)已知π3cos 45x ⎛⎫+= ⎪⎝⎭,求2sin 22sin 1tan x xx --的值.36.已知()()()()π3πcos tan πsin 22cos πtan 3πf αααααα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=++.(1)若()0,2πα∈,且()12f α=-,求α的值;(2)若()3π125f f αα⎛⎫-+= ⎪⎝⎭,且π3π,22⎛⎫∈ ⎪⎝⎭α,求tan α的值.37.已知tan 3α=,求()()πsin 3sin π23πcos cos 5π2αααα⎛⎫+++ ⎪⎝⎭⎛⎫--+ ⎪⎝⎭的值.38.已知()()5πsin πsin 23π2sin sin π2αααα⎛⎫-++ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)求tan α的值;(2)求24sin cos 2cos ααα+的值.39.已知角α终边上一点(4,3),P -求()πcos()sin π211π9πcos()sin()22a a a α+----++的值.40.设()322π2cos sin 2cos π222cos 7πcos f θθθθθθ⎛⎫++--- ⎪⎝⎭=+++-()()(),求2023π3f ⎛⎫⎪⎝⎭的值.41.已知1tan 2θ=-,求下列各式的值:(1)22cos 12sin cos θθθ-;(2)tan(π)sin(π)3πππsin cos cos 222θθθθθ--⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.42.已知()()()()()3sin 3πcos 2πsin π2cos πsin πf αααααα⎛⎫-⋅-⋅-+ ⎪⎝⎭=--⋅-+.(1)化简()f α;(2)若31π3α=-,()f α.43.已知3πsin(3π)cos(2π)sin()2()cos(π)sin(π)f αααααα---+=----.(1)化简()f a ;(2)若α是第三象限角,且3π1co (s 52α-=,求π()6f α+的值;44.sin(2π)sin(π)cos(π)sin(3π)cos(π)ααααα-+----.45.(1)化简:()()()()()()π11πsin 2πcos πcos cos 229πcos πsin 3πsin πsin 2f ααααααααα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫----+ ⎪⎝⎭(2)求值:cos 21cos 24sin159sin 204︒⋅︒+︒⋅︒.46..化简下列各式:(1)π2912sin cos 6ππtan 54⎛⎫-+⋅ ⎪⎝⎭;(2)3tan(π)cos(2π)sin(π)2cos(3π)sin(π)ααααα+⋅+⋅---⋅--.47.已知()()()()()5πsin 2πcos πcos 29πcos πsin πsin 2x x x f x x x x ⎛⎫-+- ⎪⎝⎭=⎛⎫---+ ⎪⎝⎭.(1)化简()f x ;(2)已知()2f α=,求sin2α的值.48.(1)已知()2tan π3α-=-,求cos 3sin cos 9sin α-αα+α的值;(2)化简()()()()3πsin πsin tan 2π2πsin tan πcos 2θθθθθθ⎛⎫--- ⎪⎝⎭⎛⎫-+- ⎪⎝⎭.49.已知sin 2cos αα=,求:(1)化简()()πcos 2sin 2πcos 2π5πsin 2αααα⎛⎫- ⎪⎝⎭--⎛⎫+ ⎪⎝⎭;(2)求2sin2sin sin cos cos21ααααα+--的值.50.化简以下式子:()()()()()7πsin cos πtan 3π2sin 2πtan πcos 9παααααα⎛⎫++- ⎪⎝⎭--+-诱导公式的化简求值1.已知π0,2α⎛⎫∈ ⎪⎝⎭,3sin 5α=,则9πsin sin(8π)25πsin sin(7π)2αααα⎛⎫+++ ⎪⎝⎭=⎛⎫+++ ⎪⎝⎭______.【答案】7【详解】因为3sin 5α=,且π0,2α⎛⎫∈ ⎪⎝⎭,所以4cos 5α=,所以sin 3tan cos 4ααα==.所以9πsin sin(8π)25πsin sin(7π)2αααα⎛⎫+++ ⎪⎝⎭⎛⎫+++ ⎪⎝⎭31cos sin 1tan 473cos sin 1tan 14αααααα+++====---.故答案为:7.2.若π2cos 123α⎛⎫+= ⎪⎝⎭,则2πsin 23α⎛⎫+= ⎪⎝⎭__________.【答案】19-【详解】2ππππsin 2sin2cos 2312212ααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=++=+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22π212cos 1211239α⎛⎫⎛⎫=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故答案为:19-.3.计算7π5πcossin 644πtan3的结果为__________.【答案】4【详解】因为7πππcoscos πcos 6662⎛⎫=+=-= ⎪⎝⎭,5πππsinsin πsin 4442⎛⎫=+=-=- ⎪⎝⎭,4πππtantan πtan 333⎛⎫=+== ⎪⎝⎭所以7π5πcos sin222644π4tan 3⎛⎫⎛⎫-⨯ ⎪ ⎪=,故答案为:4.4.点()3,4A 在角θ的终边上,则sin(π)2cos πcos()cos 2θθθθ++=--__________.【答案】2【详解】因为点()3,4A 在角θ的终边上,则4tan 3θ=,所以42sin(π)2cos sin 2cos tan 232π4sin cos tan 1cos()cos 123θθθθθθθθθθ-+++-+-+===-----.故答案为:25.若1sin 3α=,则πcos 2α⎛⎫+= ⎪⎝⎭__________.【答案】13-【详解】π1cos sin 23αα⎛⎫+=-=- ⎪⎝⎭.故答案为:13-6.已知角α终边上一点()2,3P -,则()()πcos sin π23πcos πcot 2αααα⎛⎫+- ⎪⎝⎭=⎛⎫++ ⎪⎝⎭________.【答案】13-【详解】由诱导公式知,()()πcos sin πsin sin 2sin 3πcos (tan )cos πcot 2ααααααααα⎛⎫+- ⎪-⋅⎝⎭===--⋅-⎛⎫++ ⎪⎝⎭,因为角α终边上一点()2,3P -,所以sin α=所以原式sin 13α=-=-.故答案为:13-7.23πtan 3⎛⎫-= ⎪⎝⎭____.【详解】23π23π2π2ππtan()tan tan(7π)tan tan 33333-=-=-+=-==8.cos660︒=________.【答案】12/0.5【详解】()()1cos660cos 236060cos 60cos602︒=⨯︒-︒=-︒=︒=故答案为:129.化简:()()()()sin 2πcos 6πcos πsin 5πθθθθ---=-+_____.【答案】1-【详解】原式=()()()()()()()sin cos sin cos 1cos πsin πcos sin θθθθθθθθ-⋅--⋅==-+⋅+-⋅-.故答案为:1-.10.若()sin π3α-=,则πcos 2α⎛⎫+= ⎪⎝⎭______.【答案】【详解】因为()sin sin 3παα-==,所以πcos sin 23αα⎛⎫+=-=- ⎪⎝⎭.故答案为:11.()()cos πππsin cos sin π22αααα-⎛⎫⎛⎫-+ ⎪ -⎝⎭⎝⎭=____________【答案】2cos α-【详解】原式()()()2cos cos sin cos sin ααααα-=⋅-=--故答案为:2cos α-.12.已知()1cos π2α+=-,3π2π2α<<,则()sin 3πα+=_________.【详解】()1cos π2α+=- ,1cos 2α∴-=-,即1cos 2α=,3π2π2α<<,sin α∴==()sin 3πsin 2αα∴+=-=.13.()()()()tan 2πsin 2πcos 6πcos π3ππsin cos 22x x x x x x -----=⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭__________【答案】sin x【详解】()()()tan 2πtan ,sin 2πsin sin x x x x x -=---=-=-,()()()cos 6πcos cos ,cos πcos x x x x x -=-=-=-,3ππsin cos ,cos sin 22x x x x ⎛⎫⎛⎫+=--= ⎪ ⎪⎝⎭⎝⎭,原式()()()()tan sin cos cos tan cos sin cos sin x x x x x x xx x-⨯-⨯⨯-==⨯=-⨯,故答案为:sin x .14.若α的终边过点()1,2-,则()()sin ππsin cos π2ααα-=⎛⎫+-+ ⎪⎝⎭______.【答案】1-【详解】因为α的终边过点(1,2)-,由三角函数的定义可得2tan 21α==--,所以()()sin πsin 11tan (2)1πcos cos 22sin cos π2ααααααα-===⨯-=-+⎛⎫+-+ ⎪⎝⎭.故答案为:1-15.已知()1sin π3α+=,则πcos()2α+=_________________.【答案】13【详解】由已知1sin(π)sin 3αα+=-=,1sin 3α=-,所以π1cos()sin 23αα+=-=.故答案为:13.16.若角α的终边过点()1,2-,则πsin 2α⎛⎫-= ⎪⎝⎭__________.【答案】5-【详解】角α的终边过点(1,2)-,由三角函数的定义得cos α由诱导公式得ππsin sin cos 22ααα⎛⎫⎛⎫-=--=-=- ⎪ ⎪⎝⎭⎝⎭故答案为:17.1717cos πsin π44⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭______.【详解】17π17π17π17πππcos sin cos sin cos 4πsin 4π444444⎛⎫⎛⎫⎛⎫⎛⎫---=+=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ππcos sin 4422=+=;.18.7πsin3的值为__________【答案】2【详解】7πππsin sin 2πsin 333⎛⎫=+= ⎪⎝⎭19.已知5sin 13α=,则πcos 2α⎛⎫+= ⎪⎝⎭______.【答案】513-【详解】由π5cos sin 213αα⎛⎫+=-=- ⎪⎝⎭.故答案为:513-20.已知tan 3α=,求sin(4)3cos()92sin()sin(7)2παπαπαπα-+--=-+-+_________【答案】-6【详解】原式=sin 3cos tan 33362cos sin 2tan 23αααααα------===--+-+-+.故答案为:-6.21.已知角x 在第二象限,且π4cos ,25x ⎛⎫+=- ⎪⎝⎭则tan 2x =______.【答案】247/337【详解】π4cos 25x ⎛⎫+=- ⎪⎝⎭,即4sin 5x -=-,则4sin 5x =,角x在第二象限,则3cos 5x ==-,则4tan 3x =-,22tan 24tan 21tan 7x x x ∴==-.故答案为:247.22.若()1sin π2A +=-,则3πcos 2A ⎛⎫-= ⎪⎝⎭____________.【答案】12-/-0.5【详解】因为()2π3π5π2A A ⎛⎫-= ⎪⎝⎭+-,所以3πcos2A⎛⎫-=⎪⎝⎭()()()()5πππ1 cosπcosπcosπsinπ2222A A A A⎡⎤⎡⎤⎡⎤+-=+-=-+=+=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故答案为:1 2-23.化简:()()tancos3ππ2coiπt2πs n2αααα⎛⎫-⎪-⎝⎭⋅=+⎛⎫+⎪⎝⎭_________.【答案】1【详解】()()tancos3πcos cot21cot2πcos cotπi2πs nαααααααα⎛⎫-⎪---⎝⎭⋅=⋅=+⎛⎫+⎪⎝⎭.故答案为:124.已知α是第二象限角,1sin3α=,则πsin2α⎛⎫+=⎪⎝⎭________.【答案】【详解】因为α是第二象限角,1 sin3α=,所以πsin cos2αα⎛⎫+====⎪⎝⎭故答案为:25.已知1tan2α=,则()cosππcos2αα-=⎛⎫+⎪⎝⎭__________.【答案】2【详解】因为1tan2α=,所以()cosπcos12πsin tancos2ααααα--===-⎛⎫+⎪⎝⎭.故答案为:2.26.已知1cos2α=,3π2π2α<<,则()sin2πα-=______.【详解】因为13πcos,2π22αα=<<,所以sinα==,所以sin(2)sinπαα-=-=.27.化简:()()()π11πcosπcos cos229πcosπsinπsin2αααααα⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭______.【答案】tanα【详解】()()()π11πcosπcos cos229πcosπsinπsin2αααααα⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭⎛⎫---+⎪⎝⎭()()cos sin sin tancos sin cosααααααα-⋅--==-.故答案为:tanα.28.化简πsin(5π)cos()cos(8π)23πsin()sin(4π)2θθθθθ---=---__.【答案】sinθ【详解】πsin(5π)cos()cos(8π)(sin)sin cos2sin3πcos(sin)sin()sin(4π)2θθθθθθθθθθθ----==----.故答案为:sinθ.29.化简222sin(π)cos(π)cos(2π)3π3π1cos cos sin222παααααα+-+-⎛⎫⎛⎫⎛⎫+-++-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果为______.【答案】1tanα【详解】222sin(π)cos(π)cos(2π)3π3π1cos cos sin222παααααα+-+-⎛⎫⎛⎫⎛⎫+-++-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222(sin)(cos)cosππ1cos cos cosπ22παααααα--+=⎛⎫⎛⎫+-++-⎪⎡⎤⎡⎤++⎢⎥⎢⎪⎝⎭⎝⎭⎥⎣⎦⎣⎦22222sin cos cos 2sin cos cos 1sin sin cos ππ1cos cos cos 22αααααααααααα++==++-⎡⎤⎛⎫⎛⎫+---+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22sin cos cos (2sin 1)cos cos 12sin sin (2sin 1)sin sin tan αααααααααααα++====++.故答案为:1tan α.30.已知角θ的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点()()8,60P m m m -->.(1)求sin θ,cos θ的值;(2)求()()()()()()3πsin sin 3πcos πcos 25πsin 2πcos 3πsin sin π2θθθθθθθθ⎛⎫-⋅-⋅+⋅- ⎪⎝⎭⎛⎫-⋅-⋅-⋅-⎪⎝⎭的值.【答案】(1)3sin 5θ=-,4cos 5θ=-;(2)34-【详解】(1)由题意知,10r m ==,∴63sin 105y m r m θ-===-,84cos 105x m r m θ-===-;(2)原式()()()()()()()322sin sin cos sin sin cos sin cos cos sin sin cos θθθθθθθθθθθθ-⋅-⋅-⋅-⋅==--⋅-⋅⋅-⋅tan θ=-,由(1)知,sin 3tan cos 4θθθ==,∴()()()()()()3πsin sin 3πcos πcos 325π4sin 2πcos 3πsin sin π2θθθθθθθθ⎛⎫-⋅-⋅+⋅- ⎪⎝⎭=-⎛⎫-⋅-⋅-⋅-⎪⎝⎭.31.已知角θ的始边为x 轴非负半轴,终边过点(A-.(1)3ππcos 22θθ⎛⎫⎛⎫-+++ ⎪ ⎪.(2)已知角α的始边为x 轴非负半轴,角θ和α的终边关于y 轴对称,求πsin 6α⎛⎫- ⎪⎝⎭的值.【答案】(1)2-【详解】(1)由题可知OA =则sin ,tan 33θθθ==-=-3ππcos sin 222θθ⎛⎫⎛⎫-++ ⎪ ⎪==-.(2)因为角θ和α的终边关于y 轴对称,所以sin 3α=,cos 3α=,所以π1sin sin cos 62ααα⎛⎫-- ⎪⎝⎭32.已知()()ππsin cos 223πcos πsin 2f ααααα⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫-+ ⎪⎝⎭.(1)若角α的终边经过点(),2m m ,0m ≠,求()f α的值;(2)若()2f α=,求sin cos sin cos αααα+-的值.【答案】(1)2(2)3【详解】(1)()()()()ππsin cos cos sin 22tan 3πcos cos cos πsin 2f αααααααααα⎛⎫⎛⎫-+ ⎪ ⎪-⋅-⎝⎭⎝⎭===-⋅-⎛⎫-+ ⎪⎝⎭,因为角α的终边经过点(),2m m ,0m ≠,所以()2tan 2m f mαα===.(2)由(1)知()tan 2f αα==,所以sin cos tan 1213sin cos tan 121αααααα+++===---.33.已知()()()()()πsin sin tan π2tan 2πsin π+f αααααα⎛⎫--- ⎪⎝⎭=-(1)化简()f α.(2)若α为第三象限角,且3π1cos 25⎛⎫-= ⎪⎝⎭α,求()f α的值.【答案】(1)()f αcos α=(2)()5f α=-【详解】(1)()()()()()πsin sin tan π2tan sin πf αααααα⎛⎫--- ⎪⎝⎭=-+()()()cos sin tan tan sin ααααα⋅-⋅-=-⋅-cos α=.(2)∵α为第三象限角,且3π1cos sin 25⎛⎫-=-= ⎪⎝⎭αα,∴1sin 5α=-,()cos 5f αα===-.34.已知()()()3πsin 2πsin 2πsin cos π2f ααααα⎛⎫-⋅- ⎪⎝⎭=⎛⎫+⋅- ⎪⎝⎭.(1)化简()f α;(2)若()2f α=,求2222sin 1sin 2cos ααα-+的值【答案】(1)()tan f αα=-(2)12【详解】(1)()()()()()3πsin 2πsin sin cos 2tan cos cos sin cos π2πf αααααααααα⎛⎫-⋅- ⎪-⋅-⎝⎭===-⋅-⎛⎫+⋅- ⎪⎝⎭;(2)由(1)得tan 2α-=,tan 2α∴=-,()2222222222222sin sin cos 2sin 1sin cos sin 2cos sin 2cos sin 2cos αααααααααααα-+--∴==+++221tan ta 1412422n αα--===++.35.(1)化简:3πtan(π)cos(2π)sin()2cos(π)sin(π)ααααα---+----;(2)已知π3cos 45x ⎛⎫+= ⎪⎝⎭,求2sin 22sin 1tan x xx--的值.【答案】(1)1-;(2)725【详解】(1)3πtan(π)cos(2π)sin()2cos(π)sin(π)ααααα---+----=sin cos (tan )cos (cos )cos 1(cos )sin sin ααααααααα⋅-⋅⋅-=-=--⋅;(2)2sin 22sin 2sin (cos sin )2sin cos sin 1tan 1cos x x x x x x xx x x--==--,()2π331818cos cos sin cos sin 12sin cos 452252525x x x x xx x ⎛⎫+=⇒-=⇒-=⇒-= ⎪⎝⎭72sin cos 25x x ⇒=,因此2sin 22sin 71tan 25x x x -=-.36.已知()()()()π3πcos tan πsin 22cos πtan 3πf αααααα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=++.(1)若()0,2πα∈,且()12f α=-,求α的值;(2)若()3π125f f αα⎛⎫-+= ⎪⎝⎭,且π3π,22⎛⎫∈ ⎪⎝⎭α,求tan α的值.【答案】(1)7π6α=或11π6α=(2)4tan 3α=-【详解】(1)()()()()()()π3πcos tan πsin sin tan cos 22sin cos πtan 3πcos tan f αααααααααααα⎛⎫⎛⎫+-+ ⎪ ⎪---⎝⎭⎝⎭===++-,()0,2πα∈,且()1sin 2f αα==-,则7π6α=或11π6α=.(2)()3π3π1sin sin sin cos 225f f αααααα⎛⎫⎛⎫-+=-+=+= ⎪ ⎪⎝⎭⎝⎭,则1sin cos 5αα=-,所以22221cos sin cos cos 15αααα⎛⎫+=+-= ⎪⎝⎭,解得4cos 5α=或3cos 5α=-,由π3π,22⎛⎫∈ ⎪⎝⎭α,则3cos 5α=-,得4sin 5α=,所以4sin 45tan 3cos 35ααα===--37.已知tan 3α=,求()()πsin 3sin π23πcos cos 5π2αααα⎛⎫+++ ⎪⎝⎭⎛⎫--+ ⎪⎝⎭的值.【答案】4【详解】因为()πsin cos ,sin πsin 2αααα⎛⎫+=+=- ⎪⎝⎭,()()3πcos sin ,cos 5πcos πcos 2ααααα⎛⎫-=-+=+=- ⎪⎝⎭,所以()()πsin 3sin πcos 3sin 13tan 23πsin cos tan 1cos cos 5π2αααααααααα⎛⎫+++ ⎪--⎝⎭==-+-+⎛⎫--+ ⎪⎝⎭,又tan 3α=,所以()()πsin 3sin π133243π31cos cos 5π2αααα⎛⎫+++ ⎪-⨯⎝⎭==-+⎛⎫--+ ⎪⎝⎭.故答案为:4.38.已知()()5πsin πsin 23π2sin sin π2αααα⎛⎫-++ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)求tan α的值;(2)求24sin cos 2cos ααα+的值.【答案】(1)7tan 4α=-(2)1613-【详解】(1)依题意得,()()5πsin πsin sin cos 2π2cos sin 2sin sin π2αααααααα⎛⎫-++ ⎪+⎝⎭=--⎛⎫-++ ⎪⎝⎭tan 132tan αα+==--,解得7tan 4α=-(2)22224sin cos 2cos 4sin cos 2cos sin cos αααααααα++=+24tan 2tan 1αα+=+1613=-.39.已知角α终边上一点(4,3),P -求()πcos()sin π211π9πcos()sin()22a a a α+----++的值.【答案】67【详解】角α终边上一点(4,3),P -3tan ,4y x α∴==-则原式32()sin sin 2tan 64.3sin cos tan 1714αααααα-⨯----====-+-++故答案为:6740.设()322π2cos sin 2cos π222cos 7πcos f θθθθθθ⎛⎫++--- ⎪⎝⎭=+++-()()(),求2023π3f ⎛⎫⎪⎝⎭的值.【答案】12.【详解】因为()322π2cos sin 2cos π222cos 7πcos f θθθθθθ⎛⎫++--- ⎪⎝⎭=+++-()()()=322222cos cos 2cos cos 2cos cos 2cos 22cos cos 22cos cos θθθθθθθθθθθ++++==++++(),所以2023π2023πππ1cos cos 3372πcos 33332f ⎛⎫⎛⎫==⨯+== ⎪ ⎪⎝⎭⎝⎭41.已知1tan 2θ=-,求下列各式的值:(1)22cos 12sin cos θθθ-;(2)tan(π)sin(π)3πππsin cos cos 222θθθθθ--⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】(1)34-(2)54【详解】(1)原式()222222cos sin cos cos sin 2sin cos 2sin cos θθθθθθθθθ-+-==22111tan 3212tan 422θθ⎛⎫-- ⎪-⎝⎭===-⎛⎫⨯- ⎪⎝⎭.(2)原式tan sin (cos )sin (sin )θθθθθ=--22221sin cos cos cos θθθθ+==22151tan 124θ⎛⎫=+=+-= ⎪⎝⎭.42.已知()()()()()3sin 3πcos 2πsin π2cos πsin πf αααααα⎛⎫-⋅-⋅-+ ⎪⎝⎭=--⋅-+.(1)化简()f α;(2)若31π3α=-,()f α.【答案】(1)cos α(2)12【详解】(1)由题意可得:()()()()()()()()()3sin 3πcos 2πsin πsin πcos cos 2cos cos πsin πcos sin πf αααααααααααα⎛⎫-⋅-⋅-+ ⎪-+⋅⋅-⎝⎭===--⋅-+-⋅-+,故()cos f αα=.(2)∵31π3α=-,则()3131πππ1πcos πcos10πcos cos 333332f f α⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--=-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴()12f α=.43.已知3πsin(3π)cos(2π)sin()2()cos(π)sin(π)f αααααα---+=----.(1)化简()f a ;(2)若α是第三象限角,且3π1co (s 52α-=,求π()6f α+的值;【答案】(1)()f α=cos α-;(2)110【详解】(1)3πsin(3π)cos(2π)sin()2()cos(π)sin(π)f αααααα---+=----(sin )cos (cos )cos (cos )sin αααααα-⋅⋅-==--.(2)因为3π1co (s 5)2α-=,又3ππcos()cos(sin 22ααα-=+=-,所以1sin 5α=-,又α是第三象限的角,所以cos α==所以ππππ()cos()cos cos sin sin6666f αααα+=-+=-+111()(525210=--⨯+-⨯=.44.sin(2π)sin(π)cos(π)sin(3π)cos(π)ααααα-+----.【答案】sin α【详解】因为sin(2π)sin()sin ,sin(π)sin ,ααααα-=-=-+=-cos(π)cos(π)cos ααα--=+=-,sin(3π)sin(π)sin ,cos(π)cos ,ααααα-=-=-=-所以原式sin (sin )(cos )sin sin (cos )αααααα-⋅-⋅-=⋅-.45.(1)化简:()()()()()()π11πsin 2πcos πcos cos 229πcos πsin 3πsin πsin 2f ααααααααα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫----+ ⎪⎝⎭(2)求值:cos 21cos 24sin159sin 204︒⋅︒+︒⋅︒.【答案】(1)tan α-;(2)2.【详解】(1)()()()()()()π11πsin 2πcos πcos cos 229πcos πsin 3πsin πsin 2f ααααααααα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫----+ ⎪⎝⎭()()()()()()πsin cos sin cos 6π2πcos sin πsin πsin 4π2αααααααα⎡⎤⎛⎫----+ ⎪⎢⎥⎝⎭⎣⎦=⎡⎤⎛⎫---+++⎡⎤ ⎪⎣⎦⎢⎥⎝⎭⎣⎦()()()()πsin cos sin cos 2πcos sin sin sin 2αααααααα⎡⎤⎛⎫----+⎪⎢⎥⎝⎭⎣⎦=⎛⎫-+ ⎪⎝⎭()()()2222sin cos cos sin cos sin sin 2tan cos sin cos cos sin cos cos πααααααααααααααα⎛⎫-+ ⎪--⎝⎭===-=---(2)cos 21cos 24sin159sin 204cos 21cos 24sin 21sin 24︒⋅︒+︒⋅︒=︒⋅︒-︒︒()cos 2124cos 452=︒+︒=︒=46..化简下列各式:(1)π2912sin cos 6ππtan 54⎛⎫-+⋅ ⎪⎝⎭;(2)3tan(π)cos(2π)sin(π)2cos(3π)sin(π)ααααα+⋅+⋅---⋅--.【答案】(1)12-(2)1-【详解】(1)原式52sincos 0π6π5=-+⨯2π1sin 6=-=-(2)原式tan cos cos 1cos sin ααααα⋅⋅==--⋅47.已知()()()()()5πsin 2πcos πcos 29πcos πsin πsin 2x x x f x x x x ⎛⎫-+- ⎪⎝⎭=⎛⎫---+ ⎪⎝⎭.(1)化简()f x ;(2)已知()2f α=,求sin2α的值.【答案】(1)tan x -(2)45-【详解】(1)由题意得()()()()()5πsin 2πcos πcos 29πcos πsin πsin 2x x x f x x x x ⎛⎫-+- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(sin )(cos )sin sin tan (cos )sin cos cos x x x x x x x x x--==-=--.(2)由()2f α=,可得tan 2,tan 2αα-=∴=-,则2222sin cos 2tan 4sin2sin cos tan 15ααααααα===-++.48.(1)已知()2tan π3α-=-,求cos 3sin cos 9sin α-αα+α的值;(2)化简()()()()3πsin πsin tan 2π2πsin tan πcos 2θθθθθθ⎛⎫--- ⎪⎝⎭⎛⎫-+- ⎪⎝⎭.【答案】(1)17-;(2)tan θ.【详解】(1)因为()2tan πtan 3αα-=-=-,可得2tan 3α=,所以213cos 3sin 13tan 132cos 9sin 19tan 7193αααααα-⨯--===-+++⨯;(2)()()()()()()23πsin πsin tan 2πsin cos tan 2tan πcos tan sin tan πcos 2θθθθθθθθθθθθ⎛⎫--- ⎪--⎝⎭==⎛⎫-+- ⎪⎝⎭.49.已知sin 2cos αα=,求:(1)化简()()πcos 2sin 2πcos 2π5πsin 2αααα⎛⎫- ⎪⎝⎭--⎛⎫+ ⎪⎝⎭;(2)求2sin2sin sin cos cos21ααααα+--的值.【答案】(1)45(2)1【详解】(1)因为sin 2cos αα=,22sin cos 1αα+=,所以22sin sin 12αα⎛⎫+= ⎪⎝⎭,即24sin 5α=,()()2πcos sin 42sin 2πcos 2πsin cos sin 5πcos 5sin 2ααααααααα⎛⎫- ⎪⎝⎭--===⎛⎫+ ⎪⎝⎭.(2)sin tan 2cos ααα== ,2sin2sin sin cos cos21ααααα∴+--()222sin cos sin sin cos 2cos 11αααααα=+---222sin cos sin sin cos 2cos αααααα=+-222tan tan tan 2221222ααα=+-⨯==+-.50.化简以下式子:()()()()()7πsin cos πtan 3π2sin 2πtan πcos 9παααααα⎛⎫++- ⎪⎝⎭--+-【答案】1tan α-【详解】()()()()()7πsin cos πtan 3π2sin 2πtan πcos 9παααααα⎛⎫++- ⎪⎝⎭--+-()()()()3πsin cos tan 2sin tan cos παααααα⎛⎫+-- ⎪⎝⎭=--()()()()()cos cos tan sin tan cos αααααα---=--cos 1sin tan ααα=-=-.。
(完整word版)高中数学计算题专项练习一(3)
高中数学计算题专项练习一高中数学计算题专项练习一一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.2.(1)若=3,求的值;(2)计算的值.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).5.计算的值.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.10.计算(1)(2).11.计算(1)(2).12.解方程:log2(x﹣3)﹣=2.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).14.求下列各式的值:(1)(2).15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.16.求值:.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.18.求值:+.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.20.计算(1)(2)(lg5)2+lg2×lg50 21.不用计算器计算:.22.计算下列各题(1);(2).23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.24.求值:(1)(2)2log525﹣3log264.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).26.计算下列各式(1);(2).27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.28.计算下列各题:(1);(2)lg25+lg2lg50.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.30.(1)计算:;(2)解关于x的方程:.高中数学计算题专项练习一参考答案与试题解析一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.考点:有理数指数幂的化简求值.专题:计算题.分析:(Ⅰ)利用对数与指数的运算法则,化简求值即可.(Ⅰ)先利用换元法把问题转化为二次方程的求解,解方程后,再代入换元过程即可.解答:(本小题满分13分)解:(Ⅰ)原式=﹣1++log2=﹣1﹣1+23=﹣1+8+=10.…(6分)(Ⅰ)设t=log2x,则原方程可化为t2﹣2t﹣3=0…(8分)即(t﹣3)(t+1)=0,解得t=3或t=﹣1…(10分)Ⅰlog2x=3或log2x=﹣1Ⅰx=8或x=…(13分)点评:本题考查有理指数幂的化简求值以及换元法解方程,是基础题.要求对基础知识熟练掌握.2.(1)若=3,求的值;(2)计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)利用已知表达式,通过平方和与立方差公式,求出所求表达式的分子与分母的值,即可求解.(2)直接利用指数与对数的运算性质求解即可.解答:解:(1)因为=3,所以x+x﹣1=7,所以x2+x﹣2=47,=()(x+x﹣1﹣1)=3×(7﹣1)=18.所以==.(2)=3﹣3log22+(4﹣2)×=.故所求结果分别为:,点评:本题考查有理数指数幂的化简求值,立方差公式的应用,考查计算能力.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:直接利用有理指数幂的运算求出a,对数运算法则求出b,然后求解a+2b的值解答:解:==.b=(log43+log83)(log32+log92)=(log23+log23)(log32+log32)==,Ⅰ,,Ⅰa+2b=3.点评:本题考查指数与对数的运算法则的应用,考查计算能力.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).考点:有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的运算法则进行化简求值即可.解答:解:(1)原式=﹣(3×1)﹣1﹣﹣10×=﹣﹣1﹣3=﹣1.(2)原式=+﹣2=+﹣2=﹣2+﹣2.点评:本题考查有理数指数幂的运算法则,考查学生的运算能力,属基础题,熟记有关运算法则是解决问题的基础.5.计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:根据分数指数幂运算法则进行化简即可.解答:解:原式===.点评:本题主要考查用分数指数幂的运算法则进行化简,要求熟练掌握分数指数幂的运算法则.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用有理指数幂的运算性质和对数的运算性质化简求值.(2)把已知的等式两边平方即可求得x2+x﹣2的值.解答:解:(1)==;(2)由x+x﹣1=3,两边平方得x2+2+x﹣2=9,所以x2+x﹣2=7.点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,是基础的计算题.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.考点:指数函数的单调性与特殊点;方根与根式及根式的化简运算.专题:计算题;转化思想.分析:(1)由﹣2x2+5x﹣2>0,解出x的取值范围,判断根号下与绝对值中数的符号,进行化简.(2)先判断底数的取值范围,由于底数大于1,根据指数函数的单调性将不等式进行转化一次不等式,求解即可.解答:解:(1)Ⅰ﹣2x2+5x﹣2>0Ⅰ,Ⅰ原式===(8分)(2)Ⅰ,Ⅰ原不等式等价于x<1﹣x,Ⅰ此不等式的解集为(12分)点评:本题考查指数函数的单调性与特殊点,求解本题的关键是判断底数的符号,以确定函数的单调性,熟练掌握指数函数的单调性是正确转化的根本.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用分数指数幂的运算法则即可得出;(2)利用对数的运算法则和lg2+lg5=1即可得出.解答:解:(1)原式==4a.(2)原式=+50×1=lg102+50=52.点评:本题考查了分数指数幂的运算法则、对数的运算法则和lg2+lg5=1等基础知识与基本技能方法,属于基础题.9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)先将每一个数化简为最简分数指数幂的形式,再利用运算性质化简.(2)先将每一个对数式化简,再利用对数运算性质化简.解答:解:(1)===﹣45;(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006=(3lg2+3)•lg5+3(lg2)2﹣lg6+(lg6﹣3)=3lg2•lg5+3lg5+3(lg2)2﹣3=3lg2(lg5+lg2)+3lg5﹣3=3lg2+3lg5﹣3=3﹣3=0.点评:本题考察运算性质,做这类题目最关键的是平时练习时要细心、耐心、不怕麻烦,考场上才能熟练应对!10.计算(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.分析:(1)利用指数幂的运算性质即可得出;(2)利用对数函数的运算性质即可得出.解答:解:(1)原式=|2﹣e|﹣+﹣=e﹣2﹣+=e﹣2﹣e+=﹣2.(2)原式=+3=﹣4+3=2﹣4+3=1.点评:熟练掌握指数幂的运算性质、对数函数的运算性质是解题的关键.11.计算(1)(2).考点:对数的运算性质;有理数指数幂的运算性质.专题:计算题.分析:(1)直接利用对数的运算法则求解即可.(2)直接利用有理指数幂的运算法则求解即可.解答:解:(1)==(2)==9×8﹣27﹣1=44.点评:本题考查对数的运算法则、有理指数幂的运算法则的应用,考查计算能力.12.解方程:log2(x﹣3)﹣=2.考点:对数的运算性质.专题:计算题.分析:由已知中log2(x﹣3)﹣=2,由对数的运算性质,我们可得x2﹣3x﹣4=0,解方程后,检验即可得到答案.解答:解:若log2(x﹣3)﹣=2.则x2﹣3x﹣4=0,…(4分)解得x=4,或x=﹣1(5分)经检验:方程的解为x=4.…(6分)点评:本题考查的知识点是对数的运算性质,其中利用对数的运算性质,将已知中的方程转化为整式方程是解答醒的关键,解答时,易忽略对数的真数部分大于0,而错解为4,或﹣1.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算的性质可得结果;(Ⅰ)利用指数幂的运算性质可得结果;解答:解:(Ⅰ)lg24﹣(lg3+lg4)+lg5=lg24﹣lg12+lg5=lg=lg10=1;(Ⅰ)=×+﹣﹣1=32×23+3﹣2﹣1=72.点评:本题考查对数的运算性质、指数幂的运算性质,考查学生的运算能力,属基础题.14.求下列各式的值:(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据对数和指数的运算法则进行求解即可.解答:解:(1)原式==log﹣9=log39﹣9=2﹣9=﹣7.(2)原式=== =.点评:本题主要考查对数和指数幂的计算,要求熟练掌握对数和指数幂的运算法则.15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.分析:(1)利用指数幂的运算性质即可;(2)利用指数式和对数式的互化和运算性质即可.解答:解:(1)原式===3.(2)由xlog34=1,得x=log43,Ⅰ4x=3,,Ⅰ4x+4﹣x==.点评:熟练掌握对数和指数幂的运算性质是解题的关键.16.求值:.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的定义,及对数的运算性质,即可求出的值.解答:解:原式…(4分)…(3分)=…(1分)点评:本题考查的知识点是对数的运算性质,有理数指数幂的化简求值,其中掌握指数的运算性质和对数的运算性质,是解答本题的关键.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质可求;(2)利用对数运算性质可求;解答:解:(1)原式==0.4﹣1+8+=;(2)原式=lg25+2lg5•lg2+lg22=(lg5+lg2)2=(lg10)2=1点评:本题考查对数的运算性质、有理数指数幂的运算,属基础题,熟记有关运算性质是解题基础.18.求值:+.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:直接利用对数的运算法则,求出表达式的值即可.解答:解:原式==3+9+2000+1=2013.点评:本题考查对数的运算法则的应用,基本知识的考查.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.考点:对数的运算性质.专题:计算题.分析:(1)通过a>b>1利用,平方,然后配出log a b﹣log b a的表达式,求解即可.(2)直接利用对数的运算性质求解的值解答:解:(1)因为a>b>1,,所以,可得,a>b>1,所以log a b﹣log b a<0.所以log a b﹣log b a=﹣(2)==﹣4.点评:本题考查对数与指数的运算性质的应用,整体思想的应用,考查计算能力.20.计算(1)(2)(lg5)2+lg2×lg50考点:对数的运算性质;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:计算题.分析:(1)把根式转化成指数式,然后利用分数指数幂的运算法则进行计算.(2)先把lg50转化成lg5+1,然后利用对数的运算法则进行计算.解答:解:(1)===(6分)(2)(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+lg10)=(lg5)2+lg2×lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(12分)点评:本题考查对数的运算法则和根式与分数指数幂的互化,解题时要注意合理地进行等价转化.21.不用计算器计算:.考点:对数的运算性质.专题:计算题.分析:,lg25+lg4=lg100=2,,(﹣9.8)0=1,由此可以求出的值.解答:解:原式=(4分)=(8分)=(12分)点评:本题考查对数的运算性质,解题时要认真审题,注意公式的灵活运用.22.计算下列各题(1);(2).考点:对数的运算性质.专题:计算题.分析:(1)直接利用对数的运算性质求解表达式的值.(2)利用指数的运算性质求解表达式的值即可.解答:解:(1)==9+﹣1=(2)===﹣45.点评:本题考查指数与对数的运算性质的应用,考查计算能力.23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.考点:对数的运算性质.专题:计算题.分析:(1)先根据对数运算性质求出x,再根据对数的真数一定大于0检验即可.(2)设log3x=y,得出2y2﹣y﹣1=0,求出y的值,再由对数的定义求出x的值即可.解答:解:(1)原方程可化为lg(x﹣1)(x﹣2)=lg(x+2)所以(x﹣1)(x﹣2)=x+2即x2﹣4x=0,解得x=0或x=4经检验,x=0是增解,x=4是原方程的解.所以原方程的解为x=4(2)设log3x=y,代入原方程得2y2﹣y﹣1=0.解得y1=1,.log3x=1,得x1=3;由,得.经检验,x1=3,都是原方程的解.点评:本题主要考查对数的运算性质和对数函数的定义域问题.属基础题.24.求值:(1)(2)2log525﹣3log264.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)首先变根式为分数指数幂,然后拆开运算即可.(2)直接利用对数式的运算性质化简求值.解答:解:(1)====.(2)2log525﹣3log264==4﹣3×6=﹣14.点评:本题考查了对数式的运算性质,考查了有理指数幂的化简求值,解答的关键是熟记有关性质,是基础题.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质化简即可;(2)利用对数的运算性质化简即可.解答:解:(1)原式=﹣b﹣3÷(4)…..3分=﹣…..7分(2)解原式=…..2分=…..4分=…..6分=….7分.点评:本题考查对数的运算性质,考查有理数指数幂的化简求值,熟练掌握其运算性质是化简的基础,属于基础题.26.计算下列各式(1);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则和换底公式即可得出.解答:解:(1)原式=﹣1﹣+=.(2)原式=+lg(25×4)+2+1==.点评:本题考查了指数幂的运算法则、对数的运算法则和换底公式,属于基础题.27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(1)把第一、三项的底数写成平方、立方的形式即变成幂的乘方运算,第二项不等于0根据零指数的法则等于1,化简求值即可;(2)把第一项利用换底公式换成以2为底的对数,第二项利用对数函数的运算性质化简,log23整体换成a即可.解答:解:(1)原式=+1+=+1+=4;(2)原式=﹣3log22×3=log23﹣3(1+log23)=a﹣3(1+a)=﹣2a﹣3.点评:本题是一道计算题,要求学生会进行根式与分数指数幂的互化及其运算,会利用换底公式及对数的运算性质化简求值.做题时注意底数变乘方要用到一些技巧.28.计算下列各题:(1);(2)lg25+lg2lg50.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数的运算法则,直接求解表达式的值即可.(2)利用对数的运算性质,直接化简求解即可.解答:解:(1)原式===.(5分)(2)原式lg25+lg2lg50=lg25+2lg2lg5+lg25=(lg2+lg5)2=1 (5分)点评:本题考查对数的运算性质,有理数指数幂的化简求值,考查计算能力.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:(1)直接利用对数的运算性质即可求解(2)直接根据指数的运算性质即可求解解答:解:(1)原式=lg25+lg2(1+lg5)=lg25+lg2lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(2)原式=1+3+36﹣36=4.…(14分)点评:本题主要考查了对数的运算性质及指数的运算性质的简单应,属于基础试题30.(1)计算:;(2)解关于x的方程:.考点:对数的运算性质;有理数指数幂的运算性质;有理数指数幂的化简求值;函数的零点.专题:计算题.分析:(1)根据分数指数幂运算法则进行化简即可.(2)利用对数函数的性质和对数的运算法则进行计算即可.解答:解:(1)原式==﹣3;(2)原方程化为log5(x+1)+log5(x﹣3)=log55,从而(x+1)(x﹣3)=5,解得x=﹣2或x=4,经检验,x=﹣2不合题意,故方程的解为x=4.点评:本题主要考查分数指数幂和对数的运算,要求熟练掌握分数指数幂和对数的运算法则.。
高中数学计算题专项练习
高中数学计算题专项练习一、有理数的加减乘除一、其中a,b,c,d为实数且d≠0,求下列式子的值。
(1) a-2b+3c-d;(2) a(b+c-d)-2(bc-d^2);(3) a^2+(b-c)^2-d^2;(4) a/b-c/d。
二、不用计算器计算下列式子。
(1) -1.5+0.8-2.7;(2) 3-2(-1)+7(0.5);(3) -0.2×4+1.3×5;(4) 0.0035÷0.14.三、口算练习。
(1) 0.7+1.2-0.5;(2) 4.8-3.6-1.2;(3) (-0.3)+(-0.4)+(-0.5);(4) 2+(-7)-(-2.5).二、二次函数一、根据以下函数的图像,找出这个函数的零点、顶点和对称轴的方程。
二、求以下二次函数的基本形式,并判断其中的参数a 是否大于0。
(1) y=x^2+6x+5;(2) y=-x^2+2x-3;(3) y=2x^2-8x;(4) y=-3(x-5)^2+12。
三、解以下方程。
(1) x^2-4x-5=0;(2) 2x^2+5x-3=0;(3) x^2-6x+9=0;(4) -3x^2+18x-27=0。
四、求以下函数的定义域和值域。
(1) y=x^2-2x+3;(2) y=-2x^2+4x-3。
三、三角函数一、计算下列式子的值。
(1) sin30°+cos60°;(2) tan45°-cot45°;(3) 2sin120°cos45°-cos30°;(4) sin^2 45°+cos^2 60°。
二、求下列三角函数的周期,并画出一周期的图像。
(1) y=sin2x;(2) y=cos3x;(3) y=tan4x。
三、在[0,π]内解下列方程。
(1) sin2x=0;(2) cos2x=cosx;(3) 2sinx+sin2x=0。
高中数学计算题
年高中数学计算题————————————————————————————————作者:————————————————————————————————日期:计算题专项练习1.计算:(1);(2).2.计算:(1)lg1000+log342﹣log314﹣log48;(2).3.(1)解方程:lg(x+1)+lg(x﹣2)=lg4;(2)解不等式:21﹣2x>.4.(1)计算:2××(2)计算:2log510+log50.25.5.计算:(1);(2).6.求log89×log332﹣log1255的值.7.(1)计算.(2)若,求的值.8.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg5+(log32)•(log89)+lg2.9.计算:(1)lg22+lg5•lg20﹣1;(2).10.若lga、lgb是方程2x2﹣4x+1=0的两个实根,求的值.11.计算(Ⅰ)(Ⅱ).12.解方程:.13.计算:(Ⅰ)(Ⅱ).14.求值:(log62)2+log63×log612.15.(1)计算(2)已知,求的值.16.计算(Ⅰ);(Ⅱ)0.0081﹣()+••.17.(Ⅰ)已知全集U={1,2,3,4,5,6},A={1,4,5},B={2,3,5},记M=(∁U A)∩B,求集合M,并写出M的所有子集;(Ⅱ)求值:.18.解方程:log2(4x﹣4)=x+log2(2x+1﹣5)19.(Ⅰ)计算(lg2)2+lg2•lg50+lg25;(Ⅱ)已知a=,求÷.20.求值:(1)lg14﹣+lg7﹣lg18 (2).21.计算下列各题:(1)(lg5)2+lg2×lg50;(2)已知a﹣a﹣1=1,求的值.22.(1)计算;(2)关于x的方程3x2﹣10x+k=0有两个同号且不相等的实根,求实数k的取值范围.23.计算题(1)(2)24.计算下列各式:(式中字母都是正数)(1)(2).25.计算:(1);(2)lg25+lg2×lg50+(lg2)2.26.已知x+y=12,xy=27且x<y,求的值.27.(1)计算:;(2)已知a=log32,3b=5,用a,b表示.28.化简或求值:(1);(2).29.计算下列各式的值:(1);(2).30.计算(1)lg20﹣lg2﹣log23•log32+2log(2)(﹣1)0+()+().1.(1)已知x+y=12,xy=9,且x>y,求的值.(2).2.计算下列各题:(1)﹣lg25﹣2lg2;(2).3.计算下列各题:(Ⅰ);(Ⅱ).4.(1)化简:,(a>0,b>0).(2)已知2lg(x﹣2y)=lgx+lgy,求的值.5.解方程.6.求下列各式的值:(1)lg﹣lg+lg(2).7.求值:(1)(lg5)2+lg2•lg50;(2).8.计算的值.9.计算:(1)已知x>0,化简(2).10.计算:(1)(0.001)+27+()﹣()﹣1.5(2)lg25+lg2﹣lg﹣log29•log32.11.(1)求值:(2)解不等式:.12.化简:.13.(Ⅰ)化简:;(Ⅱ)已知2lg(x﹣2y)=lgx+lgy,求的值.14.计算:(1)()﹣×e++10lg2(2)lg25+lg2×lg500﹣lg﹣log29×log32.15.化简或求值:(1)(2)16.(1)计算:;(2)已知2a=5b=100,求的值.17.(1)计算(2)已知log189=a,18b=5,试用a,b表示log365.18.计算:(2)2(lg)2+lg•lg5+;(3)lg5(lg8+lg1000)+(lg2)2+lg+lg0.06.19.化简下列式子:(1);(2).20.化简下列式子:(1);(2);(3).21.化简求值:.22.化简下列式子:(1);(2);(3).23.化简下列式子:(1);(2);(3).24.化简下列式子:(1);(2).25.解方程:(1)3x﹣5x﹣2=3x﹣4﹣5x﹣3;(2)log x(9x2)•log32x=4.26.计算下列各式(Ⅰ)(lg2)2+lg5•lg20﹣1(Ⅱ).27.计算:lg2+﹣÷.28.解关于x的不等式log a[4+(x﹣4)a]<2log a(x﹣2),其中a∈(0,1).29.解不等式组:.30.当a>0且a≠1时,解关于x的不等式:2log a﹣2≥2log a(x﹣1)1.已知tanθ=a,(a>1),求的值.2.已知,求的值.3.已知﹣<x<0,则sinx+cosx=.(I)求sinx﹣cosx的值;(Ⅱ)求的值.4.已知α为锐角,且tanα=,求的值.5.已知.(Ⅰ)求tanα的值;(Ⅱ)求的值.6.已知tan(+α)=2,求的值.7.已知sin(+2α)•sin(﹣2α)=,α∈(,),求2sin2α+tanα﹣cotα﹣1的值.8.已知sin22α+sin2αcosα﹣cos2α=1,α∈(0,),求sinα、tanα的值.9.cos78°•cos3°+cos12°•sin3°(不查表求值).10.求tan20°+4sin20°的值.11.求sin的值.12.已知,求的值.13.已知的值.14.不查表求cos80°cos35°+cos10°cos55°的值.15.解方程sin3x﹣sinx+cos2x=0.16.解方程cos2x=cosx+sinx,求x的值.17.求证:=sin2α.18.已知sin﹣2cos=0.(I)求tanx的值;(Ⅱ)求的值.19.已知cos(α﹣)=,α∈(,π).求:(1)cosα﹣sinα的值.(2)cos(2α+)的值.20.已知A为锐角,,求cos2A及tanB的值.21.已知α为第二象限角,且sinα=的值.22.已知().(Ⅰ)求cosx的值;(Ⅱ)求的值.23.已知α为钝角,且求:(Ⅰ)tanα;(Ⅱ).24.已知,,求tanθ和cos2θ的值.25.已知tanθ=2.(Ⅰ)求的值;(Ⅱ)求cos2θ的值.26.已知,且.(Ⅰ)求的值;(Ⅱ)求的值.27.已知,求tg2x的值.28.已知,求:(1)的值;(2)的值.29.已知,求下列各式的值:(1)tanα;(2).30.(Ⅰ)化简:;(Ⅱ)已知α为第二象限角,化简cosα+sinα.1.化简:(1)mtan0°+xcos90°﹣psin180°﹣qcos270°﹣rsin360°(2)tan20°+tan40°+tan20°tan40°(3)log2cos.2.求值.3.已知3sinα+cosα=0.求下列各式的值.(1);(2)sin2α+2sinαcosα﹣3cos2α.4.已知sinθ=(n>m>0),求的值.5.计算:sin10°cos110°+cos170°sin70°.6.若1+sinθ﹣25cos2θ=0,θ为锐角,求cos的值.7.已知cosx+3sinx=,求tan2x.8.已知:α、β∈,且.求证:α+β=.9.已知=2,求;(1)的值;(2)的值;(3)3sin2α+4sinαcosα+5cos2α的值.10.已知tanx=2,求+sin2x的值.11.化简12.已知tanx=3,求下列各式的值:(1)y1=2sin2x﹣5sinxcosx﹣cos2x;(2)y2=.13.已知tanα=,计算:(1);(2).14.化简:(1);(2)﹣.15.求cos271°+cos71°cos49°+cos249°的值.16.如果sinα•cosα>0,且sinα•tanα>0,化简:cos•+cos•.17.(1)若角α是第二象限角,化简tanα﹣1;(2)化简:.18.化简:(1)tan2α﹣tan2β;(2)1+cosα+cosθ+cos(α+θ).19.求sin21°+sin22°+…+sin290°.20.(1)若,求值①;②2sin2α﹣sinαcosα+cos2α.(2)求值.21.已知0<α<,若cos α﹣sin α=﹣,试求的值.22.求cos36°﹣sin18°的值.23.化简:.24.求和:sin21°+sin22°+sin23°+…+sin289°.25.求证:(sinα+tanα)(cosα+cotα)=(1+sinα)(1+cosα).26.求下列各式的值(1)tan6°tan42°tan66°tan78°;(2).27.已知sinθ+sin2θ=1,求3cos2θ+cos4θ﹣2sinθ+1的值.28.化简:(1);(2).29.深化拓展:求cot10°﹣4cos10°的值.30.化简:(1);(2).1.一个多项式若能因式分解,则这个多项式被其任一因式除所得余式为_________.2.变形(1)(a+b)(a-b)=a2-b2,(2)a2-b2=(a-b)(a+b)中,属于因式分解过程的是________.3.若a,b,c三数中有两数相等,则a2(b-c)+b2(c-a)+c2(a-b)的值为_________.4.12.718×0.125-0.125×4.718=_________.5.1.13×2.5+2.25×2.5+0.62×2.5=_________.6.分解因式:a2(b2-c2)-c2(b-c)(a+b)=_________.7.因式分解:(a-2b)(3a+4b)+(2a-4b)(2a-3b)=(a-2b)·().8.若a+b+c=m,则整式m·[(a-b)2+(b-c)2+(c-a)2]+6(a+b+c)(ab+bc+ca) 可用m表示为_______________.9.(2x+1)y2+(2x+1)2y=_________.10.因式分解:(x-y)n-(x-y)n-2=(x-y)n-2·_________.11.m(a-m)(a-n)-n(m-a)(a-n)=_________.12.因式分解:x(m-n)+(n-m)y-z(m-n)=(m-n)().13.因式分解:(x+2y)(3x2-4y2)-(x+2y)2(x-2y)=________.14.21a3b-35a2b3=_________.15.3x2yz+15xz2-9xy2z=__________.16.x2-2xy-35y2=(x-7y)( ).17.2x2-7x-15=(x-5)().18.20x2-43xy+14y2=(4x-7y)().19.18x2-19x+5=()(2x-1).20.6x2-13x+6=()( ).21.5x2+4xy-28y2=()().22.-35m2n2+11mn+6=-()().23.6+11a-35a2=()().24.6-11a-35a2=()().25.-1+y+20y2=()( ).26.20x2+()+14y2=(4x-7y)(5x-2y).27.x2-3xy-()=(x-7y)(x+4y).28.x2+()-28y2=(x+7y)(x-4y).29.x2+()-21y2=(x-7y)(x+3y).30.kx2+5x-6=(3x-2)(),k=______.31.6x2+5x-k=(3x-2)(),k=______.32.6x2+kx-6=(3x-2)(),k=______.33.18x2-19x+5=(9x+m)(2x+n),则m=_____,n=_____.34.18x2+19x+m=(9x+5)(2x+n),则m=_____,n=_____.35.20x2-43xy+14y2=(4x+m)(5x+n),则m=_____,n=_____.36.20x2-43xy+m=(4x-7y)(5x+n),则m=_____,n=_____.38.x4-4x3+4x2-1=_______.39.2x2-3x-6xy+9y=________.40.21a2x-9ax2+6xy2-14ay2=________.41.a3+a2b+a2c+abc=________.42.2(a2-3ac)+a(4b-3c)=_________.43.27x3+54x2y+36xy2+8y3_______.44.1-3(x-y)+3(x-y)2-(x-y)3=_______.45.(x+y)2+(x+m)2-(m+n)2-(y+n)2=_______.46.25x 2-4a 2+12ab-9b 2=_______.47.a 2-c 2+2ab+b 2-d 2-2cd=_______.48.x 4+2x 2+1-x 2-2ax-a 2=________.50.a 2-4b 2-4c 2-8bc=__________.51.a 2+b 2+4a-4b-2ab+4=________.1、计算:lg 5·lg 8000+06.0lg 61lg )2(lg 23++.2、解方程:lg 2(x +10)-lg(x +10)3=4.3、解方程:23log 1log 66-=x .4、解方程:9-x -2×31-x =27.5、解方程:x)81(=128. 6、解方程:5x+1=123-x .7、计算:10log 5log )5(lg )2(lg 2233++·.10log 188、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92).9、求函数121log 8.0--=x x y 的定义域.10、已知log 1227=a,求log 616.11、已知f(x)=1322+-x x a,g(x)=522-+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x).12、已知函数f(x)=321121x x ⎪⎭⎫ ⎝⎛+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0.13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数.14、求log 927的值.15、设3a =4b =36,求a 2+b 1的值.16、解对数方程:log 2(x -1)+log 2x=117、解指数方程:4x +4-x -2x+2-2-x+2+6=018、解指数方程:24x+1-17×4x +8=019、解指数方程:22)223()223(=-++-x x ±220、解指数方程:01433214111=+⨯------x x21、解指数方程:042342222=-⨯--+-+x x x x22、解对数方程:log 2(x -1)=log 2(2x+1)23、解对数方程:log 2(x 2-5x -2)=224、解对数方程:log 16x+log 4x+log 2x=725、解对数方程:log 2[1+log 3(1+4log 3x)]=126、解指数方程:6x -3×2x -2×3x +6=027、解对数方程:lg(2x-1)2-lg(x-3)2=228、解对数方程:lg(y-1)-lgy=lg(2y-2)-lg(y+2)29、解对数方程:lg(x2+1)-2lg(x+3)+lg2=030、解对数方程:lg2x+3lgx-4=0。
高中数学计算题专项练习一
高中数学计算题专项练习一高中数学计算题专项练习一一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅱ)解关于x的方程.2.(1)若=3,求的值;(2)计算的值.3.已知,b=(log43+log83)(log32+log92),求a+2b 的值.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).5.计算的值.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.10.计算(1)(2).11.计算(1)(2).12.解方程:log 2(x﹣3)﹣=2.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅱ).14.求下列各式的值:(1)(2).15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.16.求值:.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.18.求值:+.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.20.计算(1)(2)(lg5)2+lg2×lg50 21.不用计算器计算:.22.计算下列各题(1);(2).23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.24.求值:(1)(2)2log525﹣3log264.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).26.计算下列各式(1);(2).27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.28.计算下列各题:(1);(2)lg25+lg2lg50.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.30.(1)计算:;(2)解关于x的方程:.高中数学计算题专项练习一参考答案与试题解析一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅱ)解关于x的方程.考点:有理数指数幂的化简求值.专题:计算题.分析:(Ⅰ)利用对数与指数的运算法则,化简求值即可.(Ⅱ)先利用换元法把问题转化为二次方程的求解,解方程后,再代入换元过程即可.解答:(本小题满分13分)解:(Ⅰ)原式=﹣1++log2=﹣1﹣1+23=﹣1+8+=10.…(6分)(Ⅱ)设t=log2x,则原方程可化为t2﹣2t﹣3=0…(8分)即(t﹣3)(t+1)=0,解得t=3或t=﹣1…(10分)∴log2x=3或log2x=﹣1∴x=8或x=…(13分)点评:本题考查有理指数幂的化简求值以及换元法解方程,是基础题.要求对基础知识熟练掌握.2.(1)若=3,求的值;(2)计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)利用已知表达式,通过平方和与立方差公式,求出所求表达式的分子与分母的值,即可求解.(2)直接利用指数与对数的运算性质求解即可.解答:解:(1)因为=3,所以x+x﹣1=7,所以x2+x﹣2=47,=()(x+x﹣1﹣1)=3×(7﹣1)=18.所以==.(2)=3﹣3log22+(4﹣2)×=.故所求结果分别为:,点评:本题考查有理数指数幂的化简求值,立方差公式的应用,考查计算能力.3.已知,b=(log43+log83)(log32+log92),求a+2b 的值.考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:直接利用有理指数幂的运算求出a,对数运算法则求出b,然后求解a+2b的值解答:解:==.b=(log43+log83)(log32+log92)=(log23+log23)(log32+log32)==,∴,,∴a+2b=3.点评:本题考查指数与对数的运算法则的应用,考查计算能力.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).考点:有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的运算法则进行化简求值即可.解答:解:(1)原式=﹣(3×1)﹣1﹣﹣10×=﹣﹣1﹣3=﹣1.(2)原式=+﹣2=+﹣2=﹣2+﹣2.点评:本题考查有理数指数幂的运算法则,考查学生的运算能力,属基础题,熟记有关运算法则是解决问题的基础.5.计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:根据分数指数幂运算法则进行化简即可.解答:解:原式===.点评:本题主要考查用分数指数幂的运算法则进行化简,要求熟练掌握分数指数幂的运算法则.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用有理指数幂的运算性质和对数的运算性质化简求值.(2)把已知的等式两边平方即可求得x2+x﹣2的值.解答:解:(1)==;(2)由x+x﹣1=3,两边平方得x2+2+x﹣2=9,所以x2+x﹣2=7.点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,是基础的计算题.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.考点:指数函数的单调性与特殊点;方根与根式及根式的化简运算.专题:计算题;转化思想.分析:(1)由﹣2x2+5x﹣2>0,解出x的取值范围,判断根号下与绝对值中数的符号,进行化简.(2)先判断底数的取值范围,由于底数大于1,根据指数函数的单调性将不等式进行转化一次不等式,求解即可.解答:解:(1)∵﹣2x2+5x﹣2>0∴,∴原式===(8分)(2)∵,∴原不等式等价于x<1﹣x,∴此不等式的解集为(12分)点评:本题考查指数函数的单调性与特殊点,求解本题的关键是判断底数的符号,以确定函数的单调性,熟练掌握指数函数的单调性是正确转化的根本.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用分数指数幂的运算法则即可得出;(2)利用对数的运算法则和lg2+lg5=1即可得出.解答:解:(1)原式==4a.(2)原式=+50×1=lg102+50=52.点评:本题考查了分数指数幂的运算法则、对数的运算法则和lg2+lg5=1等基础知识与基本技能方法,属于基础题.9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)先将每一个数化简为最简分数指数幂的形式,再利用运算性质化简.(2)先将每一个对数式化简,再利用对数运算性质化简.解答:解:(1)===﹣45;(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006=(3lg2+3)•lg5+3(lg2)2﹣lg6+(lg6﹣3)=3lg2•lg5+3lg5+3(lg2)2﹣3=3lg2(lg5+lg2)+3lg5﹣3=3lg2+3lg5﹣3=3﹣3=0.点评:本题考察运算性质,做这类题目最关键的是平时练习时要细心、耐心、不怕麻烦,考场上才能熟练应对! 10.计算(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.分析:(1)利用指数幂的运算性质即可得出;(2)利用对数函数的运算性质即可得出.解答:解:(1)原式=|2﹣e|﹣+﹣=e﹣2﹣+=e﹣2﹣e+=﹣2.(2)原式=+3=﹣4+3=2﹣4+3=1.点评:熟练掌握指数幂的运算性质、对数函数的运算性质是解题的关键.11.计算(1)(2).考点:对数的运算性质;有理数指数幂的运算性质.专题:计算题.分析:(1)直接利用对数的运算法则求解即可.(2)直接利用有理指数幂的运算法则求解即可.解答:解:(1)==(2)==9×8﹣27﹣1=44.点评:本题考查对数的运算法则、有理指数幂的运算法则的应用,考查计算能力.12.解方程:log 2(x﹣3)﹣=2.考点:对数的运算性质.专题:计算题.分析:由已知中log 2(x﹣3)﹣=2,由对数的运算性质,我们可得x2﹣3x﹣4=0,解方程后,检验即可得到答案.解答:解:若log 2(x﹣3)﹣=2.则x2﹣3x﹣4=0,…(4分)解得x=4,或x=﹣1(5分)经检验:方程的解为x=4.…(6分)点评:本题考查的知识点是对数的运算性质,其中利用对数的运算性质,将已知中的方程转化为整式方程是解答醒的关键,解答时,易忽略对数的真数部分大于0,而错解为4,或﹣1.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅱ).考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算的性质可得结果;(Ⅱ)利用指数幂的运算性质可得结果;解答:解:(Ⅰ)lg24﹣(lg3+lg4)+lg5=lg24﹣lg12+lg5=lg=lg10=1;(Ⅱ)=×+﹣﹣1=32×23+3﹣2﹣1=72.点评:本题考查对数的运算性质、指数幂的运算性质,考查学生的运算能力,属基础题.14.求下列各式的值:(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据对数和指数的运算法则进行求解即可.解答:解:(1)原式==log﹣9=log39﹣9=2﹣9=﹣7.(2)原式=== =.点评:本题主要考查对数和指数幂的计算,要求熟练掌握对数和指数幂的运算法则.15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.分析:(1)利用指数幂的运算性质即可;(2)利用指数式和对数式的互化和运算性质即可.解答:解:(1)原式===3.(2)由xlog34=1,得x=log43,∴4x=3,,∴4x+4﹣x==.点评:熟练掌握对数和指数幂的运算性质是解题的关键.16.求值:.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的定义,及对数的运算性质,即可求出的值.解答:解:原式…(4分)…(3分)=…(1分)点评:本题考查的知识点是对数的运算性质,有理数指数幂的化简求值,其中掌握指数的运算性质和对数的运算性质,是解答本题的关键.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质可求;(2)利用对数运算性质可求;解答:解:(1)原式==0.4﹣1+8+=;(2)原式=lg25+2lg5•lg2+lg22=(lg5+lg2)2=(lg10)2=1点评:本题考查对数的运算性质、有理数指数幂的运算,属基础题,熟记有关运算性质是解题基础.18.求值:+.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:直接利用对数的运算法则,求出表达式的值即可.解答:解:原式==3+9+2000+1=2013.点评:本题考查对数的运算法则的应用,基本知识的考查.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.考点:对数的运算性质.专题:计算题.分析:(1)通过a>b>1利用,平方,然后配出log a b﹣log b a的表达式,求解即可.(2)直接利用对数的运算性质求解的值解答:解:(1)因为a>b>1,,所以,可得,a>b>1,所以log a b﹣log b a<0.所以log a b﹣log b a=﹣(2)==﹣4.点评:本题考查对数与指数的运算性质的应用,整体思想的应用,考查计算能力.20.计算(1)(2)(lg5)2+lg2×lg50考点:对数的运算性质;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:计算题.分析:(1)把根式转化成指数式,然后利用分数指数幂的运算法则进行计算.(2)先把lg50转化成lg5+1,然后利用对数的运算法则进行计算.解答:解:(1)===(6分)(2)(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+lg10)=(lg5)2+lg2×lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(12分)点评:本题考查对数的运算法则和根式与分数指数幂的互化,解题时要注意合理地进行等价转化.21.不用计算器计算:.考点:对数的运算性质.专题:计算题.分析:,lg25+lg4=lg100=2,,(﹣9.8)0=1,由此可以求出的值.解答:解:原式=(4分)=(8分)=(12分)点评:本题考查对数的运算性质,解题时要认真审题,注意公式的灵活运用.22.计算下列各题(1);(2).考点:对数的运算性质.专题:计算题.分析:(1)直接利用对数的运算性质求解表达式的值.(2)利用指数的运算性质求解表达式的值即可.解答:解:(1)==9+﹣1=(2)===﹣45.点评:本题考查指数与对数的运算性质的应用,考查计算能力.23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.考点:对数的运算性质.专题:计算题.分析:(1)先根据对数运算性质求出x,再根据对数的真数一定大于0检验即可.(2)设log3x=y,得出2y2﹣y﹣1=0,求出y的值,再由对数的定义求出x的值即可.解答:解:(1)原方程可化为lg(x﹣1)(x﹣2)=lg(x+2)所以(x﹣1)(x﹣2)=x+2即x2﹣4x=0,解得x=0或x=4经检验,x=0是增解,x=4是原方程的解.所以原方程的解为x=4(2)设log3x=y,代入原方程得2y2﹣y﹣1=0.解得y1=1,.log3x=1,得x1=3;由,得.经检验,x1=3,都是原方程的解.点评:本题主要考查对数的运算性质和对数函数的定义域问题.属基础题.24.求值:(1)(2)2log525﹣3log264.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)首先变根式为分数指数幂,然后拆开运算即可.(2)直接利用对数式的运算性质化简求值.解答:解:(1)====.(2)2log525﹣3log264==4﹣3×6=﹣14.点评:本题考查了对数式的运算性质,考查了有理指数幂的化简求值,解答的关键是熟记有关性质,是基础题.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质化简即可;(2)利用对数的运算性质化简即可.解答:解:(1)原式=﹣b﹣3÷(4)…..3分=﹣…..7分(2)解原式=…..2分=…..4分=…..6分=….7分.点评:本题考查对数的运算性质,考查有理数指数幂的化简求值,熟练掌握其运算性质是化简的基础,属于基础题.26.计算下列各式(1);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则和换底公式即可得出.解答:解:(1)原式=﹣1﹣+=.(2)原式=+lg(25×4)+2+1==.点评:本题考查了指数幂的运算法则、对数的运算法则和换底公式,属于基础题.27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(1)把第一、三项的底数写成平方、立方的形式即变成幂的乘方运算,第二项不等于0根据零指数的法则等于1,化简求值即可;(2)把第一项利用换底公式换成以2为底的对数,第二项利用对数函数的运算性质化简,log23整体换成a即可.解答:解:(1)原式=+1+=+1+=4;(2)原式=﹣3log22×3=log23﹣3(1+log23)=a﹣3(1+a)=﹣2a﹣3.点评:本题是一道计算题,要求学生会进行根式与分数指数幂的互化及其运算,会利用换底公式及对数的运算性质化简求值.做题时注意底数变乘方要用到一些技巧.28.计算下列各题:(1);(2)lg25+lg2lg50.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数的运算法则,直接求解表达式的值即可.(2)利用对数的运算性质,直接化简求解即可.解答:解:(1)原式===.(5分)(2)原式lg25+lg2lg50=lg25+2lg2lg5+lg25=(lg2+lg5)2=1 (5分)点评:本题考查对数的运算性质,有理数指数幂的化简求值,考查计算能力.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:(1)直接利用对数的运算性质即可求解(2)直接根据指数的运算性质即可求解解答:解:(1)原式=lg25+lg2(1+lg5)=lg25+lg2lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(2)原式=1+3+36﹣36=4.…(14分)点评:本题主要考查了对数的运算性质及指数的运算性质的简单应,属于基础试题30.(1)计算:;(2)解关于x的方程:.考点:对数的运算性质;有理数指数幂的运算性质;有理数指数幂的化简求值;函数的零点.专题:计算题.分析:(1)根据分数指数幂运算法则进行化简即可.(2)利用对数函数的性质和对数的运算法则进行计算即可.解答:解:(1)原式==﹣3;(2)原方程化为log5(x+1)+log5(x﹣3)=log55,从而(x+1)(x﹣3)=5,解得x=﹣2或x=4,经检验,x=﹣2不合题意,故方程的解为x=4.点评:本题主要考查分数指数幂和对数的运算,要求熟练掌握分数指数幂和对数的运算法则.。
新高考数学计算题型精练 指数运算与对数运算(解析版)
新高考数学计算题型精练指数与对数运算1.求值:(1))20.501π316-⎛⎫+- ⎪⎝⎭;(2)2ln31274e log9log8lg4lg25-⋅++.【答案】(1)0(2)12【详解】(1)原式123493711041644⎛⎫=+-=+-=⎪⎝⎭(2)原式ln923e log3log2lg10091212=+⋅+=++=.2.计算(1)1223182π4-⎛⎫-++⎪⎝⎭(2)2log321log lg2lg528--+【答案】(1)5(2)1-【详解】(1)()112222203331322 82π214154233--⎡⎤⎛⎫⎛⎫-+-+-++=⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(2)()2log321log lg2lg523lg2lg5318--+=--++=-3.求值:(1)(213103531732248---⎛⎫⎛⎫++-⨯ ⎪⎪⎝⎭⎝⎭;(2)2ln3427e log9log8lg4lg25-⋅++.【答案】(1)3(2)10【详解】(1)(213103531732248---⎛⎫⎛⎫++-⨯ ⎪⎪⎝⎭⎝⎭()()1132533353122224--=+-⨯+⨯123233122222=+-⨯+⨯12331882+=+-+12=+3=;(2)原式ln923e log3log2lg10091210=-⋅+=-+=;综上,(1)原式=3;(2)原式=10.4.计算:(1)341lg2lg 3lg5log 2log 94-+-⨯;(2)21log 3231lglog 3log log 52100+-⨯+. 【答案】(1)2(2)4【详解】(1)341lg2lg 3lg5log 2log 94-+-⨯2232log 9lg2lg23lg5log 2log 4-=-+-⨯32lg22lg23lg5log 2log 3=++-⨯3(lg2lg5)1=+-3lg101=-31=- 2=.(2)21log 3231lglog 3log log 52100+-⨯+2log 32222log 512log 322log 32=--++⨯ 112622=--++4=.5.求下列各式的值:(1)()10.52332770.02721259-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+-; (2)55557log 352log log 7log 1.83-+-. 【答案】(1)9100(2)2 【详解】(1)原式210.5332333351053-⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦95510033=+- 9100=(2)原式5555499log 35log log 7log 95=-+- 5499log 35795⎛⎫=÷⨯÷ ⎪⎝⎭5log 252==6.计算:(2)()()2266661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭【答案】(1)4-(2)1 【详解】(11128125lg 25lg10lg10-⨯⨯=⨯()2lg10112=⨯-4=-; (2)()()2266661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭()()226666log 2log 33log 2log =++⨯()()22666log 2log 33log 2log =++⨯()()226666log 2log 32log 2log 3=++⨯()266log 2log 3=+1=.7.计算或化简下列各式: (1)()1223164⎛⎫-+ ⎪⎝⎭(2)228393(log 3log 9)(log 4log 8log 2)(lg 2)lg 20lg 5+++++⨯【答案】(1)3(2)172【详解】(1)原式221111111113332362362222255122ln e 333233422++⎛⎫⎛⎫⎛⎫=⨯-++⨯⨯=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)原式=()22233322log 3log 32log 2log 2log 2lg 2lg 20lg 533⎛⎫⎛⎫+++++⨯ ⎪⎪⎝⎭⎝⎭()()()22235915log 3log 2lg 2lg 20lg5lg 2lg 21lg5322=⨯++⨯=+++⨯ ()()()215151517lg 2lg 2lg5lg5lg 2lg 2lg5lg5lg 2lg52222=+++=+++=++= 8.计算下列各式的值:(1)2237828-⎛⎫-- ⎪⎝⎭;(2)2log 331log 27lg2100++. 【答案】(1)1π4+(2)92【详解】(1)02237828-⎛⎫-- ⎪⎝⎭()23321213π2=-+-+141π34=-+-+1π4=+;(2)21log 33223311l 2og 27lg 2log 3lg10ln e 332310092-++=+++=-=++.9.计算下列各式的值:(1)213112726-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;(2)3332log 2log 32log 8-+. 【答案】(1)5.5(2)0【详解】(1)原式230.52120.54 5.5=-+-=-+=; (2)原式3333348log 4log 32log 8log log 1032⨯=-+===. 10.计算下列两个小题:(1)ln31e lg15lg 3++;(2)0.25608π+. 【答案】(1)4(2)75【详解】(1)ln3111elg15lg 3lg 2lg15lg 3lg 2154333⎛⎫++=+++=+⨯⨯= ⎪⎝⎭.(2)660.750.2650.25085221289π17=⨯+⨯+=+⨯=++.11.求下列式子的值:(1)()()12623129.684-⎛⎫+--- ⎪⎝⎭.(2)ln334lg252lg2log 16log 3e +-⋅+. 【答案】(1)0(2)3 【详解】(1)()()()()126203122332129.68931912412 1.05444--⎛⎫+--- ⎪⎝⎭⎛⎫⎡⎤+--- ⎪⎣⎦⎝⎭==+--=(2)ln33434lg252lg2log 16log 3e lg25lg42log log 33lg1002324233+-⋅++-⋅+=-+=-+==12.计算与化简: (1)453log 27log 8log 25⨯⨯(2)12271112333662228a b a b a b ---⎛⎫⎛⎫⎛⎫⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (3)1220.51392(0.01)54-⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭(4)222lg5lg8lg5lg20(lg2)3++⋅+.【答案】(1)9(2)b -(3)5140(4)3 【详解】(1)原式3lg33lg 22lg592lg 2lg5lg3=⨯⨯=; (2)原式12711122363262328a b b -+-++-⎛⎫⎛⎫⎛⎫- ⎪==- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(3)原式131511421040=+⨯-=(4)原式()()22lg52lg 2lg5lg52lg 2lg 2=++++()()22lg5lg 2lg 2lg5=+++ 2213=+=13.(1)21023213(2)(9.6)(3)(1.5)48---+; (2)log 535﹣2log 573+log 57﹣log 595.【答案】(1)12;(2)2【详解】解:(1)21023213(2)(9.6)(3)(1.5)48---+1﹣2327()8+2.25=32﹣1﹣2333()2⎡⎤⎢⎥⎣⎦+2.25=32﹣1﹣94+94=12;(2)log 535﹣2log 573+log 57﹣log 595=log 5[35÷(499)×7÷95]=log 5(35×949×7×59)=log 525=2.14.化简求值:(1)2133325-⎛⎫+ ⎪⎝⎭;(2)7log 2log lg 25lg 47++. 【答案】(1)12-(2)112【详解】(1)原式1213331182212122-=-⨯+=-+=-. (2)原式331311log 3lg100222222=++=++=.15.化简或求值:(1)0.5207120.1π93-⎛⎫+-+ ⎪⎝⎭;(2)7lg142lg lg 7lg183-+-;【答案】(1)101;(2)0;(3)1.【详解】(1)0.5207120.1π93-⎛⎫+-+ ⎪⎝⎭1225151100110011019333⎛⎫=+-+=+-+= ⎪⎝⎭; (2)7lg142lg lg 7lg183-+-27lg14lg lg 7lg183⎛⎫=-+- ⎪⎝⎭9lg 1471849⎛⎫=⨯⨯÷ ⎪⎝⎭lg1=0=;(3211==.16.计算:(1))()1211610.259-⎛⎫-- ⎪⎝⎭(2)25lg 42lg 5log 5log 8lg10++⨯+.【答案】(1)23-(2)6【详解】(1)原式4214333=--+=- (2)原式2lg 5lg8lg 4lg 51lg 2lg 5=++⨯+ 3222log 813log 26=++=+=17.计算下列各式的值:(1)()6221103321642e 453π-⎛⎫⎛⎫+--+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)ln235log 27lg2lg5log 16log e ---⋅. 【答案】(1)2023(2)2【详解】(1)()6221103321642e π453-⎛⎫⎛⎫+--+⨯ ⎪ ⎪⎝⎭⎝⎭611223243245⎛⎫=+-+⨯ ⎪⎝⎭232345=+⨯2023=.(2)()ln235log 27lg2lg5log 16log e -+-⋅ln25=31log 16log e --⋅()ln2521=24log 2log 5e =2222-⋅+-+=2.18.计算下列各题:(1)()20.5312816410.751627---⎛⎫⎛⎫+-÷+ ⎪ ⎪⎝⎭⎝⎭;(2)()70log 2log lg 25lg 479.8+++-. 【答案】(1)94(2)132【详解】(1)原式20.523814279999116364416164⎛⎫⎛⎫⎛⎫=-÷+=-+= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)原式323100313log 3lg lg 4212lg 4lg 43422=++++=+-++=. 19.化简求值(1)1131227(0.002)2)8--⎛⎫+- ⎪⎝⎭;(2)()266661log 3log 2log 18log 4⎡⎤-+⨯÷⎣⎦. 【答案】(1)372-(2)1 【详解】(1)原式)113131232271350010285002-⨯⎛⎫⎛⎫⎛⎫=+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3372022=+=-. (2)原式()()266666612log 3log 3log log 63log 43⎡⎤=-++⋅⨯÷⎢⎥⎣⎦()()()26666612log 3log 31log 31log 3log 4⎡⎤=-++-+÷⎣⎦()()22666612log 3log 31log 3log 4⎡⎤=-++-÷⎣⎦()666666621log 3log 6log 3log 212log 2log 2log 2--====.20.(1)计算:1222301322( 2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)已知7log 23log 27lg252lg27xa =++-,求33x xx xa a a a--++的值. 【答案】(1)12 ;(2)739. 【详解】(1)原式123232223333391991122222444212⎛⎫⎛⎫⎛⎫⎛⎫+=--+=-+=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎡⎤⎡⎤=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎭⎦⎝⎭. (2)()33log 32lg52lg2232lg5lg223223x a =++-=++-=+-=,所以()()()()3322331xx xx x xx xx xx xx xa a aa a a a a a a a a a a -------++⋅-++==+++()()()22222222117311131.39x xxxx x a aaa aa --⎛⎫⎛⎫=+-=+-=+-=+-= ⎪ ⎪⎝⎭⎝⎭21.求值:(1))1213250.02719-⎛⎫+-⎪⎝⎭;(2)2350.2log 27log 82log 10log 4⨯--. 【答案】(1)4(2)7【详解】(1))()12131121233255351020.02710.31149310333---⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤+-=+-=+-=+=⎢⎥ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)()13322350.25555ln 3ln 23ln 33ln 2log 27log 82log 10log 42log 25log 22log 212log 292ln 2ln 3ln 2ln 3-⨯--=⨯-⨯-=⨯-++=-=.22.求值:()1220348π49-⎛⎫+-+ ⎪⎝⎭; (2)3323log 54log 2log 3log 4-+⋅. 【答案】(1)172;(2)5. 【详解】(11215321022532233317(2)(2)1[()]22122248(π4)()9-=++++-+=++=+.(2)322332332322log 454log 54log 2log 3log 4log log 3log 3log 23252log 3-+⋅=+⋅=+=+=. 23.计算下列式子(1)()7l 0o 2g lg25+lg4l 79og .8++-2334lo g log ⨯【答案】(1)132(2)8- 【详解】(1)()7l 0o 2g lg25+lg4l 79og .8++- 3233133lg1002122122log =+++=+++=. (22334lo g log -⨯()222log lo 4lg100036281312g log =-⨯=--=-⨯-. 24.计算:()031438162-⎛---+ ⎝⎭; (2)223lg 2lg5log log 64++-. 【答案】(1)118(2)-2 【详解】(1)原式()13314334311111122124488⨯⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=---+=-++= ⎪⎝⎭(2)原式()22lg 25log 32log 312=⨯+---=-25.计算:223327⋅+;(2)()()()221004lg 2log 2lg5lg 23++-. 【答案】(1)27-(2)1 【详解】(1)依题意,223327⋅+()22233433=--⋅+(2224332=--⋅+(224272=--+231227=-+=-(2)()()()221004lg 2log 2lg5lg 23++- ()()4lg 2lg 2lg5lg 2lg5lg 23lg100⎛⎫=+++- ⎪⎝⎭ 4lg 2lg 2lg 5lg 232⎛⎫=++- ⎪⎝⎭43lg 25lg 322=⋅+ 52lg 2lg2=+25lg 2lg 2=+5lg 412⎛⎫=⋅= ⎪⎝⎭26.求值:(1)01310.0277-⎛⎫+ ⎪⎝⎭(2)ln21lg20lg4lg e 5-++.【答案】(1)73;(2)2.【详解】(1)()()111341334170.0270.3120.31273---⎛⎫+=+-=+-=⎪⎝⎭; (2)ln 21201lg20lg4lg e lg 2lg122545⎛⎫-++=⨯+=+= ⎪⎝⎭.27.求值:(1)))2202220223272264-⎛⎫- ⎪⎝⎭;(2)()9log 1620427log 9log 643lg 2lg5lg 12022lg5⨯++⨯+++.【答案】(1)3(2)7【详解】(1)原式()20222162113999=+-=++=. (2)原式()3log 4223log 3log 43lg2lg5lg 2lg524lg2lg5lg2lg5=⨯++⨯++=++++6lg 2lg5617=++=+=.28.计算(1))2log 3lg12lg1001-+(2))0.523124-⎛⎫ ⎪⎝⎭【答案】(1)2;(2)1π3-.【详解】(1))2log 3lg12lg1001-+)32lg101=-+321=-+2=; (2))0.523124-⎛⎫ ⎪⎝⎭20.5233233π22-⎡⎤⎛⎫⎛⎫=+-+⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦13π322-⎛⎫=+-+ ⎪⎝⎭ 1π3=-.29.计算下列各式的值:(1)11421481⎛⎫ ⎪⎝⎭; (2)33252log 2log 12l 8og 5log -+⨯. 【答案】(1)143(2)2 【详解】(1)114211423314813⎛⎫ ⎪⎝⎭=+-=. (2)33252log 2log 12l 8og 5log -+⨯321log log 32381==-+=+.30.求下列各式的值:(1)134440.06425--⎛⎫---⋅ ⎪⎝⎭(2)2log 3232lg25lg8log 27log 223+-⨯+.【答案】(1)1516(2)2 【详解】(1)原式1159151910.41621616=--⨯=--=. (2)原式()232lg52lg23log 3log 232lg5lg2332=+-⨯+=+-+=. 31.求解下列问题:(1)24303641)27--⎛⎫++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100--⋅. 【答案】(1)2916(2)74- 【详解】(1)2433641)27--⎛⎫++ ⎪⎝⎭24333324123--⎡⎤⎛⎫⎛⎫=++⎢⎥⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦224123--⎛⎫=++ ⎪⎝⎭9129116416=++=. (2)2log 3491lg2log 27log 8100--⋅ 221233223lg10ln e 3log 3log 2-=-+-⋅2313323log 3log 2222=--+-⋅192324=--+-74=-.32.计算下列各式的值:(1)2log 2log lg5lg22++. (2)cos20sin50cos50cos70︒︒-︒︒.【答案】(1)72(2)12【详解】(1)2log 2317log lg5lg 22lg10222++=++=; (2)cos20sin50cos50cos70cos20sin50cos50sin 20︒︒-︒︒=︒︒-︒︒ ()1sin 50202=︒-︒=. 33.计算下列各式,写出演算过程(1)1222318324272-⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)5525lg42lg52log 10log 20log 5log 8++--⋅.【答案】(1)72(2)12-【详解】(1)解:原式23324344722392992⎡⎤⎛⎫=-+=+-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. (2)解:原式()225101ln 53ln 211lg 45log 213202ln 2ln 522=⨯+--⋅=+--=-.34.化简求值:(1)213240330.250.53π)0.0648---⎛⎫⨯--+ ⎪⎝⎭(2)2log 31431lg 25lg 2log 9log 822-++-⨯++【答案】(1)7318;(2)4. 【详解】(1)21324330.250.53π)0.0648---⎛⎫⨯--++ ⎪⎝⎭212433331132124225---⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯--++⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦45731129218=--++=;(2)2log 31431lg 25lg 2log 9log 822-++-⨯++2221221log 322233312log 3lg 5lg 2log 3log 2ln e 22=++-⨯++323314log 3lg5lg 2log 33log 222=++-⨯++()32314lg 52log 33log 222=+⨯-⨯++41324=+-+=.35.求值:(1)()11202929.3log 443-⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭ (2)5log 2lg2lg5lg15+++ 【答案】(1)1(2)3【详解】(1)()111222029233339.3log 412121432222-⎡⎤⎛⎫⎛⎫⎛⎫---+=--+=--+=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. (2)5log 2lg 2lg 5lg15lg1002123+++=++=+=. 36.化简求值:1020.5+;(2)0.21log 53212lg5log 25lg 4-⎛⎫-++ ⎪⎝⎭. 【答案】(1)3(2)2【详解】(1)原式3322=+= (2)原式155log 522lg5log 22lg 25=-++()15log 52112lg5lg 2log 255-⎛⎫=+-+ ⎪⎝⎭151log 511552⎛⎫-+ ⎪⎝⎭=11255=-+2=37.计算下列各式的值:(1)113352943-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭(2)1433log lg 253log 3lg 4-+ 【答案】(1)3(2)1【详解】(1)解:113352943-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭112133334413355⎛⎫⎛⎫=⨯+⨯- ⎪ ⎪⎝⎭⎝⎭11213333443355+⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭; (2)1433log lg 253log 3lg 4+-+ 343331log 3log 32lg53log 32lg 24=-+-⨯+3312(lg5lg 2)44=-++- 12lg101=-+=.38.化简求值:(1)312log 14lg 2lg529-⎛⎫++- ⎪⎝⎭;(2)71113sin cos tan 634πππ++.【答案】(1)32(2)1【详解】(1)原式()1220233lg 25211322-⎡⎤⎛⎫=+⨯-=+-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(2)原式πππsin πcos 4πtan 2ππ634⎛⎫⎛⎫⎛⎫=++-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭πππsincos tan π634⎛⎫=-+++ ⎪⎝⎭ 11πtan 1224=-++=39.化简或求值 (1)11034781(0.064)()()|0.1|816---++-(2)7lg142lg lg 7lg183-+-【答案】(1)3110(2)0(3)5π- 【详解】(1)11034781(0.064)()()|0.1|816---++-1310.10.42=-++ 53112210=-++1310=+ 31.10=(2)27lg142lg lg 7lg1837lg14lg lg 7lg1839lg 1471849lg10.-+-⎛⎫=-+- ⎪⎝⎭⎛⎫=⨯⨯÷ ⎪⎝⎭== (3)3(2)325.πππ=-+-=--=- 40.计算求值(1)2ln 38916log 27log 6log 6e ⨯÷+;(2)419log 8log 3--【答案】(1)11(2)2-【详解】(1)2ln 38916log 27log 6log 6e ⨯÷+ln92361log 3log 64log 2e 2=⨯⨯+62236log 22log 392log 3log 2911log 3=⨯+=⨯+=; (2)419log 8log 3--2331log 2log 322=---314222=+-=-. 41.计算:(1)()110520.01321π---+ (2)3log 22log 8lg 2lg 53++-.【答案】(1)5(2)2【详解】(1)()110520.01321102125π---+---=; (2)()3log 22log 8lg2lg53lg 25223=+++-⨯-=.42.计算:(1)1123182427-⎛⎫- ⎛⎫ ⎪⎝⎪⎭⎝⎭(2)2lg 2lg 2lg5(lg5)+⋅+. 【答案】(1)94(2)1【详解】(1)解:1123182427-⎛⎫- ⎛⎫ ⎪⎝⎪⎭⎝⎭1132233223-⎡⎤⎛⎫-⎢⎥ =⎪⎝⎭⎢⎥⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎣⎦1123223323232⎛⎫⨯⨯- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎛⎫= ⎪⎝⎝⎭⎭⎝⎭33992244-+==. (2)解:2lg 2lg 2lg5(lg5)+⋅+()lg2lg5lg2lg5=++ ()lg2lg5lg 25=+⋅⨯ ()lg2lg5lg 251=+=⨯=.43.化简求值:)2138227--⎛⎫+⎪⎝⎭(2)3log 211lg9lg 240292361lg 27lg 35+-+-+.【答案】π(2)3【详解】(1)原式2335259π32π3π4344⎛⎫⨯- ⎪⎝⎭⎛⎫=-+-=-++-= ⎪⎝⎭.(2)原式32log 21lglg10lg3lg 24083414336lg8lg10lg9lg5+-=+=+=-+=-+. 44.求值:(1)230323(8)π)-+; (2)()22824log 27(lg 5)(lg 2)lg 5lg log 16log 9+-+⨯. 【答案】(1)2(2)0【详解】(1)2331032223(8)π)3313212-=-+⨯=-+= (2)()22824log 27(lg 5)(lg 2)lg 5lg log 16log 9+-+⨯32322222log 3(lg5)(lg 2)2lg5lg 2log 3=+-+⨯2(lg 5lg 2)1110=+-=-=45.计算: (1)ln 2lg252lg2e ++ (2)()20.5133890.1252749--⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭【答案】(1)4(2)19【详解】(1)原式lg25lg42lg1002224=++=+=+=.(2)原式2132(0.5)3()332313724712939⨯⨯-⨯-⎛⎫⎛⎫⎛⎫=-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 46.(1)求值:3204161)++; (2)求值:5log 2lg25lg45log +++ 【答案】(1)12 ;(2)112. 【详解】(1)原式()343432132112=++=++=(2)原式()323lg 2542log 3=⨯++3lg10022=++112= 47.求值:(1)()1430513π38-⎛⎫-- ⎪⎝⎭; (2)()2273log 8log 7log log 81+⨯. 【答案】(1)4(2)5【详解】(1)()143015545143π32312381-+⎛⎫-- =+=⎝+⎭-⎪-=; (2)()2273274log 8log 7log log 813log 7log +⨯=+⨯ 273log 72l 53og 22==++=⨯.48.(1))10334ln 22811e 162022⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭(2)()31163log 4log 2log log 3⎛⎫+ ⎪⎝⎭【答案】(1)5 ;(2)12 .【详解】(1)原式31442433333214152222⨯⎛⎫⎛⎫=++-=++-= ⎪ ⎪⎝⎭⎝⎭.(2)原式()(334341log 4log 2log log log 2log 32=-=⨯=. 49.计算: (1)2102232327(1)()()[(3)]28--+⋅+-;(2)2332lg5lg 4log 3log 4log +-⋅+【答案】(1)5(2)32【详解】(1)22122233323272349(1)()()[(3)]1()[()]3135283294--+⋅+-=+⋅+=+⨯+=(2)232lg5lg 4log 3log 4log +-⋅+lg 32lg 23332lg 52lg 22(lg 5lg 2)2lg 2lg 3222=+-⨯+=+-+= 50.计算下列各式的值: (1)2ln 21e lg lg 202--;(2)232lg 25lg8log 27log 23+-⨯.【答案】(1)3.(2)1-.【详解】(1)22ln 2ln 2111e lg lg 20e (lg lg 20)4lg(20)4lg10413222--=-+=-⨯=-=-=.(2)2232323232lg 25lg8log 27log 2lg(258)log 27log 2lg103log 3log 22313+-⨯=⨯-⨯=-⨯=-=-.51.化简下列各式: (1)75sincos cos(5)tan 224ππππ++-+;(2)24log 32log 0.252lg 42lg5⋅+++⋅【答案】(1)-1(2)1592【详解】(1)原式3sincos cos 11011122πππ=+++=-+-+=-. (2)原式421log 322242221log ln e 2lg 4lg55123)log (lg 24lg 4-=++++++++1159281lg100222=-+++-=.52.计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)07log 2(9.8)log lg25lg47+-++.【答案】(1)3;(2)132【详解】(1)原式2323334122⎛⎫⨯-- ⎪⎝⎭⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭3=(2)原式()323log 3lg 25421=+⨯++3232=++ 132=53.计算求值:(1))()140231101108200-⎛⎫-++- ⎪⎝⎭;(2)(42log 923lg 2lg 250082log 9log 4⨯+⨯++⋅.【答案】(1)36(2)9【详解】(1)原式()()43431010220236⎡⎤=++-=+-=⎣⎦;(2)原式()2log 3212lg 32lg 2lg 22lg 528lg 524lg 2lg 3⎛⎫=++⨯++⋅ ⎪⎝⎭()22lg2lg52lg22lg 5342lg5lg2lg52lg27=++++=+++ ()2lg5lg27279=++=+=.54.计算下列各式的值:(1)(332212234-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭(2)5log 3333322log 4log log 2527-++ 【答案】(1)1(2)6【详解】(1)(333302221392213424-⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 33233233331112222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦(2)5log 3333322log 4log log 2527-++ 23332log 423log 27333627⎛⎫=÷⨯+=+=+= ⎪⎝⎭55.求下列各式的值:(1)10220.2531222854--⎛⎫⎛⎫+⨯ ⎪ ⎪⎝⎭⎝⎭; (2)158311lg log 9log 125log 10032+--. 【答案】(1)56-(2)163- 【详解】(1)()1102112220.25344311315222812212544266---⎡⎤⎛⎫⎛⎫⎛⎫+⨯=+⨯-⨯=+-=-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. (2)3235158352311516lg log 9log 125log lg10log 9log 5log 22231003233--+--=---=---+=-. 56.化简求值:())3320,0a b a b ->>; (2)7log 52225lg5lg 2lg2lg5log 5log 47+++⨯+. 【答案】(1)1(2)7【详解】(1)因为0,0a b >>()31332221b a ab --⎡⎤==⎢⎥⎣⎦,()31333222a a b b --=, 所以原式332233221a b a b --==;(2)7log 52225lg5lg 2lg2lg5log 5log 47+++⨯+ ()25lg5lg2lg2lg5log 5log 25=+++⨯+()25lg5lg2lg2lg5log 5log 25=+++⨯+ lg5lg 2157=+++= .57.计算:(1)21304816π27-⎛⎫-+ ⎪⎝⎭ (2)3ln 22552lg 4lg log 5log 4e 8++⋅+. 【答案】(1)154-(2)11 【详解】(1)解:原式()231344291521524344-⎡⎤⎛⎫=-+-=--=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. (2)解:原式()32ln 25ln 52ln 2lg 4e 128118ln 2ln 5⎛⎫=⨯+⋅+=++= ⎪⎝⎭. 58.计算:(1)5log 3311845log 11log 27log 2log 8-⋅++;(2)若33m m --=99m m -+的值.【答案】(1)116(2)9914m m -+=. 【详解】(1)原式31122133log 113log 3log 2log 232=-⨯++ 131133326=-++=. (2)将等式33m m --=99212m m -+-=, 则9914m m -+=.。
高中数学必做100道题
高中数学必做100道题在高中数学学习过程中,数学题的练习是非常重要的一部分,可以帮助学生巩固知识、提高解题能力。
下面我为大家整理了一份高中数学必做的100道题,希望可以帮助大家更好地备考。
1. 计算:$3 \times 4 =$?2. 计算:$2^3 =$?3. 计算:$5 \times 6 - 2 =$?4. 计算:$\frac{1}{2} + \frac{1}{3} =$?5. 求下列代数式的值:$a = 3, b = 5$,计算 $2a + b = $?6. 求下列代数式的值:$x = 4, y = 2$,计算 $x^2 - y^2 = $?7. 求下列代数式的值:$m = 6, n = 3$,计算 $mn - 2m =$?8. 求下列代数式的值:$c = 8, d = 4$,计算 $cd + c =$?9. 求下列方程的解:$2x + 5 = 11$。
10. 求下列方程的解:$3y - 4 = 8$。
11. 求下列方程的解:$4z = 16$。
12. 求下列方程的解:$5w + 6 = 21$。
13. 简化下列分式:$\frac{8}{12}$。
14. 简化下列分式:$\frac{15}{20}$。
15. 简化下列分式:$\frac{18}{27}$。
16. 简化下列分式:$\frac{24}{36}$。
17. 求下列等式的值:$3a - 2 = 7$。
18. 求下列等式的值:$4b + 5 = 13$。
19. 求下列等式的值:$5c \div 2 = 10$。
20. 求下列等式的值:$6d \times 3 = 24$。
21. 计算三角形的面积:底边长为 5,高为 4。
22. 计算三角形的周长:边长分别为 3,4,5。
23. 计算正方形的面积:边长为 6。
24. 计算正方形的周长:边长为 8。
25. 解方程 $2x + 3 = 11 - x$。
26. 解方程 $3y + 5 = 2y - 1$。
高中数学计算题专项练习1-(3096)
2019年高中数学计算题专项练习1一.解答题(共30 小题)1.计算:( 1);( 2).2.计算:( 1) lg1000+log 342﹣ log 314﹣ log 48;(2) .3.( 1)解方程: lg ( x+1) +lg ( x ﹣ 2)=lg4 ; ( 2)解不等式: 21﹣ 2x> .4.( 1)计算: 2× ×( 2)计算: 2log 510+log 50.25.5.计算:( 1) ;( 2).6.求 log 89×log 332﹣log 1255 的值.7.( 1)计算 .( 2)若 ,求 的值.8.计算下列各式的值0.75( 1) 0.064﹣(﹣ ) +16 +0.25( 2) lg5+ ( log 32)?( log 89) +lg2 .9.计算:( 1) lg 22+lg5?lg20 ﹣ 1;(2).10.若 lga 、 lgb 是方程 2x 2﹣ 4x+1=0 的两个实根,求的值.11.计算(Ⅰ)(Ⅱ) .12.解方程:.13.计算:(Ⅰ)(Ⅱ).14.求值:( log 62) 2+log 63×log 612.15.( 1)计算( 2)已知 ,求 的值.16.计算(Ⅰ);(Ⅱ) 0.0081 ﹣() + ? ? .17.(Ⅰ)已知全集 U={1 , 2, 3, 4, 5,6} , A={1 , 4, 5} , B={2 , 3, 5} ,记 M= ( ?U A ) ∩B ,求集合 M ,并写出 M 的所有子集;(Ⅱ)求值:.18.解方程: log 2( 4x ﹣ 4) =x+log 2( 2x+1﹣ 5)219.(Ⅰ)计算( lg2) +lg2 ?lg50+lg25 ;(Ⅱ)已知a=,求÷.20.求值:( 1) lg14 ﹣+lg7 ﹣ lg18(2).21.计算下列各题:(1)( lg5)2+lg2 ×lg50 ;﹣1,求的值.( 2)已知 a﹣ a =122.( 1)计算;( 2)关于 x 的方程 3x 2﹣ 10x+k=0 有两个同号且不相等的实根,求实数k 的取值范围.23.计算题(1)(2)24.计算下列各式:(式中字母都是正数)(1)(2).25.计算:( 1);(2) lg25+lg2 ×lg50+ ( lg2)2.26.已知 x+y=12 , xy=27 且 x< y,求的值.27.( 1)计算:;b,用 a, b 表示.( 2)已知 a=log3 2, 3 =528.化简或求值:( 1);( 2).29.计算下列各式的值:( 1);( 2).30.计算log( 1) lg20 ﹣ lg2 ﹣ log 23?log32+2(2)(﹣1)0+()+().参考答案与试题解析一.解答题(共30 小题)1.计算:( 1);( 2).考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用指数幂的运算法则即可得出;( 2)利用对数的运算法则即可得出.解答:解:( 1)原式 ===.( 2)原式 ===.点评:熟练掌握指数幂的运算法则、对数的运算法则是解题的关键.2.计算:(1) lg1000+log 342﹣ log 314﹣ log48;(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用对数的运算性质即可得出;( 2)利用指数幂的运算性质即可得出.解答:解:( 1)原式 =;( 2)原式 =.点评:熟练掌握对数的运算性质、指数幂的运算性质是解题的关键.3.( 1)解方程: lg( x+1) +lg ( x﹣ 2)=lg4 ;( 2)解不等式:21﹣2x>.考点 : 对数的运算性质;指数函数单调性的应用.专题 : 计算题.分析:( 1)原方程可化为 lg (x+1 )( x ﹣ 2) =lg4 且可求( 2)由题意可得1﹣ 2x ﹣2,结合指数函数单调性可求x 的范围2> =2解答:解:( 1)原方程可化为 lg ( x+1 )(x ﹣ 2)=lg4 且∴( x+1 )(x ﹣ 2) =4 且 x > 2∴ x 2﹣ x ﹣ 6=0 且 x >2 解得 x= ﹣2(舍)或 x=3( 2)∵ 21﹣ 2x> =2 ﹣2∴ 1﹣ 2x >﹣ 2 ∴点评: 本题主要考查了对数的运算性质的应用,解题中要注意对数真数大于0 的条件不要漏掉,还考查了指数函数单调性的应用.4.( 1)计算: 2× ×( 2)计算: 2log 510+log 50.25.考点 : 对数的运算性质.专题 : 计算题;函数的性质及应用.分析: ( 1)把各根式都化为 6 次根下的形式,然后利用有理指数幂的运算性质化简;( 2)直接利用对数式的运算性质化简运算.解答:× ×解( 1)计算: 2= ===6;( 2) 2log 510+log 50.25==log 5100×0.25 =log 525 =2log 55=2 .点评: 本题考查了指数式的运算性质和对数式的运算性质,解答的关键是熟记有关运算性质,是基础的运算题.5.计算:(1) ;(2).考点:对数的运算性质.专题:计算题.分析:(1)利用有理指数幂的运算法则,直接求解即可.( 2)利用对数的运算形状直接求解即可.解答:解:( 1)﹣ 13﹣ 1+8=12⋯(6 分)=0.2﹣ 1+2 =5( 2)===⋯(12 分)点评:本题考查指数与对数的运算性质的应用,考查计算能力.6.求 log 9×log32﹣log 5 的值.83125考点:对数的运算性质.专题:计算题.分析:利用对数的运算性质进及对数的换底公式行求解即可解答:解:原式 ====3点评:本题主要考查了对数的运算性质的基本应用,属于基础试题7.( 1)计算.( 2)若,求的值.考点:对数的运算性质.专题:计算题.分析:( 1)把对数式中底数和真数的数4、8、 27 化为乘方的形式,把底数的分数化为负指数幂,把真数的根式化为分数指数幂,然后直接利用对数的运算性质化简求值;( 2)把已知条件两次平方得到﹣ 12﹣ 2得答案.x+x与 x +x,代入解答:解:( 1)===2 ﹣ 4﹣ 1=﹣ 3;( 2)∵,∴,∴ x+x﹣ 1.=5 则( x+x ﹣122 ﹣ 2) =25 ,∴ x +x=23 ∴=.点评: 本题考查了有理指数幂的化简与求值,考查了对数的运算性质,是基础的计算题.8.计算下列各式的值0 0.75( 1) 0.064﹣(﹣ ) +16 +0.25( 2) lg5+ ( log 32)?( log 89) +lg2 .考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题. 分析:( 1)化小数指数为分数指数, 0 次幂的值代1,然后利用有理指数幂进行化简求值;( 2)首先利用换底公式化为常用对数,然后利用对数的运算性质进行化简计算.解答:0.75解:( 1) 0.064﹣(﹣ ) +16 +0.25==( 0.4) ﹣1﹣1+8+0.5=2.5﹣ 1+8+0.5=10 ;( 2) lg5+ ( log 32)?( log 89) +lg2= =1+=1+ = .点评: 本题考查了对数的运算性质,考查了有理指数幂的化简与求值,是基础的运算题.9.计算:( 1) lg 22+lg5?lg20 ﹣ 1;(2).考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.分析: ( 1)把 lg5 化为 1﹣ lg2, lg20 化为 1+lg2 ,展开平方差公式后整理即可;( 2)化根式为分数指数幂, 化小数指数为分数指数, 化负指数为正指数, 然后进行有理指数幂的化简求值.2解答: 解:( 1) lg 2+lg5 ?lg20 ﹣12=lg 2+( 1﹣ lg2 )( 1+lg2)﹣ 122;=lg 2+1﹣ lg 2﹣ 1=0( 2)==2 3=2 ?3 ﹣ 7﹣2﹣ 1=98.点评: 本题考查了有理指数幂的化简与求值,考查了对数的运算性质,解答的关键是熟记有关性质,是基础题.10.若 lga 、 lgb 是方程 2x 2﹣ 4x+1=0 的两个实根,求的值.考点 : 对数的运算性质;一元二次方程的根的分布与系数的关系.专题 : 计算题;转化思想.分析:lga 、 lgb 是方程 2x 2﹣4x+1=0 的两个实根,先由根与系数的关系求出,再利用对数的运算性质对化简求值.解答:解: ,2=( lga+lgb )( lga ﹣ lgb )2=2[ (lga+lgb ) ﹣ 4lgalgb ]=2(4﹣ 4× )=4点评: 本题考查对数的运算性质,求解的关键是熟练掌握对数的运算性质,以及一元二次方程的根与系数的关系.11.计算(Ⅰ)(Ⅱ) .考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.分析: ( 1)根据对数运算法则化简即可( 2)根据指数运算法则化简即可解答:解:( 1)原式 =(2)原式 ==点评:本题考查对数运算和指数运算,注意小数和分数的互化,要求能灵活应用对数运算法则和指数运算法则.属简单题12.解方程:.考点:对数的运算性质.专题:计算题;函数的性质及应用.分析:利用对数的运算性质可脱去对数符号,转化为关于x 的方程即可求得答案.解答:解:∵,∴log5( x+1) +log 5(x﹣ 3) =log 55,∴( x+1 )?( x﹣ 3)=5,其中, x+1> 0 且 x﹣ 3> 0解得 x=4 .故方程的解是4点评:本题考查对数的运算性质,考查方程思想,属于基础题.13.计算:(Ⅰ)(Ⅱ).考点:对数的运算性质;运用诱导公式化简求值.专题:计算题;函数的性质及应用.分析:( I)利用诱导公式,结合特殊角的三角函数值即可求解( II )利用对数的运算性质及指数的运算性质即可求解解答:解:(I)(每求出一个函数值给( 1 分),6 分( II )(每求出一个式子的值可给( 1 分), 12 分)点评:本题主要考查了诱导公式在三角化简求值中的应用及对数的运算性质的简单应用,属于基础试题14.求值:( log62)2+log 63×log 612.考点:对数的运算性质.分析:先对后一项:log 63×log 612 利用对数的运算法则进行化简得到:log63+log 63×log 62,再和前面一项提取公因式 log62 后利用对数的运算性质: log a( MN ) =log a M+log a N 进行计算,最后再将前面计算的结果利用log 62+log 63=1 进行运算.从而问题解决.解答:解:原式=(log62+log63)log62+log63=log 62+log 63=1.∴( log62)2+log 63×log 612=1.点评:本小题主要考查对数的运算性质、对数的运算性质的应用等基础知识,考查运算求解能力.属于基础题.对数的运算性质:log a( MN ) =log a M+log a N; log an=log a M ﹣ log a N ;log a M =nlog a M 等.15.( 1)计算( 2)已知,求的值.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)化根式为分数指数幂,把对数式的真数用同底数幂相除底数不变,指数相减运算,然后利用对数式的运算性质化简;( 2)把给出的等式进行平方运算,求出﹣ 1的结果.x+x ,代入要求的式子即可求得解答:解( 1)===;(2)由,得:,所以, x+2+x ﹣1=9,故x+x ﹣1=7,所以,.点评:本题考查了有理指数幂的化简与求值,考查了对数式的运算性质,解答的关键是熟记有关性质,是基础题.16.计算(Ⅰ);(Ⅱ) 0.0081﹣()+??.考对数的运算性质;根式与分数指数幂的互化及其化简运算.点:专函数的性质及应用.题:分 (Ⅰ)利用对数的运算法则,由已知条件能求出结果.析 (Ⅱ)利用指数的运算法则,由已知条件,能求出结果.:解 解:(Ⅰ)答 ===:= = =﹣ .(Ⅱ)0.0081 ﹣()+??4 3=0.3﹣ +3=.=[( 0.3) ] ﹣([ )]+ 点 本题考查指数和对数的运算法则,是基础题,解题时要认真解答,避免出现计算上的低级错误. 评 :17.(Ⅰ)已知全集 U={1 , 2, 3, 4, 5,6} , A={1 , 4, 5} , B={2 , 3, 5} ,记 M= ( ?U A ) ∩B ,求集合 M ,并写出 M 的所有子集;(Ⅱ)求值:.考点 : 对数的运算性质;交、并、补集的混合运算.专题 : 函数的性质及应用.分析: ( I )利用集合的运算法则即可得出.( II )利用对数的运算法则即可得出. 解答: 解:(Ⅰ)∵ U={1 , 2, 3, 4, 5, 6} , A={1 , 4,5} ,∴ C U A={2 , 3, 6} ,∴ M= ( ?U A ) ∩B={2 , 3, 6} ∩{2 , 3,5}={2 , 3} .∴ M 的所有子集为: ? , {2} , {3} , {2 , 3} .(Ⅱ)= = = .点评: 本题考查了集合的运算法则、对数的运算法则,属于基础题.18.解方程: log 2( 4x ﹣ 4) =x+log 2( 2x+1﹣ 5)考点 : 对数的运算性质.专题 : 计算题.分析:利用对数的运算法则将方程变形为 ,将对数式化为指数式得到 ,通过换元转化为二次方程,求出x 的值,代入对数的真数检验.xx+1解答: 解: log 2( 4 ﹣ 4) =x+log 2( 2 ﹣ 5)即为log 2(4x ﹣ 4)﹣ log 2( 2x+1﹣ 5)=x即为所以令 t=2x即解得 t=4 或 t=1所以 x=2 或 x=0 (舍)所以方程的解为x=2.点评:本题考查对数的真数大于0、对数的运算法则、二次方程的解法,解题过程中要注意对数的定义域,属于基础题.19.(Ⅰ)计算( lg2)2;+lg2 ?lg50+lg25(Ⅱ)已知 a= ,求÷.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算法则进行运算,利用结论lg2+lg5=0 去求.(Ⅱ)先将根式转化为同底的分数指数幂,利用指数幂的运算性质,化为最简形式,然后在将 a 值代入求值.解答:解:(Ⅰ)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(Ⅱ)原式 =.∵ a= ,∴原式 =.点评:本题考查对数的四则运算法则,根式与分数指数幂的互化,以及同底数幂的基本运算性质,要求熟练掌握相应的运算公式.20.求值:( 1) lg14 ﹣+lg7 ﹣ lg18(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)应用和、差、积、商的对数的运算性质计算即可;( 2)利用指数幂的运算性质(m n mn计算即可.a) =a解答:解:( 1)∵ lg14﹣+lg7﹣ lg18=( lg7+lg2 )﹣ 2(lg7﹣ lg3 )+lg7 ﹣( lg6+lg3 )=2lg7 ﹣ 2lg7+lg2+2lg3 ﹣ lg6 ﹣ lg3( 2)∵=﹣1﹣+=﹣+=.(8分)点评:本题考查对数与指数的运算性质,关键在于熟练掌握对数与指数幂的运算性质进行计算,属于中档题.21.计算下列各题:(1)( lg5)2+lg2 ×lg50 ;﹣ 1的值.( 2)已知 a﹣ a =1,求考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用对数的运算性质,求出表达式的值;﹣ 12﹣ 2的值,然后化简,求出它的值( 2)通过 a﹣ a =1,求出 a +a解答:2×lg50=2×(lg5+1) =lg5( lg2+lg5) +lg2=1 ;解:( 1)( lg5) +lg2( lg5 ) +lg2﹣ 12﹣ 2( 2)因为 a﹣ a =1,所以 a +a﹣ 2=1,2﹣2∴a +a =3,==0 .点评:本题主要考查对数的运算性质和有理数指数幂的化简求值的知识点,解答本题的关键是熟练对数的运算性质,此题难度一般.22.( 1)计算;( 2)关于 x 的方程 3x 2﹣ 10x+k=0 有两个同号且不相等的实根,求实数k 的取值范围.考点:根式与分数指数幂的互化及其化简运算;一元二次方程的根的分布与系数的关系.专题:计算题.分析:( 1)转化为分数指数幂,利用指数幂的运算法则进行计算;( 2)由维达定理的出k 的关系式,解不等式即可.解答:( 1)解:原式 ===a 0(∵ a≠0)( 2)解:设 3x 2﹣ 10x+k=0 的根为 x 1,x 2由 x 1+, x 1 ?由条件点评: 本题考查根式和分数指数幂的转化、指数的运算法则、及二次方程根与系数的关系,属基本运算的考查.23.计算题( 1)( 2)考点 : 根式与分数指数幂的互化及其化简运算;对数的运算性质.专题 : 计算题.分析: ( 1)根据分数指数与根式的互化以及幂的乘方运算法则,还有零指数、负指数的运算法则,化简可得值;( 2)运用对数运算性质及对数与指数的互逆运算化简可得.解答:解:( 1)原式 = ﹣(﹣ 2) 24﹣ = ﹣64+ +1﹣ =﹣;×(﹣ 2) +( 2)原式 =83224×8﹣ log 3 32+log 3 ﹣log 3 ﹣ 3 =log 3 ﹣ 9=﹣ 9.点评: 考查学生灵活运用根式与分数指数幂互化及其化简运算的能力,以及分母有理化的应用能力.24.计算下列各式: (式中字母都是正数)( 1)(2).考点 : 根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题 : 函数的性质及应用. 分析:( 1)利用及其根式的运算法则即可;( 2)利用立方和公式即可得出. 解答:解:( 1)原式 == ?= ==.( 2)原式 ===.点评:熟练掌握根式的运算法则、立方和公式是解题的关键.25.计算:( 1);( 2) lg25+lg2 ×lg50+ ( lg2)2.考点:有理数指数幂的运算性质;对数的运算性质.专题:计算题.分析:( 1)由指数幂的含义和运算法则,,=|3﹣π|,求解即可.( 2)利用对数的运算法则,各项都化为用lg2 表达的式子即可求解.解答:解:( 1)==1+2+ π﹣3=π(2) lg25+lg2 ×lg50+ ( lg2)2=2﹣ 2lg2+lg2 (2﹣ lg2 ) +( lg2)2=2.点评:本题考查指数和对数式的化简和求值、考查指数和对数的运算法则、属基本运算的考查.26.已知 x+y=12 , xy=27 且 x< y,求的值.考点:有理数指数幂的运算性质.专题:计算题.分析:利用已知条件求出x﹣ y 的值,利用分母有理化直接求解所求表达式的值.解答:解:∵ x+y=12 , xy=27∴( x﹣ y)2=( x+y )2﹣ 4xy=122﹣ 4×27=36(3分)∵ x< y∴x﹣ y= ﹣ 6(5 分)∴===(9分)==(12分)点评:本题考查有理指数幂的运算,考查计算能力.27.( 1)计算:;(b,用 a, b 表示.2)已知 a=log3 2, 3 =5考点:有理数指数幂的运算性质;对数的运算性质.专题:计算题.分析:( 1)根据指数幂的运算性质和恒等式0a,进行化简求值;a =1、0 =1( 2)根据指对互化的式子把3b化成对数式,再把化为分数指数幂的形式,由对数的运算性质将30 =5拆成 3×2×5 后,再进行求解.解答:解:( 1)原式 =(7 分)(2)∵ 3b=5∴ b=log 35∴(14 分)点评:本题考查了指数和对数运算性质的应用,常用的方法是将根式化为分数指数幂的形式,指数式和对数式互化,以及将真数拆成几个数的积或商的形式.28.化简或求值:( 1);( 2).考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:(1)由原式有意义,得到a≥1,然后把各根式进行开平方和开立方运算,开方后合并即可.(2)直接运用对数式的运算性质进行求解计算.解答:解:( 1)因为 a﹣ 1≥0,所以 a≥1,所以=a﹣1+|1﹣ a|+1﹣ a=|1﹣ a|=a﹣ 1;( 2)=2lg5+2lg2+lg5 ( 1+lg2 ) +( lg2)2=2 ( lg2+lg5 ) +lg5+lg2 ( lg5+lg2 ) =2+lg5+lg2=3 .点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,解答此题的关键是由根式有意义得到 a 的取值范围,此题是基础题.29.计算下列各式的值:(1);(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:(1)根据分数指数与根式的互化以及幂的乘方运算法则,还有零指数、负指数的运算法则,化简可得值;( 2)运用对数运算性质化简可得.解答:解:( 1)原式 =;.点评:考查学生灵活运用根式与分数指数幂互化及其化简运算的能力,以及分母有理化的应用能力.30.计算log( 1) lg20 ﹣ lg2 ﹣ log 23?log32+2(2)(﹣1)0+()+().考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用对数的运算法则、对数的换底公式及其对数恒等式即可得出;( 2)利用指数幂的运算法则即可得出.解答:解:( 1)原式 ==1﹣1+ = ;(2)原式 =1===2 .点评:数列掌握对数的运算法则、对数的换底公式及其对数恒等式、指数幂的运算法则是解题的关键.。
新高考数学计算题型精练 指数运算与对数运算(原卷版)
新高考数学计算题型精练 指数与对数运算1.求值:(1))20.51π316-⎛⎫+- ⎪⎝⎭;(2)2ln31274e log 9log 8lg 4lg 25-⋅++.2.计算(1)1223182π4-⎛⎫-++ ⎪⎝⎭(2)2log 321log lg 2lg528--+3.求值:(1)(213103531732248---⎛⎫⎛⎫++-⨯ ⎪ ⎪⎝⎭⎝⎭;(2)2ln 3427e log 9log 8lg 4lg 25-⋅++ .4.计算:(1)341lg2lg 3lg5log 2log 94-+-⨯;(2)21log 3231lg log 3log log 52100+-⨯+.5.求下列各式的值:(1)()10.52332770.02721259-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+-;(2)55557log 352log log 7log 1.83-+-.6.计算:(2)()()2266661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭7.计算或化简下列各式: (1)()1223164⎛⎫-+ ⎪⎝⎭(2)228393(log 3log 9)(log 4log 8log 2)(lg 2)lg 20lg 5+++++⨯8.计算下列各式的值:(1)02237828-⎛⎫-- ⎪⎝⎭;(2)2log 331log 27lg 2100++.9.计算下列各式的值:(1)213112726-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;(2)3332log 2log 32log 8-+.10.计算下列两个小题:(1)ln31e lg15lg 3++;(2)0.25608π+.11.求下列式子的值:(1)()()12623129.684-⎛⎫+--- ⎪⎝⎭.(2)ln334lg252lg2log 16log 3e +-⋅+.12.计算与化简:(1)453log 27log 8log 25⨯⨯;(2)12271112333662228a b a b a b ---⎛⎫⎛⎫⎛⎫⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3)1220.51392(0.01)54-⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(4)222lg5lg8lg5lg20(lg2)3++⋅+.13.(1)21023213(2)(9.6)(3)(1.5)48---+;(2)log 535﹣2log 573+log 57﹣log 595.14.化简求值:(1)02133325-⎛⎫+ ⎪⎝⎭;(2)7log 2log lg 25lg 47++.15.化简或求值:(1)0.5207120.1π93-⎛⎫+-+ ⎪⎝⎭;(2)7lg142lg lg 7lg183-+-;16.计算:(1))()10211610.259-⎛⎫-- ⎪⎝⎭(2)25lg 42lg 5log 5log 8lg10++⨯+.17.计算下列各式的值:(1)()6221103321642e 453π-⎛⎫⎛⎫+--+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)ln235log 27lg2lg5log 16log e ---⋅.18.计算下列各题:(1)()20.5312816410.751627---⎛⎫⎛⎫+-÷+ ⎪ ⎪⎝⎭⎝⎭;(2)()70log 2log lg 25lg 479.8+++-.19.化简求值 (1)1131227(0.002)2)8--⎛⎫+- ⎪⎝⎭;(2)()266661log 3log 2log 18log 4⎡⎤-+⨯÷⎣⎦.20.(1)计算:1222301322( 2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)已知7log 23log 27lg252lg27xa =++-,求33x xx xa a a a --++的值.21.求值:(1))1213250.02719-⎛⎫+-⎪⎝⎭;(2)2350.2log 27log 82log 10log 4⨯--.22.求值:()122348π49-⎛⎫+-+ ⎪⎝⎭;(2)3323log 54log 2log 3log 4-+⋅.23.计算下列式子(1)()7l 0o 2g lg25+lg4l 79og .8++-;2334lo g log ⨯24.计算:()03143816-⎛--+ ⎝⎭;(2)223lg 2lg5log log 64++-.25.计算:223327⋅+;(2)()()()221004lg 2log 2lg5lg 23++-.26.求值:(1)01310.0277-⎛⎫+ ⎪⎝⎭(2)ln21lg20lg4lg e 5-++.27.求值:(1)))2202220223272264-⎛⎫- ⎪⎝⎭;(2)()9log 1620427log 9log 643lg 2lg5lg 12022lg5⨯++⨯+++.28.计算(1))2log 3lg12lg1001-+;(2))0.523124-⎛⎫ ⎪⎝⎭29.计算下列各式的值:(1)11421481⎛⎫ ⎪⎝⎭;(2)33252log 2log 12l 8og 5log -+⨯.30.求下列各式的值:(1)134440.06425--⎛⎫---⋅⎪⎝⎭;(2)2log 3232lg25lg8log 27log 223+-⨯+.31.求解下列问题:(1)2433641)27--⎛⎫++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100--⋅.32.计算下列各式的值:(1)2log 2log lg5lg22++.(2)cos20sin50cos50cos70︒︒-︒︒.33.计算下列各式,写出演算过程(1)1222318324272-⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)5525lg42lg52log 10log 20log 5log 8++--⋅.34.化简求值:(1)213240330.250.53π)0.0648---⎛⎫⨯--+ ⎪⎝⎭2)2log 31431lg 25lg 2log 9log 822-++-⨯++.35.求值:(1)()11202929.3log 443-⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)5log 2lg2lg5lg15+++36.化简求值:1020.5+;(2)0.21log 53212lg5log 25lg 4-⎛⎫-++ ⎪⎝⎭.37.计算下列各式的值:(1)113352943-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭(2)1433log lg 253log 3lg 4-+38.化简求值:(1)312log 14lg 2lg529-⎛⎫++- ⎪⎝⎭;(2)71113sin cos tan 634πππ++.39.化简或求值(1)11034781(0.064)()()|0.1|816---++-;(2)7lg142lg lg 7lg183-+-;40.计算求值(1)2ln 38916log 27log 6log 6e ⨯÷+;(2)419log 8log 3--41.计算:(1)()110520.01321π---+(2)3log 22log 8lg 2lg 53++-.42.计算:(1)1123182427-⎛⎫- ⎛⎫ ⎪⎝⎪⎭⎝⎭(2)2lg 2lg 2lg5(lg5)+⋅+.43.化简求值:)2138227--⎛⎫+⎪⎝⎭(2)3log 211lg9lg 240292361lg 27lg 35+-+-+.44.求值:(1)230323(8)π)-+;(2)()22824log 27(lg 5)(lg 2)lg 5lg log 16log 9+-+⨯.45.计算:(1)ln 2lg252lg2e ++ ;(2)()20.5133890.1252749--⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭46.(1)求值:3204161)++;(2)求值:5log 2lg25lg45log +++47.求值:(1)()1430513π38-⎛⎫-- ⎪⎝⎭;(2)()2273log 8log 7log log 81+⨯.48.(1))10334ln 22811e162022⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭;(2)()314163log 4log 2log log 3⎛⎫+ ⎪⎝⎭49.计算:(1)212232327(1)()()[(3)]28--+⋅+-;(2)2332lg5lg 4log 3log 4log +-⋅+50.计算下列各式的值:(1)2ln 21e lg lg 202--;(2)232lg 25lg8log 27log 23+-⨯.51.化简下列各式: (1)75sin cos cos(5)tan 224ππππ++-+;(2)24log 32log 0.252lg 42lg5⋅+++⋅52.计算下列各式的值:(1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)07log 2(9.8)log lg25lg47+-++.53.计算求值:(1))()140231101108200-⎛⎫-++- ⎪⎝⎭;(2)(42log 923lg 2lg 250082log 9log 4⨯+⨯++⋅.54.计算下列各式的值:(1)(332212234-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭;(2)5log 3333322log 4log log 2527-++55.求下列各式的值:(1)1220.2531222854--⎛⎫⎛⎫+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)158311lglog 9log 125log 10032+--.56.化简求值:())3320,0a b a b ->>;(2)7log 52225lg5lg 2lg2lg5log 5log 47+++⨯+.57.计算: (1)21304816π27-⎛⎫-+ ⎪⎝⎭(2)3ln 22552lg 4lg log 5log 4e 8++⋅+.58.计算:(1)5log 3311845log 11log 27log 2log 8-⋅++;(2)若33m m --=99m m -+的值.。
高中数学计算练习题
高中数学计算练习题一、代数部分1. 计算下列表达式的值:- \( (3x^2 - 2x + 1) - (5x^2 + 3x - 7) \)- \( \frac{2}{x} + \frac{3}{x+1} \)2. 解下列方程:- \( 2x^2 + 5x - 3 = 0 \)- \( \frac{1}{x} - 2 = 0 \)3. 简化下列分式:- \( \frac{4x^3 - 4x^2 + x}{x^2 - 1} \)二、几何部分1. 已知三角形ABC的三边长分别为a, b, c,且满足以下条件:- \( a^2 + b^2 = c^2 \)- \( a + b + c = 24 \)- \( ab + bc + ac = 90 \)求三角形ABC的面积。
2. 已知圆的半径为r,求圆的面积和周长。
三、三角函数部分1. 已知 \( \sin \alpha = \frac{3}{5} \),且 \( \alpha \) 在第一象限,求 \( \cos \alpha \) 和 \( \tan \alpha \)。
2. 计算下列三角函数表达式的值:- \( \sin(30^\circ) + \cos(60^\circ) \)- \( \tan(45^\circ) \)四、概率统计部分1. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,求抽到至少一个红球的概率。
2. 抛一枚硬币两次,求正面朝上的次数为1的概率。
五、综合应用题1. 某工厂生产的产品合格率为90%,如果随机抽取100件产品,求至少有85件产品合格的概率。
2. 一个班级有30名学生,其中10名男生和20名女生。
随机选取5名学生参加数学竞赛,求至少有3名女生的概率。
结束语通过这些练习题,学生可以加深对高中数学知识点的理解和应用,提高解题速度和准确率。
希望这些练习题能够帮助学生在数学学习中取得更好的成绩。
2024年高考数学计算题型精练系列(新高考通用版)专题07-数列求和
数列求和的运算1.等比数列{}n a 的公比为2,且234,2,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)若()21log n n n n b a a a +=⋅+,求数列{}n b 的前n 项和n T .2.正项数列{}n a 的前n 项和为n S ,已知221n n na S a =+.(1)求证:数列{}2n S 为等差数列,并求出n S ,n a ;(2)若(1)nn nb a -=,求数列{}n b 的前2023项和2023T .3.已知数列{}n a 为:1,1,2,1,1,2,3,1,1,2,1,1,2,3,4….即先取11a =,接着复制该项粘贴在后面作为2a ,并添加后继数2作为3a ;再复制所有项1,1,2并粘贴在后面作为4a ,5a ,6a ,并添加后继数3作为7a ,…依次继续下去.记n b 表示数列{}n a 中n 首次出现时对应的项数.(1)求数列{}n b 的通项公式;(2)求12363a a a a ++++ .4.已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,(1)求数列{}n a 的通项公式;(2)若11n n n b a a +=,求数列{}n b 的前2023项和.5.已知{}n a 是首项为2,公差为3的等差数列,数列{}n b 满足114,321n n b b b n +==-+.(1)证明{}n b n -是等比数列,并求{}{},n n a b 的通项公式;(2)若数列{}n a 与{}n b 中有公共项,即存在*,N k m ∈,使得k m a b =成立.按照从小到大的顺序将这些公共项排列,得到一个新的数列,记作{}n c ,求12n c c c +++ .6.设数列{}n a 的前n 项和为n S ,已知()*12N n n S a n +=∈.(1)求{}n a 的通项公式;(2)设,21,2n n a n k b n n k=-⎧=⎨=⎩且*N k ∈,求数列{}n b 的前n 项和为n T .7.已知数列{}n a 满足:12a =,且对任意的*n ∈N ,11,,222,.nnn n n a n a a n ++⎧⎪=⎨⎪+⎩是奇数是偶数(1)求2a ,3a 的值,并证明数列2123n a -⎧⎫+⎨⎬⎩⎭是等比数列;(2)设()21N*n n b a n -=∈,求数列{}n b 的前n 项和n T .8.已知正项数列{}n a 的前n 项和为n T ,12a =且对任意2n ≥,11,,n n n n a T a a T -成等差数列,又正项等比数列{}n b 的前n 项和为n S ,23413,39S S ==.(1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满足2n n n c T b =⋅,是否存在正整数n ,使129n c c c +++> .若存在,求出n 的最大值;若不存在,请说明理由.9.已知各项均为正数的等比数列{}n a ,其前n 项和为n S ,满足226n n S a +=-,(1)求数列{}n a 的通项公式;(2)记m b 为数列{}n S 在区间()2,m m a a +中最大的项,求数列{}n b 的前n 项和n T .10.已知等差数列{}n a 的公差0d >,且满足11a =,1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22,1,n a n n n n b n a a+⎧⎪=⎨⎪⎩为奇数为偶数求数列{}n b 的前2n 项的和2n T .11.设n S 是数列{}n a 的前n 项和,已知30a =,1(1)2n n n n a S ++-=.(1)求1a ,2a ;(2)令12n n n b a a +=+,求2462n b b b b ++++ .12.已知{}n a 是递增的等差数列,{}n b 是等比数列,且11a =,22b a =,35b a =,414b a =.(1)求数列{}n a 与{}n b 的通项公式;(2)n *∀∈N,数列{}n c 满足1122313n n n ca c cb b b++++⋅⋅⋅+=,求{}n c 的前n 项和n S .13.已知数列{}n a 的前n 项和为n S ,且225n n S a n =+-.(1)求数列{}n a 的通项公式;(2)记()21log 2n n b a +=-,求数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和n T .14.已知n S 为数列{}n a 的前n 项和,11a =,且2*,N n n na S n n n -=-∈.(1)求数列{}n a 的通项公式;(2)若()()122121nn n a n a a b +=--,求数列{}n b 的前n 项和n T .15.已知函数{}n a 的首项135a =,且满足1321n n n a a a +=+.(1)求证11n a ⎧⎫-⎨⎬⎩⎭为等比数列,并求n a .(2)对于实数x ,[]x 表示不超过x 的最大整数,求123100123100a a a a ⎡⎤++++⎢⎥⎣⎦ 的值.16.已知各项均为正数的数列{n a }满足111,23n n a a a -==+(正整数2)n ≥(1)求证:数列{}3n a +是等比数列;(2)求数列{n a }的前n 项和n S .17.已知在数列{}n a 中,112a =,且1n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)设1n n n n a b a a +=+,数列{}n b 的前n 项和为n T ,求使得425m T ≤的最大整数m 的值;(3)设12nn n na c a -=⋅,求数列{}n c 的前n 项和nQ 18.已知数列{}n a 各项都不为0,前n 项和为n S ,且32n n a S -=,数列{}n b 满足11b =-,1n n b b n +=+.(1)求数列{}n a 和{}n b 的通项公式;(2)令21n nn a b c n =+,求数列{}n c 的前n 项和为nT 19.已知等比数列{}n a 的公比为2,数列{}n b 满足12b =,23b =,12nn n n n a b a b +-=.(1)求{}n a 和{}n b 的通项公式;(2)记n S 为数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和,证明:13n S ≤<.20.在数列{}n a 中,11a =-,()*12362,N n n a a n n n -=+-≥∈.(1)求证:数列{}3n a n +为等比数列,并求数列{}n a 的通项公式;(2)设n n b a n =+,求数列{}n b 的前n 项和n T .21.记n S 为数列{}n a 的前n 项和,已知{}11,2n na a =是公差为2的等差数列.(1)求{}n a 的通项公式;(2)证明:4n S <.22.已知数列{}n a 满足1224n n a a n -=-+(n ≥2,*n ∈N ),14a =.(1)求证:数列{}2-n a n 为等比数列,并求{}n a 的通项公式;(2)求数列(){}1nn a -的前n 项和n S .23.已知数列{}n a 是公差为()0d d ≠的等差数列,且满足111,2n n a a xa +==+.(1)求{}n a 的通项公式;(2)设14(1)nn n n nb a a +=-⋅,求数列{}n b 的前10项和10S .24.已知数列{}n a 的前n 项和为n S ,且24n n S a =-.(1)求{}n a 的通项公式;(2)求数列{}n nS 的前n 项和n T .25.已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n n b n a =⋅,求{}n b 的前n 项和n T .26.已知数列{}n a 中,11a =,12n n n a a +=,*n ∈N .(1)求数列{}n a 的通项公式;(2)设22log 3n n b a n =+,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S ,求证:34n S <.27.数列{}n a 满足2113,2,21n b n n n n a a a a a +=-==+.(1)求证:{}n b 是等比数列;(2)若1n nnc b =+,求{}n c 的前n 项和为n T .28.已知正数数列{}n a ,11a =,且满足()()2211102n n n n a n a a na n -----=≥.(1)求数列{}n a 的通项公式;(2)设1n nn b a -=,求数列{}n b 的前n 项和n S .29.已知数列{}n a 、{}n b ,满足1100a =,21n n a a +=,lg n n b a =.(1)求数列{}n b 的通项公式;(2)若22122log log log n n n n c b b b +=+++ ,求数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和n S .30.已知数列{}n a 中,11a =,n S 是数列{}n a 的前n 项和,数列2n n S a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)证明:121112nS S S +++< .31.已知在等差数列{}n a 中,14724a a a ++=-,25815a a a ++=-.(1)求数列{}n a 的通项公式;(2)求数列(){}1nn a -的前n 项和n T .32.记数列{}n a 的前n 项和为n S ,已知11,21,,2,n n n a n k a a t n k ++=-⎧=⎨+=⎩*k ∈N ,317S a =,423a a =+.(1)求1a ,t ;(2)求数列{}n a 的通项公式;(3)求数列{}n a 的前n 项和n S .33.数列{}n a 中,11a =,且121n n a a n +=+-.(1)证明:数列{}n a n +为等比数列,并求出n a ;(2)记数列{}n b 的前n 项和为n S .若2n n n a b S +=,求11S .34.已知数列{}n a 满足13a =,1121n n n a a a ++-=.(1)记11n n b a =-求数列{}n b 的通项公式;(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和.35.已知等比数列{}n a 的前n 项和为n S ,且12n +,n S ,a 成等差数列.(1)求a 的值及数列{}n a 的通项公式;(2)若()21n n b n a =-求数列{}n b 的前n 项和n T 36.已知数列{}n a 和{}n b ,12a =,111n nb a -=,12n n a b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列n n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .37.等比数列{}n a 的前n 项和为n S ,已知11a =,且23331,,a a S -成等差数列.(1)求{}n a 的通项公式;(2)若12n na b n a +=,数列{}n b 的前n 项和n T .38.已知数列{}n a 的前n 项和为n S ,0n a >,且满足()241n n S a =+.(1)求数列{}n a 的通项公式;(2)设14nn n n S b a a +=的前n 项和为n T ,求n T .39.已知数列{}n a 满足:()1113,2n n n a a a n n++==+.(1)证明:数列1n a n ⎧⎫+⎨⎬⎩⎭是等比数列;(2)设n n c a n =+,求数列{}n c 的前n 项和n T .40.已知正项等差数列{}n a 的前n 项和为n S ,其中24n n a a +-=,2224(1)(1)S a +=+.(1)求数列{}n a 的通项公式及n S ;(2)若134n n n b a -⎛⎫=⋅ ⎪⎝⎭,求数列{}n b 的前n 项和n T .数列求和的运算1.等比数列{}n a 的公比为2,且234,2,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)若()21log n n n n b a a a +=⋅+,求数列{}n b 的前n 项和n T .【答案】(1)*2,N n n a n =∈(2)n T 21222;n n n +=++-【详解】(1)已知等比数列{}n a 的公比为2,且234,2,a a a +成等差数列,()32422a a a ∴+=+,()11124228a a a ∴+=+,解得12a =,1*222,N ;n n n a n -∴=⨯=∈(2)()12122log 222log 22212n n n n n n n b n ++=⋅+=+=++,()()()()221221222221212n n n T n n n n -∴=++++++++=+++++- .21222;n n n +=++-2.正项数列{}n a 的前n 项和为n S ,已知221n n na S a =+.(1)求证:数列{}2n S 为等差数列,并求出n S ,n a ;(2)若(1)nn nb a -=,求数列{}n b 的前2023项和2023T .【答案】(1)=n S ;n a (2)2023T =【详解】(1)由221n n n a S a =+可得,221121S S =+,又因为n S 为正项数列{}n a 的前n 项和,所以111S a ==,因为1n n n a S S -=-,所以()()21121n n n n n S S S S S ---=-+,所以()22112n n S S n --=≥,数列{}2n S 为等差数列,所以2nS n =,=n S ,())112n n an ⎧=⎪=≥,所以n a .(2)(1)(1)nn n nb a -==-,202311T =-+⋅⋅⋅=3.已知数列{}n a 为:1,1,2,1,1,2,3,1,1,2,1,1,2,3,4….即先取11a =,接着复制该项粘贴在后面作为2a ,并添加后继数2作为3a ;再复制所有项1,1,2并粘贴在后面作为4a ,5a ,6a ,并添加后继数3作为7a ,…依次继续下去.记n b 表示数列{}n a 中n 首次出现时对应的项数.(1)求数列{}n b 的通项公式;(2)求12363a a a a ++++ .【答案】(1)21nn b =-(2)120【详解】(1)由题意知:121n n b b +=+,即112(1)n n b b ++=+,且112b +=,所以数列{1}n b +是以112b +=为首项,2为公比的等比数列,所以12n n b +=,则21nn b =-.(2)由(1)可知,662163b =-=,所以6在前63项中出现1次,5在前63项中出现2次,4在前63项中出现224⨯=次,3在前63项中出现428⨯=次,2在前63项中出现8216⨯=次,1在前63项中出现16232⨯=次,所以1236313221638445261120a a a a ++++=⨯+⨯+⨯+⨯+⨯+⨯= .4.已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,(1)求数列{}n a 的通项公式;(2)若11n n n b a a +=,求数列{}n b 的前2023项和.【答案】(1)n a n =(2)20232024【详解】(1)设公差为d ,由55a =,515S =,得1145545152a d a d +=⎧⎪⎨⨯+=⎪⎩,解得11a d ==,所以n a n =.(2)由(1)可得()1111111n n n b a a n n n n +===-++,所以122320232024111a a a a a a +++ 1111112023112232023202420242024⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故数列{}n b 的前2023项和为20232024.5.已知{}n a 是首项为2,公差为3的等差数列,数列{}n b 满足114,321n n b b b n +==-+.(1)证明{}n b n -是等比数列,并求{}{},n n a b 的通项公式;(2)若数列{}n a 与{}n b 中有公共项,即存在*,N k m ∈,使得k m a b =成立.按照从小到大的顺序将这些公共项排列,得到一个新的数列,记作{}n c ,求12n c c c +++ .【答案】(1)证明见解析,()*31N n a n n =-∈,()*3Nn n b n n =+∈(2)()()927131262n n n -++()*N n ∈【详解】(1)由题意可得:()()*21331N n a n n n =+-⨯=-∈,而114,321n n b b b n +==-+,变形可得:()()111333,13n n n b n b n b n b +-+=-=--=,故{}n b n -是首项为3,公比为3的等比数列.从而3nn b n -=,即()*3N n n b n n =+∈.(2)由题意可得:313m k m -=+,*,N k m ∈,令31m n =-()*N n ∈,则()312231331331n n k n n ---=+-=+-,此时满足条件,即2,5,8,,31m n =⋯-时为公共项,所以122531n n c c c b b b -+++=+++ ()()()25319271313332531262n n n n n --+=+++++++-=+()*N n ∈.6.设数列{}n a 的前n 项和为n S ,已知()*12N n n S a n +=∈.(1)求{}n a 的通项公式;(2)设,21,2n n a n k b n n k=-⎧=⎨=⎩且*N k ∈,求数列{}n b 的前n 项和为n T .【答案】(1)12n n a -=(2)()12221,234211,2134n n n n n n k T n n k +⎧+-+=⎪⎪=⎨--⎪+=-⎪⎩,*N k ∈【详解】(1)当1n =时,11a =,当2n ≥时,111212n nn n S a S a --+=⎧⎨+=⎩12n n a a -⇒=,所以{}n a 是首项为1,公比为2的等比数列,则12n n a -=.(2)由题设知:12,21,2n n n k b n n k-⎧=-=⎨=⎩,*N k ∈,当n 为偶数时,13124()()n n n T b b b b b b -=+++++++ 022(222)(24)n n -=+++++++ 21(2)34n n n -+=+;当n 为奇数时,13241()()n n n T b b b b b b -=+++++++ 021(222)(241)n n -=+++++++- 1221134n n +--=+;综上,()12221,234211,2134n n n n n n k T n n k +⎧+-+=⎪⎪=⎨--⎪+=-⎪⎩,*N k ∈.7.已知数列{}n a 满足:12a =,且对任意的*n ∈N ,11,,222,.nnn n n a n a a n ++⎧⎪=⎨⎪+⎩是奇数是偶数(1)求2a ,3a 的值,并证明数列2123n a -⎧⎫+⎨⎬⎩⎭是等比数列;(2)设()21N*n n b a n -=∈,求数列{}n b 的前n 项和n T .【答案】(1)21a =,310a =,证明见解析(2)()824193n n T n =--【详解】(1)1212a a ==,3322210a a =+=.由题意得212121212212121288822244332333n n n n n n n n a a a a a ++-+---⎛⎫⎛⎫+=+=+=+=+ ⎪ ⎪⎝⎭⎝⎭,又128033a +=≠,所以数列2123n a -⎧⎫+⎨⎬⎩⎭是等比数列.(2)由(1)知12182433n n n b a --==⋅-.运用分组求和,可得()0121828142444++4333143n n n T n n--=++⋅⋅⋅-=⋅--()824193n n =--.8.已知正项数列{}n a 的前n 项和为n T ,12a =且对任意2n ≥,11,,n n n n a T a a T -成等差数列,又正项等比数列{}n b 的前n 项和为n S ,23413,39S S ==.(1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满足2n n n c T b =⋅,是否存在正整数n ,使129n c c c +++> .若存在,求出n 的最大值;若不存在,请说明理由.【答案】(1)2n a =,n b =113n -⎛⎫⎪⎝⎭(2)不存在,理由见解析【详解】(1)设{}n b 的公比为q ,显然1q ≠,由23413,39S S ==,可得()()2131141311319b q qb q q⎧-⎪=-⎪⎨-⎪=⎪-⎩,解得13q =或14q =-(舍去),又11b =,所以n b =113n -⎛⎫⎪⎝⎭,又对任意2n ≥,11,,n n n n a T a a T -成等差数列,12a =,所以14n n n n a T a T -+=.因为()12n n n a T T n -=-≥,所以()()114n n n n T T T T ---+=,所以2214n n T T --=()2n ≥,故{}2n T 是以214T =为首项,公差4d =的等差数列,所以()24144n T n n =+-⨯=,又0n a >,所以0n T >,所以n T =当2n ≥时,142n n n a T T -==+,1n =时,12a =满足上式,故2n a =.(2)12143n n nn c T b n -⎛⎫=⋅=⨯ ⎪⎝⎭,设12n n K c c c =+++ ,121114812333n K ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1143n n -⎛⎫⨯ ⎪⎝⎭①,123111148123333n K ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()11141433n nn n -⎛⎫⎛⎫+-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭②,①-②,得122114444333n K ⎛⎫⎛⎫=+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭3111144333n nn -⎛⎫⎛⎫⎛⎫++⨯- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭111341313n n n ⎡⎤⎛⎫-⎢⎥ ⎪⎛⎫⎝⎭⎢⎥=- ⎪⎢⎥⎝⎭-⎢⎥⎣⎦331142233n n n ⎡⎤⎛⎫⎛⎫=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,所以()11119969329333nnn n K n n -⎛⎫⎛⎫=--=-+< ⎪ ⎪⎝⎭⎝⎭,故不存在正整数n ,使129n c c c +++> .9.已知各项均为正数的等比数列{}n a ,其前n 项和为n S ,满足226n n S a +=-,(1)求数列{}n a 的通项公式;(2)记m b 为数列{}n S 在区间()2,m m a a +中最大的项,求数列{}n b 的前n 项和n T .【答案】(1)132n n a -=⨯;(2)222313n n T n +--=⨯.【详解】(1)设{}n a 的公比为q ,则0q >,又226n n S a +=-,当1n =时,1326S a =-,当2n =时,2426S a =-,两式相减可得,2432a a a =-,所以22q q =-,所以2q =或1q =-(舍去),所以1312646S a a =-=-,即13a =,所以等比数列{}n a 的通项公式为132n n a -=⨯;(2)由132n n a -=⨯,226n n S a +=-,可得()()1211632632322n n n n S a ++=-=⨯-=⨯-,所以113n n n S a a ++=-<,又0n a >,所以n n S a ≥,当且仅当1n =时等号成立,所以122m m m m m a S S a S +++≤<<<,所以11323m m m b S ++==⨯-,所以()2341322223n n T n +++=+-+ 22233322212312n n n n ++-⨯⨯-==---.即222313n n T n +--=⨯.10.已知等差数列{}n a 的公差0d >,且满足11a =,1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22,1,n a n n n n b n a a+⎧⎪=⎨⎪⎩为奇数为偶数求数列{}n b 的前2n 项的和2n T .【答案】(1)n a n =(2)21221534412n n T n +=--+【详解】(1)因为1a ,2a ,4a 成等比数列,所以2214a a a =,即2(1)1(13)d d +=⨯+,解得0d =或1d =.因为0d >,所以1d =,所以11(1)n a n n =+⨯-=.(2)由(1)得()2,,1,,2n n n b n n n ⎧⎪=⎨⎪+⎩为奇数为偶数所以2,,111,22n n n b n n n ⎧⎪=⎨⎛⎫- ⎪⎪+⎝⎭⎩为奇数为偶数,所以21232121321242()()n n n n n T b b b b b b b b b b b --=+++⋅⋅⋅++=++⋅⋅⋅++++⋅⋅⋅+13211111111(222)22446222n n n -⎡⎤⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦12122222111122222n n --⋅⎛⎫=+- ⎪-+⎝⎭,2121534412n n +=--+,所以数列{}n b 的前2n 项的和21221534412n n T n +=--+.11.设n S 是数列{}n a 的前n 项和,已知30a =,1(1)2n nn n a S ++-=.(1)求1a ,2a ;(2)令12n n n b a a +=+,求2462n b b b b ++++ .【答案】(1)121,3a a ==(2)2122n +-【详解】(1)由1(1)2n nn n a S ++-=得212,a a -=即212,a a =+23242a S +==,即1324a a a +=+,又30a =,所以121,3a a ==,(2)当2n k =时,22122kk k a S ++=,当21n k =-时,221212k k k a S --=-,两式相加可得22121221222k k k k k k a S a S +--=+-++,得221212222k k k k a a -++=+,由于12n n n b a a +=+,所以()()()()32547462622212222n n n b b b b a aa a a a a a +=++++++++++++ ()()()()21436522122222222n n -=++++++++ ()()24621352122222222n n -=+++++++++ ()()21414214221414n n n +--=+=---12.已知{}n a 是递增的等差数列,{}n b 是等比数列,且11a =,22b a =,35b a =,414b a =.(1)求数列{}n a 与{}n b 的通项公式;(2)n *∀∈N ,数列{}n c 满足1122313n n n c a c c b b b ++++⋅⋅⋅+=,求{}n c 的前n 项和n S .【答案】(1)21n a n =-,13n n b -=(2)3n n S =【详解】(1)解:由题意,设等差数列{}n a 的公差为()0d d >,则221b a d ==+,3514b a d ==+,414113b a d ==+,因为数列{}n b 为等比数列,则2324b b b =,即()()()2141113d d d +=++,因为0d >,解得2d =,()()1112121n a a n d n n ∴=+-=+-=-.又因为223b a ==,359==b a ,所以,等比数列{}n b 的公比为323b q b ==,因此,2123n n n b b q --==.(2)解:由1122313n n n c a c c b b b ++++⋅⋅⋅+=,①可得12213c a b ==,所以,13c =,当2n ≥时,112233n n n c a c c b b b -++⋅⋅⋅+=,②①-②得11233n n n n c a a b ++-==,所以,()1122323n n n c b n -+==⋅≥,13c =不满足()1232n n c n -=⋅≥,所以,13,123,2n n n c n -=⎧=⎨⋅≥⎩.当1n =时,113S c ==,当2n ≥时,()()1121613323333313n n n n S ---=+⨯+++=+=- ,13S =也满足()32n n S n =≥,综上所述,对任意的n *∈N ,3nn S =.13.已知数列{}n a 的前n 项和为n S ,且225n n S a n =+-.(1)求数列{}n a 的通项公式;(2)记()21log 2n n b a +=-,求数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和n T .【答案】(1)122n n a -=+(2)1n n +【详解】(1)当1n =时,111225S a a ==+-,解得13a =,当2n ≥时,()112215n n S a n --=+--.可得()112252215n n n n S S a n a n --⎡⎤-=+--+--⎣⎦,整理得:122n n a a -=-,从而()()12222n n a a n --=-≥,又121a -=,所以数列{}2n a -是首项为1,公比为2的等比数列;所以()1112222n n n a a ---=-⋅=,所以122n n a -=+,经检验,13a =满足122n n a -=+,综上,数列{}n a 的通项公式为122n n a -=+;(2)由(1)得122n n a --=,所以122n n a +-=,所以()21log 2n n b a n +=-=,()1111111n n b b n n n n +∴==-⋅++,所以12233411111n n n T b b b b b b b b +=++++ 11111111.1223341n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1111n n n =-=++14.已知n S 为数列{}n a 的前n 项和,11a =,且2*,N n n na S n n n -=-∈.(1)求数列{}n a 的通项公式;(2)若()()122121nn n a n a a b +=--,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)21111321n n T +⎛⎫=- ⎪-⎝⎭【详解】(1)因为2n n na S n n -=-,所以211(1)(1)(1)(2)n n n a S n n n ----=---≥,两式相减得1(1)22n n n na n a a n ----=-,化简得12(2)n n a a n --=≥,所以数列{}n a 是以1为首项,2为公差的等差数列,所以1(1)221n a n n =+-⨯=-.(2)()()21212121212111321212121n n n n n n b --+-+⎛⎫==- ⎪----⎝⎭,所以12n nT b b b =++¼+335212111111113212121212121n n -+⎛⎫=-+-+⋯+- ⎪------⎝⎭21111321n +⎛⎫=- -⎝⎭所以21111321n n T +⎛⎫=- ⎪-⎝⎭.15.已知函数{}n a 的首项135a =,且满足1321n n n a a a +=+.(1)求证11n a ⎧⎫-⎨⎬⎩⎭为等比数列,并求n a .(2)对于实数x ,[]x 表示不超过x 的最大整数,求123100123100a a a a ⎡⎤++++⎢⎥⎣⎦ 的值.【答案】(1)证明见解析,332nn na =+(2)5051【详解】(1)因为135a =,1321n n n a a a +=+,所以0n a ≠,所以12113n n na a a ++=2133n a =+,所以1111113n n a a +⎛⎫-=- ⎪⎝⎭.又因为11213a -=,所以数列11n a ⎧⎫-⎨⎬⎩⎭是首项为23,公比为13的等比数列,所以112112333nn n a -⎛⎫-=⨯⎪=⎝⎭,所以1213n n a =+,所以332n n na =+.(2)因为1213n n a =+,所以1210012310012310024200123100333a a a a +++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅+()1210010010011210023332⨯+⎛⎫=⨯++⋅⋅⋅++ ⎪⎝⎭.设1231001231003333T =+++⋅⋅⋅+,所以234101112310033333T =+++⋅⋅⋅+,所以2310010121111100333333T =+++⋅⋅⋅+-100101100101111100111003311323313⎛⎫⨯- ⎪⎛⎫⎝⎭=-=⨯-- ⎪⎝⎭-,所以1003203443T =-⨯,所以100123123100a a a a +++⋅⋅⋅+100100320320*********.522323=+-=-⨯⨯.因为100203013<<,所以10020310232<<⨯,所以10020350515051.55051.523<-<⨯,所以1001231231005051a a a a ⎡⎤+++⋅⋅⋅+=⎢⎥⎣⎦.16.已知各项均为正数的数列{n a }满足111,23n n a a a -==+(正整数2)n ≥(1)求证:数列{}3n a +是等比数列;(2)求数列{n a }的前n 项和n S .【答案】(1)证明见解析(2)2234n n S n +=--【详解】(1)证明:已知递推公式123n n a a -=+,两边同时加上3,得:()()13232n n a a n -+=+≥,因为0,30n n a a >+>,所以()13223n n a n a -+=≥+,又1340a +=≠,所以数列{}3n a +是以134a +=为首项、以2为公比的等比数列.(2)由(1)113=422n n n a -++⨯=,则()1*23N n n a n +=-∈,所以23112232323n n n S a a a +=++⋅⋅⋅+=-+-+⋅⋅⋅+-()2312223n n +=++⋅⋅⋅+-()2412323412nn n n +⋅-=-=---.17.已知在数列{}n a 中,112a =,且1n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)设1n n n n a b a a +=+,数列{}n b 的前n 项和为n T ,求使得425m T ≤的最大整数m 的值;(3)设12nn n na c a -=⋅,求数列{}n c 的前n 项和nQ 【答案】(1)11n a n =+(2)8(3)222n nn Q +=-【详解】(1)由112a =可知112a =,又1n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列,所以12(1)11n n n a =+-⨯=+,故11n a n =+.(2)1111112112n n n n a n b a a n n n n ++=+=+=+-++++,121111111123341222n n T b b b n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=+++=+-+-++-=+- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭,则1142225m T m m =+-≤+,整理得210(2)99(2)100m m +-+-≤,解得18m ≤≤,故满足条件的最大整数m 的值为8.(3)由题得122n n n nn a nc a -==⋅,则2311111232222n n Q n =⨯+⨯+⨯++⨯ ,2311111112(1)22222n n n Q n n +=⨯+⨯++-⨯+⨯ ,两式相减得231111111111122222222n nn n n Q n n ++⎛⎫=++++-⨯=--⨯ ⎪⎝⎭,所以2222222n n n nn nQ +=--=-.18.已知数列{}n a 各项都不为0,前n 项和为n S ,且32n n a S -=,数列{}n b 满足11b =-,1n n b b n +=+.(1)求数列{}n a 和{}n b 的通项公式;(2)令21n nn a b c n =+,求数列{}n c 的前n 项和为nT 【答案】(1)132n n a -⎛⎫= ⎪⎝⎭;()()122nn n b +-=;(2)()138342n n T n -⎛⎫=+-⨯ ⎪⎝⎭【详解】(1)由32n n a S -=,可得()11322n n a S n ---=≥,两式相减得1133n n n n n a a S S a ---=-=,整理得132n n a a -=,因为数列{}n a 各项都不为0,所以数列{}n a 是以32为公比的等比数列.令1n =,则11132a S a -==,解得11a =,故132n n a -⎛⎫= ⎪⎝⎭.由题知1n n b b n +-=,所以()()()()11232211n n n n n b b b b b b b b b b ---=-+-++-+-+ ()()()()21221221122n n n n n n +---=-+-+++-==(2)由(1)得()123212n n n n a b c n n -⎛⎫==- ⎪+⎝⎭,所以()()01112333102222n n n T c c c n -⎛⎫⎛⎫⎛⎫=+++=-⨯+⨯++-⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ ,()()1233331022222nn T n ⎛⎫⎛⎫⎛⎫=-⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相减得()()1133122133312463222212n n n n T n n --⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦-=-+--⨯=-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-,所以()138342n n T n -⎛⎫=+-⨯ ⎪⎝⎭.19.已知等比数列{}n a 的公比为2,数列{}n b 满足12b =,23b =,12nn n n n a b a b +-=.(1)求{}n a 和{}n b 的通项公式;(2)记n S 为数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和,证明:13n S ≤<.【答案】(1)2n n a =;1n b n =+(2)证明见解析【详解】(1)当1n =时,12112a b a b -=,又122,3b b ==,解得12a =.所以{}n a 是以2为首项,2为公比的等比数列,故1222n nn a -=⨯=.则1222n n nn n b b +-=,即11n n b b +=+.所以{}n b 是以2为首项,1为公差的等差数列,故()2111n b n n =+-⨯=+.(2)由(1)可得2n n a =,1n b n =+,所以12n n n b n a +=.则2323412222n n n S +=+++⋅⋅⋅+①,23411234122222n n n S ++=+++⋅⋅⋅+②,①-②可得122311111122111111331112222222212n n n n n n n n n S -+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+++⎢⎥⎛⎫⎣⎦=+++⋅⋅⋅+-+-=- ⎪⎝⎭-,所以3332n nn S +=-<.因为111432330222n n n n n n n n S S ++++++-=--+=>,所以{}n S 是递增数列.则113312n S S +≥=-=,故13n S ≤<.20.在数列{}n a 中,11a =-,()*12362,N n n a a n n n -=+-≥∈.(1)求证:数列{}3n a n +为等比数列,并求数列{}n a 的通项公式;(2)设n n b a n =+,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析;23nn a n =-;(2)122(1)n n n +--+【详解】(1)()*12362,N n n a a n n n -=+-≥∈ ,∴当2n ≥时,()()11111333263133332233n n n n n n a n a n a n a n n n a n a -----+-+-+===+-++-+-,数列{}3n a n +是首项为132a +=,公比为2的等比数列,32n n a n ∴+=,23nn a n =-;(2)2322n nn n n b a n a n n n=+==-+=-数列{}n b 的前n 项和()()()()12312...222426...22n n n T b b b n =+++=-+-+-++-()()1212122222...2246...222(1)122nn n n n n n n +-+=+++-++++=-⨯=--+-.21.记n S 为数列{}n a 的前n 项和,已知{}11,2n na a =是公差为2的等差数列.(1)求{}n a 的通项公式;(2)证明:4n S <.【答案】(1)12n n na -=(2)证明见解析【详解】(1)因为11a =,所以122a =,因为{}2nn a 是公差为2的等差数列,所以()22212n n a n n =+-=,所以1222n n n n n a -==.(2)01211232222n n n S -++++=,①所以121112122222n n n n nS --=++++ ,②①-②则2111111122121222222212nn n n n n n n n S --+=++++-=-=-- ,所以12442n n n S -+=-<.22.已知数列{}n a 满足1224n n a a n -=-+(n ≥2,*n ∈N ),14a =.(1)求证:数列{}2-n a n 为等比数列,并求{}n a 的通项公式;(2)求数列(){}1n n a -的前n 项和n S .【答案】(1)证明见解析,22n n a n=+(2)1122,3325,33n n n n n S n n ++⎧+-⎪⎪=⎨⎪---⎪⎩为偶数为奇数【详解】(1)∵1224n n a a n -=-+,∴()112244221n n n a n a n a n ---=-+=--⎡⎤⎣⎦,所以()12221n n a n a n --=--,又122a -=,∴{}2-n a n 是首项为2,公比为2的等比数列,∴22n n a n -=,∴22n n a n =+.(2)∵()()()1221n n nn a n -=-+-,∴()()()()12222212341n n n S n ⎡⎤=-+-++-+-+-+-+-⎣⎦ ,当n 为偶数时,()()()()()()11212222221234212123233n n n n n S n n n n ++⎡⎤----⎣⎦=+-++-+++-++--=+⨯=+-⎡⎤⎣⎦-- .当n 为奇数时,()()()()()()112122222123421121233n n n n S n n n n n ++⎡⎤-----⎣⎦=+-++-+++-++--=+--=-⎡⎤⎣⎦-- 53n --.综上1122,3325,33n n n n n S n n ++⎧+-⎪⎪=⎨⎪---⎪⎩为偶数为奇数.23.已知数列{}n a 是公差为()0d d ≠的等差数列,且满足111,2n n a a xa +==+.(1)求{}n a 的通项公式;(2)设14(1)n n n n n b a a +=-⋅,求数列{}n b 的前10项和10S .【答案】(1)21n a n =-(2)2021-【详解】(1)因为{}n a 是公差为()0d d ≠的等差数列,111,2n n a a xa +==+,所以当1n =时,2122a xa x =+=+,当2n =时,()23222222a xa x x x x =+=++=++,因为3221a a a a -=-,即21x x x +=+,解得1x =±,所以2d =或0d =(舍去),所以()12121n a n n =+-=-;(2)由(1)得,()()14411(1)(1)(1)21212121n n n n n n n n b a a n n n n +⎛⎫=-⋅=-⋅=-⋅+ ⎪-+-+⎝⎭.所以101111111120113355719212121S =--++--+++=-+=- .24.已知数列{}n a 的前n 项和为n S ,且24n n S a =-.(1)求{}n a 的通项公式;(2)求数列{}n nS 的前n 项和n T .【答案】(1)12n n a +=(2)3(1)22(1)8n n T n n n +=--++【详解】(1)因为24n n S a =-,所以当2n ≥时,1124n n S a --=-,两式相减,得1124(24)n n n n S S a a ---=---,整理得12n n a a -=,即2n ≥时,12n n a a -=,又当1n =时,11124S a a ==-,解得14a =,所以数列{}n a 是以4为首项,2为公比的等比数列,所以11422n n n a -+=⨯=.(2)由(1)知1222424n n n S ++=⨯-=-,所以224n n n n nS +=⋅-,令22,4n n n b n c n +=⋅=-,易知,12(1)42(1)2n n n c c c n n ++++=-⨯-+ ,设数列{}n b 的前n 项和为n K ,则34521222322n n K n +=⨯+⨯+⨯++⋅ ①,456321222322n n K n +=⨯+⨯+⨯++⋅ ②,由①-②,得3456231222222n n n K n ++-=⨯+++++-⋅ ,即4133332(12)2222812n n n n n K n n -+++--=+-⋅=-⋅--,所以413332(12)22(1)2812n n n n K n n -++-=+-⋅=-⋅+-,所以32(1)(1)22(1)8n n n T K n n n n n +=-+=-⋅-++.25.已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n n b n a =⋅,求{}n b 的前n 项和n T .【答案】(1)13n n a -=;(2)()21314n n n T -+=.【详解】(1)设数列{}n a 的公比为()0q q >,则()2314321113923a q q q a q a q a q ⎧++=⎪⎨=+⎪⎩,0q >,解得113a q =⎧⎨=⎩,所以13n n a -=,即{}n a 的通项公式为13n n a -=;(2)由题可知13n n b n -=⋅,则()12210132333133n n n T n n --=⨯+⨯+⨯++-⨯+⨯ ,()31123132333133n n n T n n -=⨯+⨯+⨯++-⨯+⨯ ,两式相减得:12312133333n n n T n --=+++++-⨯ ()1231133132n n n n n ---=-⨯=-,()21314n n n T -+∴=.26.已知数列{}n a 中,11a =,12n n n a a +=,*n ∈N .(1)求数列{}n a 的通项公式;(2)设22log 3n n b a n =+,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S ,求证:34n S <.【答案】(1)(1)22n n n a -=(2)证明见解析【详解】(1)解:因为11a =,*1()2n n n a a n +=∈N ,所以*12()n n na n a +=∈N ,所以121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅⋅⋅⋅()(1)1211212222122n n n n n -+++---=⋅⋅⋅⋅⋅⋅⋅== 当1n =时,11a =满足条件,所以(1)22n n n a -=;(2)因为22log 3n n b a n =+(2)n n =+,所以11111()(2)2+2nb n n n n ==-+,所以111111=(1++)23242n S n n --⋅⋅⋅+-+11111311(1(22122212n n n n =+--=--++++,所以34n S <.27.数列{}n a 满足2113,2,21n b n n n n a a a a a +=-==+.(1)求证:{}n b 是等比数列;(2)若1n nn c b =+,求{}n c 的前n 项和为n T .【答案】(1)证明见解析(2)22.2n n n T n +=+-【详解】(1)21221,log (1),log (31)2,n b n n n a b a b =+∴=+=+= 212,n n n a a a +=+ ()2211211,n n n n a a a a +∴+=++=+212log (1)2log (1),n n a a +∴+=+1212log (1)2,log (1)n n n n b a b a +++∴==+所以数列{}n b 是以2为首项,2为公比的等比数列.(2)由(1)可得,2n n b =,所以12n nn c =+,设,2n n n d =设其前n 项和为n S ,则12311231,22222n n nn n S --=+++++ ①234111231,222222n n n n n S +-=+++++ ②减②得111312111*********,12222222212n n n n n n n n n S -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=++++-=-=-- 所以22,2n nn S +=-所以22.2n n n n T S n n +=+=+-28.已知正数数列{}n a ,11a =,且满足()()2211102n n n n a n a a na n -----=≥.(1)求数列{}n a 的通项公式;(2)设1n nn b a -=,求数列{}n b 的前n 项和n S .【答案】(1)!n a n =(2)11!n S n =-【详解】(1)∵()()2211102n n n n a n a a na n -----=≥,∴()()()1102n n n n a na a a n ---+=≥,又0n a >,∴1n n a na -=,即()12n n a n n a -=≥.又()231121123!2n n n a a a a a n n n a a a -=⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯=≥,且111!a ==,∴!n a n =(2)1!n n b n -=,∴10b =,()()1112!1!!n n b n n n n -==-≥-,1234n nS b b b b b ∴=++++⋅⋅⋅+()111111111011!2!2!3!3!4!1!!!n n n =+-+-+-+⋅⋅⋅+-=--又111101!S b ==-=,∴11!n S n =-.29.已知数列{}n a 、{}n b ,满足1100a =,21n n a a +=,lg n n b a =.(1)求数列{}n b 的通项公式;(2)若22122log log log n n n n c b b b +=+++ ,求数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)2n n b =(2)()231n nS n =+【详解】(1)解:因为21n n a a +=,11001a =>,则2211a a =>,2321a a =>,L ,以此类推可知,对任意的n *∈N ,1n a >,所以21lg lg n n a a +=,即1lg 2lg n n a a +=,12n n b b +=,又因为12b =,所以{}n b 是首项为2,公比为2的等比数列,所以{}n b 的通项公式为1222n n n b -=⨯=.(2)解:2log n b n =,则()()()()()123112222n n n n n n c n n n n +++=++++++== ,所以,()122113131n c n n n n ⎛⎫== ⎪++⎝⎭,故()211111112121132233413131n n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ .30.已知数列{}n a 中,11a =,n S 是数列{}n a 的前n 项和,数列2n n S a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)证明:121112nS S S +++< .【答案】(1)n a n =(2)证明见解析【详解】(1)因为数列2n n S a ⎧⎫⎨⎬⎩⎭是首项为2,公差为1的等差数列,所以()22111n n Sn n a =+-⋅=+,则()21n n S n a =+,得112n n S na --=(2n ≥),两式相减得:()121n n n a n a na -=+-,则11n n a n a n -=-,121121121121n n n n n a a a n n a a n a a a n n ----=⋅⋅⋅⋅=⋅⋅⋅⋅=-- (2n ≥),又11a =适合上式,故n a n =.另解:由()121n n n a n a na -=+-得11n n a a n n -=-(2n ≥),故{}n a n为常数列,则111n a a n ==,故n a n =.(2)由(1)得()12n n n S +=,所以()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,则12111111111212221222311n S S S n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭ .31.已知在等差数列{}n a 中,14724a a a ++=-,25815a a a ++=-.(1)求数列{}n a 的通项公式;(2)求数列(){}1n n a -的前n 项和n T .【答案】(1)320n a n =-(2)3,22373,212n n n k T n n k ⎧=⎪⎪=⎨-⎪=-⎪⎩且*N k ∈【详解】(1)若等差数列公差为d ,则258147()()39a a a a a a d ++-++==,即3d =,由1474324a a a a ++==-,则48a =-,所以{}n a 的通项公式4(4)83(4)320n a a n d n n =+-=-+-=-.(2)由题设()12341n n n T a a a a a =-+-+-+- ,当n 为偶数,则()()()2143132n n n n T a a a a a a -=-+-++-= ;当n 为奇数,则()()()()2143123137332022n n n n n n T a a a a a a a n ----=-+-++--=-+= ;所以3,22373,212n n n k T n n k ⎧=⎪⎪=⎨-⎪=-⎪⎩且*N k ∈.32.记数列{}n a 的前n 项和为n S ,已知11,21,,2,n n n a n k a a t n k ++=-⎧=⎨+=⎩*k ∈N ,317S a =,423a a =+.(1)求1a ,t ;(2)求数列{}n a 的通项公式;(3)求数列{}n a 的前n 项和n S .【答案】(1)11a =,t =2(2)()*31,21,232,22n n n k a k n n k -⎧=-⎪⎪=∈⎨-⎪=⎪⎩N (3)()2*231,21,43,24n n n k S k n n k ⎧+=-⎪⎪=∈⎨⎪=⎪⎩N 【详解】(1)由11,21,,2,n n n a n k a a t n k ++=-⎧=⎨+=⎩(*N k ∈)可得,211a a =+,32a a t =+,431a a =+,又317S a =,423a a =+,则()()()111111117,213,a a a t a a t a ⎧+++++=⎪⎨++=++⎪⎩解得11a =,t =2.。
数学-高中生计算能力提升专练
高中数学运算能力训练题(1)(请在15分钟内完成)1.计算下列各式的值(每小题10分共40分)(1)⨯+⨯+⨯⨯=125212.5602552___________;(2)2﹣2﹣4(3.14﹣π)0=___________;(3)⎣⎦⎝⎭⎣⎦⎢⎥ ⎪----⨯⨯--⎡⎤⎛⎫⎡⎤31210.532122()=___________; (4) ⎭⎝⎭⎝⎪ ⎪ -÷-+-⎫⎛⎫⎛426731411223=__________. 2.不等式组⎩⎪≤+⎨⎪⎧-<x x 221123的正整数解的个数是.(10分)3.化简:(每小题10分共20分) (1)﹣÷==__________.(2)(﹣)÷=__________.4、已知:x=,y=.那么+= .(10分)5、解方程: (每小题5分共10分)(1)方程x 2﹣2x ﹣8=0的解为__________;(2)方程-+=x x 27402的解为__________.6、已知a ,b ,c 为正实数,2a 4+2b 4+c 4=2a 2c 2+2b 2c 2,则a:b:c =__________. (10分)高中数学运算能力训练题(2)(请在15分钟内完成)一、填空题(共10题,每题10分,满分100分) 1.计算÷+÷=4000(1683213) __________2. 计算:⎝⎭ ⎪-⨯=⎛⎫5373215__________ 3.-+>xx 111的解集是__________ 4.-<+x x 422的解集是__________5.已知直角三角形的两条边长分别是方程-+=x x 144802的两根,则此三角形的周长是__________6.计算:⨯-⨯-⨯.2854.4362.4362.08.1054.4362=__________7.计算:9991999个⨯9991999个+19991999个=__________ 8.化简:x x x x x x x x 020202020202020228431248432843--+---+--⎡⎣⎢⎤⎦⎥()=__________ 9. 计算:⎝⎭⎪++++=⎛⎫⎭⎭⎝⎭⎝⎝⎪⎪ ⎪ ----⨯++++-----⨯⎫⎫⎛⎫⎛⎛19_96_____4_2311112319962341997231997111___11111111110.设实数x ,y 满足x x y y 3312015111201511-=-+-=-+-⎧⎨⎪⎩⎪()()()(),则+y x =__________高中数学运算能力训练题(3)(请在15分钟内完成)一、填空题(共10题,每题10分,满分100分) 1.计算-+-.475.963.8(25.137)=__________ 2.计算:⨯+⨯.09999.07.011117.2= __________3.不等式<x21的解集是__________ 4.化简:+-++--+=n n n n 22[(1)(1)1](1)1122__________5.计算:⨯+-⨯361548362186548362= __________6.计算:2372×109 =__________7.已知方程3x 2-2x-1=0的两根是x 1,x 2,则+x x 1222=________8⎝ -⎛=__________ 9.化简:(-2.5a 3)2·(-4a)3=__________10.将x =my +2代入x 26+y 22=1得到关于y 的一元二次方程,该方程的解为y 1,y 2,则-+y y y y 4)(21221=__________(用含有m 的式子表示)高中数学运算能力训练题(4)(请在15分钟内完成)一、填空题(共10题,每题10分,满分100分) 1.计算:10.4=2⎛⎫÷- ⎪⎝⎭( ) A. 15-B. 15C. 45- D. 45 2.用提公因式法分解因式5()10()a x y b x y ---,提出的公因式应当为( ) A .510a b - B .510a b + C .5()x y - D .y x + 3.若296(3)1a k a +-+是完全平方式,则 k 的值是( )A .±4B .±2C .3D .4或24.关于x 的不等式210ax bx +-< 的解集是 {}12x x -<< ,则 a 、b 的值分别是( ) A .11,22- B. 10,2 C. 11,22- D. 1,125.在)5(log 2a b a -=-中,实数a 的范围是( )A 、 a >5或a <2B 、 25<<aC 、 23<<a 或 35<<aD 、 34<<a6. 关于x 的不等式11(1)1x x x+>>-其中 的解集是 ( ) A .()1,2 B. ()1,+∞ C. (),1-∞ D. ()1,2-7.化简()43325⎥⎦⎤⎢⎣⎡-的结果为() A .5B .5C .5-D .-58.化简xx 3-的结果是( )A .x --B .xC .x -D .x -9.下列各式中,不正确的是()A .21521log 5=B .311013lg =⎪⎭⎫ ⎝⎛ C .55564log 214=D .24log 2x x =10. 集合⎭⎬⎫⎩⎨⎧∈-<≤-N x x x ,2110log 1|1的真子集的个数是( )A. 1289- B. 1290- C. 1291- D. 1292-高中数学运算能力训练题(5)(请在15分钟内完成)1.计算:(﹣12)+65 +(﹣8)+(﹣710 )+(﹣12)= __________。
(完整word版)高中数学计算题专项练习一
高中数学计算题专项练习一高中数学计算题专项练习一一.解答题(共 30 小题)1.( Ⅰ)求值:( Ⅰ)解对于 x 的方程;.2.( 1)若=3,求 的值;( 2)计算 的值.3.已知, b=( log 43+log 83)(log 3 2+log 92),求a+2b 的值.4.化简或计算:( 1)()﹣ [3×() 0]﹣1﹣ [81﹣+( 3)]﹣ 10×;( 2).5.计算的值.6.求以下各式的值.( 1)( 2)已知 x+x﹣1=3,求式子 x 2 +x ﹣ 2的值.7.(文)( 1)若﹣ 2x 2+5x ﹣ 2> 0,化简:( 2)求对于 x 的不等式( k 2﹣2k+ ) x <( k2﹣ 2k+ ) 1ˉx 的解集.8.化简或求值:( 1) 3a b (﹣ 4a b )÷(﹣ 3a b );( 2).9.计算:( 1);(2)( lg8+lg1000 )lg5+3 ( lg2 )2+lg6 ﹣1+lg0.006 .10.计算(1)( 2).11.计算( 1)( 2).12.解方程: log 2( x﹣ 3)﹣=2.13.计算以下各式(Ⅰ) lg24 ﹣( lg3+lg4 ) +lg5(Ⅰ).14.求以下各式的值:(1)( 2).15.( 1)计算(2)若 xlog 34=1,求 4x+4﹣x的值.16.求值:.17.计算以下各式的值( 1) 0.064 ﹣(﹣ ) 0+16( 2) lg 25+lg5?lg4+lg 22.18.求值:+ .19.( 1)已知 a > b >1 且 ,求 log a b ﹣ log b a 的值.( 2)求的值.20.计算( 1)( 2)( lg5) 2+lg2 ×lg5021.不用计算器计算:.22.计算以下各题( 1);( 2).23.解以下方程:(1) lg ( x ﹣ 1)+lg ( x ﹣ 2)=lg ( x+2); ( 2) 2?( log 3x ) 2﹣ log 3x ﹣ 1=0.24.求值:( 1)( 2) 2log 525﹣3log 264.25.化简、求值以下各式:( 1) ?(﹣ 3 ) ÷ ;( 2)(注: lg2+lg5=1 ).26.计算以下各式( 1) ;( 2) .27.( 1)计算;( 2)设 log 23=a ,用 a 表示 log 49﹣ 3log 26.28.计算以下各题:( 1) ;( 2) lg 25+lg2lg50 .29.计算:( 1) lg 25+lg2?lg50 ;( 2) 30++3 2×34﹣( 32)3.30.( 1)计算:;( 2)解对于x 的方程:.高中数学计算题专项练习一参照答案与试题分析一.解答 (共30 小 )1.( Ⅰ)求 :( Ⅰ)解对于 x 的方程考点 : 有理数指数 的化 求 .: 算 .;.剖析: ( Ⅰ)利用 数与指数的运算法 ,化 求 即可.( Ⅰ)先利用 元法把 化 二次方程的求解,解方程后,再代入 元 程即可.解答:(本小 分 13 分)解:( Ⅰ)原式 =1++log 2= ﹣11+2 3= 1+8+=10 . ⋯( 6 分)x2即( t 3)( t+1 )=0,解得 t=3 或 t=1⋯( 10 分)x xⅠlog 2 =3 或 log 2 =1Ⅰx=8 或 x= ⋯( 13 分)点 : 本 考 有理指数 的化 求 以及 元法解方程,是基 .要求 基 知 熟 掌握.2.( 1)若=3,求 的 ;( 2) 算 的 .考点 : 有理数指数 的化 求 .: 算 . 剖析: ( 1)利用已知表达式,通 平方和与立方差公式,求出所求表达式的分子与分母的 ,即可求解. ( 2)直接利用指数与 数的运算性 求解即可.解答:解:( 1)因=3 ,因此 x+x ﹣1=7,因此 x 2+x ﹣2=47,=()( x+x﹣11)=3×( 7 1) =18 .因此==.(2)=3 ﹣ 3log 22+( 4﹣ 2)×=.故所求结果分别为:,评论:此题观察有理数指数幂的化简求值,立方差公式的应用,观察计算能力.3.已知, b=( log 43+log 83)(log3 2+log92),求a+2b 的值.考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.剖析:直接利用有理指数幂的运算求出a,对数运算法例求出解答:b,而后求解a+2b 的值解:==.b= ( log43+log 83)( log 32+log 92)=(log 23+ log2 3)( log 32+log 32)==,Ⅰ,,Ⅰa+2b=3.评论:此题观察指数与对数的运算法例的应用,观察计算能力.4.化简或计算:( 1)()﹣ [3×()0] ﹣1﹣ [81 ﹣+(3 )]﹣10× ;( 2).考点:有理数指数幂的化简求值.专题:计算题.剖析:依占有理数指数幂的运算法例进行化简求值即可.解答:解:( 1)原式 =﹣1﹣ 10×﹣( 3×1)﹣=﹣﹣ 1﹣ 3=﹣ 1.( 2)原式 = +﹣2= + ﹣ 2= ﹣ 2 + ﹣ 2 .评论:此题观察有理数指数幂的运算法例,观察学生的运算能力,属基础题,熟记相关运算法例是解决问题的基础.5.计算的值.考点:有理数指数幂的化简求值.专题:计算题.剖析:依据分数指数幂运算法例进行化简即可.解答:解:原式= = = .评论:此题主要观察用分数指数幂的运算法例进行化简,要求娴熟掌握分数指数幂的运算法例.6.求以下各式的值.(1)(2)已知 x+x ﹣1=3,求式子 x2+x﹣2的值.考点:有理数指数幂的化简求值.专题:计算题.剖析:(1)直接利用有理指数幂的运算性质和对数的运算性质化简求值.( 2)把已知的等式两边平方即可求得x2+x ﹣2的值.解答:解:( 1)==;( 2)由 x+x ﹣1=3,两边平方得 x 2+2+x ﹣ 2=9,因此 x 2+x ﹣2=7.评论: 此题观察了有理指数幂的化简求值,观察了对数的运算性质,是基础的计算题.7.(文)( 1)若﹣ 2x 2+5x ﹣ 2> 0,化简:( 2)求对于 x 的不等式( k 2﹣2k+ ) x <( k 2﹣ 2k+ ) 1ˉx 的解集.考点 : 指数函数的单一性与特别点;方根与根式及根式的化简运算.专题 : 计算题;转变思想.剖析: ( 1)由﹣ 2x 2+5x ﹣ 2> 0,解出 x 的取值范围,判断根号下与绝对值中数的符号,进行化简.( 2)先判断底数的取值范围,因为底数大于 1,依据指数函数的单一性将不等式进行转变一次不等式,求解即可.解答:解:( 1)Ⅰ﹣2x 2+5x ﹣2> 0Ⅰ,Ⅰ原式 = == ( 8分)( 2) Ⅰ,Ⅰ原不等式等价于 x <1﹣ x ,Ⅰ此不等式的解集为(12 分)评论: 此题观察指数函数的单一性与特别点,求解此题的重点是判断底数的符号,以确立函数的单一性,娴熟掌握指数函数的单一性是正确转变的根本.8.化简或求值:( 1) 3a b (﹣ 4a b) ÷(﹣ 3a b );( 2).考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.剖析: ( 1)利用分数指数幂的运算法例即可得出;( 2)利用对数的运算法例和 lg2+lg5=1 即可得出.解答:解:( 1)原式 ==4a .( 2)原式 = +50 ×1=lg10 2+50=52 .评论:此题观察了分数指数幂的运算法例、对数的运算法例和lg2+lg5=1 等基础知识与基本技术方法,属于基础题.9.计算:( 1);(2)( lg8+lg1000 )lg5+3 ( lg2 )2+lg6 ﹣1+lg0.006 .考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.剖析:(1)先将每一个数化简为最简分数指数幂的形式,再利用运算性质化简.( 2)先将每一个对数式化简,再利用对数运算性质化简.解答:解:( 1)===﹣ 45;(2)( lg8+lg1000 ) lg5+3 ( lg2 )2+lg6 ﹣1+lg0.006= ( 3lg2+3 )?lg5+3 ( lg2)2﹣lg6+ ( lg6﹣ 3)=3lg2 ?lg5+3lg5+3 ( lg2 )2﹣ 3=3lg2 ( lg5+lg2 ) +3lg5 ﹣ 3=3lg2+3lg5 ﹣ 3=3 ﹣3=0 .评论:此题观察运算性质,做这种题目最重点的是平常练习时要仔细、耐心、不怕麻烦,考场上才能娴熟应付! 10.计算(1)( 2).考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.剖析:(1)利用指数幂的运算性质即可得出;( 2)利用对数函数的运算性质即可得出.解答:解:( 1)原式 =|2﹣ e|﹣+﹣=e﹣ 2﹣+=e﹣ 2﹣ e+=﹣ 2.( 2)原式 = +3= 4+3=24+3=1 .点 :熟 掌握指数 的运算性 、 数函数的运算性 是解 的关 .11. 算( 1)( 2) .考点 : 数的运算性 ;有理数指数 的运算性 .: 算 . 剖析: ( 1)直接利用 数的运算法 求解即可. ( 2)直接利用有理指数 的运算法 求解即可.解答:解:( 1)==( 2)==9 ×8 27 1 =44 .点 :本 考 数的运算法 、有理指数 的运算法 的 用,考 算能力.12.解方程: log 2( x 3)=2.考点 : 数的运算性 .: 算 . 剖析:2由已知中 log 2=2,由 数的运算性 ,我 可得x 3x 4=0,解方程后, 即可得(x 3)到答案.解答: 解:若 log 2( x 3) =2 .x 23x 4=0 , ⋯(4 分)解得x=4 ,或 x= 1(5 分):方程的解 x=4 . ⋯( 6 分)点 :本 考 的知 点是 数的运算性 ,此中利用 数的运算性 ,将已知中的方程 化 整式方程是解答 醒的关 ,解答 ,易忽视 数的真数部分大于0,而 解4,或 1.13. 算以下各式(Ⅰ) lg24 ﹣( lg3+lg4 ) +lg5(Ⅰ).考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.剖析:(Ⅰ)利用对数的运算的性质可得结果;(Ⅰ)利用指数幂的运算性质可得结果;解答:解:(Ⅰ)lg24﹣(lg3+lg4)+lg5=lg24 ﹣ lg12+lg5=lg=lg10=1 ;(Ⅰ)=×+﹣﹣1=3 2×23+3﹣2﹣ 1=72 .评论:此题观察对数的运算性质、指数幂的运算性质,观察学生的运算能力,属基础题.14.求以下各式的值:(1)( 2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.剖析:依据对数和指数的运算法例进行求解即可.解答:=log ﹣9=log 39﹣ 9=2 ﹣9=﹣ 7.解:( 1)原式 =( 2)原式 === =.评论:此题主要观察对数和指数幂的计算,要求娴熟掌握对数和指数幂的运算法例.15.( 1)计算(2)若 xlog 34=1,求 4x+4﹣x的值.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.剖析:(1)利用指数幂的运算性质即可;( 2)利用指数式和对数式的互化和运算性质即可.解答:解:( 1)原式 = ==3 .(2)由 xlog 34=1,得 x=log 43,Ⅰ4x=3,,Ⅰ4x+4﹣x==.点:熟掌握数和指数的运算性是解的关.16.求:.考点:数的运算性;有理数指数的化求.:算.剖析:依占有理数指数的定,及数的运算性,即可求出的.解答:解:原式⋯( 4 分)⋯( 3 分)=⋯( 1 分)点:本考的知点是数的运算性,有理数指数的化求,此中掌握指数的运算性和数的运算性,是解答本的关.17.算以下各式的(1) 0.064 ()0+16(2) lg 25+lg5?lg4+lg22.考点:数的运算性;有理数指数的化求.:算.剖析:(1)利用指数的运算性可求;( 2)利用数运算性可求;解答:解:( 1)原式 =1+8+=;(2)原式 =lg 25+2lg5?lg2+lg22=( lg5+lg2 )2=( lg10 )2=1点:本考数的运算性、有理数指数的运算,属基,熟相关运算性是解基.18.求值:+.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.剖析:直接利用对数的运算法例,求出表达式的值即可.解答:解:原式 = =3+9+2000+1=2013 .评论:此题观察对数的运算法例的应用,基本知识的观察.19.( 1)已知 a> b>1 且,求 log a b﹣ log b a 的值.( 2)求的值.考点:对数的运算性质.专题:计算题.剖析:( 1)经过 a> b> 1 利用,平方,而后配出log a b﹣ log b a 的表达式,求解即可.( 2)直接利用对数的运算性质求解的值解答:解:( 1)因为 a> b>1,,因此,可得,a> b> 1,因此 log a b﹣ log b a< 0.因此 log a b﹣ log b a=﹣( 2)= =﹣ 4.评论:此题观察对数与指数的运算性质的应用,整体思想的应用,观察计算能力.20.计算( 1)(2)(lg5)2+lg2×lg50考点:对数的运算性质;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:计算题.剖析:(1)把根式转变为指数式,而后利用分数指数幂的运算法例进行计算.( 2)先把 lg50 转变为 lg5+1 ,而后利用对数的运算法例进行计算.解答:解:( 1)===(6分)(2)( lg5)2+lg2 ×lg50=( lg5 )2+lg2 ×( lg5+lg10 )=( lg5 )2+lg2 ×lg5+lg2=lg5 ( lg5+lg2 ) +lg2=lg5+lg2=1 ( 12 分)评论:此题观察对数的运算法例和根式与分数指数幂的互化,解题时要注意合理地进行等价转变.21.不用计算器计算:.考点:对数的运算性质.专题:计算题.剖析:, lg25+lg4=lg100=2 ,,(﹣)0=1,由此能够求出的值.解答:解:原式 = ( 4 分)= ( 8 分)= ( 12 分)评论:此题观察对数的运算性质,解题时要仔细审题,注意公式的灵巧运用.22.计算以下各题( 1);( 2).考点:对数的运算性质.专题:计算题.剖析:(1)直接利用对数的运算性质求解表达式( 2)利用指数的运算性质求解表达式的值即可.解答:解:( 1)==9+﹣1=(2)===﹣ 45.评论:此题观察指数与对数的运算性质的应用,观察计算能力.23.解以下方程:(1) lg( x﹣ 1)+lg ( x﹣ 2)=lg ( x+2);(2) 2?( log3x)2﹣ log3x﹣ 1=0.考点 : 对数的运算性质.专题 : 计算题.剖析: ( 1)先依据对数运算性质求出 x ,再依据对数的真数必定大于 0 查验即可.( 2)设 log 3x=y ,得出 2y 2﹣ y ﹣ 1=0,求出 y 的值,再由对数的定义求出 x 的值即可.解答: 解:( 1)原方程可化为 lg ( x ﹣ 1)( x ﹣ 2)=lg ( x+2)因此( x ﹣ 1)( x ﹣ 2) =x+2即 x 2﹣ 4x=0,解得 x=0 或 x=4经查验, x=0 是增解, x=4 是原方程的解. 因此原方程的解为x=4( 2)设 log 3x=y ,代入原方程得2y 2﹣ y ﹣ 1=0.解得 y 1=1,.log 3x=1,得 x 1=3; 由,得.经查验, x 1=3,都是原方程的解.评论: 此题主要观察对数的运算性质和对数函数的定义域问题.属基础题.24.求值:( 1)( 2) 2log 525﹣3log 264.考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.剖析: ( 1)第一变根式为分数指数幂,而后打开运算即可.( 2)直接利用对数式的运算性质化简求值.解答:解:( 1)= = = =.( 2) 2log 525﹣3log 264==4 ﹣ 3×6 =﹣ 14.评论: 此题观察了对数式的运算性质,观察了有理指数幂的化简求值,解答的重点是熟记相关性质,是基础题.25.化简、求值以下各式:( 1) ?(﹣ 3 ) ÷ ;( 2)(注:lg2+lg5=1).考点:数的运算性;有理数指数的化求.:算.剖析:( 1)利用指数的运算性化即可;( 2)利用数的运算性化即可.解答:解:( 1)原式 = b﹣3÷( 4 )⋯..3 分=⋯..7分( 2)解原式 =⋯..2分=⋯..4 分=⋯..6 分=⋯.7 分.点:本考数的运算性,考有理数指数的化求,熟掌握其运算性是化的基,属于基.26.算以下各式( 1);( 2).考点:数的运算性;有理数指数的化求.:算.剖析:(1)利用指数的运算法即可得出;( 2)利用数的运算法和底公式即可得出.解答:解:( 1)原式 =1+=.( 2)原式 =+lg (25×4) +2+1==.点:本考了指数的运算法、数的运算法和底公式,属于基.27.( 1)计算;( 2)设 log 23=a ,用 a 表示 log 49﹣ 3log 26.考点 : 对数的运算性质;根式与分数指数幂的互化及其化简运算.专题 : 计算题.剖析: ( 1)把第一、三项的底数写成平方、立方的形式即变为幂的乘方运算,第二项不等于则等于 1,化简求值即可; ( 2)把第一项利用换底公式换成以 2 为底的对数,第二项利用对数函数的运算性质化简,a 即可.0 依据零指数的法3log 2 整体换成解答:解:( 1)原式 =+1+= +1+ =4;( 2)原式 =﹣ 3log 22×3=log 23﹣ 3( 1+log 23) =a ﹣3( 1+a )=﹣ 2a ﹣ 3.评论: 此题是一道计算题,要修业生会进行根式与分数指数幂的互化及其运算,会利用换底公式及对数的运算性质化简求值.做题时注意底数变乘方要用到一些技巧.28.计算以下各题:( 1) ;( 2) lg 25+lg2lg50 .考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.剖析: ( 1)利用指数的运算法例,直接求解表达式的值即可.( 2)利用对数的运算性质,直接化简求解即可.解答:解:( 1)原式= = =.( 5 分)( 2)原式 lg 25+lg2lg50=lg 25+2lg2lg5+lg 25=( lg2+lg5 ) 2=1 (5 分)评论: 此题观察对数的运算性质,有理数指数幂的化简求值,观察计算能力.29.计算:( 1) lg 25+lg2?lg50 ;( 2) 30++3 2×34﹣( 32)3.考点 : 数的运算性 ;有理数指数 的化 求 .: 算 ;函数的性 及 用. 剖析:( 1)直接利用 数的运算性 即可求解( 2)直接依据指数的运算性 即可求解解答:解:( 1)原式 =lg 25+lg2 ( 1+lg5 )=lg 25+lg2lg5+lg2 =lg5 (lg5+lg2 ) +lg2 =lg5+lg2=1( 2)原式 =1+3+3 6 36=4. ⋯(14 分)点 :本 主要考 了 数的运算性 及指数的运算性 的 ,属于基30.( 1) 算:;( 2)解对于x 的方程:.考点 : 数的运算性 ;有理数指数 的运算性 ;有理数指数 的化 求 ;函数的零点.: 算 . 剖析:( 1)依据分数指数 运算法 行化 即可.( 2)利用 数函数的性 和 数的运算法 行 算即可. 解答:解:( 1)原式 = = 3;( 2)原方程化 log 5(x+1) +log 5(x 3) =log 55,进而( x+1)( x 3)=5,解得 x= 2 或 x=4 ,, x= 2 不合 意,故方程的解 x=4.点 :本 主要考 分数指数 和 数的运算,要求熟 掌握分数指数 和 数的运算法 .。
2024年高考数学计算题型精练系列(新高考通用版)专题3-导数计算
导数计算1.求下列函数的导数:(1)cos sin cos xy x x -=;(2)221e x y x +=.2.求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=;(4)()f x =;3.求下列函数的导数:(1)32235y x x =-+;(2)241y x x =++;(3)2log y x =;(4)e n x y x =;(5)31sin x y x-=;(6)sin sin cos xy x x=+.4.求下列函数的导数:(1)1)1y⎫=⎪⎭;(2)3ln (0,1)x y x a a a =+>≠;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭(4)2ln(23)1x y x +=+.5.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;(3)sin cos 22x y xx =-;6.求下列函数的导数.(1)22y x x -=+;(2)2ln 1x y x =+7.求下列函数的导数:(1)2()(1sin )(1)f x x x =+-;(2)()31x xf x x =-+.8.求下列函数的导数:(1)22log (3);y x x =(2)cos(21).x y x+=9.求下列函数的导数:(1)111x y x x+=+-;(2)ln(21)y x x =+.10.求下列函数的导数:(1)()ln 21x y x+=;(2)()ln 25y x =-;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭.11.求下列函数的导函数.(1)324ln 1y x x x =+-+;(2)24cos 2xy x -=+;(3)21e sin +=x y x .12.求下列函数的导数.(1)(11y⎛=+ ⎝;(2)ln xy x=.13.求下列函数的导数:(1)5log 2y x =;(2)8x y =;(3)cos 2y x =;(4)()432y x =.14.求下列函数的导数:(1)8y x =;(2)4x y =;(3)3log y x =;(4)sin(2y x π=+;(5)2e y =.15.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)ln y x =;(5)cos y x =.16.求下列函数的导函数(1)4235+6y x x x =--;(2)21y x x=+;(3)2cos y x x =;(4)tan y x =17.求下列函数的导函数.(1)()3224f x x x =-+;(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈;(4)2()3ln f x x x x =-+-(5)sin y x =;(6)11x y x +=-18.求下列函数的导数:(1)221()(31)y x x =-+;(2)cos x y e x =;19.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =.20.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)5log y x =.21.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;22.求下列函数的导数.(1)()()22331y x x =+-;(2)1sin 1cos xy x-=+.23.求下列函数的导数.(1)()()ln sin f x x x x =+;(2)()()521e xx f x +=.24.求下列函数的导数:(1)()2sin 2x f x x x=+(2)()()3e ln 24xf x x =+25.求下列函数的导数:(1)()f x =;(2)()cos 21x y x+=.26.求下列函数的导函数.(1)()()22331y x x =+-;(2)233x y x +=+.27.求下列函数的导数:(1)32234y x x =--;(2)ln xy x=.28.求下列函数的导数:(1)31x x y e-=(2)ln(52)y x =+(3)cos(21)x y x +=29.求下列函数的导数.(1)n 1l y x x=+;(2)sin cos 22x y x x =-;(3)cos e xx y =30.求下列函数的导数:(1)21y x x=+;(2)e sin x y x =;(3)()2ln 3=+y x x x .31.()2ln 3=+y x x x .32.21y x x =+;33.求下列函数的导数(1)2(2)(31)y x x =-+;(2)2cos 2x y x=34.求下列函数的导数(1)()2112f x x x x=--;(2)()e ln sin x f x x x =++35.求下列函数的导数.(1)ln(21)y x =+;(2)sin cos x y x=;(3)()2ln 1y x x =+;(4)1()23()()y x x x =+++.36.求下列函数的导函数.(1)()4ln =+f x x x ;(2)()sin cos =-x f x x x;(3)()21e xf x -=.37.求下列函数的导数.(1)y =(2)()()()123y x x x =+++;(3)y =38.求下列函数的导数:(1)()()311y x x =--;(2)sin 3y x =;(3)21ex x y +=.39.求下列函数的导数:(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)()2ln 35y x =+.40.求下列函数的导数:(1)21y x x=+;(2)()2ln 3=+y x x x .41.求下列函数的导数.(1)()2ln 2xx f x x +=;(2)()()3ln 45f x x =+.42.求下列函数的导数:(1)()2321cos y x x x =++;(2)y =(3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.43.求下列函数的导数:(1)2e axbxy -+=;(2)2sin(13)y x =-;(3)y =(4)y =(5)2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦;(6)221cos e x x y ⎛⎫+= ⎪⎝⎭.44.求下列函数的导数.(1)()()1ln 2y x x =+;(2)21e x y x+=.45.求下列函数的导数.(1)y =()621e 1x y x -+=-46.求下列函数的导数.(1)52234y x x =--;(2)e sin xy x=.47.求下列函数的导数:(1)2sin y x x =;(2)n 1l y x x=+;(3)tan y x x =⋅;(4)()()()123y x x x =+++;(5)()()22332y x x =+-;(6)cos e xxy =.导数计算1.求下列函数的导数:(1)cos sin cos xy x x -=;(2)221e x y x +=.【答案】(1)()21sin cos x x --;(2)()222141exx ++【详解】(1)()()()()22sin sin cos cos sin cos 1sin cos sin cos x x x x x xy x x x x ---+'==---;(2)()()22221221221e 21e 41e xx x y x x x +++''=++=+.2.求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=;(4)()f x =;【答案】(1)84x -(2)441x -(3)3232ln2x +⨯【详解】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '=3.求下列函数的导数:(1)32235y x x =-+;(2)241y x x =++;(3)2log y x =;(4)e n xy x =;(5)31sin x y x-=;(6)sin sin cos xy x x=+.【答案】(1)266x x -(2)()22241x x ----+(3)1ln 2x (4)()1e n xx n x -+(5)()2323sin 1cos sin x x x x x--(6)11sin 2x+【详解】(1)()()32223566y x x x x ''''=-+=-.(2)()()()22242411y x x x x ''--'=+=+++()22241x x --=--+.(3)()21log ln 2y x x ''==.(4)()()()11e e e e e n x n x n x n x n x y x x nx x x n x --'''=+=+=+.(5)()()()()33321sin 1sin 1sin sin x x x x x y x x '''---⎛⎫-'== ⎪⎝⎭()2323sin 1cos sin x x x x x --=.(6)()sin sin cos x y x x ''=+()()()()2sin sin cos sin sin cos sin cos x x x x x x x x ''+-+=+()()()2cos sin cos sin cos sin sin cos x x x x x x x x +--=+()2111sin 2sin cos x x x ==++.4.求下列函数的导数:(1)1)1y ⎫=⎪⎭;(2)3ln (0,1)x y x a a a =+>≠;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭(4)2ln(23)1x y x +=+.【答案】(1)11y x ⎫'=+⎪⎭;(2)3ln (0xy a a a x '=+>且1)a ≠;(3)1sin 42cos 42y x x x --'=;(4)y '()()222212(23)ln(23)(23)1x x x x x x +-++=++【详解】(1)1)11y ⎫===-⎪⎭11y x '⎛⎫'∴==--+⎪ ⎭⎝.(2)()'33ln ln (0,1)xx y x a a a a a x=+=+>≠'.(3)11sin 2cos 2sin(4)sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭ ,111sin 44cos 4sin 42cos 4222x x x x x x y '∴=--⋅=--.(4)()()()2222[ln(23)]1ln(23)11x x x x y x''++-++'=+()()222(23)12ln(23)231x x x x x x '+⋅+-++=+()()222212(23)ln(23)(23)1x x x x x x +-++=++.5.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;(3)sin cos 22x y xx =-;【答案】(1)6sin =-'y x x ;(2)1ln +='+x y x x ;(3)11cos 2y x '=-.【详解】(1)因为23cos =+y x x ,所以6sin =-'y x x ;(2)因为()1ln =+y x x ,所以1ln +='+x y x x;(3)因为1sin cos sin 222y x x x x x =-=-,所以11cos 2y x '=-;6.求下列函数的导数.(1)22y x x -=+;(2)2ln 1xy x =+【答案】(1)322y x x -=-';(2)()()22112ln 1x x xy x-+'=+【详解】(1)322y x x -=-';(2)()()()()()22222212ln ln 1ln 111x x xx x x x x y xx ⎛⎫+-'' ⎪+-+⎝⎭'=++()()()2222112ln 12ln 11x x x x x x x xx -+-+==++.7.求下列函数的导数:(1)2()(1sin )(1)f x x x =+-;(2)()31x xf x x =-+.【答案】(1)()2cos 12(1sin )x x x x --+;(2)213ln 3(1)x x -+.【详解】(1)22()(1sin )(1)(1sin )(1)f x x x x x '''=+-++-2cos (1)(1sin )(2)x x x x =-++-()2cos 12(1sin )x x x x =--+(2)()()(3)1x xf x x '''=-+2()(1)(1)3ln 3(1)x x x x x x ''+-+=-+213ln 3(1)x x =-+.8.求下列函数的导数:(1)22log (3);y x x =(2)cos(21).x y x+=【答案】(1)22log (3).ln 2x y x x '=+(2)()22sin 21cos(21).x x x y x -+-+'=【详解】(1)[]2222()log (3)log (3)y x x x x '''=+2232log (3)3ln 2x x xx =+22log (3)ln 2xx x =+.(2)[]2cos(21)cos(21)x x x x y x ''+-+'=()22sin 21cos(21)x x x x -+-+=.9.求下列函数的导数:(1)111x y x x+=+-;(2)ln(21)y x x =+.【答案】(1)22221(1)x x y x x +-'=-(2)2ln(21)21xy x x '=+++.【详解】(1)2222(1)(1)(1)121(1)(1)x x y x x x x --+⨯-'=-=---22221(1)x x x x +-=-;(2)12ln(21)2ln(21)2121xy x x x x x '=++⋅⋅=++++.10.求下列函数的导数:(1)()ln 21x y x+=;(2)()ln 25y x =-;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭.【答案】(1)()()()2221ln 2121x x x y x x-++'=+(2)225y x '=-(3)1sin 42cos 42y x x x --'=【详解】(1)()()()()()2221ln21ln 21ln 21ln 2121x x x x x x x x x y x x x '+'⋅-+''+-+⎡⎤+⎡⎤⎣⎦+'===⎢⎥⎣⎦()()()()222ln 21221ln 212121xx x x x x x x x -+-+++==+.(2)令25u x =-,ln y u =,则()112ln 222525y u u u x x '''=⋅=⋅=⋅=--.(3)因为()11sin 2cos 2sin 4sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭,所以()11111sin 4sin 4sin 44cos 4sin 42cos 422222y x x x x x x x x x x ''⎛⎫⎛⎫=-+-=--⋅=-- ⎪ ⎪⎝⎭⎝⎭'.11.求下列函数的导函数.(1)324ln 1y x x x =+-+;(2)24cos 2xy x -=+;(3)21e sin +=x y x .【答案】(1)21122x x x +-(2)()()2222sin 2cos 82x x x x x x ++-+(3)()212sin cos e x x x ++【详解】(1)'21122y x x x=+-;(2)()()()()()22'2222sin 224cos 2sin 2cos 822x x x x xx x x xy x x +--++-==++;(3)()'2121212e sin e cos 2sin cos e x x x y x x x x +++=+=+.12.求下列函数的导数.(1)(11y ⎛=+ ⎝;(2)ln xy x=.【答案】(1)'y =2)'21ln x y x -=【详解】解:(1)因为(11221111y x x -⎛=+=+=- ⎝,所以31'2221111(1)22222x y x x x --+=--=--=-,(2)由ln x y x =,得'21ln x y x -=13.求下列函数的导数:(1)5log 2y x =;(2)8x y =;(3)cos 2y x =;(4)()432y x =.【答案】(1)1ln 5y x '=(2)8ln8x y '=(3)2sin 2y x '=-(4)1013323y x =【详解】(1)555log 2log 2log x x =+ 1ln 5y x '∴=(2)8ln8x y '=(3)令2,t x =则cos y t =()()()cos 2cos 2sin 22sin 2x t x y y t x t x t x''''''∴=⋅⇒=⋅=-⨯=-,故2sin 2y x '=-(4)()10444414313333334222233y x x y xx -'==⋅∴=⨯= 14.求下列函数的导数:(1)8y x =;(2)4x y =;(3)3log y x =;(4)sin(2y x π=+;(5)2e y =.【答案】(1)'78y x =;(2)'4ln 4x y =⋅;(3)'1ln 3y x =⋅;(4)'sin y x =-;(5)'0y =.【详解】(1)8y x =,'78y x =;(2)4x y =,'4ln 4x y =⋅;(3)3log y x =,'1ln 3y x =⋅;(4)sin(cos 2y x x π=+=,'sin y x =-;(5)2e y =,'0y =.15.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)ln y x =;(5)cos y x =.【答案】(1)1112y x '=(2)54y x '=-(3)3ln 3xy '=(4)1y x '=(5)sin y x'=-【详解】(1)()121112y x x ''==(2)()4545144y x x x x --'⎛⎫''===-=- ⎪⎝⎭(3)()ln 333x x y ''==(4)()1ln y x x''==(5)()cos sin y x x''==-16.求下列函数的导函数(1)4235+6y x x x =--;(2)21y x x=+;(3)2cos y x x =;(4)tan y x =【答案】(1)3465y x x =--';(2)321y x '=-;(3)22cos sin y x x x x -'=;(4)21cos y x'=【详解】(1)由4235+6y x x x =--,则3465y x x =--';(2)由21y x x =+,则321y x '=-;(3)由2cos y x x =,则22cos sin y x x x x -'=;(4)由sin tan cos x y x x ==,则2222cos sin 1cos cos x x y x x+'==.17.求下列函数的导函数.(1)()3224f x x x =-+;(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈;(4)2()3ln f x x x x =-+-(5)sin y x =;(6)11x y x +=-【答案】(1)2()68f x x x =-+(2)2()2f x x x a'=-+(3)()sin 1f x x '=-+(4)1()23f x x x'=--+(5)cos y x '=(6)22(1)y x '=--【详解】解:(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.18.求下列函数的导数:(1)221()(31)y x x =-+;(2)cos x y e x =;【答案】(1)y ′=18x 2+4x -3;(2)y ′=ex (cos x -sin x ).【详解】(1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-,(2)()cos (cos )cos sin (cos sin )x x x x x y e x e x e x e x e x x '''=+=-=-.19.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =.【答案】(1)π(2)0【详解】(1)解:因为()πf x x =,所以()1f x x ππ-'=,所以()1f π'=.(2)解:因为()sin f x x =,所以()cos f x x '=,所以cos 022f ππ⎛⎫'== ⎪⎝⎭.20.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)5log y x =.【答案】(1)1112y x '=(2)54y x '=-(3)3ln3xy '=(4)1=ln5y x '【详解】(1)12y x =,则1112y x '=(2)441y x x -==,则41544y x x --'-==-(3)3x y =,则3ln3x y '=(4)5log y x =,则1=ln 5y x '21.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;【答案】(1)6sin =-'y x x ;(2)1ln 1y x x'=++【详解】解:(1)因为23cos =+y x x所以()()23cos 6sin y x x x x '''=+=-,即6sin =-'y x x (2)因为()1ln =+y x x所以()()()()111ln 1ln ln 1ln 1y x x x x x x x x x '''=+++=++⋅=++,即1ln 1y x x'=++22.求下列函数的导数.(1)()()22331y x x =+-;(2)1sin 1cos xy x-=+.【答案】(1)21849y x x '=-+(2)21cos sin (1cos )'--+=+x x y x 【详解】(1)解:因为326293y x x x =-+-,所以21849y x x '=-+(2)()()2cos (1cos )1sin sin (1cos )x x x x y x -+---=+',21cos sin (1cos )x xx --+=+.23.求下列函数的导数.(1)()()ln sin f x x x x =+;(2)()()521e xx f x +=.【答案】(1)()ln sin cos 1f x x x x x '=+++(2)()()()42192e xx x f x +-'=【详解】(1)()()()1ln sin ln sin ln sin cos f x x x x x x x x x x x x ⎛⎫'''=+++=+++ ⎪⎝⎭ln sin cos 1x x x x =+++.(2)()()()()()()454525e 212121e 102121e e x x x xx x x x x f x '++-++-+'==()()()()442110212192e e x xx x x x +--+-==.24.求下列函数的导数:(1)()2sin 2x f x x x=+(2)()()3e ln 24xf x x =+【答案】(1)()()()()222cos 2sin 222x x x x x f x xx +-+'=+(2)()()33e 3e ln 224xxf x x x =+++'【详解】(1)()2sin 2xf x x x =+,()()()()222cos 2sin 222x x x x x f x x x +-+'=+(2)()()3e ln 24xf x x =+,()()()3333e 3e ln 242242e 3e ln 24xxxxx f x x x x '=++++=++.25.求下列函数的导数:(1)()f x =;(2)()cos 21x y x+=.【答案】(1)21x x +(2)()()22sin 21cos 21x x x x -+-+(2)求商的导数,[]2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦,由复合函数的的导数得[]cos(21)sin(21)(21)2sin(21)x x x x ''+=-++=-+ .【详解】(1)因为()f x =所以()()122'211221x x x f x x -+⋅=+'.(2)()()()'2cos 21cos 21x x x x f x x ⎡⎤+-+⎣⎦''=()22sin 21cos(21)x x x x -+-+=.26.求下列函数的导函数.(1)()()22331y x x =+-;(2)233x y x +=+.【答案】(1)21849x x -+(2)()222633x x x--++【详解】(1)()()22331y x x =+- ,()()()()()()2222233123314313231849y x x x x x x x x x '''∴=+-++-=-++=-+;(2)233x x y +=+ ,()()()()()()()()()2222222222333332363333x x x x x x x x x xxxy ''∴++-+++-+--+=='=+++.27.求下列函数的导数:(1)32234y x x =--;(2)ln xy x=.【答案】(1)266x x -(2)21ln x x -【详解】(1)322(2)(3)(4)66y x x x x ''''=--=-(2)()2221ln ln ln ()1ln x xx x x x x x y x x x ⋅-''⋅-⋅-'===28.求下列函数的导数:(1)31x x y e-=(2)ln(52)y x =+(3)cos(21)x y x +=【答案】(1)3231e xx x y -+'+=(2)552y x '=+(3)22sin(21)cos(21)x x x y x +++'=-【详解】(1)∵31xx y e-=,则()()()()()()''333232221e 1e 31e 31e e e x xxxx xx x xx x x y ----++-++===',故3231exx x y -+'+=.(2)设52u x =+,则ln ,52u y u u x ==+,则()()()()''''15ln 52552u y y u u x u x '==+=⨯=+,故552y x '=+.(3)∵cos(21)x y x+=,则[]()2222sin(21)cos(21)2sin(21)cos(cos(21)cos 2121)x x x x x x y x x x x x x x ''+⋅-+⋅⎡⎤⎣⎦'==-+-++++=-,故22sin(21)cos(21)x x x y x +++'=-.29.求下列函数的导数.(1)n 1l y x x =+;(2)sin cos 22x y x x =-;(3)cos ex xy =【答案】(1)211y x x'=-.(2)11cos 2y x '=-(3)sin cos e x x xy +'=-.【详解】(1)22111(ln )(y x x x x''=+=-;(2)由已知1sin 2y x x =-,所以11cos 2y x '=-;(3)22(cos )e cos (e )sin e cos e sin cos (e )e e x x x x x x xx x x x x xy ''--⋅-⋅+'===-.30.求下列函数的导数:(1)21y x x=+;(2)e sin x y x =;(3)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()e sin cos x y x x '=+(3)y '=()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x(2)解:()()()e sin e sin e sin e cos e sin cos x x x x x y x x x x x x '''=+=+=+(3)解:()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .31.()2ln 3=+y x x x .【答案】y '=()223ln 33x x x x ++++【详解】()()22ln 3ln 3y x x x x x x '⎡⎤''=+++⎣⎦()()221ln 3233x x x x x x =++⋅⋅++()223ln 33x x x x +=+++.32.21y x x =+;【答案】312y x -=-'【详解】221y x x x x-=+=+,()2312y x x x --'''=+=-.33.求下列函数的导数(1)2(2)(31)y x x =-+;(2)2cos 2x y x=【答案】(1)2272411y x x '=--(2)y '222cos(2)2sin(2)(cos 2)x x x x x +=【详解】(1)因为2232(2)(31)(2)(961)912112y x x x x x x x x =-+=-++=---,所以()()()32291211272411y x x x x x ''''=--=--(2)222222()cos 2(cos 2)2cos 2(2sin 2)cos 2(cos 2)(cos 2)x x x x x x x x x y x x x '''⎛⎫---'=== ⎪⎝⎭222cos(2)2sin(2)(cos 2)x x x x x +=34.求下列函数的导数(1)()2112f x x x x=--;(2)()e ln sin x f x x x =++【答案】(1)()3221x x f x x -+'=;(2)()1e cos xf x x x '=++【详解】(1)解:因为()2112f x x x x =--,则()3222111x x f x x x x -+=-+='.(2)解:因为()e ln sin x f x x x =++,则()1e cos xf x x x'=++.35.求下列函数的导数.(1)ln(21)y x =+;(2)sin cos x y x=;(3)()2ln 1y x x =+;(4)1()23()()y x x x =+++.【答案】(1)221y x '=+;(2)21cos y x =';(3)()2222ln 11x x xy +++'=;(4)231211y x x =++'.【详解】(1)函数ln(21)y x =+,所以()12212121y x x x '=⋅+=++'.(2)函数sin cos x y x =,所以()()''22222sin cos sin cos cos sin 1cos cos cos x x x x x x y x x x -+=='=.(3)函数2)ln(1y x x =+,所以22222212ln(1(1)())ln 111x x x x x x y x '++⋅⋅+=++++'=.(4)依题意,32123()()()6116y x x x x x x ==++++++,所以231211y x x =++'.36.求下列函数的导函数.(1)()4ln =+f x x x ;(2)()sin cos =-xf x x x;(3)()21e x f x -=.【答案】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+;(3)21()2e x f x '-=.【详解】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+.(3)2121(21()e )e 2x x x x f --'==⋅-'.37.求下列函数的导数.(1)y =(2)()()()123y x x x =+++;(3)y =【答案】(1)52322332sin cos 2x x x x x x y ---=-+-+';(2)231211y x x =++';(3)()221y x '=-【详解】(1)13523222sin sin x x x x y x x x x -++==++∴()()3322sin y x x x x --'⎛⎫'''=++ ⎪⎝⎭52322332sin cos 2x x x x x x ---=-+-+.(2) ()()2323236116y x x x x x x =+++=+++,∴231211y x x =++'.(3)21y x===-∴()()()222122111y x x x '-'⨯-⎛⎫=== ⎪-⎝⎭--.38.求下列函数的导数:(1)()()311y x x =--;(2)sin 3y x =;(3)21ex x y +=.【答案】(1)32431y x x =--';(2)3cos3y x =';(3)221e xx x y -+'=-【详解】(1)()()()()()()''3332321111131431y x x x x x x x x x =--+--=-+--'=-;(2)令3u x =,则sin y u =,所以()()''3sin 3cos 3cos 3y x u u x =⋅==';(3)()()()()()()''2222221e 1e 2e 1e21e e e x xxxxx x x x x x x x y +-+-+-+=='=-.39.求下列函数的导数:(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)()2ln 35y x =+.【答案】(1)21πcos ,0,cos 2y x x x ⎛⎫'=+∈ ⎪⎝⎭;(2)()2223563535x x y x x '+'==++【详解】(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭()()()22cos cos sin sin sin 1πsin cos cos ,0,cos cos 2cos x x x x x y x x x x x x x '⋅-⋅-⎛⎫⎛⎫''=+=+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)()2ln 35y x =+()2223563535x x y x x '+'==++40.求下列函数的导数:(1)21y x x=+;(2)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x ;(2)()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .41.求下列函数的导数.(1)()2ln 2xx f x x+=;(2)()()3ln 45f x x =+.【答案】(1)()312ln ln 222xx x x -+-;(2)1245x +【详解】(1)函数()2ln 2xx f x x+=的定义域为()0+∞,.所以()()()()()()22232ln 2ln 212ln ln 222xxx x x x x x x f x x x ''+-+-+-'==(2)函数()()()3ln 453ln 45f x x x =+=+的定义域为54⎛⎫-+∞ ⎪⎝⎭,.所以()()'345124545x f x x x +==++'42.求下列函数的导数:(1)()2321cos y x x x =++;(2)2y =(3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【答案】(1)()2(62)cos 321sin x x x x x +-++;(2)132291122x x --+;(3)17118cos x x x +-;(4)()332ln 2cos 2sin 3log 3log e x x x x x ---;(5)()313ln 3sin 3cos 3log e x x x x x +-⋅;(6)21e cos e sin cos x xx x x-+.【详解】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x -=+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x '⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3xxy x x x '''=+-⋅()313ln 3sin 3cos 3log e xx x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos xx x x x x y x x x''-'''=+⋅+21=e cos e sin cos x x x x x-+.43.求下列函数的导数:(1)2e axbxy -+=;(2)2sin(13)y x =-;(3)y =(4)y =(5)2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦;(6)221cos e x x y ⎛⎫+= ⎪⎝⎭.【答案】(1)2(2)eax bxax b -+-+(2)6cos(13)x --(3)()()()231cos 2sin 22ln 213x x x x x --+⋅+⋅+(4)cos 2(1sin )x x +(5)22cos 122lg e 2sin 2x x x x x ⎛⎫+ ⎪⎛⎫⎝⎭+⋅ ⎪⎛⎫⎝⎭+ ⎪⎝⎭(6)22(1)1sin 2e e xx x x ⎛⎫-+ ⎪⎝⎭【详解】(1)因为函数2e axbxy -+=可以看做函数e u y =和2u ax bx =-+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2e u ax bx ''=⋅-+()e 2u ax b =⨯-+2(2)e axbxax b -+=-+;(2)因为函数2sin(13)y x =-可以看做函数2sin y μ=和13u x =-的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2sin 13x μ''=⋅-()2cos 3μ=⨯-6cos(13)x =--;(3)因为函数y =y =()cos 2xu x =+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,又因为函数()cos 2xu x =+可以看做函数cos t μ=和2x t x =+的复合函数,根据复合函数求导公式可得,xt x t μμ'''=⋅所以x u t xy y u t ''''=⋅⋅()()cos 2xt x '''=⋅⋅+()()231sin 2ln 213x t μ-⎛⎫=⨯-⨯+ ⎪⎝⎭()()()231cos 2sin 22ln 213x x x x x -⎡⎤=+-+⨯+⎣⎦()()()231cos 2sin 22ln 213x x x x x -=-+⋅+⋅+;(4)函数y =()1ln 1sin 2y x =+因为函数()1ln 1sin 2y x =+可以看做函数1ln 2y μ=和1sin u x =+的复合函数,根据复合函数求导公式可得,x u x y y u '''=⋅,所以xu x y y u '''=⋅()1ln 1sin 2x μ'⎛⎫'=⋅+ ⎪⎝⎭1cos 2x μ⎛⎫=⨯ ⎪⎝⎭cos 2(1sin )xx =+;(5)因为函数2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦可以看做函数lg y u =和2sin 2x u x ⎛⎫=+ ⎪⎝⎭的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,又因为函数2sin 2x u x ⎛⎫=+ ⎪⎝⎭可以看做函数sin t μ=和22x t x =+的复合函数,根据复合函数求导公式可得,xt x t μμ'''=⋅所以x u t xy y u t ''''=⋅⋅()()2lg sin 2x t x μ'⎛⎫''=⋅⋅+ ⎪⎝⎭()11cos 2ln102t x μ⎛⎫⎛⎫=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭22cos 122lg e 2sin 2x x x x x ⎛⎫+ ⎪⎛⎫⎝⎭=+⋅⋅ ⎪⎛⎫⎝⎭+ ⎪⎝⎭;(6)函数221cos e x x y ⎛⎫+= ⎪⎝⎭可化为211cos 2e 2x x y ⎛⎫++ ⎪⎝⎭=,因为函数2221cos e 2x x y ⎛⎫++ ⎪⎝⎭=可以看做函数1cos 2y μ+=和222e xx u +=的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,所以xu x y y u '''=⋅21cos 222e x x μ''⎛⎫++⎛⎫= ⎪ ⎪⎝⎭⎝⎭()224e e 221sin 2e x x x x x μ⎡⎤-+⎢⎥=-⋅⎢⎥⎣⎦21242sin 2e x x x μ⎛⎫-+-=-⋅ ⎪⎝⎭22(1)1sin 2e e x x x x ⎛⎫-+= ⎪⎝⎭.44.求下列函数的导数.(1)()()1ln 2y x x =+;(2)21e x y x+=.【答案】(1)y '()1ln 21x x =++(2)212122e e x x x y x ++-='【详解】(1)()()()()()()()111ln 21ln 2ln 21ln 21y x x x x x x x x x'=+++=++⋅=++⎡⎤⎣'⎦'(2)()2121212122e e 2e e x x x x x x x y x x ++++'⋅-⋅-==''45.求下列函数的导数.(1)y=(2)()621e1xy x-+=-【答案】(1)()241yx-'=-;(2)()()521e182xy x x-+'=--【详解】(1)2211221xyx++=-()()()()()22212212211x x x xxyx x'''+--+-+⎛⎫'==⎪-⎝⎭-()()()()222122411x xx x--+-==--(2)()()()()666212121e1e1e1x x xy x x x-+-+-+'''⎡⎤⎡⎤'=-=-+-⎣⎦⎣⎦()()()()6552121212e1e61e182x x xx x x x-+-+-+=--+⋅-=--46.求下列函数的导数.(1)52234y x x=--;(2)esinxyx=.【答案】(1)4106y x x'=-;(2)2e sin e cossinx xx xyx-'=【详解】(1)()()()5252423423106y x x x xx x''''-==--=-(2)()()2e sin sin eesin sinx xx x xyx x'''-⎛⎫'===⎪⎝⎭2e sin e cossinx xx xx-47.求下列函数的导数:(1)2siny x x=;(2)n1ly xx=+;(3)tany x x=⋅;(4)()()()123y x x x=+++;(5)()()22332y x x=+-;(6)cose xxy=.【答案】(1)22sin cosy x x x x'=+(2)211yx x'=-(3)2tancosxy xx'=+(4)231211y x x=++'(5)21889y x x'=-+(6)sin cose xx xy+'=-【详解】(1)()()()2222sin sin sin2sin cosy x x x x x x x x x x''''==+=+;(2)()21111ln lny x xx x x x''⎛⎫⎛⎫''=+=+=-⎪ ⎪⎝⎭⎝⎭;(3)()()222sin cos sin tan tan tan tan tan cos cos x x x y x x x x x x x x x x x x '+⎛⎫'''=⋅=+=+⋅=+⋅ ⎪⎝⎭2tan cos x x x =+;(4)()()()()()()123123y x x x x x x '''=+++++++⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()()123123123x x x x x x x x x '''=+++++++++++()()()()()()231312x x x x x x =++++++++231211x x =++.(5)()()()()()()2222233223324323231889y x x x x x x x x x '''=+-+++=-++=-+;(6)()2cos 1111sin cos cos cos sin cos e e e e e e e x x x x x x x x x x y x x x x ''+⎛⎫⎛⎫⎛⎫''==+=-⋅+⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。
最新高中数学计算题专项练习3
高中数学计算题专项练习3------------------------------------------作者xxxx------------------------------------------日期xxxx2019年高中数学计算题专项练习3一.解答题(共30小题)1.化简:(1)mtan0°+xcos90°﹣psin180°﹣qcos270°﹣rsin360°(2)tan20°+tan40°+tan20°tan40°(3)log2cos.2.求值.3.已知3sinα+cosα=0.求下列各式的值.(1);(2)sin2α+2sinαcosα﹣3cos2α.4.已知sinθ=(n>m>0),求的值.5.计算:sin10°cos110°+cos170°sin70°.6.若1+sinθ﹣25cos2θ=0,θ为锐角,求cos的值.7.已知cosx+3sinx=,求tan2x.8.已知:α、β∈,且.求证:α+β=.9.已知=2,求;(1)的值;(2)的值;(3)3sin2α+4sinαcosα+5cos2α的值.10.已知tanx=2,求+sin2x的值.11.化简12.已知tanx=3,求下列各式的值:(1)y1=2sin2x﹣5sinxcosx﹣cos2x;(2)y2=.13.已知tanα=,计算:(1);(2).14.化简:(1);(2)﹣.15.求cos271°+cos71°cos49°+cos249°的值.16.如果sinα•cosα>0,且sinα•tanα>0,化简:cos•+cos•.17.(1)若角α是第二象限角,化简tanα﹣1;(2)化简:.18.化简:(1)tan2α﹣tan2β;(2)1+cosα+cosθ+cos(α+θ).19.求sin21°+sin22°+…+sin290°.20.(1)若,求值①;②2sin2α﹣sinαcosα+cos2α. (2)求值.21.已知0<α<,若cos α﹣sinα=﹣,试求的值. 22.求cos36°﹣sin18°的值.23.化简:.24.求和:sin21°+sin22°+sin23°+…+sin289°.25.求证:(sinα+tanα)(cosα+cotα)=(1+sinα)(1+cosα).26.求下列各式的值(1)tan6°tan42°tan66°tan78°;(2).27.已知sinθ+sin2θ=1,求3cos2θ+cos4θ﹣2sinθ+1的值.28.化简:(1);(2).29.深化拓展:求cot10°﹣4cos10°的值.30.化简:(1);(2).参考答案与试题解析一.解答题(共30小题)1.化简:(1)mtan0°+xcos90°﹣psin180°﹣qcos270°﹣rsin360°(2)tan20°+tan40°+tan20°tan40°(3)log2c os.考点:两角和与差的正切函数;对数的运算性质;三角函数的化简求值.专题:三角函数的求值.分析:(1)利用tan0°=0,cos90°=0,sin180°=0,cos270°=0,sin360°=0,代入式子求值.(2)利用两角和与差公式得出结果.(3)利用二倍角公式求出cos =,然后利用对数的运算求出结果.解答:解:(1)mtan0°+xcos90°﹣psin180°﹣qcos270°﹣rsin360°=0 (2)tan20°+tan40°+tan20°tan40°=tan60°(1﹣tan20°tan40°)+tan20°tan40°=﹣tan20°tan40°+tan20°tan40°=(3)cos =====log2cos=log2(cos)=log 2=﹣3点评:本题考查运用诱导公式化简求值,以及特殊角的三角函数值,注意三角函数值的符号.2.求值.考两角和与差的正切函数.点:三角函数的求值.专题:分利用两角和的正切公式把要求的式子化为,即析:,化简得到答案.解解:==答:﹣.点本题主要考查两角和的正切公式的变形应用,特殊角的三角函数值,属于中档题.评:3.已知3sinα+cosα=0.求下列各式的值.(1);(2)sin2α+2sinαcosα﹣3cos2α.同角三角函数基本关系的运用;三角函数的化简求值.考点:三角函数的求值.专题:分析:(1)已知等式变形后利用同角三角函数间的基本关系求出tanα的值,原式分子分母除以cosα,利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值;(2)原式分母看做“1”,利用同角三角函数间的基本关系化简,分子分母除以cos2α,利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:(1)∵3sinα+cosα=0,即sinα=﹣cosα,∴tanα==﹣,则原式===﹣1;(2)∵tanα=﹣,∴原式====﹣.点评:此题考查了三角函数的化简求值,以及同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.4.已知sinθ=(n>m>0),求的值.考点:同角三角函数基本关系的运用.专题:计算题;三角函数的求值.分析:由题意,可先判断出sinθ的符号,再用同角三角函数的基本关系对进行化简,将其用sinθ表示出来,再代入值即可得出解答:解:由sinθ=(n>m>0),得sinθ<0,且不为﹣1,故θ是三,四象限角;==,所以=﹣=.点评:本题考查同角三角函数基本关系的运用,熟练掌握公式是解答的关键,本题易因为没有判断三角函数的符号导致开方出错,解答时要注意考查易错点5.计算:sin10°cos110°+cos170°sin70°.考点:两角和与差的正弦函数.专题:三角函数的求值.分析:利用诱导公式把要求的式子化为﹣sin10°cos70°﹣cos10°sin70°,再利用两角和的正弦公式计算求得结果.解答:解:sin10°cos110°+cos170°sin70°=﹣sin10°cos70°﹣cos10°sin70°=﹣sin(10°+70°)=﹣sin80°.点评:本题主要考查诱导公式、两角和的正弦公式的应用,属于中档题.6.若1+sinθ﹣25cos2θ=0,θ为锐角,求cos的值.考点:二倍角的余弦.专题:三角函数的求值.分析:已知等式利用同角三角函数间的基本关系变形后,求出sinθ的值,进而求出cosθ的值,利用二倍角的余弦函数公式即可求出cos的值.解答:解:已知等式变形得:1+sinθ﹣25cos2θ=1+sinθ﹣25(1﹣sin2θ)=0,即25sin2θ+sinθ﹣24=0,分解因式得:(sinθ+1)(25sinθ﹣24)=0,解得:sinθ=﹣1或sinθ=,∵θ为锐角,即为锐角,∴sinθ=,∴cosθ==,即2cos 2﹣1=,解得:cos =.点评:此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.7.已知cosx+3sinx=,求tan2x.考点:二倍角的正切;同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式左边提取,利用两角和与差的正弦函数公式化简,表示出x,代入tanx中利用诱导公式化简,再利用两角和与差的正切函数公式整理后,将tany 的值代入计算求出tanx的值,tan2x利用二倍角的正切函数公式化简后,将tanx的值代入计算即可求出值.解答:解:∵(cosx+sinx)=,即cosx+sinx=,∴sin(x+y)=(cosy=,siny =,tany=3),∴x+y=2kπ+,k∈Z,即x=2kπ+﹣y,∴tanx=tan(2kπ+﹣y)=tan(﹣y)===﹣,则tan2x===﹣.点评:此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.8.已知:α、β∈,且.求证:α+β=.考点:两角和与差的正弦函数.专题:计算题.分析:先将条件中1转化为sin2α+cos2α,再移到同一侧提出公因式得到两个非负数的和为0,再由两角和的余弦公式可得α+β的余弦值,最后根据α、β的范围确定答案.解答:证明:∵=sin2α+cos2α∴∴两个非负数的和为0,则有cosacosβ=0,sinasinβ=0∴cos(α+β)=cosacosβ﹣sinasinβ=0∵α、β∈,∴α+β=.得证.点评:本题主要考查同角三角函数的基本关系的应用与两角和与差的余弦公式的应用.三角函数部分公式比较多容易记混,故要强化记忆.9.已知=2,求;(1)的值;(2)的值;(3)3sin2α+4sinαcosα+5cos2α的值.考点:二倍角的正切;同角三角函数间的基本关系.分析:(1)首先根据二倍角的正切公式求出t anα=﹣,再由正切的两角和差公式以及特殊角的三角函数值求出答案;(2)将所求式子的分子分母同时除以cosα,得到=,然后将tanα的值代入即可;(3)利用齐次式分母1,利用平方关系,分子、分母同除cos2α,得到关于tanα表达式,利用(1)的结论求解即可.解答:解:(1)∵tan=2,∴…(4分)所以=…(7分)(2)由(1)知,tanα=﹣,所以==…(10分)(3)=…(14分)点评:本题考查两角和的正切公式,同角三角函数的基本关系的应用,用tanα表示出要求的式子,是解题的关键.10.已知tanx =2,求+sin2x的值.考点:同角三角函数间的基本关系.专题:计算题.分析:利用同角三角函数的商数关系,将弦化切,再利用条件,即可得结论.解答:解:∵tanx=2,∴+sin2x =+=+=﹣3+=﹣2点评:本题考查同角三角函数的商数关系,弦化切是解题的关键,属于基础题.11.化简考点:同角三角函数间的基本关系;同角三角函数基本关系的运用.分析:直接化简代数式,切割化弦,开平方非负,对α分象限讨论,求表达式的值.解答:解:由当α是第一象限时,上式=1当α是第二象限时,上式=5当α是第三象限时,上式=﹣5当α是第四象限时,上式=﹣1.点评:本题考查同角三角函数间的基本关系及其应用,注意分类讨论的思想方法,是基础题.12.已知tanx=3,求下列各式的值:(1)y1=2sin2x﹣5sinxcosx﹣cos2x;(2)y2=.考点:同角三角函数间的基本关系.专题:计算题;三角函数的求值.分析:(1)利用sin2x+cos2x=1,在表达式的分母增加“1”,然后分子、分母同除cos2x,得到tanx的表达式,即可求出结果.(2)表达式的分子、分母同除cosx,得到tanx的表达式,即可求出结果.解答:解:(1)y1=2sin2x﹣5sinxcosx﹣cos2x ====;(2)y2====点评:本题是基础题,考查三角函数的齐次式求值的应用,考查计算能力,注意“1”的代换,以及解题的策略.13.已知ta nα=,计算:(1);(2).考点:同角三角函数间的基本关系;同角三角函数基本关系的运用;弦切互化.专题:计算题.分析:(1)分子分母同时除以cosα,把tanα=代入答案可得.(2)分子用同角三角函数基本关系把1转化成sin2α+cos2α,然后分子分母同时除以cos2α,把tanα=代入答案可得.解答:(2)==点评:本题主要考查了同角三角函数基本关系的应用.解题的关键是构造出tanα.14.化简:(1);(2)﹣.考点:同角三角函数基本关系的运用.专题:计算题.分析:(1)利用两角和公式把原式展开后整理求得问题的答案.(2)利用正切的二倍角公式对原式进行化简整理求得问题答案.解答:解:(1)原式===﹣=﹣tan(α﹣β).(2)原式===tan2θ.点评:本题主要考查了三角函数的化简求值,同角三角函数基本关系的应用.要求考生能对三角函数基础公式的熟练记忆.15.求cos271°+cos71°cos49°+cos249°的值.考点:同角三角函数间的基本关系.专题:计算题.分析:令x=cos271°+cos71°cos49°+cos249°和y=sin271°+sin71°sin49°+sin249°,然后x+y、x﹣y的值,最后再相加即可得到答案.解答:解:令x=cos271°+cos71°cos49°+cos249°y=sin271°+sin71°sin49°+sin249°x+y=2+cos22°;x﹣y=﹣﹣cos22°两式相加得:x=故答案为.点评:本题主要考查同角三角函数的基本关系.考查综合运用能力.16.如果sinα•cosα>0,且sinα•tanα>0,化简:cos •+cos •.考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:计算题.分析:根据题设条件判断出cosα>0,sinα>0,进而确定α的范围,进而分别看当在第一和第三象限时利用同角三角函数基本关系对原式进行化简整理.解答:解:由sinα•ta nα>0,得>0,cosα>0.又sinα•cosα>0,∴sinα>0,∴2kπ<α<2kπ+(k∈Z),即kπ<<kπ+(k∈Z).当k为偶数时,位于第一象限;当k为奇数时,位于第三象限.∴原式=co s•+co s•=cos•+cos •=.点评:本题主要考查了同角三角函数基本关系的应用.注意讨论角在不同象限时的不同情况.17.(1)若角α是第二象限角,化简ta nα﹣1; (2)化简:.考点:同角三角函数基本关系的运用.专题:计算题.分析:(1)根据象限三角函数的符号,直接化简表达式,求出最简结果.(2)利用平方关系,以及三角函数在象限的符号,去掉根号和绝对值符号,化简即可.解答:解:(1)原式=tanα=t anα=||,∵α是第二象限角,∴sinα>0,cosα<0,∴原式=;||=•=﹣1.(2)原式====1.点本题考查同角三角函数基本关系式的应用,考查计算能力,推理能力,是基础评:题.18.化简:(1)tan2α﹣tan2β; (2)1+cosα+cosθ+cos(α+θ).考点:同角三角函数基本关系的运用;同角三角函数间的基本关系;两角和与差的余弦函数.分析:(1)先因式分解,再利用同角切化弦公式进行转化,最后由正弦的和角公式、差角公式整理即可;(2)首先对cosα+cosθ运用和差化积公式、对cos(α+θ)运用倍角公式进行变形,然后提取公因式再运用和差化积公式即可.解答:解:(1)tan2α﹣tan2β=(tanα+tanβ)(tanα﹣tanβ) ==•=(2)1+co sα+cosθ+cos(α+θ)=1+2coscos +2﹣1=2cos(cos +cos)=4cos co scos点评:本题主要考查同角切弦互化公式、正弦的和(差)角公式、余弦的倍角公式及和差化积公式.19.求sin21°+sin22°+…+sin290°.考点:同角三角函数基本关系的运用.专题:计算题.分析:利用sin21°+cos21°=sin21°+sin289°=1,故可倒序相加求和.解答:解:设S=sin20°+sin21°+sin22°++sin290°,S=sin290°+sin289°+sin288°++sin20°,∴2S=(sin20°+sin290°)+…+(sin290°+sin20°)=1×91.∴S=45.5.点评:本题考查同角三角函数的基本关系的应用,sin2α+sin2(90°﹣α)=1. 20.(1)若,求值①;②2sin2α﹣sinαcosα+cos2α.(2)求值.考点:同角三角函数基本关系的运用;弦切互化.专题:计算题;整体思想.分析:(1)①分子分母同时除以cosα,把问题转换为关于tanα的化简求值,把t anα的值代入即可求得答案.②先根据同脚三角函数基本关系可知求得cos2α的值,进而把原式整理成cos2α(2tan2α﹣tanα+1)把tanα的值代入即可.(2)先分别立方和公式和平方和公式,对分子分母化简整理求得)sin6x+cos6x=1﹣3sin2x•cos2x.sin4x+cos4x=1﹣2sin2x•cos2x.最后约分求得答案.解答:解:(1)①原式=.②∵,∴原式=.(2)∵sin6x+cos6x=(sin2x+cos2x)(sin4x﹣sin2x•cos2x+cos4x)=(sin2x+cos2x)2﹣3sin2x•cos2x=1﹣3sin2x•cos2x.又∵sin4x+cos4x=(sin2x+cos2x)2﹣2sin2x•cos2x=1﹣2sin2x•cos2x.∴原式=.点评:本题主要考查了同角三角函数基本关系的应用.应熟练记忆三角函数中平方的关系,倒数的关系和商数关系等.21.已知0<α<,若cos α﹣sinα=﹣,试求的值.考点:同角三角函数基本关系的运用;三角函数的化简求值.专题:计算题.分析:利用cos α﹣sin α的值求出sinα+cosα 的值,解出sinα和cosα 的值,代入所求的式子进行运算.解答:解:∵cosα﹣sinα=﹣,∴1﹣2s inα•cosα=,∴2sinα•cosα=,∴(sinα+cosα)2 =1+2sinαcosα=1+=.∵0<α<,∴sinα+cosα=,与cosα﹣s inα=﹣联立解得:co sα=,si nα=,∴===﹣.点评:本题考查同角三角函数的基本关系的应用,三角函数式的化简求值. 22.求cos36°﹣sin18°的值.考点:同角三角函数基本关系的运用.专题:计算题.分析:根据二倍角公式可知cos36=1﹣2sin218°,sin18°=cos72=2cos236°﹣1,设x=cos36,y=sin18,则联立方程可求得x﹣y的值,答案可得.解答:解:cos36=1﹣2sin218°,sin18°=cos72=2cos236°﹣1,设x=cos36,y=sin18,则x=1﹣2y2,①y=2x2﹣1,②①+②得x+y=2x2﹣2y2=2(x+y)(x﹣y),∵x+y≠0∴x﹣y=,即cos36°﹣sin 18°=点评:本题主要考查了用二倍角化简求值的问题.解题的关键是充分利用18°和36°之间的二倍角关系.23.化简:.考点:同角三角函数基本关系的运用.专题:计算题.分析:利用三角函数的同角公式先化简括号里面的前面两项,中间一项利用切化弦和半角公式化简,后面一项利用二倍角公式即可.原则是都化为角A的三角函数.解答:解:∵sin2A+cos2A=1,ta n=,又∵tanA=,sin2A=2sinAcosA,∴原式=(1+)sinA==tanA.∴=tanA.点评:本题主要考查了同角三角函数基本关系的运用以及半角公式和二倍角公式,在化简的过程中,要注意正切化成正余弦,灵活应用三角代换公式.24.求和:sin21°+sin22°+sin23°+…+sin289°.考点:同角三角函数基本关系的运用.专题:计算题.分析:利用三角函数的平方关系式,sin2α+cos2α=1,结合角的互余关系,把sin21°+sin22°+sin23°+…+sin289°转化为cos21°+cos22°+cos23°+…+co s289°,求和即可求出原式的值.解答:解:设S=sin21°+sin22°+sin23°+…+sin289°,又∵S=sin289°+sin288°+sin287°+…+sin21°=cos21°+cos22°+cos23°+…+cos289°,∴2S=89,故.点评:本题考查同角三角函数的基本关系式,诱导公式,整体化简的思想,本题中的转化是解题的关键,值得总结.25.求证:(sinα+tanα)(cosα+cotα)=(1+sinα)(1+cosα).考同角三角函数基本关系的运用;三角函数恒等式的证明;弦切互化.点:分析:由公式tanα=、co tα=入手,即可把等式左边整理成右边.解答:证明:(sinα+tanα)(cosα+cotα)=sinαcosα+cosα+sinα+1 =cosα(1+sinα)+(1+sinα)=(1+sinα)(1﹣cosα)故等式得证.点评:本题考查弦切互化公式及代数运算能力.26.求下列各式的值(1)tan6°tan42°tan66°tan78°;(2).同角三角函数基本关系的运用.考点:分析:题中根据正切3倍角公式:tanxtan(60﹣x)tan(60+x)=tan3x.可直接得答案.解答:解:(1)tan6°tan42°tan66°tan78°=(tan6°tan54°tan66°tan42°tan78°)/tan54°=[tan6°tan(60°﹣6°)tan(60°+6°)tan42°tan78°]/tan54°=(tan18°tan42°tan78°)/tan54°=tan54°/tan54°=1.(2)====1点评:本题主要考查对正切三倍角公式的应用.27.已知sinθ+sin2θ=1,求3cos2θ+cos4θ﹣2sinθ+1的值.考点:同角三角函数基本关系的运用.专题:计算题.分析:首先分析题目给的已知条件sinθ+sin2θ=1,可以得到sinθ=cos2θ,然后代入3cos2θ+cos4θ﹣2sinθ+1直接求得结果.解答:解:由题意sinθ+sin2θ=1;可以得到:sinθ=1﹣sin2θ=cos2θ,所以原式=3sinθ+sin2θ﹣2sinθ+1=sinθ+1﹣cos2θ+1=sinθ﹣sinθ+2=2.点评:此题主要考查同角三角函数的基本关系的应用,应用到公式sin2θ+cos2θ=1,计算量小,属于基础题目.28.化简:(1);(2).考点:两角和与差的余弦函数;两角和与差的正弦函数;两角和与差的正切函数.专题:计算题.分析:(1)对原式提取2,利用特殊角的三角函数值化简剩下的因式,然后利用两角差的余弦函数公式化简可得值;(2)所求式子的分子可采用二倍角公式进行化简,分母采用两角差的正切函数公式及二倍角的余弦公式化简,约分可得值.解答:解:(1)原式=2[sin(﹣x)+cos (﹣x)]=2[sin sin(﹣x)+coscos(﹣x)]=2co s(﹣+x)=2cos(x﹣)(2)原式===1点评:此题考查学生灵活运用两角和与差的正弦、余弦、正切函数公式化简求值,要求学生牢记特殊角的三角函数值.29.深化拓展:求cot10°﹣4cos10°的值.考点:两角和与差的余弦函数;弦切互化.分析:通过和差化积,把非特殊角转化成特殊角把原式化简,最后约分得出答案.解答:提示:cot10°﹣4cos10°=﹣4cos10°======故答案:点评:本题主要考查了余弦函数两角的和差问题.做题的关键是把非特殊角,化为特殊角或非特殊角,互相抵消、约分求出值.30.化简:(1);(2).考点:两角和与差的余弦函数;同角三角函数基本关系的运用;诱导公式的作用.专题:三角函数的求值.分析:(1)原式中的角度变形后,利用诱导公式化简,计算即可得到结果;(2)原式前两项利用二倍角的余弦函数公式化简,第三项利用积化和差公式化简,整理即可得到结果.解答:解:(1)原式=+=+=0;(2)原式=(1+cos2θ)+[1+c os(2θ+)]﹣[cos(2θ+)+cos(﹣)]=[+cos 2θ+cos(2θ+)﹣cos(2θ+)]……………………………………………………………最新资料推荐…………………………………………………=(+cos 2θ﹣c os2θ﹣sin 2θ﹣co s2θ+sin2θ)=.点评:此题考查了两角和与差的余弦函数公式,同角三角函数间基本关系的应用,以及诱导公式的作用,熟练掌握公式是解本题的关键.21 / 2121。
高中数学计算练习题
高中数学计算练习题一、集合与函数1. 计算下列集合的交集和并集:A = {x | x² 3x + 2 = 0},B = {x | x² 4x + 3 = 0}2. 已知函数f(x) = 2x + 3,求f(2)和f(1)的值。
3. 设函数g(x) = x² 5x + 6,求g(x)在区间[1, 3]上的最大值和最小值。
4. 计算下列函数的定义域:h(x) = √(4 x²)5. 已知函数f(x) = (x 1) / (x + 2),求f(x)的值域。
二、三角函数与解三角形6. 已知sinα = 3/5,α为第二象限角,求cosα和tanα的值。
7. 计算sin(π/6 + π/4)的值。
8. 在△ABC中,a = 5, b = 8, C = 120°,求c的长度。
9. 已知tanA = 1/2,求sinA和cosA的值。
10. 计算下列各式的值:(1) cos²30° sin²30°(2) sin(45° + 30°) cos(45° 30°)三、数列11. 已知数列{an}的通项公式为an = 2n 1,求前10项的和。
12. 计算等差数列5, 8, 11, 14, 的第10项。
13. 已知等比数列的首项为3,公比为2,求前5项的和。
14. 设数列{bn}的通项公式为bn = 3n + 1,求证数列{bn}为递增数列。
15. 计算数列1, 1/2, 1/4, 1/8, 的前n项和。
四、平面向量与复数16. 已知向量a = (2, 3),求向量a的模。
17. 计算向量b = (4, 1)与向量c = (2, 3)的夹角。
18. 已知向量d = (m, 2),向量e = (3, m),且向量d与向量e共线,求m的值。
19. 计算复数(1 + i)²的值。
20. 已知复数z = 3 + 4i,求z的模和辐角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高中数学计算题专项练习1一.解答题(共30小题)1.计算:(1);(2).2.计算:(1)lg1000+log342﹣log314﹣log48;(2).3.(1)解方程:lg(x+1)+lg(x﹣2)=lg4;(2)解不等式:21﹣2x>.4.(1)计算:2××(2)计算:2log510+log50.25.5.计算:(1);(2).6.求log89×log332﹣log1255的值.7.(1)计算.(2)若,求的值.8.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg5+(log32)•(log89)+lg2.9.计算:(1)lg22+lg5•lg20﹣1;(2).10.若lga、lgb是方程2x2﹣4x+1=0的两个实根,求的值.11.计算(Ⅰ)(Ⅱ).12.解方程:.13.计算:(Ⅰ)(Ⅱ).14.求值:(log62)2+log63×log612.15.(1)计算(2)已知,求的值.16.计算(Ⅰ);(Ⅱ)0.0081﹣()+••.17.(Ⅰ)已知全集U={1,2,3,4,5,6},A={1,4,5},B={2,3,5},记M=(∁U A)∩B,求集合M,并写出M的所有子集;(Ⅱ)求值:.18.解方程:log2(4x﹣4)=x+log2(2x+1﹣5)19.(Ⅰ)计算(lg2)2+lg2•lg50+lg25;(Ⅱ)已知a=,求÷.20.求值:(1)lg14﹣+lg7﹣lg18(2).21.计算下列各题:(1)(lg5)2+lg2×lg50;(2)已知a﹣a﹣1=1,求的值.22.(1)计算;(2)关于x的方程3x2﹣10x+k=0有两个同号且不相等的实根,求实数k的取值范围.23.计算题(1)(2)24.计算下列各式:(式中字母都是正数)(1)(2).25.计算:(1);(2)lg25+lg2×lg50+(lg2)2.26.已知x+y=12,xy=27且x<y,求的值.27.(1)计算:;(2)已知a=log32,3b=5,用a,b表示.28.化简或求值:(1);(2).29.计算下列各式的值:(1);(2).30.计算(1)lg20﹣lg2﹣log23•log32+2log(2)(﹣1)0+()+().参考答案与试题解析一.解答题(共30小题)1.计算:(1);(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则即可得出.解答:解:(1)原式===.(2)原式===.点评:熟练掌握指数幂的运算法则、对数的运算法则是解题的关键.2.计算:(1)lg1000+log342﹣log314﹣log48;(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用对数的运算性质即可得出;(2)利用指数幂的运算性质即可得出.解答:解:(1)原式=;(2)原式=.点评:熟练掌握对数的运算性质、指数幂的运算性质是解题的关键.3.(1)解方程:lg(x+1)+lg(x﹣2)=lg4;(2)解不等式:21﹣2x>.考点:对数的运算性质;指数函数单调性的应用.专题:计算题.分析:(1)原方程可化为lg(x+1)(x﹣2)=lg4且可求(2)由题意可得21﹣2x>=2﹣2,结合指数函数单调性可求x的范围解答:解:(1)原方程可化为lg(x+1)(x﹣2)=lg4且∴(x+1)(x﹣2)=4且x>2∴x2﹣x﹣6=0且x>2解得x=﹣2(舍)或x=3(2)∵21﹣2x>=2﹣2∴1﹣2x>﹣2∴点评:本题主要考查了对数的运算性质的应用,解题中要注意对数真数大于0的条件不要漏掉,还考查了指数函数单调性的应用.4.(1)计算:2××(2)计算:2log510+log50.25.考点:对数的运算性质.专题:计算题;函数的性质及应用.分析:(1)把各根式都化为6次根下的形式,然后利用有理指数幂的运算性质化简;(2)直接利用对数式的运算性质化简运算.解答:解(1)计算:2××====6;(2)2log510+log50.25==log5100×0.25=log525=2log55=2.点评:本题考查了指数式的运算性质和对数式的运算性质,解答的关键是熟记有关运算性质,是基础的运算题.5.计算:(1);(2).考点:对数的运算性质.专题:计算题.分析:(1)利用有理指数幂的运算法则,直接求解即可.(2)利用对数的运算形状直接求解即可.解答:解:(1)=0.2﹣1﹣1+23=5﹣1+8=12 …(6分)(2)===…(12分)点评:本题考查指数与对数的运算性质的应用,考查计算能力.6.求log89×log332﹣log1255的值.考点:对数的运算性质.专题:计算题.分析:利用对数的运算性质进及对数的换底公式行求解即可解答:解:原式====3点评:本题主要考查了对数的运算性质的基本应用,属于基础试题7.(1)计算.(2)若,求的值.考点:对数的运算性质.专题:计算题.分析:(1)把对数式中底数和真数的数4、8、27化为乘方的形式,把底数的分数化为负指数幂,把真数的根式化为分数指数幂,然后直接利用对数的运算性质化简求值;(2)把已知条件两次平方得到x+x﹣1与x2+x﹣2,代入得答案.解答:解:(1)===2﹣4﹣1=﹣3;(2)∵,∴,∴x+x﹣1=5.则(x+x﹣1)2=25,∴x2+x﹣2=23∴=.点评:本题考查了有理指数幂的化简与求值,考查了对数的运算性质,是基础的计算题.8.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg5+(log32)•(log89)+lg2.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)化小数指数为分数指数,0次幂的值代1,然后利用有理指数幂进行化简求值;(2)首先利用换底公式化为常用对数,然后利用对数的运算性质进行化简计算.解答:解:(1)0.064﹣(﹣)0+160.75+0.25==(0.4)﹣1﹣1+8+0.5=2.5﹣1+8+0.5=10;(2)lg5+(log32)•(log89)+lg2==1+=1+=.点评:本题考查了对数的运算性质,考查了有理指数幂的化简与求值,是基础的运算题.9.计算:(1)lg22+lg5•lg20﹣1;(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)把lg5化为1﹣lg2,lg20化为1+lg2,展开平方差公式后整理即可;(2)化根式为分数指数幂,化小数指数为分数指数,化负指数为正指数,然后进行有理指数幂的化简求值.解答:解:(1)lg22+lg5•lg20﹣1=lg22+(1﹣lg2)(1+lg2)﹣1=lg22+1﹣lg22﹣1=0;(2)===22•33﹣7﹣2﹣1=98.点评:本题考查了有理指数幂的化简与求值,考查了对数的运算性质,解答的关键是熟记有关性质,是基础题.10.若lga、lgb是方程2x2﹣4x+1=0的两个实根,求的值.考点:对数的运算性质;一元二次方程的根的分布与系数的关系.专题:计算题;转化思想.分析:lga、lgb是方程2x2﹣4x+1=0的两个实根,先由根与系数的关系求出,再利用对数的运算性质对化简求值.解答:解:,=(lga+lgb)(lga﹣lgb)2=2[(lga+lgb)2﹣4lgalgb]=2(4﹣4×)=4点评:本题考查对数的运算性质,求解的关键是熟练掌握对数的运算性质,以及一元二次方程的根与系数的关系.11.计算(Ⅰ)(Ⅱ).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)根据对数运算法则化简即可(2)根据指数运算法则化简即可解答:解:(1)原式=(2)原式==点评:本题考查对数运算和指数运算,注意小数和分数的互化,要求能灵活应用对数运算法则和指数运算法则.属简单题12.解方程:.考点:对数的运算性质.专题:计算题;函数的性质及应用.分析:利用对数的运算性质可脱去对数符号,转化为关于x的方程即可求得答案.解答:解:∵,∴log5(x+1)+log5(x﹣3)=log55,∴(x+1)•(x﹣3)=5,其中,x+1>0且x﹣3>0解得x=4.故方程的解是4点评:本题考查对数的运算性质,考查方程思想,属于基础题.13.计算:(Ⅰ)(Ⅱ).考点:对数的运算性质;运用诱导公式化简求值.专题:计算题;函数的性质及应用.分析:(I)利用诱导公式,结合特殊角的三角函数值即可求解(II)利用对数的运算性质及指数的运算性质即可求解解答:解:(I)(每求出一个函数值给(1分),6分(II)(每求出一个式子的值可给(1分),12分)点评:本题主要考查了诱导公式在三角化简求值中的应用及对数的运算性质的简单应用,属于基础试题14.求值:(log62)2+log63×log612.考点:对数的运算性质.分析:先对后一项:log63×log612利用对数的运算法则进行化简得到:log63+log63×log62,再和前面一项提取公因式log62后利用对数的运算性质:log a(MN)=log a M+log a N进行计算,最后再将前面计算的结果利用log62+log63=1进行运算.从而问题解决.解答:解:原式=(log62+log63)log62+log63=log62+log63=1.∴(log62)2+log63×log612=1.点评:本小题主要考查对数的运算性质、对数的运算性质的应用等基础知识,考查运算求解能力.属于基础题.对数的运算性质:log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=nlog a M等.15.(1)计算(2)已知,求的值.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)化根式为分数指数幂,把对数式的真数用同底数幂相除底数不变,指数相减运算,然后利用对数式的运算性质化简;(2)把给出的等式进行平方运算,求出x﹣1+x ,代入要求的式子即可求得的结果.解答:解(1)===;(2)由,得:,所以,x+2+x﹣1=9,故x+x﹣1=7,所以,.点评:本题考查了有理指数幂的化简与求值,考查了对数式的运算性质,解答的关键是熟记有关性质,是基础题.16.计算(Ⅰ);(Ⅱ)0.0081﹣()+••.对数的运算性质;根式与分数指数幂的互化及其化简运算.考点:函数的性质及应用.专题:分析:(Ⅰ)利用对数的运算法则,由已知条件能求出结果.(Ⅱ)利用指数的运算法则,由已知条件,能求出结果.解答:解:(Ⅰ)======﹣.(Ⅱ)0.0081﹣()+••=[(0.3)4]﹣[()3]+=0.3﹣+3=.点评:本题考查指数和对数的运算法则,是基础题,解题时要认真解答,避免出现计算上的低级错误.17.(Ⅰ)已知全集U={1,2,3,4,5,6},A={1,4,5},B={2,3,5},记M=(∁U A)∩B,求集合M,并写出M的所有子集;(Ⅱ)求值:.考点:对数的运算性质;交、并、补集的混合运算.专题:函数的性质及应用.分析:(I)利用集合的运算法则即可得出.(II)利用对数的运算法则即可得出.解答:解:(Ⅰ)∵U={1,2,3,4,5,6},A={1,4,5},∴C U A={2,3,6},∴M=(∁U A)∩B={2,3,6}∩{2,3,5}={2,3}.∴M的所有子集为:∅,{2},{3},{2,3}.(Ⅱ)===.点评:本题考查了集合的运算法则、对数的运算法则,属于基础题.18.解方程:log2(4x﹣4)=x+log2(2x+1﹣5)考点:对数的运算性质.专题:计算题.分析:利用对数的运算法则将方程变形为,将对数式化为指数式得到,通过换元转化为二次方程,求出x的值,代入对数的真数检验.解答:解:log2(4x﹣4)=x+log2(2x+1﹣5)即为log2(4x﹣4)﹣log2(2x+1﹣5)=x即为所以令t=2x即解得t=4或t=1所以x=2或x=0(舍)所以方程的解为x=2.点评:本题考查对数的真数大于0、对数的运算法则、二次方程的解法,解题过程中要注意对数的定义域,属于基础题.19.(Ⅰ)计算(lg2)2+lg2•lg50+lg25;(Ⅱ)已知a=,求÷.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算法则进行运算,利用结论lg2+lg5=0去求.(Ⅱ)先将根式转化为同底的分数指数幂,利用指数幂的运算性质,化为最简形式,然后在将a值代入求值.解答:解:(Ⅰ)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(Ⅱ)原式=.∵a=,∴原式=.点评:本题考查对数的四则运算法则,根式与分数指数幂的互化,以及同底数幂的基本运算性质,要求熟练掌握相应的运算公式.20.求值:(1)lg14﹣+lg7﹣lg18(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)应用和、差、积、商的对数的运算性质计算即可;(2)利用指数幂的运算性质(a m)n=a mn计算即可.解答:解:(1)∵lg14﹣+lg7﹣lg18=(lg7+lg2)﹣2(lg7﹣lg3)+lg7﹣(lg6+lg3)=2lg7﹣2lg7+lg2+2lg3﹣lg6﹣lg3=lg6﹣lg6=0.(4分)(2)∵=﹣1﹣+=﹣+=.(8分)点评:本题考查对数与指数的运算性质,关键在于熟练掌握对数与指数幂的运算性质进行计算,属于中档题.21.计算下列各题:(1)(lg5)2+lg2×lg50;(2)已知a﹣a﹣1=1,求的值.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用对数的运算性质,求出表达式的值;(2)通过a﹣a﹣1=1,求出a2+a﹣2的值,然后化简,求出它的值解答:解:(1)(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+1)=lg5(lg2+lg5)+lg2=1;(2)因为a﹣a﹣1=1,所以a2+a﹣2﹣2=1,∴a2+a﹣2=3,==0.点评:本题主要考查对数的运算性质和有理数指数幂的化简求值的知识点,解答本题的关键是熟练对数的运算性质,此题难度一般.22.(1)计算;(2)关于x的方程3x2﹣10x+k=0有两个同号且不相等的实根,求实数k的取值范围.考点:根式与分数指数幂的互化及其化简运算;一元二次方程的根的分布与系数的关系.专题:计算题.分析:(1)转化为分数指数幂,利用指数幂的运算法则进行计算;(2)由维达定理的出k的关系式,解不等式即可.解答:(1)解:原式===a0(∵a≠0)=1(2分)(2)解:设3x2﹣10x+k=0的根为x1,x2由x1+,x1•由条件点评:本题考查根式和分数指数幂的转化、指数的运算法则、及二次方程根与系数的关系,属基本运算的考查.23.计算题(1)(2)考点:根式与分数指数幂的互化及其化简运算;对数的运算性质.专题:计算题.分析:(1)根据分数指数与根式的互化以及幂的乘方运算法则,还有零指数、负指数的运算法则,化简可得值;(2)运用对数运算性质及对数与指数的互逆运算化简可得.解答:解:(1)原式=﹣(﹣2)2×(﹣2)4+﹣=﹣64++1﹣=﹣;(2)原式=+log38﹣log332﹣32=log34×8﹣log332﹣9=﹣9.点评:考查学生灵活运用根式与分数指数幂互化及其化简运算的能力,以及分母有理化的应用能力.24.计算下列各式:(式中字母都是正数)(1)(2).考点:根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:函数的性质及应用.分析:(1)利用及其根式的运算法则即可;(2)利用立方和公式即可得出.解答:解:(1)原式==•===.(2)原式===.点评:熟练掌握根式的运算法则、立方和公式是解题的关键.25.计算:(1);(2)lg25+lg2×lg50+(lg2)2.考点:有理数指数幂的运算性质;对数的运算性质.专题:计算题.分析:(1)由指数幂的含义和运算法则,,=|3﹣π|,求解即可.(2)利用对数的运算法则,各项都化为用lg2表达的式子即可求解.解答:解:(1)==1+2+π﹣3=π(2)lg25+lg2×lg50+(lg2)2=2﹣2lg2+lg2(2﹣lg2)+(lg2)2=2.点评:本题考查指数和对数式的化简和求值、考查指数和对数的运算法则、属基本运算的考查.26.已知x+y=12,xy=27且x<y,求的值.考点:有理数指数幂的运算性质.专题:计算题.分析:利用已知条件求出x﹣y的值,利用分母有理化直接求解所求表达式的值.解答:解:∵x+y=12,xy=27∴(x﹣y)2=(x+y)2﹣4xy=122﹣4×27=36(3分)∵x<y∴x﹣y=﹣6(5分)∴===(9分)==(12分)点评:本题考查有理指数幂的运算,考查计算能力.27.(1)计算:;(2)已知a=log32,3b=5,用a,b表示.考点:有理数指数幂的运算性质;对数的运算性质.专题:计算题.分析:(1)根据指数幂的运算性质和恒等式a0=1、0a=1,进行化简求值;(2)根据指对互化的式子把3b=5化成对数式,再把化为分数指数幂的形式,由对数的运算性质将30拆成3×2×5后,再进行求解.解答:解:(1)原式=(7分)(2)∵3b=5∴b=log35∴(14分)点评:本题考查了指数和对数运算性质的应用,常用的方法是将根式化为分数指数幂的形式,指数式和对数式互化,以及将真数拆成几个数的积或商的形式.28.化简或求值:(1);(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:(1)由原式有意义,得到a≥1,然后把各根式进行开平方和开立方运算,开方后合并即可.(2)直接运用对数式的运算性质进行求解计算.解答:解:(1)因为a﹣1≥0,所以a≥1,所以=a﹣1+|1﹣a|+1﹣a=|1﹣a|=a﹣1;(2)=2lg5+2lg2+lg5(1+lg2)+(lg2)2=2(lg2+lg5)+lg5+lg2(lg5+lg2)=2+lg5+lg2=3.点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,解答此题的关键是由根式有意义得到a的取值范围,此题是基础题.29.计算下列各式的值:(1);(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:(1)根据分数指数与根式的互化以及幂的乘方运算法则,还有零指数、负指数的运算法则,化简可得值;(2)运用对数运算性质化简可得.解答:解:(1)原式=;.点评:考查学生灵活运用根式与分数指数幂互化及其化简运算的能力,以及分母有理化的应用能力.30.计算(1)lg20﹣lg2﹣log23•log32+2log(2)(﹣1)0+()+().考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用对数的运算法则、对数的换底公式及其对数恒等式即可得出;(2)利用指数幂的运算法则即可得出.解答:解:(1)原式==1﹣1+=;(2)原式=1===2.点评:数列掌握对数的运算法则、对数的换底公式及其对数恒等式、指数幂的运算法则是解题的关键.。