污水处理厂生物脱氮除磷工艺选择
污水脱氮除磷的原理及其工艺
污水脱氮除磷的原理及其工艺一、污水脱氮原理:污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。
污水脱氮的主要原理是利用硝化反应和反硝化反应。
硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。
这样就实现了对污水中氨氮的脱氮处理。
反硝化反应是将硝酸盐氮还原为氮气。
反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。
反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。
二、污水除磷原理:污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。
污水除磷的主要原理是利用化学沉淀法和生物吸附法。
化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。
生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。
三、污水脱氮除磷工艺:污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。
其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。
一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮除磷技术处理污水。
系统中含有好氧区和缺氧区,其中好氧区负责氨氮的硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供体来进行反硝化反应。
通过控制好氧区和缺氧区的进水比例,可实现对污水中的氮和磷的高效去除。
中小城镇污水处理厂生物除磷脱氮工艺的选择
小城镇 建设一 大批 污 水 处 理 厂 , 这些 污水 处 理 厂 的规 模 , 的 只有 每 日几 十 吨 , 的每 日几 万 吨 , 小 大 因此 在规模 上 和大 型污水 处理 厂相 差较大 , 而且 , 由于这 些 中小 城 镇 和 大 中城市 经 济 发 展 水平 、 排
水体制、 基础 资料 , 融资渠道有很大不 同, 因此 以 往 建设 大型污 水 处 理 厂 的 经验 只有借 鉴 的意 义 , 不可能也不应该把大中城市 的污水治理工艺 、 技 术装备等搬用到城镇级 的污水处理 厂中去, 否则 目前 在大 中城市 中 出现 的 “ 的起 , 不 起 ” 建 用 的局 面将会在中 、 小城镇更加强烈的表现 出来 , 甚至会 演变成 “ 既建 不起 , 用不 起” 更 的局面 , 此探 索 因
给水・ 排水
天 津市政 设计
2 0 . O. 02 N 1
2、 除有 机物和 总氮 ( 括有 机 氮 、 氮及硝 去 包 氨 酸盐 氮 )因要 去 除 总氮 , , 因此 应该 采 用 生 物 反硝 化工 艺 , 要 在反应池 前增 设 一个缺 氧段 , 需 将好 氧 段 中含有硝 酸 盐 的混 合 液 回流到 缺 氧 段 , 缺氧 在 的条件下 , 硝酸盐 反硝 化成 氮气 。 将 3去 除有 机物 、 、 氨氮 和有 机 氮 , 磷 这 时 , 应 该采用 除磷 的硝化 工 艺 , 在反 应池 前 增 设 一 个厌 氧段 , 氧段 内完 成磷 的释 放 , 在厌 在好 氧段 内实现 磷 的超量 吸 收 、 有机 物 的氧化 、 有机 氮及 氨氮 的硝
4 % L 因此 0 I 3
,
各种 除 磷脱 氮工艺 一般 都是 除碳 、 除氮 、 除磷 三 种 流 程 的 有 机 组 合 , 利 满 公 司 提 出 了 得 “
污水处理中的脱氮除磷工艺
污水处理中的脱氮除磷工艺摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。
关键词:脱氮除磷;机理;工艺1 前言城市污水中的氮、磷主要来自生活污水和部分工业废水。
氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。
上述危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生活水体的提高和环境的恶化,对水质的要求也越来越高。
为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。
2 生物脱氮原理【1】一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。
在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。
第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。
为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。
第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。
这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。
反应方程式如下:( 1) 硝化反应:硝化反应总反应式为:( 2) 反硝化反应:另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。
即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。
反应式为:NH4+NO2→N2+2H2O3 生物除磷原理【1】所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。
而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。
生物脱氮除磷工艺
生物脱氮除磷工艺生物脱氮除磷工艺是一种通过微生物代谢作用来减少废水中氮和磷的浓度的工艺。
该工艺逐渐被广泛应用于城市污水处理、农业生产、工业废水处理等领域。
生物脱氮除磷工艺涉及多个过程,包括生物脱氮池、一/二级沉淀池、生物滤池、化学除磷装置等。
其中生物脱氮池和生物滤池是主要的过程单元。
生物脱氮池是一个特殊的好氧反应器,主要是使用异养菌为营养基础,利用硝化反应将氨氮和有机氮转化为硝态氮,然后通过反硝化反应将硝态氮还原为氮气排出。
为了使池内的好氧环境被保持,池内需要提供足够的氧气。
生物滤池是一个非常重要的污水处理单位,它是通过微生物群落代谢作用,利用吸附作用来吸附废水中的氮和磷元素。
微生物生长在滤料表面,铺设在水平或者竖直的格栅上,滤料可以是沙砾、玄武岩等物质。
滤料的特殊结构、表面特性和自备的微生物群落成为生物滤池内的去除污染物的主要手段。
废水在流经滤料层时,氮和磷元素在滤料表面被吸附,吸附到细胞表面的氮被异养菌氧化为氮气,磷元素则随着污泥浓度增加,在池内逐步沉积。
生物脱氮除磷工艺的优点在于原理简单,适用范围广泛,处理效率高,成本较低,不需要大量的化学物质,并且不会产生二次污染。
然而,这种工艺也存在一些缺陷。
例如,处理后的产物含有大量的氮和磷,商业利用它们困难,造成浪费;污水中如果有过多的脂肪和油脂,可能会对生物脱氮除磷工艺产生影响,导致工艺失效。
总之,生物脱氮除磷工艺是一种受到广泛关注的废水处理方案。
未来,随着社会对环境保护意识的不断提高,生物脱氮除磷工艺势必会在更多的领域得到应用,成为减少污染物排放的重要手段。
A2-O工艺脱氮除磷运行效果分析
A2-O工艺脱氮除磷运行效果分析A2/O工艺脱氮除磷运行效果分析摘要:A2/O工艺是一种常用于污水处理厂的三级生物除磷工艺,该工艺具有操作简单、投资成本低、出水效果好等特点。
本文通过对某污水处理厂五年间的运行数据进行分析,探讨了A2/O工艺的脱氮除磷效果,并对其中的影响因素进行了讨论。
1. 引言污水处理是城市环境保护的重要组成部分,其中脱氮除磷是污水处理过程中最关键的环节之一。
A2/O工艺是一种常用的生物除磷工艺,通过厌氧、缺氧和好氧三个阶段的生物处理,实现了高效的脱氮除磷。
2. A2/O工艺的基本原理A2/O工艺主要由两个区域组成,即A区和O区。
A区为厌氧区,主要负责磷的富集;O区为好氧区,主要进行有机物质的氧化,并脱除余氨。
在A区,磷通过厌氧条件下的磷酸菌吸附和磷酸菌的生长,富集为磷酸盐。
在O区,磷酸盐被利用为内附菌的生长和存储能量。
通过合理控制A区和O区的水力分配比例,可以实现较高的脱氮除磷效果。
3. 运行数据分析本文选取某污水处理厂五年的运行数据,分析了A2/O工艺的脱氮除磷效果。
数据包括进水COD、进水氨氮、出水COD、出水氨氮等指标。
通过对比进水和出水的指标,可以评估A2/O工艺对脱氮除磷的处理效果。
根据数据分析发现,A2/O工艺在脱氮除磷方面具有很好的效果。
在整个运行期间,出水氨氮浓度保持在国家排放标准以下,平均去除率超过80%。
出水COD浓度也在标准范围内,平均去除率达到70%以上。
4. 影响因素讨论A2/O工艺的脱氮除磷效果受多种因素的影响。
本文着重分析了水力负荷、温度、PH值等因素对A2/O工艺的影响。
4.1 水力负荷水力负荷是指单位时间内处理污水的量。
实验数据表明,适当增加水力负荷可以提高A2/O工艺的脱氮除磷效果。
但当水力负荷过大时,容易导致厌氧区和好氧区的水力分配失衡,影响工艺效果。
4.2 温度温度是影响生物反应速率的重要因素之一。
数据分析发现,A2/O工艺在较高温度下运行,脱氮除磷效果更好。
脱氮除磷污水处理工艺最新版本
生物法除磷的理论基础:
生物除磷是利用聚磷菌一类的微生物, 能够过量地, 在数量上超过其生理需要, 从外部环境摄取磷, 并将磷以聚合的形态储藏在体内, 形成高磷污泥, 排出系统外, 达到从污水中除磷的效果。
.
有机磷 ADP ATP 无机磷 无机磷 ATP ADP 有机磷 释放 聚磷 聚 磷 菌 → 聚 磷 菌 合成 降解 溶解质 ATP ADP PHB PHB ADP ATP 无机物 厌氧段 好氧段 聚 磷 菌 的 作 用 机 理
.
该反应的微生物属自养型厌氧细菌,生长速率非常低,但将氨氮厌氧转化能力非常高,可以达到4.8kgTN/(m3·d),最佳运行条件: 温度为10~43℃,pH值为6.7~8.3。
.
自养型氨厌氧氧化菌生长慢,启动时间非常长,为使ANAMMOX污泥保留在反应器中并得到足够的生物量,需要有效的污泥截留(由此建议用生物膜反应器)。另外ANAMMOX过程的营养需求,是否出现羟胺、肼类化合物,二氧化氮等代谢中间产[HJ]物和二次污染问题等都是新工艺实际运行中要解决的问题。
.
图1 ANAMMOX流化床反应器装置 1.污水 2.亚硝酸盐溶液 3.4.5.泵 6.取样口 7.ANAMMOX流化床反应器 8.恒温水浴 9.水封 10.湿式气体流量计 11.出水
.
该工艺的本质是通过控制环境温度造成两类细菌不同的增长速率,利用该动力学参数的不同造成“分选压力” 。使用无需污泥停留(以恒化器方式运行,其SRT=HRT)的单个CSTR反应器来实现,在较短的HRT(即SRT)和30 ~40℃的条件下,可有效地通过种群筛选产生大量的亚硝酸盐氧化菌,并使硝化过程稳定地控制在亚硝化阶段,以 NO2-为硝化终产物。SHARON工艺适用于含高浓度氨(>500mg/L)废水的处理工艺,
A-A-O工艺脱氮除磷运行效果分析
A-A-O工艺脱氮除磷运行效果分析摘要:在水处理过程中,氮类和磷类污染物是关键性问题。
A/A/O工艺是一种常用的污水处理工艺,能够有效地脱氮和除磷。
本文通过对几个A/A/O工艺实例的分析,综合评估了A/A/O工艺在脱氮除磷方面的运行效果。
1. 引言随着工业化和城市化进程的不断发展,大量废水直接排放给予了水环境带来了严重污染。
氮类和磷类污染物是主要的水质污染因素之一。
高浓度的氮和磷不仅对水体生态系统造成破坏,还对人类的健康造成潜在威胁。
因此,研究和应用高效的脱氮和除磷技术具有重要意义。
2. A/A/O工艺的原理及特点A/A/O工艺是一种通过生化反应去除氨氮和磷的常用工艺。
A/A/O工艺由三个连续运行的阶段组成,包括厌氧反应器(A)、好氧反应器(A)和沉淀器(O)。
在厌氧反应器中,有机物质通过厌氧细菌分解产生反硝化反应,将氮转化为气体排放。
在好氧反应器中,氮和磷进一步被细菌氧化和吸附,从而实现脱氮和除磷的效果。
沉淀器用于去除生物体产生的污泥和悬浮物。
3. 实例分析通过对多个A/A/O工艺实例的分析,可以综合评估其脱氮除磷的运行效果。
以下是两个实例的具体分析结果:实例1:某污水处理厂A/A/O工艺运行效果分析该污水处理厂采用A/A/O工艺进行脱氮和除磷处理。
经监测,该工艺对氨氮和总磷的去除率分别达到90%和95%以上。
通过对处理前后水质的对比,可以看到A/A/O工艺对氨氮和磷的去除效果显著,达到了国家排放标准。
实例2:某城市污水处理厂A/A/O工艺运行效果分析该城市污水处理厂采用A/A/O工艺处理城市生活污水。
监测数据表明,该工艺对氨氮和总磷的去除率分别达到85%和90%以上。
对于COD等其他污染物,该工艺也有一定的去除效果。
综合评估结果显示,A/A/O工艺在该城市污水处理厂的运行效果较好。
4. 影响A/A/O工艺运行效果的因素A/A/O工艺的运行效果受多种因素影响,包括工艺参数、处理工艺的组合和控制策略等。
《2024年污水生物脱氮除磷工艺优化技术综述》范文
《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着工业化的快速发展和城市化进程的加速,污水处理问题日益严峻。
在污水处理中,脱氮除磷是两个重要的处理目标。
传统的物理、化学处理方法虽然能够达到一定的处理效果,但往往能耗高、成本大,且易产生二次污染。
因此,对污水生物脱氮除磷工艺的优化技术进行研究,不仅对环境保护具有重要意义,也对可持续发展具有长远影响。
本文旨在综述当前污水生物脱氮除磷工艺的优化技术及其应用现状。
二、污水生物脱氮技术1. 传统生物脱氮工艺传统生物脱氮工艺主要包括硝化与反硝化两个过程。
其中,硝化过程由自养型硝化细菌完成,反硝化过程则由异养型反硝化细菌完成。
这一过程虽然简单,但在实际运行中往往受到多种因素的影响,如温度、pH值、营养物质等。
2. 优化技术针对传统生物脱氮工艺的不足,研究者们提出了多种优化技术。
其中包括:改良菌种、引入新型反应器、优化运行参数等。
改良菌种主要是通过选育高效、耐污的菌种来提高脱氮效率;新型反应器的引入则能够更好地实现硝化与反硝化的分离与结合,提高整体脱氮效果;而优化运行参数则包括调整pH值、温度等,以适应不同环境条件下的脱氮需求。
三、污水生物除磷技术1. 传统生物除磷工艺传统生物除磷工艺主要依靠聚磷菌在好氧、厌氧条件下的生长特性来实现除磷。
这一过程虽然有效,但易受到污泥产量、营养物质等因素的影响。
2. 优化技术针对传统生物除磷工艺的不足,研究者们提出了多种优化技术。
其中包括:强化生物除磷、化学辅助生物除磷等。
强化生物除磷主要是通过优化反应条件、改良菌种等方式来提高除磷效率;而化学辅助生物除磷则是通过添加化学药剂来辅助生物除磷过程,进一步提高除磷效果。
四、污水生物脱氮除磷组合工艺及优化在实际应用中,往往需要将脱氮与除磷两种工艺结合起来,以实现更好的处理效果。
为此,研究者们提出了多种组合工艺及优化策略。
这些策略包括:分点投药、同步硝化反硝化除磷、新型反应器等。
分点投药可以在不同阶段针对性地添加药剂,以提高处理效果;同步硝化反硝化除磷则是在同一反应器中实现脱氮与除磷的双重目标;而新型反应器的引入则可以更好地实现各工艺阶段的分离与结合,提高整体处理效果。
污水处理脱氮除磷工艺介绍及对比分析
污水处理脱氮除磷工艺介绍及对比分析2020年9月6日星期日目录一、生物脱氮 (3)1、硝化过程 (3)2、反硝化过程 (4)3、生物脱氮的基本条件 (5)4、废水生物脱氮处理方法 (6)二、化学脱氮 (7)1、吹脱法 (7)2、化学沉淀法(磷酸铵镁沉淀法) (8)3、低浓度氨氮工业废水处理技术 (9)4、不同浓度工业含氨氮废水的处理方法比较 (11)三、化学法除磷 (11)1、石灰除磷 (12)2、铝盐除磷 (12)3、铁盐除磷 (13)四、生物除磷 (13)1、生物除磷的原理 (13)2、生物除磷的影响因素: (14)3、废水生物除磷的方法有哪些 (15)4、除磷设施运行管理的注意事项 (15)一、生物脱氮脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。
污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。
含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。
硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”;反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。
含氮有机化合物最终转化为氮气,从污水中去除。
1、硝化过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物——亚硝酸盐菌和硝酸盐菌。
这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。
第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。
这两个过程释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。
氧化1g氨氮大约需要消耗4.3gO2和8.64gHCO3-(相当于7.14gCaCO3碱度)。
硝化过程的影响因素:1)温度:硝化反应最适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。
污水处理中的脱氮除磷工艺
污水处理中的脱氮除磷工艺
通常污水处理设备的外壳都是金属材质(碳钢、不锈钢)或者玻璃钢材质制作。
不同的污水处理设备对污染水的敏感度处理工艺和处理后的排放标准都不相同。
污水中95%以上的氨氮(HN3-N)以NH4的形式存在。
通过鼓风曝气,亚硝酸菌首先将氨氮转化为亚硝酸盐:
(亚硝酸菌)NH4+1.5O2NO2-+2H+H2O。
然后将亚硝酸盐转化为硝酸盐:硝酸菌No2总体反应为:NH4+2O2NO3+2H+H2O。
污水处理设备
以上反应在好氧部分进行。
在厌氧部分,硝酸盐和亚硝酸盐通过兼氧微生物或厌氧微生物(如碱生产菌、假单胞菌、无色杆菌等)进行反硝化和脱氮。
反消化菌利用NO3中的氧(又称化合态氧或硝化氧)继续分解代谢有机污染物,去除BOD5,同时将NO3中的氮转化为氮N2这个过程可以用以下方式表示:
反消化菌NO3-+有机物N2+N2O+OH。
除磷原理:
厌氧段优势的非丝状储磷菌分解储存的聚磷酸盐,提供能量,吸收水中大量的BOD5,释放正磷酸盐,降低厌氧段的BOD5,提高磷含量。
公厕污水进入好氧段后,好氧微生物利用氧化分解获得的能量,吸收原水中释放的大量正磷和磷,完成磷的过渡积累,达到去除BOD5和除磷的目的。
污水处理脱氮除磷工艺原理。
中小城镇污水处理厂生物除磷脱氮工艺的选择
中小城镇污水处理厂生物除磷脱氮工艺的选择改革开放以来,在我国的大中型城市中,建设了一批污水处理设施,对于保护大中型城市的环境,治理水污染起到了很大作用。
随着我国城乡经济的发展,人民生活水平的显著提高,我国农村城市化的速度将大大加快,大量的小城镇将迅速兴起,预计到本世纪末,全国设市城市将达1200个左右,建制镇25000~3O000个左右,全国城镇人口达6。
8亿左右,城市化水平约为45%,其中小城镇人口所占比例达65%左右。
从发展眼光看,今后我国的大部分人口将生活在中小城镇。
目前全国共有1700O个建制镇,绝大多数没有排水和污水处理设施,而且,由于二十几年来,乡镇企业的蓬勃发展,造成一些中小城镇尤其是经济比较发达的中小城镇,污染严重,已经影响到人民的生活和健康.从另一方面讲,中小城镇和大中城市在水系上是相通的,而且往往处于大中城市的上游,中小城镇的污水治理工作做不好,大中城市水环境的质量也不会有明显改善,因此,中小城市的环境保护问题越来越引起人们的重视.针对目前的情况,国家提出至2010年我国污水处理率要达到4O%,因此,未来一段时间内我国将会集中在中小城镇建设一大批污水处理厂,这些污水处理厂的规模,小的只有每日几十吨,大的每日几万吨,因此在规模上和大型污水处理厂相差较大,而且,由于这些中小城镇和大中城市经济发展水平、排水体制,基础资料,融资渠道有很大不同,因此以往建设大型污水处理厂的经验只有借鉴的意义,不可能也不应该把大中城市的污水治理工艺、技术装备等搬用到城镇级的污水处理厂中去,否则目前在大中城市中出现的“建的起,用不起”的局面将会在中、小城镇更加强烈的表现出来,甚至会演变成“既建不起,更用不起"的局面,因此探索适合中小城镇的经济实用的污水处理工艺,以较少的投资建成污水处理厂,以较低的运行费用运转污水处理厂,达到消除污染、保护环境的目的是摆在给排水工作者面前的一个挑战。
考虑到1998年1月1日之后,已经开始实行《污水排放综合标准》(GB8978—1996),因此中小城镇的污水处理厂在选择处理工艺时都要考虑除磷脱氮,本文谨就适合于中小城镇城市污水处理厂的生物除磷脱氮工艺谈一些粗浅的看法,供大家参考,不妥之处请指正。
污水处理AO工艺脱氮
污水处理A/O工艺脱氮除磷一般的活性污泥法以去除污水中可降解有机物和悬浮物为主要目的,对污水中氮、磷的去除有限。
随着对水体环境质量要求的提高,对污水处理厂出水的氮、磷有控制也越来越严格,因此有必要采取脱氮除磷的措施。
一般来说,对污水中氮、磷的处理有物化法和生物法,而生物法脱氮除磷具有高效低成本的优势,目前出现了许多采用生物脱氮除磷的新工艺。
一、生物脱氮除磷工艺的选择按生物脱氮除磷的要求不同,生物脱氮除磷分为以下五个层次:(1)去除有机氮和氨氮;(2)去除总氮;(3)去除磷;(4)去除氨氮和磷;(5)去除总氮和磷。
对于不同的脱氮除磷要求,需要不同的处理工艺来完成,下表列出了生物脱氮除磷5个层次对工艺的选择。
生物脱氮除磷5个层次对工艺的选择对于不同的TN出水水质要求,需要选择不同的脱氮工艺,不同的TN出水水质要求与脱氮工艺的选择见下表。
不同TN出水水质要求对脱氮工艺的选择生物除磷工艺所需B0D5或COD与TP之间有一定的比例要求,生物除磷工艺所需BOD5或COD与T比例P的要求见下表。
生物除磷工艺所需BOD5或COD与TP的比例要求二、A/O工艺生物脱氮工艺(一)工艺流程A/0工艺以除氮为主时,基本工艺流程如下图1。
图1 缺氧/好氧工艺流程A/O工艺有分建式和合建式工艺两种,分别见图2、图3。
分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。
更多污水处理技术文章参考易净水网合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的要求,但受以下闲素影响:溶解氧(0.5~1.5mg/L)、污泥负荷[0. 1~ 0.15kgBOD5/ (kgMLVSS•d)]、C/N 比(6 -7)、pH值( 7. 5~8.0) ,而不易控制。
对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NOz-N还原成N2 ,不需外加碳源。
中小城镇污水处理厂生物脱氮除磷工艺选择浅析
中小城镇污水处理厂生物脱氮除磷工艺选择浅析摘要:本文在说明当前中小城镇污水处理厂建设的必要性的基础上,阐述生物脱氮除磷工艺机理、作用条件和选择总则,并提出几种最适合中小城镇污水处理厂建设的脱氮除磷工艺,然后从出水水质、总投资、占地和现场条件影响等方面进行分析,说明每种工艺的适用条件和优缺点,最后通过实例解析脱氮除磷工艺选择的方法并得出结论。
abstract: starting from the necessity of urban sewage treatment plant construction, the paper presents the mechanism, work conditions and selecting principle of biological nitrogen and phosphorus removal, and puts forward the some technologies of nitrogen and phosphorus removal which are suitable for the urban sewage treatment plant. and then, it analyzes in terms of effluent quality, the total investment, land occupation and condition, and compares applied conditions, advantages and disadvantages of each process, and finally gives the selection of nitrogen and phosphorus removal process and gets conclusion.关键词:中小城镇;脱氮除磷;cast;氧化沟;biolakkey words: small and medium-sized towns;nitrogen and phosphorus removal;cast;oxidation ditch;biolak中图分类号:u664.9+2 文献标识码:a 文章编号:1006-4311(2013)23-0042-020 引言随着我国城乡经济的发展,人民生活水平的显著提高,我国农村城市化的速度大大加快,大量的中小城镇迅速兴起。
几种脱氮除磷污水处理工艺简介之化学文章
几种脱氮除磷污水处理工艺简介之化学文章摘要:简单介绍了目前在城市污水处理几种常用的污水脱氮除磷处理工艺及其发展改进的工艺。
关键字:脱氮除磷文章,氧化沟,A/A/O,SBR,BAF,VertiCel-BNR工艺污水处理的生物脱氮除磷工艺都包含厌氧、缺氧、好氧三个不同过程的交替循环。
按照构筑物的组成形式、运行性能以及运行操作方式的不同,又分为悬浮性活性污泥法和固着性生物膜法两大类文章应用于城市污水厂的悬浮性活性污泥法污水处理工艺主要有三个系列:(1)氧化沟系列;(2)A/O系列;(3)序批式反应器(SBR)系列。
各个系列不断的发展、改进,形成了目前比较典型的工艺有:A/A/O工艺、改良A/A/O工艺、UCT工艺、改良UCT工艺、CARROUSEL-2000氧化沟工艺、双沟式DE氧化沟工艺、三沟式T型氧化沟工艺、VIP工艺、CASS工艺、MSBR工艺、Unitank工艺等。
应用于城市污水处理厂的固着性生物膜法工艺主要有生物滤池工艺。
1、氧化沟工艺文章目前在国内外较为流行的氧化沟有:卡罗塞尔氧化沟、奥伯尔氧化沟、双沟式氧化沟、三沟式氧化沟。
氧化沟是活性污泥法的一种改进型,具有除磷脱氮功能,其曝气池为封闭的沟渠,废水和活性污泥的混合液在其中不断循环流动,因此氧化沟又名“连续循环曝气法”。
(1)卡罗塞尔氧化沟是荷兰DHV公司开发的。
该工艺在曝气渠道端部装有低速表面曝气机。
在曝气渠内用隔板分格,构成连续渠道。
为了保证沟中流速,曝气渠的几何尺寸和表曝机的设计是至关重要的。
(2)双沟式(DE型)氧化沟和三沟式(T型)氧化沟是丹麦克鲁格公司开发的。
DE型氧化沟为双沟组成,氧化沟与二沉池分建,有独立的污泥回流系统,DE型氧化沟可按除磷脱氮等多种工艺运行。
双沟式氧化沟是由两个容积相同,交替运行的曝气沟组成。
三沟式氧化沟集曝气沉淀于一体,工艺更为简单。
三沟交替进水,两外沟交替出水,两外沟分别作为曝气或沉淀交替运行,不需二沉池及污泥回流设备,同DE型氧化沟相同,需要的自动化程度高。
污水处理生物除磷工艺
污水处理生物除磷工艺(一)缺氧好氧活性污泥法 (A/O工艺)当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。
厌氧/好氧工艺流程1. 设计参数A/O工艺生物除磷设计参数见下表A/O工艺生物除磷设计参数2. 工艺计算缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。
具体计算公式见下表。
A/O工艺生物除磷容积基计算公式(二)弗斯特利普 ( Phostrip) 除磷工艺Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。
该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。
工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。
Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。
该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。
Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。
总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。
但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。
四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。
A2/O工艺脱氮除磷流程(一)一般规定进入系统的污水应符合下列要求:(1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ; (2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ; (3) 同时脱氮、除磷时,宜同时满足前两款的要求;(4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙 CaC03计);(5) 当工业废水进水COD超过1000mg/L 时,前处理可采用升流式厌氧污泥床反应器( UASB) 等厌氧处理措施;(6) 当工业废水进水的BOD5/COD小于0. 3时,前处理需采用水解酸化等预处理措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水处理厂生物脱氮除磷工艺选择
作者:赵宁宁
来源:《现代农业科技》2013年第21期
摘要为降低巢湖流域水體富营养化程度,对含山县污水处理厂提出脱氮除磷改进要求。
介绍了项目的概况和工艺要求,并对各种工艺方案的特点和可行性进行了分析与比较,最后选择A/A/O氧化沟工艺作为项目的污水处理工艺,以期为该项目提供技术参考。
关键词污水处理;生物脱氮除磷;工艺选择
中图分类号 X703.1 文献标识码 A 文章编号 1007-5739(2011)21-0296-01
随着工农业生产的发展及人口的增长,人类赖以生存的水资源正在遭到多种来源的污染。
废水对水资源的污染已引起人们极大的关注,特别是作为生物体的重要营养元素的氮磷,随污水进入水体以后产生种种严重危害,而目前更普遍的是,氮磷等营养物质进入水体会引发水体富营养化。
水体富营养化会造成藻类异常繁茂,水味变得腥臭难闻。
一些藻类能够分泌和释放毒性物质,例如蓝藻门的不定腔球藻(Coclosphaerium)、铜锈微囊藻(Microcystics Aeruginosa)等能分泌藻青脘(Phycyan)这样的带有毒性的物质,这类物质被人蓄饮用后会引发消化道炎症。
藻类死亡后腐烂分解,大量消耗溶解氧,严重时可使水体呈厌氧状态,致使鱼类等需氧水生生物难以生存,藻类的异常繁殖还给城市水厂的正常运行带来困难,提高制水成本,自来水带有异味,因此污废水中氮、磷的处理已成为当前废水处理中的热点。
利用好氧和厌氧不同状况,在好氧条件下,由硝化菌作用变成硝酸盐氮,随后在缺氧条件下,由反硝化菌作用,使硝酸盐氮变成氮气逸出;生物除磷就是利用聚磷菌类的细菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态贮藏在体内,形成高磷污泥排出,达到除磷的效果。
根据含山县污水处理厂的情况探讨该厂生物脱氮除磷的可行性。
1 项目概况
为减少巢湖流域水体的富营养化,对含山县污水处理厂提出脱氮除磷改进要求。
该厂位于巢湖流域,设计污水的处理规模4万m3/d,工程原设计工艺常规活性污泥法能满足COD、BOD、SS的去除率,但对氮、磷的去除是有一定限度的,仅从剩余污泥中排除氮、磷,其去除率氮仅为10%~25%,磷仅为12%~19%,达不到脱氮除磷要求。
因此,对含山县污水处理厂进行了污水脱氮除磷工艺改造是巢湖流域水环境治理的污水处理厂重要组成部分。
污水处理脱氮除磷工程的建设将是减少巢湖流域水体富营养化的重要举措。
2 工艺要求
含山县污水处理厂进水水质BOD5 /COD=0.51、BOD5 /TN>3~5、BOD5/TP=60,可以采用生物法对污水进行脱氮除磷处理。
为了减少污水处理厂常年运行的费用,有效地降低工程投
资,应当综合考虑污水处理的程度要求、设计进水的水质、工程规模等方面的因素选择适宜的污水处理生物脱氮除磷工艺,同时也可以保证出厂水的水质,提高污水处理厂运行管理的效率[1-3]。
要求提高污水处理脱氮除磷程度,对NH3-N、TP去除率要求分别达到68%和50%以上,因此对污水处理脱氮除磷工艺的技改选择应十分慎重。
该工程的污水处理脱氮除磷技改工艺选择应充分考虑污水水质、污水量、管理水平以及经济条件等诸多方面,同时在对处理工艺的选择上,应当以成熟处理工艺优先选用,兼顾安全可靠、技术先进、低投入、低能耗、占地少、方便操作管理等[4-6]。
3 工艺方案比较
3.1 氧化沟法
氧化沟工艺是传统活性污泥工艺的一种变形的污水处理工艺形式,该工艺由20世纪50年代初期发展起来,传统的Carrousel氧化沟不具备除磷功能,但在沟前增设厌氧池,便具备了生物脱氮除磷功能。
Orbal氧化沟的特点是对3个沟道的溶解氧浓度进行控制,保证其在不同的阶段下运行,但对外沟要求的低溶解氧则很难控制,脱氮效果不理想。
3.2 A/A/O法
A/A/O法中,污水在流经3个不同功能分区的过程,因此称为厌氧-缺氧-好氧活性污泥法。
污水中的氮、磷以及有机物等在不同微生物菌群作用下得以去除。
目前,该法在国内外使用较为广泛。
其工艺流程如图1所示。
与其他同类工艺相比,在厌氧(缺氧)、好氧交替运行的条件下,该工艺总水力停留时间较小,其同步除磷脱氮工艺在系统上最简单,SVI值一般小于100,可克服污泥膨胀,抑制丝状菌繁殖,运行时只需在厌氧和缺氧段内轻缓搅拌,有利于处理后污水与污泥的分离,运行费用低。
脱氮除磷效果非常好,由于厌氧、缺氧和好氧3个区严格分开,有利于不同微生物菌群的繁殖生长。
3.3 AB法
AB法是一种生物吸附—降解二段活性污泥法,该法对有机物、氮和磷都有一定的去除作用,A段污泥负荷高达2~6 kg BOD5/(kg MLSS·d),负荷高,曝气时间短,仅30 min左右;B段污泥负荷为0.15~0.30 kg BOD5/(kg MLSS·d),相对较低。
AB法通常要求进水BOD5在250 mg/L以上,适用于处理水质水量变化较大、浓度较高的污水,才有明显的优势。
该项目工程采用AB法不太合适,因为其设计进水BOD5为180 mg/L。
3.4 UCT工艺
UCT工艺用于解决回流污泥中过多的硝酸盐对厌氧放磷的影响,其工艺流程如图2所示。
UCT工艺与A/A/O法的不同之处在于污泥先不回流至厌氧池,而是先流入缺氧池,因为该工艺可以减少回流污泥中硝酸盐对厌氧放磷的影响,因其避免将缺氧池部分混合液回流至厌氧池。
其弊端是运行费用将增加,这是由于UCT工艺多1次提升,将增加了1次回流。
3.5 传统SBR法
传统SBR法其反应是在同一容器中进行,适用于较小污水量场合。
进水时不曝气,形成厌氧、缺氧,而后停止进水,开始充氧曝气,完成脱氮除磷过程,并在同一容器中沉淀,再通过撇水器出水。
这种方法,总容积利用率比较低,一般小于50%。
3.6 Unitank法
Unitank工艺,又称单池系统,是SBR法的另一种形式,由3个矩形池组成,3个池水力相通,每个池内均设有供氧设备,在外边两侧矩形池设有固定出水堰和剩余污泥排放口。
连续分池进水,具有脱氮除磷的效果。
其优点是布置紧凑、无二沉池、不需回流、占地面积小等。
但由于无专门的厌氧区,因此生物除磷的效果差,其总的容积利用率为67%。
3.7 CAST法
CAST工艺脱氮除磷的原理为:除磷是靠厌氧捕捉选择区(预反应区)和曝气反应区(主反应区)完成。
硝化和反硝化在主反应区完成。
4 工艺方案的确定
从上述各工艺机理的定性分析来看,每种工艺各有优缺点,均可实现污水脱氮除磷的处理目的。
针对本工程进出水的水质,经过详细的技术经济比较,认为A/A/O氧化沟工艺处理效果好,技术先进成熟,运转方式灵活,运行稳妥可靠,动力效率高,动行成本低。
5 结语
含山县污水处理厂脱氮除磷技改工程的建设预计每年减少NH3-N排放量58.4 t和TP排放量11 t,工程将完善含山县污水处理工程的建设,是改善生态环境、保障人民身体健康、造福社会的环境保护工程,是城市重要基础设施,污水处理系统逐步完善,污水有组织排放并得到处理,将有效改善得胜河及巢湖流域的水体水质,提高环境质量水平和人民身体健康水平,对美化城市和增加农业产品产量质量都具有积极的意义。
6 参考文献
[1] 高廷耀,夏四清.城市污水生物脱氮除磷工艺评述[J].环境科学,1999,20(1):110-112.
[2] 王岽,刘德华,郦和生.限氧条件下的活性污泥脱氮过程研究[J].三峡环境与生态,2008,1(2):30-33.
[3] 张平.生物脱氮技术的研究进展[J].环境污染与防治,1997,19(4):25-28.
[4] 朱淑琴,尹萍,张萍.间歇式活性污泥除磷的试验研究[J].环境工程,1997,15(90):13-16.
[5] 李亚新.城市污水硝化反硝化及生物脱氮计算[J].环境工程,1995,13(75):13-16.
[6] 高俊发,王社平.污水处理厂工艺设计手册[M].北京:化学工业出版社,2003.。