福州大学高等数学B作业答案-6.3 全微分

合集下载

高数多元函数微分学 全微分(与泰勒公式)

高数多元函数微分学 全微分(与泰勒公式)

f (0,0)

00 lim x0 x

0,
同理 f y (0,0) 0.
17
当( x, y) (0,0)时,
fx ( x, y) y sin
1 x2 y2
x2 y cos ( x2 y2 )3
1, x2 y2
当点P( x, y)沿直线y x 趋于(0,0) 时,
14
例 3 计算函数u x sin y e yz 的全微分. 2
解 u 1, x
u 1 cos y ze yz , y 2 2
u ye yz , z
所求全微分
du dx (1 cos y ze yz )dy ye yzdz. 22
15
例 4 试证函数
4
dx ,dy 时的全微分.
4
解 z y sin( x 2 y), x z cos( x 2 y) 2 y sin( x 2 y), y
dz ( ,) 4

z x
dx
( ,) 4

z dy y ( ,)
4

2 (4 7). 8
24
f
(
x,
y)


xy
sin
0,
1 , ( x, y) (0,0)
x2 y2

( x, y) (0,0)
点(0,0)连续且偏导数存在,但偏导数在点(0,0)
不连续,而 f 在点(0,0) 可微.
思路:按有关定义讨论;对于偏导数需分
( x, y) (0,0),( x, y) (0,0)讨论.
16
证 令 x cos , y sin ,

《高数全微分》课件

《高数全微分》课件

全微分的概念
全微分是多变量函 数的变化率,通过 定义、计算方法和 与偏微分的区别, 理解全微分的概念。
练习题选讲
1
练习题1
通过一个实际的计算例子来帮助学生巩固微分和导数的应用。
2
练习题2
挑选一道复杂且具有挑战性的练习题,让学生运用所学知识解决问题。
3
练习题3
提供一道综合性的练习题,结合了微分、导数和全微分的内容,以检验学生的综 合能力。
讲解内容
什么是微分
微分是基础概念, 具有多种定义方式。 通过物理解释和常 见定义使学生理解 微分的概念和意义。
导数的定义
导数是描述函数变 化率的工具,包括 导数的概念、计算 方法以及其在函数 极值中的应用。
微分的定义
微分作为导数的无 穷小变化量,给出 了函数在某一点上 的局部变化情况和 计算方法。
总结回顾
1 本节知识点回顾 2 知识点扩展
概述了微分、导数和 全微分的概念和定义, 强调了它们在数学中 的重要性。
引导学生进一步学习 微分和导数的应用领 域,如物理学和经济 学等。
3 下节课预告
展示下节课将会涉及 的主题和学习目标, 激发学生的兴趣和期 待。
《高数全微分》PPT课件
高数全微分 PPT课件
知识点概述
什么是微分
微分是一个数学概念,用于描述函数值的 变化率。它是微积分的基础。
微分的定义
微分是函数值的无穷小变化。它描述了函 数在某一点上的局部变化。
导数的定义
导数是函数在某一点上的变化率,可以解 释为函数在该点的切线斜率。
全微分的概念
全微分是多变量函数在某一点上的变化率, 它包括所有变量的微分。

《高数B》同步练习册(下)答案(第11章及后)

《高数B》同步练习册(下)答案(第11章及后)

参考答案与提示 第11章 无穷级数§11.1 常数项级数的概念与性质1.(1) ⋅⋅⋅++++753!71!51!31x x x x(2) ⋅⋅⋅+-+-432413121x x x x2(1) n 21 (2) n n 1)1(1--3(1)发散 (2) 收敛4(1)收敛 (2)发散 (3) 收敛§11.2 正项级数及其审敛法1.(1) 1<q ,qa -1, 1≥q (2) 1>p ,1≤p2(1)发散 (2)收敛 (3)收敛 (4)收敛 (5)发散3(1)收敛 (2)收敛 (3)收敛 4(1)发散 (2)收敛 (3)收敛§11.3 任意项级数的绝对收敛与条件收敛1.(1)条件收敛 (2)绝对收敛 (3)绝对收敛 (4)条件收敛 (5)条件收敛§11.4 泰勒级数与幂级数1.(1)A (2)C (3)D (4)A2(1)),(+∞-∞ (2))3,3[- (3))0,2[- (4)]1,1[-3(1))1,1(,)1(222-∈-x x x(2))1,1(,11ln41arctan 21-∈--++x x xx x4(1) ∑∞=+++-012122)!12()1(n n n nn x,+∞<<∞-x(2) ∑∞=++012)!12(n n n x,+∞<<∞-x(3) ∑∞=--+2)1()1(n nnnn xx ,11≤<-x(4) ∑∞=+-0)1()1(n nn x n ,11<<-x5. 26,)4)(3121(11-<<-+-∑∞=++x x n nn n6.∑∞=++-++-0212])!2()3(3)!12()3([)1(21n nn nn x n x ππ,+∞<<∞-x总习题十一1.(1))1(2+n n ,收敛,2 (2)3- (3)DFI(4)8 (5)2 (6) e 22(1)A (2)C (3)C (4)B (5)C 3(1)发散 (2)收敛 (3)收敛 (4) 发散 (5)时且10≠>a a ,级数收敛;时1=a ,级数发散.(6)当0< a <1时级数收敛; 当a >1时级数发散; 当a =1时,s > 1级数收敛,0< s ≤1级数发散.4(1)绝对收敛 (2)条件收敛 (3)条件收敛 (4)发散 (5)时1>a ,级数绝对收敛;时1=a ,级数条件收敛; 当0< a <1时级数发散. (6)条件收敛5(1)]21,21[- (2))21,21(-6(1))1ln(12222x xx+++, )1,1(-∈x(2)3)1(2x x -, )1,1(-∈x7. 2ln 4385-8(1) ∑∞=-+12)!2(2)2()1(1n nnn x , +∞<<∞-x(2)⋅⋅⋅++-+⋅⋅⋅-+-++12)1(513141253n xx x x n nπ, 11<<-x(3)∑∞=---1112)1(n nnn x n, 2121≤<-x9(1) 53,)1()1(41)1(4ln 011≤<--+-+∑∞=++x x n n n n n(2) 31,)1)(2121()1(0322<<----∑∞=++x x n nn n n10.提示:利用不等式)1(210222λλ++≤+≤n a n a n n11.提示:利用不等式n n n n a c a b -≤-≤012.(2) )(21)(xx ee x y -+=,+∞<<∞-x13.3980万元14.提示:f (x )在x 0 = 0处展开成一阶泰勒级数高等数学(下)期中模拟试卷(一)一、1、C 2、C 3、A 4、D 5、C二、1、π322、x 23、dy dx 22ππ+4、2229x z y =+ 5、⎰⎰θπθcos 20220)(rdr r f d三、1、2)1,1,0(=''x x f ,2)0,0,1(-=-''z x f2、dy y dx x dz ϕϕϕϕ'+'-+'+'-=12123、212g y g f x z '+'+'=∂∂,2221222g xy g g x f yx z ''+'+''+''-=∂∂∂ 四、)12(31-五、22π-六、5113342-+=-+=-z y x七、提示:),(y x f 在极坐标系中满足0=∂∂rf八、当雇佣250个劳动力,投入资本为50个单位时,生产量最高。

福州大学高等数学(下)试题及答案

福州大学高等数学(下)试题及答案

福州大学高等数学(下)试题及答案一、单项选择题1.设),(y x f 在点),(b a 处的偏导数存在,则xb x a f b x a f x ),(),(lim 0--+→= 。

A 、 0; B 、),2(b a f x ; C 、),(b a f x ; D 、),(2b a f x 。

2.设曲面),(y x f z =与平面0y y =的交线在点)),(,,(000y x f y x o 处的切线与x 轴正向所成的角为6π,则 。

A 、236cos ),(00==πy x f x ; B 、21)62cos(),(00=-=ππy x f y ; C 、336),(00==πtg y x f x ; D 、3)62(),(00=-=ππtg y x f y 。

3.0lim =∞→n n u是级数∑∞=0n n u 发散的 。

A 、 必要条件; B 、充分条件; C 、充要条件; D 、既非充分又非必要。

4.在区域D :220x R y -≤≤上的σd xy D ⎰⎰2值为 。

A 、2R π; B 、24R π; C 、332R π; D 、0。

5.下列函数中,哪个是微分方程02=-xdx dy 的解 。

A 、x y 2=;B 、2x y =;C 、x y 2-=;D 、2x y -=。

二、是非判断题(15分) 1.⎰+-L y x ydx xdy 22=0,其中L 为圆周122=+y x 按逆时针转一周( ) 2.如果x∂∂ϕ,y ∂∂ϕ均存在,则),(y x ϕϕ=沿任何方向的方向导数均存在( ) 3.以),(y x f 为面密度的平面薄片D 的质量可表为σd y x f D ⎰⎰),(。

( ) 4.)(x f 在],0(π上连续且符合狄利克雷条件,则它的余弦级数处处收敛,且],0[π上收敛于)(x f 。

( )1. 微分方程的通解包含了所有的解。

( )三、计算题(16分)1. 设),(22xye y xf -=μ,其中f 具有一阶连续偏导数,求x ∂∂μ,y x ∂∂∂μ2。

B2及答案微积分期末复习卷

B2及答案微积分期末复习卷

扬州大学试题纸经济、管理 学院 09级 课程 微 积 分 ( B )卷班级 学号 姓名一. 填空题(3618''⨯=)1.已知()132,x f ex -=-则()f x =13ln x +且定义域为 x>0 . 2.设2211f x x x x ⎛⎫+=+ ⎪⎝⎭.则1f x x ⎛⎫'+= ⎪⎝⎭12x x ⎛⎫+ ⎪⎝⎭.3.()4f x dx x x c =-+⎰,则()f x =341x -.4.()f x 为连续函数,()g x 为连续的偶函数, 则()()()aaf x f xg x dx +---=⎡⎤⎣⎦⎰0 .5.设函数()2ln z x y =+,则10x y dz ===dx .6.由曲线ln ,0,y x y x e ===围成的平面图形的面积是 1 . 二. 单项选择题(3618''⨯=)1.201sinlimsin x x x x→的值为 ( B )(A) 1 (B) 0 (C) ∞ (D)不存在2.设()lim 1hh x f x h →∞⎛⎫=+ ⎪⎝⎭,则()ln3f = ( D )(A) 0 (B)1 (C) 2 (D)3 3.函数()()012y f x f x '==有,则当0x ∆→时,该函数在0x x =处的 微分dy x ∆是的 ( B )___________ 系____________ 班级_____________ 学号____________ 姓名_____________---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------(A) 等价无穷小 (B)同阶但不等价的无穷小 (C) 低阶无穷小 (D)高阶无穷小 4.设()f x 是连续函数,且()()xe xF x f t dt -=⎰,则()F x '= ( A )(A)()()xx e f e f x ---- (B) ()()x x e f e f x ---+ (C) ()()xx ef e f x --- (D) ()()x x e f e f x --+5.设方程sin 0yxt e dt tdt +=⎰⎰确定y 为x 的函数 ,则dydx= ( C ) (A) 0 (B) cos y x e -(C) sin yxe - (D) 不存在6.设()f x 是连续的奇函数,()g x 是连续的偶函数,区域{}xy x x y x D ≤≤-≤≤=,10),(,则以下结论正确的是 ( A )(A)⎰⎰=Ddxdy x g y f 0)()( (B) ⎰⎰=Ddxdy y g x f 0)()((C)⎰⎰=+Ddxdy x g y f 0)]()([ (D) ⎰⎰=+Ddxdy y g x f 0)]()([三. 计算题(5630''⨯=) 1. 12lim(1)xx x →∞+.解:原式=x x x e)1ln(lim2+∞→=2lim1x x xe→∞+=0e =12. 设2sin ,xzz e y x y∂=∂∂求 .解:sin xz e y x ∂=∂ 2cos x z e y x y∂=∂∂ 3. (),z z x y =是由方程33330x y z xyz ++-=确定的隐函数,求zx∂∂. 解:设F=3333x y z xyz ++-233F x yz x ∂=-∂ 233Fz xy z∂=-∂ 22223333Fz x yz x yz x F x z xy z xy z∂∂--∂∴=-=-=-∂∂--∂4. 计算2cos x xdx ⎰.解:原式=1cos 22x x dx +⎰=cos 222x x x dx dx +⎰⎰=214x +1sin 24xd x ⎰ =211sin 2sin 244x x x xdx ⎡⎤+-⎣⎦⎰=2111sin 2cos 2448x x x x c +++5. 计算()312201x dx -+⎰.解:令tan x t =,221sec x t +=,x 从01 ,t 从04π,2sec dx tdt =原式=40cos tdt π⎰=40sin x π= 6.计算累次积分11420cos xx dx y dy ⎰⎰.解:=122011sin14cos 102y d y ⎡⎤+⎢⎥⎣⎦⎰=11cos1sin1510-…………………………5分 四.解答题(8324''⨯=,第4题10') 1. 已知函数ln xy x=,试求其单调区间、极值、及其曲线上的拐点和渐近线. 解:).0(∞+=Df2ln 1'x xy -=令0'=y 得驻点e x =。

大一高数下全微分课件

大一高数下全微分课件

乘积法则
总结词
乘积法则用于计算两个函数的乘积的 全微分。
详细描述
乘积法则是全微分的另一个重要法则, 它指出如果z是两个函数u和v的乘积, 那么dz=u*du+v*dv。具体来说,如果 z=u*v,那么全微分 dz=d(u*v)/du*du+d(u*v)/dv*dv=u*d u+v*dv。
商的法则
大一高数下全微分课件
• 全微分的定义 • 全微分的基本公式和法则 • 全微分的应用 • 常见函数的微分 • 微分中值定理与导数的应用 • 习题与解答
01
全微分的定义
全微分的概念
全微分是指在函数定义域内 某一点处,将函数在该点的 值与自变量在该点的值分别 进行微小变化,函数值变化
量的线性部分。
全微分是函数在一点处对所 有自变量偏导数的加权和, 权因子是偏导数与自变量变
答案2
dz = cos(x + y) * (cos/sin)(π/4) * (cos/sin)(π/6) = -√3/3
解析2
函数z = sin(x + y)在点(π/4, π/6)的 全微分为dz = cos(x + y) * cos(π/4) * cos(π/6) = -√3/3。
答案3
dz = e^(x + y) * (e^1) * (e^0) = e^(1+0) = e
高阶导数与高阶全微分
高阶导数可以用于计算高阶全微分, 高阶全微分可以用于研究函数的更高 阶的几何特性。
02
全微分的基本公式和法则
链式法则
总结词
链式法则描述了复合函数的全微分计算方法。
详细描述
链式法则是全微分的重要法则之一,它指出如果z是由y和x通过复合函数f(g(y)) 得到的,那么全微分dz=d(f(g(y)))/dz * dy。具体来说,如果u=g(y)且z=f(u) ,那么dz=d(f(u))/du * du=d(f(u))/du * d(g(y))/dy * dy。

高等数学第八章第四节

高等数学第八章第四节
同理可得
z B . y
目录
上一页 下一页
退 出
一元函数在某点的导数存在
微分存在.
多元函数的各偏导数存在
全微分存在.
xy 2 2 x y 例如, f ( x , y ) 0
x2 y2 0
2 2
.
x y 0
在点(0,0) 处有
f x (0,0) f y (0,0) 0
f ( x ,0) f (0,0) 00 lim lim 0, f x (0,0) x 0 x x 0 x
同理
f y (0,0) 0.
目录 上一页 下一页 退 出
当( x , y ) (0,0) 时,
1 x2 y 1 cos 2 , f x ( x, y ) y sin 2 2 2 2 3 2 x y (x y ) x y
微分存在,
定理2(充分条件) 如果函数z f ( x , y ) 的偏
z z ( x, y) 导数 、 在点( x , y ) 连续,则该函数在点 x y
可微分.
证 z f ( x x , y y ) f ( x , y )
[ f ( x x , y y ) f ( x , y y )]
二元函数 对 x 和对 y 的偏增量
二元函数 对 x 和对 y 的偏微分
目录
上一页 下一页
退 出
全增量的概念
如果函数z f ( x , y ) 在点( x , y ) 的某邻域内 有定义,并设 P ( x x , y y ) 为这邻域内的 任意一点,则称这两点的函数值之差
f ( x x , y y ) f ( x , y ) 为函数在点 P 对应于自变量增量x , y 的全增 量,记为 z , 即 z = f ( x x , y y ) f ( x , y )

高等数学试卷B1

高等数学试卷B1

福州职业技术学院成人高等学历教育2008-2009学年度第二学期期考《高等数学》试卷(B) (完卷时间: 90分钟)电力系统自动化技术 专业 08级一、 选择题(每题3分,共36分) 1.微分方程0'4''=-y y 的通解为( ) A xxe c e c y 421+= B xe c c y 421+=C x x e c e c y 4221+=D x e c y 4= 2.下列说法错误的是( ) A 'sin y x y =+是一阶微分方程; B x y y =+22'是二阶微分方程;C xe y =1和xe y 22=都是微分方程02'3''=+-y y y 的解;D 0arctan )1(42=-+xdx y dy x 是可分离变量的微分方程; 3.下列给出的函数组中为线性相关的是( )A x, x+1B sinx, cosxC lnx 3 , lnx 2D e x , e 2x 4.下列平面中,过OZ 轴的是( )A z=2x+3B 2x+5y=0C 3x-2y=1D x+2y-3z=05.若→→→→==b a n b m a //},,2,4{},1,,2{,则( )A m=1,n=2B m=2,n=1C m=1,n=0.5D m=0.5,n=1 6.直线011231-=-=-z y x 与ox 轴的夹角为( ) A6π B 4π C 3π D 2π 7.设4//,3//==→→b a ,且→a 与→b 的夹角为120°,则//→→+b a =( )A 13B 26C 13D 268.xyxy y x 93lim )0,0(),(+-→的值为( ) A61 B 61- C 0 D 1 9.设平面052:1=++-z y x π与平面032:2=-++z y x π,则( ) A 1π⊥2π B 1π∥2π C 1π与2π夹角为6πD 1π与2π夹角为3π 10.函数z=x 3+4x 2+2xy+y 2的驻点为( )A(0,0),(1,1) B(0,0),(2,-2) C(1,1),(2,2) D(0,0),(-2,2) 11.二次积分⎰⎰1002sin xxydy x dx 的值为( ) A)1sin 1(21+ B )1sin 1(21- C )1cos 1(21- D )1cos 1(21+ 12.级数∑∞=--111)1(n pn n 的敛散性为( ) A p>1时,条件收敛 B 0<p<1时,绝对收敛 C p>1时,绝对收敛 D 0<p ≤1时,发散 二、 填空题(每题3分,共18分)1. 微分方程0'4''=-y y 的通解为—.2.起点为M(1,0,-3),终点为N(3,-4,1)的向量MN 的模为 ——。

大一高数b期末考试试题及答案

大一高数b期末考试试题及答案

大一高数b期末考试试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-4x+3的零点个数为:A. 0个B. 1个C. 2个D. 3个2. 曲线y=x^3-3x^2+2x+1在点(1,-1)处的切线斜率为:A. 0B. 1C. 2D. -13. 以下哪个函数是奇函数:A. y=x^2B. y=x^3C. y=x^2+1D. y=x^3-14. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. -1D. 不存在5. 以下哪个积分是发散的:A. ∫(0,1) 1/x dxB. ∫(0,1) x^2 dxC. ∫(0,1) e^x dxD. ∫(0,1) ln(x) dx6. 以下哪个级数是收敛的:A. 1+1/2+1/4+1/8+...B. 1-1/2+1/3-1/4+...C. 1+2+3+4+...D. 1/2+1/4+1/8+1/16+...7. 以下哪个矩阵是可逆的:A. [1 0; 0 0]B. [1 1; 1 1]C. [1 0; 0 1]D. [0 1; 1 0]8. 以下哪个行列式等于0:A. |1 2; 3 4|B. |2 0; 0 2|C. |1 1; 1 1|D. |1 -1; -1 1|9. 以下哪个方程组有唯一解:A. x+y=1x-y=1B. x+y=12x+2y=2C. x+2y=32x+4y=6D. x+y=1x+2y=310. 以下哪个二重积分的计算结果是2π:A. ∬(0,2π) (x^2+y^2) dxdyB. ∬(0,2π) (x^2+y^2) dxdyC. ∬(0,π) (x^2+y^2) dxdyD. ∬(0,π) (x^2+y^2) dxdy二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x的导数为_________。

2. 曲线y=x^2-4x+3在点(2,-1)处的切线方程为y-(-1)=_________(x-2)。

福建省高校专升本统一招生考试高等数学第三版的课后答案

福建省高校专升本统一招生考试高等数学第三版的课后答案

福建省高校专升本统一招生考试高等数学第三版的课后答案1. 函数的定义域是(其中k为整数)( ) [单选题] *A.B.(正确答案)C.D.答案解析:,所以选B.2. 函数是( ) [单选题] *A.偶函数B.奇函数(正确答案)C.非奇非偶函数D.既奇又偶函数答案解析:,即为奇函数,故选B.3. 设,,当是,下列说法正确的是( ) [单选题] * A.f(x)是g(x)的高阶无穷小B.f(x)是g(x)的低阶无穷小C.f(x)是g(x)的等价无穷小D.f(x)是g(x)的同阶无穷小,但不等价(正确答案)答案解析:4. [单选题] *A.B.(正确答案)C.D.答案解析:5. [单选题] *A.连续点B.可去间断点(正确答案)C.跳跃间断点D.第二类间断点答案解析:6. 6 [单选题] *A.B.C.(正确答案)D.答案解析:7. [单选题] *A.B.(正确答案)C.D.答案解析:8. [单选题] *A.(正确答案)B.C.D.答案解析:9. [单选题] *A.0B.∞C.1/12(正确答案)D.2答案解析:10. [单选题] * A.8(正确答案)B.4C.1/4D.1/8答案解析:11. 下列函数在给定区间上满足罗尔定理条件的是( ) [单选题] *A.B.C.(正确答案)D.答案解析:12. [单选题] *A.0(正确答案)B.2aC.4aD.8a答案解析:13. [单选题] *A.(正确答案)B.C.D.答案解析:14. [单选题] *A.4/3B.5/3(正确答案)C.7/3D.16/3答案解析:15. [单选题] *A.1B.2/π(正确答案)C.π/2D.π/4答案解析:16. 下列方程中是线性微分方程的是( ) [单选题] *A.B.C.(正确答案)D.答案解析:17. 函数在(1,处对y的偏导数为( ) [单选题] * A.7/2B.-17/4(正确答案)C.1D.-2答案解析:18. 设,则( ) [单选题] *A.B.(正确答案)C.D.答案解析:19.[单选题] *A.可能有极值,也可能没有极值(正确答案) B.必有极大值C.必有极值,可能是极大值,也可能是极小值D.必有极小值答案解析:20. 二次积分交换积分次序后得( ) [单选题] *A.B.C.D.(正确答案)答案解析:基本信息:[矩阵文本题] *姓名:________________________ 班级:________________________21. [单选题] *A.B.(正确答案)C.D.22. [单选题] *A.B.(正确答案)C.D.23. [单选题] *A.-1B.0(正确答案)C.1D.24. [单选题] *A.1B.2(正确答案)C.3D.425. 下列积分为零的是() [单选题] *A.B.C.D.(正确答案)26. [单选题] *A.B.C.(正确答案)D.27. [单选题] *A.必要条件B.充分条件(正确答案)C.充要条件D.无关条件28. [单选题] *A.可能存在(正确答案)B.可能不存在C.一定存在D.一定不存在29. [单选题] *A(正确答案)BCD30. [单选题] *AB(正确答案)CD31. [单选题] *A(正确答案)BCD32. [单选题] *A(正确答案)BCD33. [单选题] *A(正确答案)BCD34. [单选题] *ABC(正确答案)D35. [单选题] *AB(正确答案)CD36. [单选题] *ABC(正确答案)D37. [单选题] *ABCD(正确答案)38. [单选题] * |q|>1(正确答案)q=1|q|<1q<139. [单选题] *A B(正确答案)C D40.[单选题] * A(正确答案) BCD。

福州大学高等数学 第六章多元函数微分学习题

福州大学高等数学 第六章多元函数微分学习题

2.设z y x , 求z xx , z yy和z xy .
解 x y x ln y, z
z xx y x (ln y )2 ,
z yy x( x 1) y x 2 ,
z y xy x 1 ,
z xy xy
x 1
1 x ln y y y x 1 (1 x ln y ). y
f y (1,2) 4.
1 sin( x 2 y ) 3.设f ( x , y ) xy 0
xy 0 xy 0
, 求f x (0,1).
f (0 x ,1) f (0,1) 解 f x (0,1) lim x 0 x
lim 1 sin( x )2 x x
x 0
sin( x )2 lim 1. 2 x 0 ( x )
4.利用全微分计算 ln( 3 1.03 4 0.98 1)的近似值.
解 设f ( x , y ) ln( 3 x
4
y 1),
3 1 4 y 4 , x 4 y 1
f x ( x, y)
(2)f x ( x , y ), f y ( x , y )在(0,0)处是否连续?为什么?
解 (1)可微.
1 x sin 2 f ( x ,0) f (0,0) x 0, lim lim x 0 x 0 x x
2
1 y sin 2 f (0, y ) f (0,0) y lim lim 0, y 0 y 0 y y
.
4.设z ln x y , 则当x y 0时, z xx z yy
2 2 2 2
0
.
z 5.曲线

高等数学B答案含综合练习.docx

高等数学B答案含综合练习.docx

高等数学(B)(1)作业答案高等数学( B)( 1)作业 1初等数学知识一、名词解释:邻域——设 a和是两个实数,且0 ,满足不等式x a的实数x的全体,称为点 a 的邻域。

绝对值——数轴上表示数 a 的点到原点之间的距离称为数 a 的绝对值。

记为 a 。

区间——数轴上的一段实数。

分为开区间、闭区间、半开半闭区间、无穷区间。

数轴——规定了原点、正方向和长度单位的直线。

实数——有理数和无理数统称为实数。

二、填空题1.绝对值的性质有 a 0 、 ab a b 、a aa a 、(b 0) 、 ab ba b a b 、 a b a b 。

2.开区间的表示有(a,b)、。

3.闭区间的表示有[a,b]、。

4.无穷大的记号为。

x. (, ) 表示全体实数,或记为。

56.(, b) 表示小于b的实数,或记为x b 。

7.(a,)表示大于a的实数,或记为 a x。

8.去心邻域是指(a, a) (a, a) 的全体。

用数轴表示即为.满足不等式1 的数 x 用区间可表示为, 1 ] 。

921( 12x三、回答题1.答:( 1)发展符号意识,实现从具体数学的运算到抽象符号运算的转变。

(2)培养严密的思维能力,实现从具体描述到严格证明的转变。

(3)培养抽象思维能力,实现从具体数学到概念化数学的转变。

(4)树立发展变化意识,实现从常量数学到变量数学的转变。

2.答:包括整数与分数。

3.答:不对,可能有无理数。

4.答:等价于 (1,5] 。

1 35.答: (, ) 。

2 2四、计算题1.解: (x 1)( x 2) 0x 1 0 x 1 0x 2或x 1 。

x2或 x 2解集为 ( ,1) (2,) 。

2.解: x26x5 0( x 1)( x 5)x 1 0 x 1x 5或x 50 x 5或x 1解集为( ,1] [5, ) 。

3.解: x 23x 10 0 ( x 2)( x5) 0x 1 2, x 2 5为方程的解。

《高等数学B》同步练习册(下)答案与提示(第二版)

《高等数学B》同步练习册(下)答案与提示(第二版)

参考答案与提示 第8章 多元函数微分学§8.1 多元函数的基本概念1、(1)}14),{(22≥+y x y x (2)}1),{(<+y x y x (3)}0,),,({22222≠+≥+y x z y x z y x (4)连续 (5)x y =2 2、提示:kx y =令 3、(1) 41-(2) 0 §8.2 偏导数1.(1) 1-; (2) 2e π2. (1)yx y x y z y x y x z 2csc 2,2csc 22-=∂∂=∂∂; (2)xyy xy z yx ++=1)1(2, ]1)1[ln()1(xy xy xy xy z y y ++++= 3. 22222)(2y x xy x z +=∂∂, 222222)(y x x y y x z +-=∂∂∂, 22222)(2y x xyy z +-=∂∂ 4.(1)rzz r r y y r r x x r =∂∂=∂∂=∂∂,,,(2)322223222232222,,rz r z r r y r y r r x r x r -=∂∂-=∂∂-=∂∂ §8.3 全微分及其应用1. (1)dx 2 (2) 0.25e2. (1) ))(cos(xdy ydx xy dz +=(2) )ln ln (1ydz xy xzdy ydx yz y du xz ++=-§8.4 多元复合函数求导法1、(1) 212f xe f y xy '+'- (2) 12+'ϕx (3) t t t 232423-+2、(1) 321f yz f y f u x '+'+'=, 32f xz f x u y '+'=, 3f xy u z '=;(2) f x f z xx ''+'=''242, f xy z xy ''=''4(3) 2231122121f yxf xy f y f y x z ''-''+'-'=∂∂∂ 3. z xy xyf 2)(2或§8.5 隐函数的求导公式1、y x y x -+ 2、z x 2sin 2sin -, zy2s i n 2s i n - 3、322224)()2(xy z y x xyz z z ---4、 2121F y F x dyF z dx F z dz '+''+'=§8.6 多元函数的极值及其应用1、极小值2)1,21(ef -=-2. 4)1,2(,64)2,4(==-==f M f m3.两直角边边长为l 21时,周长最大. 4. 140,90==y x总习题八1、(1) }10),{(22<+<y x y x ϕϕ''+'+''y f y(2) 1 (3) 232)43(1123t t t -+- (4) )(2dy dx e + (5) 既非充分也非必要,充分,必要2、(1) B (2) C (3) A (4) D (5) B3、 2331213sin cos cos sin f y e f x e f x y f e y x y x y x ''-''+''-'+++ 33)(2f e y x ''++ 4.θθsin cos y ux u r u ∂∂+∂∂=∂∂, θθθcos )sin (r yu r x u u ⋅∂∂+-⋅∂∂=∂∂ 5、)2()2(222122112221f e f ye x f y x f e y x x f x xyxy xy ''+''+''+'++' 6. 222y x e--7. yz xy z y z z x z x z +=∂∂+=∂∂2,,3222)(z x z x z +-=∂∂8. ϕϕϕϕ''+=∂∂'-=∂∂xy xz y y z x y xy x z 322, 9. 3232)1(22---z x z z z11. 8)2,0(,0)0,0(====f M f m12.338abc13.359max +=d 359m i n -=d14. 最近点)21,21,21(-,距离为632, 最远点)21,21,21(--,距离为63415.(1) 25.1,75.021==x x (2) 5.1,021==x x 16.(1) 7,5,10,42211====P Q P Q 时有最大利润52=L ; (2) 4,5,82121====Q Q P P 时有最大利润49=L ,实行价格差别策略时利润较大.第9章 二重积分§9.1 二重积分的概念与性质1、214I I =2、σd y x ⎰⎰+D)(ln σd y x ⎰⎰+<D2)]([ln 3、(1) 82≤≤I (2) ππ10036≤≤I§9.2 二重积分的计算1、(1)⎰⎰x xdy y x f dx 240),(或⎰⎰y y dx y x f dy 4402),((2) ⎰⎰--x x dy y x f dx 1110),( 或⎰⎰⎰⎰-+-+y y dx y x f dy dx y x f dy 10101001),(),((3) ⎰⎰e e ydx y x f dy ),(10(4) ⎰⎰--21011),(x dy y x f dx2、(1) 38 (2) 2- (3) 49 (4) 213、(1)⎰⎰120)(rdr r f d πθ(2)⎰⎰-θππθθcos 2022)(tan rdr f d(3) ⎰⎰2220)(rdr r f d πθ (4) ⎰⎰θπθθθsin 2020)sin ,cos (R rdr r r f d(5)r d r d ⎰⎰θπθcos 102404、(1) 62π (2) 3R π(3)原积分当1>p 时收敛,收敛到1-p π;1≤p 时发散 5、π6总习题九1、(1)π32(2) 0 (3)⎰⎰⎰⎰-------+y yy y dx y x f dy dx y x f dy 1111101),(),(22(4)⎰⎰+--)1(21)1(2111),(y y dx y x f dy(5)⎰⎰--x x dy y x f dx 21110),(2、(1) A (2) B (3) D3、(1) 2301ab (2) π23- (3) 21-e (4)422ln ππ- (5)482ππ-(6)2494R R ππ+ (7)4ln 23+ (8) π80 (9)12-π (10) 2049 (11)2π-4、(1)e e 2183- (2) π33 5.34 6. 27 7.964316-π 9. )]0()1([f f -π10、提示:⎰⎰x a dy y f x f dx)()(⎰⎰=y a dx y f x f dy 0)()(11、提示:定积分换元后交换积分次序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档