方程与一次方程(组)及解法
第五章二元一次方程(组)及其解法(解析版)

第五章二元一次方程组考点类型大总结【知识点及考点类型梳理】知识点一、二元一次方程(组)考点类型一、二元一次方程(组)考点类型二、用字母表示数考点类型三、二元一次方程(组)的解知识点二、二元一次方程组的求解考点类型一、代入法考点类型二、消元法考点类型三、含参数类型考点类型四、整体思想、换元思想考点类型五、新定义风向知识点一、二元一次方程(组)考点类型一、二元一次方程(组)1.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,则m ,n 的值为()A .,11m n ==-B .1,1m n =-=C .14,33m n ==-D .14,33m n =-=【答案】A根据二元一次方程的定义,得出关于m ,n 的方程组,求出答案.【详解】∵关于x 、y 的方程x 2m﹣n ﹣2+y m +n +1=6是二元一次方程,∴22111m n m n --=⎧⎨++=⎩,解得11m n =⎧⎨=-⎩.故选:A .【点睛】此题考查了二元一次方程的定义和二元一次方程组的解法,熟练掌握二元一次方程的定义是解本题的关键.2.若1335m n m x y --+=是二元一次方程,那么m 、n 的值分别为()A .2m =,3n =B .2m =,1n =C .1m =-,2n =D .3m =,4n =【答案】B【分析】利用二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程判断即可.【详解】解:∵1335m n m x y --+=是二元一次方程,∴m -1=1,3n -m =1,解得:m =2,n =1,故选:B .此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.3.方程23235,3,3,320,6x y xy x x y z x y y -==+=-+=+=中是二元一次方程的有___个.【答案】1【分析】二元一次方程满足的条件:整式方程;含有2个未知数;未知数的最高次项的次数是1.【详解】解:符合二元一次方程的定义的方程只有2x −3y =5;xy =3,x 2+y =6的未知数的最高次项的次数为2,不符合二元一次方程的定义;x +3y=1不是整式方程,不符合二元一次方程的定义;3x −y +2z =0含有3个未知数,不符合二元一次方程的定义;由上可知是二元一次方程的有1个.故答案为:1.【点睛】主要考查二元一次方程的概念.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.4.如果2120a b x y -++=是二元一次方程,则a =____,b =_____.【答案】3【分析】根据二元一次方程的定义可知21a -=,11b +=,据此可解出a 、b .解:依题意,得:2111a b -=⎧⎨+=⎩,解得:30a b =⎧⎨=⎩.故答案为:3,0.【点睛】此题考查的是对二元一次方程的定义理解,根据未知数的次数为1,可以列出方程组求解.5.下列方程组中,是二元一次方程组的是()A .35233x y x z +=⎧⎨-=⎩B .12163m n m n +=⎧⎪⎨+=⎪⎩C .56m n mn n +=⎧⎨+=⎩D .321026x y x y +=⎧⎪⎨+=⎪⎩【答案】B【分析】本题根据二元一次方程组的基本形式及特点进行求解即可,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A :含有三个未知数,不是;B :符合条件,是;C :mn 项的次数为2,不是;D :存在不是整式的式子,不是.故选:B .本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.6.下列方程组中是二元一次方程组的是()A .141y x x v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩【答案】C【分析】二元一次方程组是由两个未知数且未知数最高次数为一次的两个方程组成;根据二元一次方程组的定义逐项判断即得答案.【详解】解:A 、方程组141y x x v ⎧+=⎪⎨⎪-=⎩中第一个方程不是整式方程,不是二元一次方程组,所以本选项不符合题意;B 、方程组中有三个未知数,不是二元一次方程组,所以本选项不符合题意;C 、该方程组是二元一次方程组,所以本选项符合题意;D 、方程组中第二个方程未知数x 、y 的次数是2,不是二元一次方程组,所以本选项不符合题意.故选:C .【点睛】本题考查了二元一次方程组的定义,属于基础概念题型,熟知二元一次方程组的概念是关键.7.已知方程组2(2)13(3)40m m x x m y -+=⎧⎪⎨--+=⎪⎩是关于x ,y 的二元一次方程组,则()A .2m ≠±B .3m =C .3m =-D .3m ≠【分析】二元一次方程组:由两个整式方程组成,两个方程一共含有两个未知数,且含未知数的项的最高次数是1,这样的方程组是二元一次方程组,根据定义列方程或不等式,从而可得答案.【详解】解: 方程组2(2)13(3)40m m x x m y -+=⎧⎪⎨--+=⎪⎩是关于x ,y 的二元一次方程组,203021m m m ⎧+≠⎪∴-≠⎨⎪-=⎩解得:233m m m ≠-⎧⎪≠⎨⎪=±⎩3.m ∴=-故选:.C 【点睛】本题考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.考点类型二、用字母表示数8.由132x y -=可以得到用x 表示y 的式子为()A .223x y -=B .223x y =-C .2133x y =-D .223x y =-【分析】先移项,后系数化为1,即可得.【详解】解:132x y -=移项,得123y x =-,系数化为1,得223x y =-,故选B .【点睛】本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.9.在二元一次方程142653x y -=中,用含x 的代数式表示y ,则下面结论正确的是()A .20524xy -=B .52024x y -=C .52024x y +=D .52024x y +=-【答案】B【分析】先把二元一次方程142653x y -=去分母得:52420x y -=,再通过移项合并同类项可得结果.【详解】解:由二元一次方程142653x y -=去分母,得:52420x y -=,移项合并同类项得:52024x y -=,系数化为1得:52024x y -=,故选:B .【点睛】本题考查了二元一次方程的变形,解题的关键是熟练掌握解二元一次方程的基本步骤.10.把方程635x y -=改成用含x 的代数式表示y 为y =__________.【答案】2x -53【分析】把x 看作已知数求出y 即可.【详解】解:6x -3y =5,3y =6x -5,解得:y =2x -53故答案为:y =2x -53【点睛】此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y .考点类型三、二元一次方程(组)的解11.已知14x y =-⎧⎨=⎩是方程mx ﹣y =3的解,则m 的值是()A .﹣1B .1C .﹣7D .7【答案】C【分析】把14xy=-⎧⎨=⎩代入mx﹣y=3,得到关于m的方程,进而即可求解.【详解】解:14xy=-⎧⎨=⎩是方程mx﹣y=3的解,∴-m﹣4=3,解得:m=-7,故选C.【点睛】本题主要考查二元一次方程的解,掌握方程的解的定义,是解题的关键.12.如果方程组23759x yx y+=⎧⎨-=⎩的解是方程716x my+=的一个解,则m的值为()A.0B.1C.2D.3【答案】C【分析】求出方程组的解得到x与y的值,代入方程计算即可求出m的值.【详解】解:23759x yx y+=⎧⎨-=⎩①②{,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m =2,故选:C .【点睛】此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.13.二元一次方程210x y +=有______个解,有________个正整数解,它们是___________.【答案】无穷多412348642x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩;;;【分析】将x 看做已知数求出y ,即可确定出正整数解的个数.【详解】解:由方程210x y +=,得到102y x =-,当x =1时,y =8;当x =2时,y =6;当x =3时,y =4;当x =4时,y =2.则正整数解有4个,故答案为:无穷多;4;12348642x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩;;;.【点睛】本题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.若二元一次方程组51cx ay x y -=⎧⎨+=⎩和23151x y ax by -=⎧⎨+=⎩解相同,则可通过解方程组()求得这个解.A .151cx ay x y -=⎧⎨+=⎩B .51cx ay ax by -=⎧⎨+=⎩C .23151x y x y -=⎧⎨+=⎩D .23151x y ax by -=⎧⎨+=⎩【答案】C【分析】根据方程组同解,可知方程组的解同时满足四个方程,将两个已知方程组成方程组即可.【详解】解:∵二元一次方程组51cx ayx y-=⎧⎨+=⎩和23151x yax by-=⎧⎨+=⎩解相同,方程组的解同时满足这四个方程;∴解方程组23151x yx y-=⎧⎨+=⎩即可求出方程组的解,故选:C.【点睛】本题考查了方程组同解问题,解题关键是明确方程组的解的意义,把已知方程组成方程组.15.若关于x,y的方程组48ax byax by-=-⎧⎨+=⎩的解是23xy=⎧⎨=⎩,则方程组(3)(1)4(3)(1)8a xb ya xb y+--=-⎧⎨++-=⎩的解是()A.14xy=-⎧⎨=⎩B.23xy=⎧⎨=⎩C.14xy=⎧⎨=-⎩D.52xy=⎧⎨=⎩【答案】A 【分析】通过观察所给方程组的关系可得3213xy+=⎧⎨-=⎩,求出x、y即可.【详解】解:∵关于x,y的方程组48ax byax by-=-⎧⎨+=⎩的解是23xy=⎧⎨=⎩,∴234 238a ba b-=-⎧⎨+=⎩,又∵(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩,∴3213x y +=⎧⎨-=⎩,解得14x y =-⎧⎨=⎩,∴方程组(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩的解为14x y =-⎧⎨=⎩,故选:A .【点睛】本题考查二元一次方程组的解,解题的关键是要知道两个方程组之间的关系.16.已知关于x 、y 的方程组242x y a x y a -=-⎧⎨-=⎩的解x 与y 互为相反数,则a =__________.【答案】2【分析】直接①-②可得42x y a +=-,由题意可得0x y +=,进而可得420a -=,再解即可.【详解】242x y a x y a-=-⎧⎨-=⎩①②,①-②得:42x y a +=-,x y 、互为相反数,0x y ∴+=,420a∴-=,解得:2a=故答案为:2.【点睛】本题主要考查了加减消元法解二元一次方程组,解题的关键是挖掘出内含在题干中的已知条件x=−y.知识点二、二元一次方程组的求解考点类型一、代入法17.用代入法解下列方程组:(1)3 759 y xx y=+⎧⎨+=⎩;(2)35 5215 s ts t-=⎧⎨+=⎩;(3)3416 5633 x yx y+=⎧⎨-=⎩;(4)4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩.【答案】(1)1252xy⎧=-⎪⎪⎨⎪=⎪⎩;(2)25112011st⎧=⎪⎪⎨⎪=⎪⎩;(3)612xy=⎧⎪⎨=-⎪⎩;(4)23xy=⎧⎨=⎩.【分析】根据代入法解二元一次方程组即可,代入消元法是将方程组中的一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,这就消去了一个未知数,代入消元法简称代入法.【详解】(1)3759y x x y =+⎧⎨+=⎩①②将①代入②得:75(3)9x x ++=,解得12x =-,将12x =-代入①得,52y =,∴原方程组的解为:1252x y ⎧=-⎪⎪⎨⎪=⎪⎩;(2)355215s t s t -=⎧⎨+=⎩①②由①得,35t s =-③,将③代入②得,52(35)15s s +-=,解得2511s =,将2511s =代入③,得,2011t =,∴原方程组的解为:25112011s t ⎧=⎪⎪⎨⎪=⎪⎩;(3)34165633x y x y +=⎧⎨-=⎩①②由①得344y x =-③,将③代入②得,56(4)334x x 3--=,解得6x =,将6x =代入③,得,12y =-,∴原方程组的解为:612x y =⎧⎪⎨=-⎪⎩;(4)4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩①②由①得444332x y y --=--,即45y x =-③,由②可得3212x y +=④,将③代入④得32(45)12x x +-=,解得2x =,将2x =代入③,得,3y =,∴原方程组的解为:23x y =⎧⎨=⎩;【点睛】本题考查了代入法解二元一次方程组,掌握代入法是解题的关键.考点类型二、消元法18.用加减法解下列方程组:(1)29321x y x y +=⎧⎨-=-⎩;(2)52253415x y x y +=⎧⎨+=⎩;(3)258325x y x y +=⎧⎨+=⎩;(4)236322x y x y +=⎧⎨-=-⎩.【答案】(1)272x y =⎧⎪⎨=⎪⎩;(2)50x y =⎧⎨=⎩;(3)9111411x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)6132213x y ⎧=⎪⎪⎨⎪=⎪⎩.【分析】(1)根据加减消元可直接进行求解方程组;(2)根据加减消元法可直接进行求解方程组;(3)根据加减消元法可直接进行求解方程组;(4)根据加减消元法可直接进行求解方程组.【详解】解:(1)29321x y x y +=⎧⎨-=-⎩①②①+②得:48x =,解得:2x =,把2x =代入①式得:229y +=,解得:72y =,∴原方程组的解为272x y =⎧⎪⎨=⎪⎩;(2)52253415x y x y +=⎧⎨+=⎩①②①×2-②得:735x =,解得:5x =,把5x =代入①得:55225y ⨯+=,解得:0y =,∴原方程组的解为50x y =⎧⎨=⎩;(3)258325x y x y +=⎧⎨+=⎩①②①×3-②×2得:1114=y ,解得:1411y =,把1411y =代入①得:1425811x +⨯=,解得:911x =;∴原方程组的解为9111411x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)236322x y x y +=⎧⎨-=-⎩①②①×2+②×3得:136x =,解得:613x =,把613x =代入①得:623613y ⨯+=,解得:2213y =,∴原方程组的解为6132213x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.考点类型三、含参数类型19.甲、乙两人同解方程组515411ax y x by +=⎧⎨-=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得54x y =⎧⎨=⎩,试求20202021()a b +-的值.【答案】0【分析】将31x y =-⎧⎨=-⎩代入第二个方程可得b 的值,将54x y =⎧⎨=⎩代入第一个方程得a 的值,即可求出所求式子的值.【详解】解:将31x y =-⎧⎨=-⎩代入411x by -=-得:1211-+=-b ,解得1b =将54x y =⎧⎨=⎩代入方程组中的515ax y +=得:52015a +=,即1a =-20202021()ab ∴+-20202021(1)(1)110=-+-=-=.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.20.若关于x 、y 的二元一次方程组13x y x y -=⎧⎨+=⎩与方程组4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩有相同的解.求m 、n 的值.【答案】m =1,n =3【分析】根据题意列不含m 、n 的方程组求解,求出x ,y 值,代入4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩中即可解得m ,n .【详解】解:解方程组13x y x y -=⎧⎨+=⎩得:21x y =⎧⎨=⎩,代入4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩中得:21314m n m n +=⎧⎪⎨-=⎪⎩,解得:13m n =⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解,解决本题的关键是根据题意重新联立方程组.21.已知关于x 、y 的方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,求代数式2a +b 的平方根.【答案】代数式2a +b 的平方根是±1.【分析】由已知解方程组2333211x y x y -=⎧⎨+=⎩,解得31x y =⎧⎨=⎩,将31x y =⎧⎨=⎩代入233ax by +=中,得21a b +=,即可求解.【详解】解: 方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,∴2333211x y x y -=⎧⎨+=⎩与2331ax by ax by +=⎧⎨+=-⎩的解相同,∴2333211x y x y -=⎧⎨+=⎩①②,①2⨯得,466x y -=③,②3⨯得,9633x y +=④,③+④得,3x =,将3x =代入①得,1y =,∴方程组的解为31x y =⎧⎨=⎩,将31x y =⎧⎨=⎩代入233ax by +=中,得21a b +=,2a b ∴+的平方根为±1.【点睛】本题考查二元一次方程组的解,理解同解二元一次方程组的含义,将所给方程组重新组合新的方程组,灵活运用加减消元法和代入消元法求方程组的解是解题的关键,也考查了平方根的性质.考点类型四、整体思想、换元思想22.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩【答案】7656x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】观察方程组的特点,把2x y -看作一个整体,得到322x y -=,将之代入②,进行消元,得到33422x ⎛⎫+= ⎪⎝⎭,解得76x =,进一步解得56y =,从而得解.【详解】解:()()423324x y x y x y -=⎧⎪⎨--=⎪⎩①②由①得322x y -=③,把③代入②得33422x ⎛⎫+⨯= ⎪⎝⎭,解得76x =,把76x =代入③,得73262y ⨯-=,解得56y =,故原方程组的解为7656x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.23.阅读材料在解方程组253 4115 x y x y +=⎧⎨+=⎩①②时,明明采用了一种“整体代换”的解法.解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③;把方程①代入③得2×3+y =5,∴y =﹣1,把y =﹣1代入①,得x =4,∴方程组的解为41x y =⎧⎨=-⎩.请你解决以下问题;模仿明明的“整体代换”法解方程组436 8718 x y x y -=⎧⎨-=⎩①②.【答案】36x y =-⎧⎨=-⎩【分析】将方程②变形为()24318x y y --=,再将436x y -=整体代入即可求方程组.【详解】解:4368718x yx y-=⎧⎨-=⎩①②中将②变形,得()24318x y y--=③,将①代入③得,2×6﹣y=18,∴y=﹣6,将y=﹣6代入①得,x=﹣3,∴方程组的解为36 xy=-⎧⎨=-⎩.【点睛】本题考查了整体代换法解二元一次方程组的解法,解题的关键是读懂题意,明确整体思想.24.阅读下列材料:小明同学遇到下列问题:解方程组23237432323832x y x yx y x y+-⎧+=⎪⎪⎨+-⎪+=⎪⎩小明发现如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的(2x+3y)看成一个整体,把(2x﹣3y)看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y.原方程组化为743832m nm n⎧+=⎪⎪⎨⎪+=⎪⎩,解的6024mn=⎧⎨=-⎩,把6024mn=⎧⎨=-⎩代入m=2x+3y,n=2x﹣3y,得23602324x yx y+=⎧⎨-=-⎩解得914xy=⎧⎨=⎩所以,原方程组的解为914xy=⎧⎨=⎩.请你参考小明同学的做法解方程组:(1)3 6101 610x y x yx y x y+-⎧+=⎪⎪⎨+-⎪-=-⎪⎩;(2)52113213x y x y⎧+=⎪⎪⎨⎪-=⎪⎩.【答案】(1)137x y =⎧⎨=-⎩;(2)1312x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】认真理解题目中给定的整体代换思路,按照所给的方法求出方程组的解即可.【详解】解:(1)令6x y m +=,10x y n -=,原方程组化为31m n m n +=⎧⎨-=-⎩,解得:12m n =⎧⎨=⎩,∴16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩,解得:137x y =⎧⎨=-⎩.∴原方程组的解为137x y =⎧⎨=-⎩.(2)令1m x =,1n y=,原方程组可化为:52113213m n m n +=⎧⎨-=⎩,解得:32m n =⎧⎨=-⎩,∴1312x y ⎧=⎪⎪⎨⎪=-⎪⎩,经检验,1312x y ⎧=⎪⎪⎨⎪=-⎪⎩是原方程的解.∴原方程组的解为1312x y ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了解二元一次方程组,整体代换是解题的关键.考点类型五、新定义风向25.在平面直角坐标系中,已知点(),A x y ,点()2,2B x my mx y --(其中m 为常数,且0m ≠),则称B 是点A 的“m 系置换点”.例如:点()1,2A 的“3系置换点”B 的坐标为()1232,2312-⨯⨯⨯⨯-,即()11,4B -.(1)点(2,0)的“2系置换点”的坐标为________;(2)若点A 的“3系置换点”B 的坐标是(-4,11),求点A 的坐标.(3)若点(),0A x (其中0x ≠),点A 的“m 系置换点”为点B ,且2AB OA =,求m 的值;【答案】(1)()28,;(2)()21,;(3)1m =±.【分析】(1)根据题中新定义直接将m 的值代入即可得出答案;(2)根据题中新定义列出关于x 、y 的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B 的坐标,再根据2AB OA =列方程求解即可得出答案.【详解】解:(1)点(2,0)的“2系置换点”的坐标为()22202220-⨯⨯⨯⨯-,,即()28,;(2)由题意得:2342311x y x y -⨯⨯=-⎧⎨⨯⨯-=⎩解得:21x y =⎧⎨=⎩∴点A 的坐标为:()21,;(3) (),0A x ∴点()2,2B x my mx y --为()20,20x m mx -⨯-即点B 坐标为(),2x mx ∴2AB mx =,OA x= 2AB OA =22mx x∴= m 为常数,且0m ≠∴1m =±.【点睛】本题考查了二元一次方程组的解法、绝对值方程,理解“m 系置换点”的定义并能运用是本题的关键.26.对x ,y 定义一种新的运算A ,规定:()()(),ax by x y A x y ay bx x y ⎧+≥⎪=⎨+<⎪⎩(其中0ab ≠).(1)若已知1a =,2b =-,则()4,3A =_________.(2)已知()1,13A =,()1,20A -=.求a ,b 的值;(3)在(2)问的基础上,若关于正数p 的不等式组()()3,21413,2A p p A p p m ⎧->⎪⎨---≥⎪⎩恰好有2个整数解,求m 的取值范围.【答案】(1)2-;(2)12a b =⎧⎨=⎩;(3)2618m -<-≤【分析】(1)根据新定义就是即可;(2)根据题中的新定义列出方程组,求出方程组的解即可得到a 与b 的值;(3)由(2)化简得A (x ,y )的关系式,先判断括号内数的大小,再转化成不等式求解即可.【详解】解:(1)根据题中的新定义得:1×4+3×(-2)=-2,故答案为-2;(2)根据题中的新定义得:320a b a b +=⎧⎨-=⎩,解得:12a b =⎧⎨=⎩;(3)由(2)化简得:A (x ,y )=()()22x y x y y x x y ⎧+≥⎪⎨+<⎪⎩,∴在关于正数p 的不等式组()()3214132A p p A p p m ⎧->⎪⎨---≥⎪⎩,,中,∴A (3p ,2p -1)=7p -2>4,A (-1-3p ,-2p )=-2p +2(-1-3p )=-8p -2≥m ,∴p >67,p ≤m 28+-∵恰好有2个整数解,∴2个整数解为1,2.∴2≤m28+-<3,∴-26<m≤-18.【点睛】本题主要考查新定义的运算,解决本题的关键是要按照定义式子中列出算式进行解方程和不等式组.。
一次方程组的古今表示及解法

一次方程组的古今表示及解法
一次方程组的古今表示及解法
一次方程组是指由一个或多个未知数组成的方程式的集合,一次方程组是数学里最重要的初等代数问题,也是学习数学的基础,它在很多科学技术研究中起着重要作用。
古代方程组的表示
早在古代,印度学者们就把方程写成两边的形式,就如今天“x+y=2”这样的形式,例如:
五世纪耶尼丝·桑哈里用以下公式表示一次方程:
六世纪马里亚诺·马基·拉帝用以下公式表示一次方程:
十一世纪阿拉伯学者拉希德·艾哈迈德·艾马迪亚也用以下公式表示一次方程:
今日方程组的表示
今天,我们对一次方程组的表示一般用一下形式表示:
ax+by=c
其中x、y是未知数,a、b、c是系数,这些系数可以是整数、有理数或是实数等。
一次方程组的解法
一次方程组可以采用消元法、把步法、图形解法、逐步逼近法等方法来求解。
1、消元法:消元法是将多个未知数的方程式组合成n个未知数的标准型求解的最常用的方法。
2、把步法:把步法是将多个未知数的方程式,先将一个未知数求解,用求解出来的值替换其它未知数,再求解出其它未知数的值,求解,这是一种比较容易理解的一种解法。
3、图形解法:把方程式绘制成图象,在图象上求解出未知数的值的过程,叫做图形解法。
4、逐步逼近法:逐步逼近法是在推测未知的值中,利用方程体右边的函数值,不断调整未知数的初值,做到调整未知值无限接近实际解,直到未知值满足方程体的要求。
各种方程(一元一次、二元一次、三元一次、一元一次、二元二次方程的解法)的解法

一元一次、二元一次、三元一次、一元一次、二元二次方程的解法整理稿方程含有未知数的等式叫方程。
等式的基本性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。
则:(1)a+c=b+c(2)a-c=b-c等式的基本性质2:等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
(3)若a=b,则b=a(等式的对称性)。
(4)若a=b,b=c则a=c(等式的传递性)。
【方程的一些概念】方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
解方程的依据:1.移项;2.等式的基本性质;3.合并同类项;4. 加减乘除各部分间的关系。
解方程的步骤:1.能计算的先计算;2.转化——计算——结果例如:3x=5*63x=30x=30/3x=10移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
一元一次方程人教版5年级数学上册第四章会学到,冀教版7年级数学下册第七章会学到,苏教版5年级下第一章定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。
通常形式是kx+b=0(k,b 为常数,且k≠0)。
一般解法:⒈去分母方程两边同时乘各分母的最小公倍数。
⒉去括号一般先去小括号,再去中括号,最后去大括号。
但顺序有时可依据情况而定使计算简便。
可根据乘法分配律。
⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
⒋合并同类项将原方程化为ax=b(a≠0)的形式。
⒌系数化一方程两边同时除以未知数的系数。
⒍得出方程的解。
同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
七年级下-二元一次方程组的定义及解法

二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。
注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。
例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。
注意三条:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。
例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。
2.未知数的次数为1。
注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。
例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。
'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。
二元一次方程组与一次函数

二元一次方程组与一次函数一、定义和性质:ax + by = cdx + ey = f其中a、b、c、d、e、f是已知的实数,且a和d不同时为0。
在二元一次方程组中,有以下性质:1.若方程组中的两个方程的系数比例相同,则这个方程组无解或有无数多个解。
2.三个线性方程的组合也仍然是满足二元一次方程组性质的。
二、解法:1.消元法:通过将一个方程的任意倍数加到另一个方程上,消去一个未知数的项,从而得到一个关于另一个未知数的一次方程。
根据得到的方程解出一个未知数的值,再带入到另一个方程中求得另一个未知数的值。
2.代入法:将一个方程的一个未知数表达式代入到另一个方程中,从而得到一个只含有一个未知数的方程。
根据这个方程解出一个未知数的值,再带入到另一个方程中求得另一个未知数的值。
3.矩阵法:将方程组的系数和常数项构成矩阵,然后通过矩阵的运算方法(如行列式、逆矩阵等)求解未知数。
解方程组的关键是找到合适的方法和技巧。
对于一些特殊的方程组,还可以利用几何方法进行解答。
三、二元一次方程组与一次函数的关系:从形式上看,二元一次方程组和一次函数都是关于未知数的一次方程。
一次函数是变量的对应关系,而二元一次方程组是未知数之间的关系。
将二元一次方程组写成矩阵形式为:..[ab][x]=[c][de][y][f]可以将这个方程组解释为从二维平面上的两条直线的交点。
其中x和y分别是直线的横坐标和纵坐标,a、b、c、d、e、f是直线的特征系数。
而一次函数可以看作是二维平面上一条直线,其斜率m和常数项c与二元一次方程组的系数有关。
对于方程组中的第一个方程ax + by = c,其可以表示为 y = (-a/b)x + c/b,其中(-a/b)表达了直线的斜率m,c/b表达了直线的截距c。
因此,一次函数和二元一次方程组在形式上和几何意义上都有相似之处,但是在概念上有明显的区别。
总结:本文从定义、性质、解法以及与一次函数的关系等几个方面进行了对二元一次方程组的介绍。
一次方程与方程组知识点总结归纳

一次方程与方程组知识点总结归纳一、一元一次方程。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一般形式:ax + b=0(a≠0),其中a是未知数x的系数,b是常数项。
例如2x + 3 = 0就是一元一次方程。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
例如x = - (3)/(2)是方程2x+3 = 0的解。
3. 等式的性质。
- 性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c = b±c。
- 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a = b,那么ac=bc;如果a=b(c≠0),那么(a)/(c)=(b)/(c)。
- 利用等式的性质可以求解一元一次方程,例如解方程2x+3 = 0,首先根据等式性质1,两边同时减3得2x=-3,再根据性质2,两边同时除以2得x = - (3)/(2)。
4. 一元一次方程的解法步骤。
- 去分母(若方程中存在分母时):根据等式性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。
例如方程(x + 1)/(2)+(x - 1)/(3)=1,分母2和3的最小公倍数是6,方程两边同时乘以6得3(x + 1)+2(x - 1)=6。
- 去括号:根据乘法分配律将括号去掉。
如3(x + 1)+2(x - 1)=6去括号后变为3x+3 + 2x-2 = 6。
- 移项:把含未知数的项移到方程一边,常数项移到另一边,移项要变号。
例如3x+3 + 2x-2 = 6移项后得3x+2x=6 - 3+2。
- 合并同类项:将方程中同类项合并。
如3x+2x=6 - 3+2合并同类项得5x = 5。
- 系数化为1:根据等式性质2,方程两边同时除以未知数的系数。
如5x = 5两边同时除以5得x = 1。
二、二元一次方程(组)1. 二元一次方程。
一元一次方程和它的解法教案

一元一次方程和它的解法教案【3篇】教学目标:学问与技能:1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简洁的方程。
3、把握检验某个数值是不是方程解的方法。
过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用学问解决实际问题的力气。
情感态度和价值观:让学生体会到从算式到方程是数学的进步,表达数学和日常生活亲切相关,生疏到很多实际问题可以用数学方法解决,激发学生学习数学的热忱。
教学重点:建立一元一次方程的概念,查找相等关系,列出方程。
教学过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用学问解决实际问题的力气。
情感态度和价值观:让学生体会到从算式到方程是数学的进步,表达数学和日常生活亲切相关,生疏到很多实际问题可以用数学方法解决,激发学生学习数学的热忱。
教学重点:建立一元一次方程的概念,查找相等关系,列出方程。
教学难点:依据具体问题中的相等关系,列出方程。
教学预备:多媒体教室,配套课件。
教学过程:设计理念:数学教学要从学生的阅历和已有的学问动身,创设有助于学生自主学习的问题情景,在数学教学活动中要制造性地使用数学教材。
课程标准的建议要求教师不再是“教教材”而是“用教材”。
本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热忱等方面做了有益的探究,现就几个教学片断进展探讨。
一、玩耍导入,设置悬念师:同学们,教师学会了一个魔术,情你们协作表演。
请看大屏幕,这是2023年10月的日历,请你用正方形任意框出四个日期,并告知教师这四个数字的和,教师马上就告知你这四个数字。
生1:24,师:2,3,9,10生2:84师:17,18,24,25师:同学们想学会这个魔术吗?生:想!师:通过这节课的学习,同学们确定能学会!【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用玩耍导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。
中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程(1)一元二次方程的一般形式:(其中x是未知数,a、b、c 是已知数,a≠0)(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:当Δ>0时方程有两个不相等的实数根;当Δ=0时方程有两个相等的实数根;当Δ<0时方程没有实数根,无解;当Δ≥0时方程有两个实数根(5)一元二次方程根与系数的关系:若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。
(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。
2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:(不全为0)解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
各类方程组的解法

各类方程组的解法 The pony was revised in January 2021一、一元一次方程步骤:系数化整、去分母、去括号、移项、合并同类项、系数化1。
1、系数化整:分子分母带有小数或分数的系数化成整数,方法是分子分母同时乘一个数使得系数变成整数;2、去分母:将包含的分母去掉,方法是等式两边同时乘所有分母的最小公倍数;3、去括号:根据去括号法则将括号去掉;4、移项:过等号要变号,将含未知数的放等号左边,常数放等号右边;5、合并同类项:根据合并同类项法则将同类项合并:6、系数化1:将未知数的系数化成1,方法是等式两边同时除以未知数的系数。
注:不一定严格按照步骤,例如移项的同时可以合并同类项,a(A)=b(a、b是已知数,A是含未知数的一次二项式)型方程可以先将括号前的系数化成1,第5步系数为1时省略1且第6步不需要写。
二、二元一次方程(组)一个二元一次方程有无数个解,它表示平面内一条直线,直线上每个点的坐标都是方程的解。
由两个二元一次方程联立成的二元一次方程组代表空间内两条直线,其公共点坐标就是方程组的解。
当然,若两直线平行则方程组无解,若两直线重合则方程组有无数个解。
当方程组形式复杂时先根据一元一次方程的解法化简成一般形式,然后求解。
1、代入消元法:⑴将任意一个方程变形成“y=带x的式子”或者“x=带y的式子”的形式,代入另一个方程,变成一个一元一次方程;⑵解一元一次方程;⑶将解代入任意一个原方程解出另一个未知数的值,并写出解。
2、加减消元法:⑴方程两边同时乘一个合适的数使得有同一个未知数的系数的绝对值相等(若已有系数的绝对值相等则这一步跳过);⑵两个方程左右加或减变成一元一次方程(系数相等用减,系数互为相反数用加);⑶解一元一次方程;⑷将解代入任意一个方程解出另一个未知数的值,并写出解。
3、图像解法:根据图像与方程的关系,在同一个平面直角坐标系中画出两个方程代表的直线,找出公共点的横坐标与纵坐标(不推荐此方法,因为当解为分数时看不出,这只能表示一种关系)。
用一次方程(组)解问题

五、分配问题
某车间有100人,每人每分钟可以生产螺栓16个或螺母18个,如果一个螺栓配两个螺母,试问应怎样分配人力,才能使1天(工作时间按8小时计算)生产的螺栓和螺母恰好配套?
甲
正方形
某纸品厂为了制作甲乙两种长方体纸盒,利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等。现将150张正方形硬纸片和300张长方形硬纸片全部用于制作这两种纸盒,可以制作甲、乙两种纸盒各多少个?
50%的盐水中含盐多少克?来自什么地方?
50%的盐水共多少克?来自什么地方?
浓度=
盐
盐+水
玻璃厂熔炼玻璃液,原料是石英砂和长石粉混合而成,要求原料中含二氧化硅70%,根据化验,石英砂中含二氧化硅99%,长石粉中含二氧化硅67%,试问在3.2t原料中,石英砂和长石粉各多少吨?
某医院利用甲、乙两种原料为病人配制营养品,已知每克甲原料含0.6单位蛋白质和0.08单位铁质,每克乙原料含0.5单位蛋白质和0.04单位铁质,如果病人每餐需34单位蛋白质和4单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需求?
明年该校增加多少人?
今年七年级人数+今年高一年级人数=500
今年该校招生数是多少?是由几个年级组成的?
七年级增加多少人?高一年级增加多少人?
明年七年级增加人数+明年高一增加人数=总增加
1
2
3
4
5
6
01
某乡今年春播种作物的面积比秋播的面积多630
02
hm2,计划明年春播作物的面积增加20%,秋播
03
作物的面积减少10%,这样明年春、秋作物的总
04
面积将比今年增加12%,试求这个乡今年春播与
线性方程组的解法

线性方程组的解法线性方程组是数学中的基础概念,它在各个领域中都有广泛的应用。
本文将介绍线性方程组的解法,帮助读者更好地理解和解决相关问题。
Ⅰ. 一元一次方程的解法一元一次方程是线性方程组中最简单的形式,通常以“ax + b = 0”的形式表示,其中a和b为已知数,x为未知数。
解此方程的步骤如下:1. 将方程变形,将未知数项和常数项分别移至等式两边,得到“ax = -b”;2. 若a≠0,两边同时除以a,得到“x = -b/a”;3. 若a=0,若-b=0,则方程有无数解;否则,方程无解。
Ⅱ. 二元一次方程组的解法二元一次方程组包含两个未知数和两个方程,一般以如下形式表示:{a₁x + b₁y = c₁,a₂x + b₂y = c₂}常用的解法有以下三种:1. 代入法:将其中一个方程的其中一个未知数表示为另一个未知数的函数,然后代入另一个方程,解得一个未知数的值,再代入回第一个方程求得另一个未知数的值。
这种方法特别适用于其中一个方程的一个未知数的系数为1,或者已经表示为另一个未知数的函数的情况。
2. 消元法:通过消去其中一个未知数,得到一个只含一个未知数的一元一次方程,然后按照一元一次方程的解法求解。
这种方法特别适用于其中一个方程的一个未知数的系数相等,但反号的情况。
3. 克莱姆法则:通过计算系数行列式的值,可以求得二元一次方程组的解。
具体步骤是构造齐次线性方程组的系数矩阵,并计算系数矩阵的行列式值D。
然后使用未知数的系数与常数项分别替换掉系数矩阵的对应列,并计算新矩阵的行列式值Dx和Dy。
最后,解得x = Dx / D,y = Dy / D。
克莱姆法则适用于系数矩阵的行列式值不为0的情况。
Ⅲ. 三元及以上线性方程组的解法三元及以上线性方程组的解法相对复杂,但仍然可以利用与二元一次方程组相似的方法求解。
1. 高斯消元法:高斯消元法是一种基于矩阵的线性方程组求解方法。
通过初等行变换将线性方程组化为阶梯形,然后回代求解得到每个未知数的值。
专题04 一次方程(组)及其应用-备战2022年中考数学题源解密(解析版)

专题04 一次方程(组)及其应用考向1 一次方程(组)及其解法【母题来源】(2021·浙江温州)【母题题文】解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x【分析】可以根据乘法分配律先将2乘进去,再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣4x﹣2=x,故选:D.【母题来源】(2021·浙江金华)【母题题文】已知是方程3x+2y=10的一个解,则m的值是.【分析】把二元一次方程的解代入到方程中,得到关于m的一元一次方程,解方程即可.【解答】解:把代入方程得:3×2+2m=10,∴m=2,故答案为:2.【母题来源】(2021·浙江嘉兴)【母题题文】已知二元一次方程x+3y=14,请写出该方程的一组整数解.【分析】把y看做已知数求出x,确定出整数解即可.【解答】解:x+3y=14,x=14﹣3y,当y=1时,x=11,则方程的一组整数解为.故答案为:(答案不唯一).【母题来源】(2021·浙江丽水)【母题题文】解方程组:.【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:2y﹣y=6,解得:y=6,把y=6代入①得:x=12,则方程组的解为.【母题来源】(2021·浙江台州)【母题题文】解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为.【试题分析】以上中考真题主要考察了一元一次方程与二元一次方程组的解法步骤以及二元一次方程的多解问题;【命题意图】一次方程(组)的解法是对等式基本性质的熟悉程度的检验,也是后续方程求解的基础,准确掌握一元一次方程以及二元一次方程组的解法,是考生拿到此考点分值的重点;【命题方向】一次方程(组)的解法在浙江中考中占比不大,分值在0~6分,个别城市几乎不会单独出题,出题也基本在选择或者填空题的前半部分,属于难度较小的一类题。
一元一次方程组的解法

一元一次方程组的解法一元一次方程组是由多个一元一次方程组成的方程组,每个方程的最高次数是1。
解一元一次方程组的过程可以通过消元法、代入法或矩阵法来实现。
下面将依次介绍这三种解法。
一、消元法消元法是解一元一次方程组常用的方法。
通过对方程组进行适当的加减操作,将未知数的系数逐步消去,从而得到方程组的解。
举例来说,考虑以下一元一次方程组:2x + 3y = 7 (1)4x - 2y = 2 (2)首先,可以通过将第二个方程的两边乘以2来消除方程中的系数4,得到方程组的新形式:2x + 3y = 7 (1)8x - 4y = 4 (3)然后,将第三个方程的两倍加到第一个方程,可以消除x的系数,得到:14y = 18 (4)最后,将方程(4)中的解代入方程(1)或(2)中,即可求得y的值。
通过代入求解,可以得到x的值。
消元法是一种简单而直接的解法,适用于方程组中的系数较小和方程的数目较少的情况。
二、代入法代入法是另一种常用的解一元一次方程组的方法。
该方法的基本思想是将一个方程的解代入到另一个方程中,从而减少方程的数目,使得求解更加简便。
以以下一元一次方程组为例:3x - 2y = 8 (5)2x + y = 5 (6)首先,可以通过方程(6)求解y的值,然后将y的值代入方程(5),得到一个仅含有x的方程:3x - 2(5 - 2x) = 83x - 10 + 4x = 87x = 18通过求解这个方程,可以得到x的值,再将x的值代入方程(6),即可求得y的值。
代入法相对于消元法而言,计算过程稍显复杂,但在某些特定的情况下,可以更加高效地解决方程组。
三、矩阵法矩阵法是一种基于线性代数的解法,将一元一次方程组转化为矩阵的形式,通过对矩阵进行运算,求解方程组的解。
考虑以下一元一次方程组:x + 2y + 3z = 5 (7)2x - y + z = 2 (8)3x + y - z = 4 (9)可以将方程组的系数矩阵表示为:A = [1 2 3][2 -1 1][3 1 -1]同时,将方程组的常数向量表示为:C = [5][2][4]然后,通过求解矩阵方程AX = C,可以得到解向量X。
中考数学方程和方程式基础知识

中考数学方程和方程式基础知识基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)(2)一玩一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:ac b 42-=∆ 当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根;当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根(5)一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a bx x -=+21,a cx x =⋅21(6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。
(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
初中七年级数学 一元一次方程组的解法

如何高效、快速地掌握解一元一次方程的方法方法/步骤1.打开干净的草稿纸,和小编老师一起来看看常见几种类型的一元一次方程:题型一:无括号、无分母类型题型二:有括号类型题型三:有分母类型1——(分母为整数)类型题型四:有分母类型2——(分母为小数)类型2.题型一:最简单方程——无括号、无分母类型这一类题目类似小学基础题,是最基本也是最简单的题型。
解题步骤:1.移项(未知数移到等号的左边,数字移到等号的右边,移项之前先变符号)2.合并同类项(俗称"找朋友")3.化未知数系数为1(注意两边同时乘除同一个数以及符号是否需要变化)请仔细看图片中的例题,错解和正解的比较!错解原因:移项:把一项从等式的一边移动到另一边的过程叫做移项移项之前要先变符号,错解中没有变符号所以错了。
3.题型二:有括号类型解题步骤:1.去括号2.移项3.合并同类项4.化未知数系数为1请看图片中的例题,错解和正解的比较!错解原因:去括号最容易犯得两类错误:1、括号前面有倍数的,忘记利用乘法分配律把括号外倍数和括号里面的每一项相乘2、括号前面是负号的,括号里面每一项要改变符号4.题型三:有分母类型1——(分母为整数)类型解题步骤:1.去分母2.去括号3.移项4.合并同类项5.化未知数系数为1请看图片中的例题,错解和正解的比较!错解原因:去分母的核心在于利用“等式基本性质2”:等式两边同时乘以或除以一个不为零的数或式子,等式仍然成立。
本题错解中,在找到分母的最小公倍数后,没有把两边同时乘以6,故犯错了。
5.题型四:有分母类型2——(分母为小数)类型解题步骤:1.化小数分母为整数分母2.去分母3.去括号4.移项5.合并同类项6.化未知数系数为1请看图片中的例题,错解和正解的比较!错解原因:1、化分母小数为整数的核心思想是利用“通分”:分子分母同时乘以或除以同一个不为零的数,分数的值不变!错解中把“通分”概念与“约分概念”搞混淆了!一、目标与要求1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3.培养学生获取信息,分析问题,处理问题的能力。
沪科版七年级上数学期末复习课件(第三章一次方程与方程组)(28张ppt)

数学·沪科版(HK)
第3章 |复习(二)
5x= 6y, 解:(1) x= 2y- 40.
(2)是二元一次方程组.
方法技巧 (1)在方程中 “元” 是指未知数,“二元”就是指方程中 有且只有两个未知数;(2)“未知数的次数是 1”是指含有未 1 知数的项(单项式)的次数是 1, 如前面 xy= 中 xy 这一项的次 2 1 数是 2,所以 xy= 不是二元一次方程;(3) 二元一次方程的 2 左边和右边都必须是关于未知数的整式.
数学·沪科版(HK)
第3章 |复习(二)
[解析] 方程组中 y 项的系数相等,可以采用减法消去 y. 方法技巧 用加减消元法解方程组的一般步骤: (1)方程组的两个方程中, 如果同一个未知数的系数既不互为 相反数又不相等,那么就用适当的数乘方程的两边,使同一个未 知数的系数互为相反数或相等; (2)把两个方程的两边分别相加或相减,消去一个未知数,得 到一个一元一次方程; (3)解这个一元一次方程,求得一个未知数的值; (4)将这个求得的未知数的值代入原方程组中的任意一个方 程中,求出另一个未知数的值,并把求得的两个未知数的值用符 号 “{”联立起来.
获 利 为 : 7500×10× 6 + 4500× 5× 16 = 810000(元 ).所以,应选方案三.
数学·沪科版(HK)
解:设每个笔记本 x 元,每支钢笔 y 元,依题意 得:
x+ 3y= 18, 2x+ 5y= 31, x= 3, 解得: y= 5.
答:设每个笔记本 3 元,每支钢笔 5 元.
数学·沪科版(HK)
第3章 |复习(二)
[ 解析 ] 首先用未知数设出买一支钢笔和一本笔记 本所需的费用,然后根据关键语“购买 1 个笔记本和 3 支钢笔,则需要 18 元;如果买 2 个笔记本和 5 支钢笔, 则需要 31 元”,列方程组求出未知数的值,即可得解.
数学教案-二元一次方程与一次函数(优秀6篇)

数学教案-二元一次方程与一次函数(优秀6篇)元一次方程教案篇一一、复习引入1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。
2.由上题可知一元二次方程的系数与根有着密切的关系。
其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x2x2-2x=0x2+3x-4=0x2-5x+6=0观察上面的表格,你能得到什么结论?(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x22x2-7x-4=03x2+2x-5=05x2-17x+6=0小结:根与系数关系:(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。
)(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论即:对于方程ax2+bx+c=0(a≠0)∵a≠0,∴x2+bax+ca=0∴x1+x2=-ba,x1?x2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0 (2)2x2+3x-5=0(3)13x2-2x=0 (4)2x2+6x=3(5)x2-1=0 (6)x2-2x+1=0例2 不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0 (x1=2+1,x2=2-1)(2)2x2-3x-8=0 (x1=7+734,x2=5-734)例3 已知一元二次方程的`两个根是-1和2,请你写出一个符合条件的方程。
一元一次方程组的解法

一元一次方程组的解法一元一次方程组是指包含两个或多个一元一次方程的方程组。
解决一元一次方程组的问题,可以通过以下几种方法进行求解。
下面将逐一介绍这些解法。
1. 列表法列表法是一种直观的解法,适用于方程组中的未知数较少的情况。
我们可以将方程中的系数和常数项写成一个表格,并通过逐次代入的方式来求解未知数的值。
例如,对于一个包含两个一元一次方程的方程组:```2x + 3y = 74x + 5y = 13```将其转化为列表形式:```| 2 3 | 7 || 4 5 | 13 |```通过逐次代入的方式,可以求得解x = 1,y = 2。
2. 消元法消元法是一种常用的解法,通过消去方程组中某一未知数的系数,将方程组简化为只含一个未知数的方程。
具体步骤如下:a. 找到一个方程,使得该方程中某一未知数的系数在方程组的其他方程中系数的倍数(也称为倍数方程)。
b. 将倍数方程乘以适当的数值,使其系数与目标方程中该未知数的系数相同。
c. 将目标方程减去倍数方程,得到一个新的方程,其中该未知数的系数为0。
d. 重复上述步骤,逐步消去其他未知数的系数,最终得到只含一个未知数的方程。
e. 求解出该未知数的值,再将其带入原方程组中求解其他未知数的值。
3. 代入法代入法是一种简便的解法,适用于方程组中某一个未知数的系数为1的情况。
具体步骤如下:a. 选取一个方程,将其中一个未知数用其他方程中的未知数表示出来。
b. 将该表达式代入到其他方程中,得到只含一个未知数的方程。
c. 求解出该未知数的值,再将其带入原方程组中求解其他未知数的值。
4. 矩阵法矩阵法是一种快速解决一元一次方程组的方法,通过使用矩阵运算可以将方程组转化为简便的形式。
具体步骤如下:a. 将方程组的系数和常数项写成矩阵形式(增广矩阵)。
b. 利用矩阵的行变换、列变换等运算,将矩阵转化为行最简或阶梯形矩阵。
c. 根据简化后的矩阵,可以直接求得各个未知数的值。
综上所述,一元一次方程组的解法包括列表法、消元法、代入法和矩阵法等多种方法。
方程的引入与解法

方程的引入与解法方程是数学中一种重要的工具,可用于表示数值之间的关系以及未知量的求解。
方程的引入源于人们对于实际问题的探索和解决需求。
本文将介绍方程的引入过程以及几种常见的解法方法。
1. 方程的引入方程的引入可以追溯到古代的数学发展。
人们在解决实际问题时,常常需要找到未知量的具体数值。
例如,假设我们要计算一个矩形的面积,已知宽度为3个单位,我们需要求解长度。
为了表示未知的长度,人们就引入了一个方程。
设矩形的长度为x个单位,则矩形的面积为3x平方单位。
这个关系可以用方程3x = 面积来表示。
通过引入方程,我们可以将实际问题转化为数学问题,并通过求解方程得到问题的答案。
方程能够提供准确的数学模型,帮助我们理解和解决现实中的各种问题。
2. 一元一次方程的解法一元一次方程是最简单的方程形式,表示为ax + b = 0。
其中,a和b为已知数,x为未知数。
解一元一次方程的常用方法有以下几种:(1)移项法通过移动等式两侧的项,使未知数x独立出来。
例如,对于方程2x + 3 = 7,我们可以将3移到等式右边,得到2x = 7 - 3。
然后再通过除以2的操作,即可解得x的值。
(2)消元法消元法适用于线性方程组的解法,其中线性方程组由多个方程组成。
通过消除未知数的系数,将方程组转化为一个只有一个未知数的方程。
消元法的具体步骤是将方程组中的某个方程乘以适当的常数,使得两个方程中未知数的系数相等或相差一个常数。
然后将两个方程相减,消除一个未知数,最终求解得到所有未知数的值。
(3)代入法代入法是一种直观的解法,适用于复杂一元一次方程的求解。
通过将方程中的一个未知数表示为另一个未知数的表达式,再代入另一个方程中进行求解。
3. 二元一次方程的解法二元一次方程是包含两个未知数的一次方程,一般表示为ax + by = c。
解二元一次方程的方法主要有以下几种:(1)代入法代入法是最常用的解法之一。
通过将其中一个方程中的一个未知数表示为另一个未知数的表达式,再代入另一个方程进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学精选例题解析:方程与一次方程(组)及解法
知识考点:
了解等式和方程、一元一次方程(组)的概念,掌握等式的基本性质,能正确熟练地解一元一次方程,会对方程的解进行检验。
明确解方程组的基本思想是化归思想,并能用加减消元法和代入消元法解一次方程组。
精典例题:
【例1】解方程:12
733)1(2-=-+
+x
x x 分析:依据方程的同解原理,突出基本步骤,去分母时防止漏乘,注意移项时要改变符号。
答案:7
12
=
x 【例2】若关于x 的方程:4)2(35)3(10--
=+-x k x x k 与方程3
21)1(25x
x -=+-的解相同,求k 的值。
分析:由“解相同”的定义,将方程3
21)1(25x
x -=+-的解代入第一个方程,建立一个关于k 的方程,解之即可。
答案:k =4
【例3】在代数式m by ax ++中,当x =2,y =3,m =4时,它的值是零;当x =-3,y =-6,m =4时,它的值是4;求a 、b 的值。
分析:由代数式值的定义得关于a 、b 的二元一次方程组,侧重分析如何选择使用加减法或代入法消元。
答案:⎪⎩
⎪⎨⎧=-=3107
b a
探索与创新:
【问题一】要把面值为10元的人民币换成2元或1元的零钱,现有足够的面值为2元、1元的人民币,那么共有换法( )
A 、5种
B 、6种
C 、8种
D 、10种
略解:首先把实际问题转化成数学问题,设需2元、1元的人民币各为x 、y 张(x 、y 为非负数),则有:x y y x 210102-=⇒=+,0≤x ≤5且x 为整数⇒x =0、1、2、3、4、5。
答案:B
【问题二】如图是某风景区的旅游路线示意图,其中B 、C 、D 为风景点,E 为两条路的交叉点,图中数据为相应两点的路程(单位:千米)。
一学生从A 处出发以2千米/小时的速度步行游览,每个景点的逗留时间均为0.5小时。
(1)当他沿着路线A →D →C →E →A 游览回到A 处时,共用
了3小时,求CE 的长;
(2)若此学生打算从A 处出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A 处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑
其它因素)。
略解:
(1)设CE 线长为x 千米,列方程可得x =0.4。
(2)分A →D →C →B →E →A 环线和A →D →C →E →B →E →A 环线计算所用时间,前者4.1小时,后者3.9小时,故先后者。
跟踪训练: 一、填空题:
1、若)23(x -∶2=)23(x +∶5,则x = 。
2、如果
532-x 与33
2
-x 的值互为相反数,则x = 。
3、已知⎩⎨
⎧-==11y x 是方程组⎩⎨⎧=-=+2
412
by x by ax 的解,则b a += 。
二、选择题:
1、若单项式124+-m b a 与7
23
2+-
m m b a 是同类项,则m =( ) A 、2 B 、±2 C 、-2 D 、4
2、已知方程组⎩⎨
⎧=+=+4535y ax y x 与⎩⎨⎧=+=-1
55
2by x y x 有相同的解,则a 、b 的值为( )
问题二图
x
••
•
•
•
1.2
0.4
1
1
1.6
E
D C
B
A
A 、⎩⎨⎧==21b a
B 、⎩⎨⎧-=-=64b a
C 、⎩⎨⎧=-=26b a
D 、⎩
⎨⎧==214b a
3、若方程组⎩⎨
⎧=++=+3
31
3y x k y x 的解x 、y 满足0<y x -<1,则k 的取值范围是( )
A 、2<k <3
B 、2<k <4
C 、-4<k <0
D 、-4<k <-2
4、在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人数各是多少?解题时若设支援拔草的人数有
x 人,则下列方程中正确的是( )
A 、18232⨯=+x
B 、)38(232x x -=+
C 、)18(252x x +=-
D 、18252⨯=-x 三、解方程(组)
1、
4
2
331+-
=-x x ; 2、
2
5
03.002.003.02.18.08.1-=
+-+x x x ; 3、⎩⎨
⎧=-=+1
235
32y x y x ;
4、⎪⎪⎩⎪⎪⎨⎧-=----=+-+x y y x y x y x 2334
35
)
(24231。
四、当x =1、2、3时,c bx ax ++2的对应值分别是2、3、6,求a 、b 、c 的值。
五、已知a 、b 是实数,且0262=-++b a ,解关于x 的方程:1)2(2-=++a b x a
参考答案
一、填空题:
1、
149;2、8
27;3、8
二、选择题:CDBB 三、解方程(组):
1、26-=x ;
2、6=x ;
3、⎩⎨⎧==11y x ;
4、⎩
⎨⎧==611
y x ;
四、⎪⎩
⎪
⎨⎧=-==321
c b a
五、6=x。