培训学习资料-21整式--单项式(2)

合集下载

整式的概念知识点

整式的概念知识点

整式的概念知识点摘要:一、整式的概念1.整式的定义2.整式的特点3.整式的分类1) 单项式2) 多项式二、整式的性质1.整式的加法2.整式的减法3.整式的乘法4.整式的除法三、整式的应用1.整式在代数中的应用2.整式在几何中的应用正文:整式是代数学中的一个重要概念,它是由常数、变量及其非负整数次幂的乘积组成的式子。

整式具有以下特点:1.整式的定义整式是由常数、变量及其非负整数次幂的乘积组成的式子。

其中,常数和变量称为整式的项,项的次数是指该项中各变量的次数之和。

例如,3xy、-2ab、5都是整式。

2.整式的特点整式的特点是:各项次数都是非负整数,且系数和指数都是整数。

整式中的变量可以有多个,各个变量之间可以进行加、减、乘、除等运算。

3.整式的分类整式可以分为单项式和多项式两类。

1) 单项式单项式是只包含一个项的整式,例如3xy、-2ab等。

2) 多项式多项式是包含两个或两个以上项的整式,例如5xy - 2ab + 7。

整式具有以下性质:1.整式的加法单项式的加法是将同类项的系数相加,例如3xy + (-2xy) = xy。

多项式的加法是将同类项的系数相加,例如5xy - 2ab + 7 + (-2xy + ab) = 3xy - ab + 7。

2.整式的减法整式的减法可以看作是加法的一种特殊形式,例如5xy - 2ab + 7 - (-2xy + ab) = 7xy - 3ab + 7。

3.整式的乘法单项式的乘法是将系数相乘,同时将各项的次数相加,例如3xy * 2x =6xy。

多项式的乘法需要按照分配律进行计算,例如(5xy - 2ab + 7) * (2x + a)= 10xy - 2ab + 7ax - 4axy - 2abx + 7ax。

4.整式的除法整式的除法可以看作是乘法的逆运算,例如(5xy - 2ab + 7) ÷ (2x + a) = (5xy - 2ab + 7) * (1/2x + a/2x) = 5xy/2x + ab/2x - 7a/2x - ab/2x - 7a/2x - 7/2x。

整式的运算经典解析

整式的运算经典解析

整式的基本概念1、代数式的有关概念代数式:用基本的运算符号(包括加、减、乘、除、乘方、开方)把数、表示数的字母连结而成的式子叫做代数式,单独一个数或一个字母也是代数式。

2、整式的有关概念(1)单项式的定义:都是数与字母的积的代数式叫做单项式. 说明:判断一个代数式是不是单项式,主要是根据代数式中数字和字母间是否都是乘法运算关系.如xy 2就不是一个单项式. a 2是一个单项式,因为a 2可以看作是a ·a .特别地,单独的一个数或单独的一个字母也都是单项式,如-3,0,35 ,x ,2x等都是单项式(2)单项式次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.说明:在单项式中,系数只与数字因数有关;次数只与字母有关.如x 3yz 4的系数是1,次数为3+1+4=8.(4)多项式的定义:几个单项式的和叫做多项式.(5)多项式的次数:一个多项式中,次数最高的项的次数叫做这个多项式的次数.说明:在确定多项式的次数时,应先计算出多项式的每一项的次数,次数最大的项的次数作为该多项式的次数.如,多项式x 3-x 2y 2+x 中,单项式x 3的次数是3,单项式-x 2y 2的次数是4,单项式x 的次数是1,所以多项式x 3-x 2y 2+x 的次数是4.(6)多项式的项数:一个多项式中有几个单项式就有几项.每一个单项式就是一项。

说明:多项式的项,包括符号.如多项式5-3x 2中,二次项是-3x 2.(7)常数项的定义: 在多项式中,不含有字母的项叫做多项式的常数项。

(8)降幂排列: 把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.(9)升幂排列 :把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.说明:把多项式按升幂或降幂排列时,一定要弄清是针对哪个字母的排列,排列时只看这个字母的指数,而后按照加法交换律交换项的位置.对于不同的字母,排列后的顺序往往不同,切记重新排列多项式时,各项一定要带着符号移动位置.如: x 3+2x 4y -7xy 3-y 4-7=2x 4y +x 3-7xy 3-y 4-7 ①=-7-y 4-7xy 3+x 3+2x 4y ②=-y 4-7xy 3+2x 4y +x 3-7 ③=-7+x 3+2x 4y -7xy 3-y 4④其中,①是按x 的降幂排列;②是按x 的升幂排列;③是按y 的降幂排列;④是按y 的升幂排列.(10)整式的定义: 单项式和多项式统称整式.说明:知道一个代数式,不论是单项式还是多项式,都一定是整式;反之,如果已知一个代数式是整式,那么它或者是单项式,或者是多项式,二者必具其一.如单项式-3x 2,x 等都是整式,多项式3-x ,-x 3-x +1等都是整式;在整式2x ,x 4-1中,2x 是单项式,x 4-1是多项式.探究引导:216b π是二次单项式,这里要注意π是一个常数,不是一个字母,所以单项式中只有一个字母b ,它的指数是2,216b π就是一个二次单项式。

第02讲 整式(单项式与多项式)(9类热点题型讲练)(原卷版)--初中数学北师大版7年级上册

第02讲 整式(单项式与多项式)(9类热点题型讲练)(原卷版)--初中数学北师大版7年级上册

第02讲整式(单项式与多项式)1.掌握单项式、多项式、整式的概念;2.掌握单项式的系数与次数和多项式的项数、系数与次数;3.掌握单项式的规律题的方法;4.掌握多项式的升幂、降幂排列方法.知识点01单项式的概念如mn 2-,23xy π,0,它们都是数与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式.【注意】(1)单项式包括三种类型:①数字与字母相乘或字母与字母相乘组成的式子;②单独的一个数;③单独的一个字母.(2)单项式中不能含有加减运算,但可以含有除法运算.如:2mn 可以写成mn 21。

但若分母中含有字母,如x 1就不是单项式,因为它无法写成数字与字母的乘积.知识点02单项式的系数与次数1.单项式的系数:单项式中的数字因数叫做这个单项式的系数.(1)确定单项式的系数时,最好先将单项式写成数与字母的乘积的形式,再确定其系数;(2)圆周率π是常数.单项式中出现π时,应看作系数;(3)当一个单项式的系数是1或-1时,“1”通常省略不写;(4)单项式的系数是带分数时,通常写成假分数.2.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.单项式的次数是计算单项式中所有字母的指数和得到的,计算时要注意以下两点:(1)没有写指数的字母,实际上其指数是1,计算时不能将其遗漏;(2)不能将数字的指数一同计算.知识点03多项式1.多项式的概念:几个单项式的和叫做多项式.2.多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项.【注意】(1)多项式的每一项包括它前面的符号.(2)一个多项式含有几项,就叫几项式,如:1-xx是一个三项式.22+33.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.【注意】(1)多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数.(2)一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.知识点04整式单项式与多项式统称为整式.【注意】(1)单项式、多项式、整式这三者之间的关系如图所示.即单项式、多项式必是整式,但反过来就不一定成立.(2)分母中含有字母的式子一定不是整式.题型01单项式的判断题型02单项式的系数、次数题型03写出满足某些特征的单项式题型04单项式规律题题型05多项式的判断题型06多项式的项、项数或次数题型07多项式系数、指数中字母求值的值是题型08将多项式按某个字母升幂(降幂)排列题型09整式的判断一、单选题。

2.1整式第一课时单项式-说课稿

2.1整式第一课时单项式-说课稿

《2.1整式——单项式》说课稿我说课的内容是人教版七年级数学上册第二章《整式的加减》中的2.1整式(第一课时)单项式。

下面,我将从教材分析、学情分析、教法分析、教学过程、板书设计及教学设计说明几个方面进行说课。

一、教材分析1、教材的地位和作用本章是在学生已有的字母表示数以及有理数运算的基础上展开的。

单项式既是对前面所学知识的深化和发展,也是学习本章其他内容的直接基础,也是以后学习整式乘除、分式和根式运算、方程以及函数等知识的基础,同时也是学习物理化学等学科及其他科学技术不可或缺的数学工具。

“整式”一节是“整式的加减”一章的起始课,整式是代数式中最基本的式子,而单项式又是整式中最基础的知识,具有承上启下的作用。

2、教学目标:知识与能力目标:会用含有字母的式子表示数量关系,理解字母表示数的意义。

理解并掌握单项式的有关概念。

过程与方法目标:经历用字母表示数量关系的过程,通过观察、类比、归纳得出单项式概念的数学活动经验。

情感与态度目标:通过用含有字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要的数学工具,发展学生的符号感。

3、教学重难点:重点:单项式及其相关的概念难点:对单项式的系数、次数概念的理解与应用二、学情分析本节课是研究整式的开始,知识由数向式转化,由具体到抽象,从特殊到一般,与学生的认知基础和思维能力有一定差距,学习中会有一定困难。

为了突出重点,突破难点,教学中要把握以下两点:(1)加强直观性:从学生最近的发展区域为切入点,用足够的感知材料,丰富学生的感性认识,帮助学生认识概念。

(2)注重分析:在剖析单项式结构时,借助变式和反例练习,抓住概念易混处和判断易错处,强化认识。

三、教法分析数学课堂”应以学生发展为本,遵循学生的认知规律”,由于已有了小学所学习的一些数量关系的铺垫,其难度不大,学生能够完成,而这些式子有什么特点进而得出单项式的概念,是这节课的重点,所以我采用适当的引导,学生讨论的方式,让学生自己发现规律,发现共同点,来突出重点,采用变式训练和反例的练习突破难点。

第二节-整式的概念及其分类

第二节-整式的概念及其分类

整式的概念及其分类一、整式的概念1、整式:单项式和多项式合称为整式,或者分母中不含有字母的代数式叫做整式。

二、整式的分类1、单项式:由数和字母的积组成的代数式称为单项式。

①单独的一个数或者一个字母也称为单项式。

②单项式中不为0的数字因数,叫做单项式的系数。

③单项式中所有字母指数的和,叫单项式的次数。

2、同类项:同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

3、多项式:几个单项式的和称为多项式①多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项; ②多项式里,次数最高项的次数叫多项式的次数。

4. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式; ③如果字母前面的数字是带分数,要把它写成假分数 知识点1 代数式用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数.的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.例如:5,a ,32(a+b),ab ,a 2-2ab+b 2等等. 请你再举3个代数式的例子:___________________________________________ 知识点2 列代数式时应该注意的问题(1)数与字母、字母与字母相乘时常省略“×”号或用“·”. 如:-2×a=-2a ,3×a ×b=________,-2×x 2=________. (2)数字通常写在字母前面.如:mn ×(-5)=________, (a+b)×3=_______. (3)带分数与字母相乘时要化成假分数. 如:221×ab=________,切勿错误写成“221ab ”. (4)除法常写成分数的形式.如:S ÷x=x S, x ÷3=__________, x ÷312=__________ 典型例题:1、列代数式:(1)a 的3倍与b 的差的平方:___________________ (2)2a 与3的和:____________ (3)x 的54与32的和:______________ 知识点3 代数式的值一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.例如:求当x=-1时,代数式x 2-x+1的值. 解:当x=1时,x 2-x+1=12-1+1=1. ∴当x=1时,代数式x 2-x+1的值是1.对于一个代数式来说,当其中的字母取不同的值时,代数式的值一般也不相同。

整式2-单项式和多项式以及习题大全

整式2-单项式和多项式以及习题大全

整式【整式】整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为:⎩⎨⎧多项式单项式整式1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.➢ 单项式与多项式的分辨【基础练习】1. 代数式5.0-、2xy -、1322+-x x 、a -、1x、0中,单项式共有( ) A .2个 B .3个 C .4个 D .5个 2. 下列各式:2222111,1,25,,,2522x y a b x a ab b x -----+中单项式的个数有( ) A .4个 B .3个 C .2个 D .1个 3. 在代数式22513,2,,5,,02x x x y a xπ--中,单项式的个数是( ) A .1 B .2 C .3 D .44. 下列代数式中属于单项式的是( ) A .85xy + B .3x C .312y + D .π 5. 在代数式2222,,3,1,,23xy x x ab x x x -+--+中,是单项式的有( )A .1个B .2个C .3个D .4个 6. 在式子 中单项式的个数为( )A .2B .4C .3D .5 7. 在式子212,,,0,3,22x yx ab a b x ++中,单项式的个数有( ) A .4个 B .3个 C .2个 D .1个8. 在代数式2222,3,2,,23m m b n π---中,单项式的个数为( ) A .4个 B .3个 C .2个 D .1个9. 下列式子222222,32,,4,,,22a b x yz ab c a b xy y m x π++---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个 10. 下列各式中是多项式的是( ) A .12-B .x y +C .3abD .22a b -11. 下列代数式中的多项式共有( )个22231,,0.5,,,,,535n m x a abxy ax bx c a b x y ---++-. A .1 B .2 C .3 D .4 12. 代数式:221()x y π+是( )A .是单项式B .是多项式C .既不是单项式,也不是多项式D .无法确定 【培优练习】13. 判断下列各代数式是否是单项式。

2.1 整式(2)

2.1 整式(2)
1、单项式,单项式的系数、次数. 单项式,单项式的系数、次数. 填空: 2、填空
(1)单项式-5y的系数是____,次数是_____ (1)单项式-5y的系数是____,次数是_____ 单项式 的系数是____ 1 -5 (2)单项式a 的系数是_____ 次数是_____ _____, (2)单项式a3b的系数是_____,次数是_____ 单项式 1 4 (3)单项式 (3)单项式
一条河流的水流速度为2.5千米/ 2.5千米 例3: 一条河流的水流速度为2.5千米/时,如果 已知船在静水中的速度, 已知船在静水中的速度,那么船在这条河流中顺 水行驶和逆水行驶的速度分别怎样表示? 水行驶和逆水行驶的速度分别怎样表示? 分析: 船在河流中行驶时, 速度需要分两种情况讨论: 分析: 船在河流中行驶时, 速度需要分两种情况讨论:
项 项 项
X2+2x+18
其中不含 字母的项 叫做常数 叫做常数 项
几个单项 式的和 叫做多项式 叫做多项式. 多项式
思考:t-5是多项式吗 是多项式吗? 思考 是多项式吗
3ab-4a2b是多项式 是多项式 吗?
解剖多项式
• 在多项式中,每个单项式叫做多项式的项 在多项式中,每个单项式叫做多项式的 叫做多项式的项 • 不含字母的项叫做常数项 不含字母的项叫做 的项叫做常数项 • 多项式里次数最高项的次数就是多项式的次数 多项式里次数最高项的次数就是多项式的次数 如a2 -3a-2的项分别有 a2, -3a, -2 3a,
顺水=静水中的速度+水流速度; 顺水=静水中的速度+水流速度; 逆水=静水中的速度-水流速度; 逆水=静水中的速度-水流速度; 解: 设船在静水中的速度为v千米/时,则 设船在静水中的速度为v千米/ 当船顺水行驶时, 当船顺水行驶时,船的速度为 (v+2.5)千米/时 (v+2.5)千米/ 千米 当船逆水行驶时, 当船逆水行驶时,船的速度为 (v-2.5)千米/时 (v-2.5)千米/ 千米

七年级数学 第08讲 整式-单项式和多项式(解析版)

七年级数学 第08讲 整式-单项式和多项式(解析版)

第08讲整式-单项式和多项式1.理解单项式,多项式和整式的概念,并能判定单项式,多项式和整式;2.掌握单项式,多项式的系数和次数求法;3.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识,数到字母的转变过程。

知识点1单项式1.单项式定义(1)定义:由数或字母的积组成的式子叫做单项式。

说明:单独的一个数或者单独的一个字母也是单项式.2、单项式的系数:单项式中的数字因数叫这个单项式的系数.说明:(1)单项式的系数可以是整数,也可能是分数或小数。

如23x 的系数是3;32ab 的系数是31;a8.4的系数是4.8;(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号如24xy -的系数是4-;()y x 22-的系数是2-;(3)对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如2ab -的系数是-1;2ab 的系数是1;(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。

如2πxy 的系数就是2.3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.说明:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

如单项式zy x 242的次数是字母z ,y ,x 的指数和,即4+3+1=8,而不是7次,应注意字母z 的指数是1而不是0;(2)单项式的指数只和字母的指数有关,与系数的指数无关。

如单项式43242z y x -的次数是2+3+4=9而不是13次;(3)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;4、在含有字母的式子中如果出现乘号,通常将乘号写作“∙”或者省略不写。

例如:t ⨯100可以写成t ∙100或t1005、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.知识点2:多项式1、定义:几个单项式的和叫多项式.2、多项式的项:多项式中的每个单项式叫做多项式的项.3、多项式的次数:多项式里,次数最高项的次数叫多项式的次数.4、多项式的项数:多项式中所含单项式的个数就是多项式的项数.5、常数项:多项式里,不含字母的项叫做常数项.知识点3:整式(1)单项式和多项式统称为整式。

212 整式(二)单项式(解析版)

212 整式(二)单项式(解析版)

2.1.2整式(二)单项式单项式的相关概念题型一:单项式的判定【例题1】整式-0.3x2y,0,12x+,-22abc2,13x2,−14y,−13ab2-12a2b中单项式的个数有()A.6个B.5个C.4个D.3个【答案】B【分析】根据单项式的定义逐一判断即可.【详解】根据单项式的定义:由数字和字母的积组成的代数式叫做单项式判断,有-0.3x2y,0,-22abc2,1 3x2,−14y是单项式,共有5个,故选B.【点睛】本题考查单项式的定义,解题的关键是能够熟练地掌握单项式的基本定义,会判别单项式和多项式.变式训练【变式1-1】(2021·上海市实验学校)下列代数式中,为单项式的是()A.5xB.a C.3a ba+D.22x y+【答案】B【分析】根据单项式的定义判断即可得出答案.【详解】解:A. 5x为分式不是整式,错误;知识点管理归类探究单项式:数或字母的积的式子叫做单项式,单个独的一个数字或一个字母也是单项式;系数:单项式中的数字因数叫做这个单项式的系数;单项式的次数:一个单项式中,所有字母的指数的和.B. a 是单项式,正确;C.3a b a +是分式,错误; D. 22x y +是多项式,错误;故答案选B.【点睛】本题考查单项式的定义:数字与字母的乘积组成的代数式为单项式,需要特别注意的是,单独的一个数字或一个字母也是单项式.【变式1-2】下列各式222211,25,,,232a b a b x a ab b +---+中单项式的个数有( ) A .4个B .3个C .2个D .1个【答案】C 【分析】根据单项式的定义进行解答即可.【详解】解: 22a b ,是数与字母的积,故是单项式;2211,,232a b x a ab b +--+是单项式的和,故是多项式; -25是单独的一个数,故是单项式.故共有2个.故选:C .【点睛】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.【变式1-3】下列各式:2222111,1,25,,,2522x x y a b x a ab b x -----+中单项式的个数有( ) A .2个B .3个C .4个D .1个【答案】A【分析】根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,求解即可. 【详解】解:根据单项式的定义:2215a b -,-25是单项式,共2个. 故选:A .【点睛】本题考查了单项式的知识,解答本题的关键是掌握单项式的定义,属于基础题.题型二:单项式的系数和次数【例题2】(2021·江苏九年级一模)下列说法正确的是( )A .3xy π的系数是3B .3xy π的次数是3C .223xy -的系数是23-D .223xy -的次数是2 【答案】C【分析】分析各选项中的系数或者次数,即可得出正确选项【详解】A. 3xy π的系数是3π,π是数字,不符合题意,B. 3xy π的次数是2,x,y 指数都为1,不符合题意C. 223xy -的系数是23-,符合题意D. 223xy -的次数是3,不符合题意 故选C【点睛】本题考查了单项式的系数:单项式的系数是单项式字母前的数字因数,单项式的次数,单项式的次数是单项式所有字母指数的和,正确理解和运用该知识是解题的关键.变式训练【变式2-1】(2021·海南中考真题)下列整式中,是二次单项式的是( )A .21x +B .xyC .2x yD .3x -【答案】B【分析】根据单项式的定义、单项式次数的定义逐项判断即可得.【详解】A 、21x +是多项式,此项不符题意;B 、xy 是二次单项式,此项符合题意;C 、2x y 是三次单项式,此项不符题意;D 、3x -是一次单项式,此项不符题意;故选:B .【点睛】本题考查了单项式,熟记定义是解题关键.【变式2-2】单项式223a b -的系数是________,次数是_______. 【答案】23- 3 【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可. 【详解】解:单项式223a b -的系数是23-,次数是3,故答案为:23-,3. 【点睛】本题考查了单项式的系数与次数的定义,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【变式2-3】单项式2103ax π-次数是_____,系数是_________. 【答案】3 103π- 【分析】根据单项式的次数、系数的定义进行解答即可,注意π是作为系数的. 【详解】单项式22101033ax ax ππ-=-, 由单项式的次数、系数的定义可得:次数为3,系数为103π-故答案为:3;103π- 【点睛】本题主要考查了单项式的次数、系数的定义,确定单项式的次数和系数时,把一个单项式分解成数字因式和字母因式的积,是准确找出单项式的系数、次数的关键,注意π是作为系数的,属于基础知识题.题型三:写出符合条件的单项式【例题3】请写出一个含字母,x y 的四次单项式__.【答案】xy 3【分析】根据单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,可得答案.【详解】解:含字母x 和y 的四次单项式可以是xy 3,故答案为:xy 3.【点睛】本题考查了单项式,确定单项式的系数和次数的关键.变式训练【变式3-1】写出一个系数为12-,次数为3的单项式_______. 【答案】312x - 【分析】根据单项式的系数次数,可得答案 【详解】解:系数为12-,次数为3的单项式为312x -, 故答案为:312x -. 【点睛】本题考查了单项式,熟练掌握单项式的系数、次数的定义是解题的关键.【变式3-2】(2020·山西七年级期末)请你写出一个单项式,使它的系数是3,次数是2,这个单项式是____.【答案】3x 2(答案不唯一)【分析】由数与字母的乘积组成的代数式是单项式,其中数字因数是单项式的系数,所有字母的指数和是单项式的次数,单独一个数或一个字母也是单项式,据此解题.【详解】解:根据单项式的定义得,这个单项式是:23x ,故答案为:23x (答案不唯一).【点睛】本题考查单项式,是基础考点,难度较易,掌握相关知识是解题关键.【变式3-3】(2021·甘肃七年级期末)写出一个次数为3,且含有字母a 、b 的整式:_____.【答案】a 2b (答案不唯一)【分析】要根据单项式系数和次数的定义来写,单项式中数字因数叫做单项式的系数,所有字母指数的和是单项式的次数.利用单项式的次数确定方法得出一个符合题意的答案.【详解】解:根据单项式次数的定义,一个含有字母a 、b ,次数为3的单项式可以写为:a 2b (答案不唯一).故答案为:a 2b (答案不唯一).【点睛】此题主要考查了单项式,要注意所写的单项式一定要符合单项式系数和次数的定义.题型四:找规律型单项式【例题4】(2021·山东九年级其他模拟)按一定规律排列的单项式:2a ,33a -,109a ,1527a -,2681a ,…,第n 个单项式是_.【答案】()121(1)3n n n a ++---(n 为正整数).【分析】从已知单项式的系数符号、系数绝对值、字母指数三个方面寻找其与序数间的关系,从而得出答案.【详解】解:∵第一个式子:21101101+(1)2=(3)=(3)a a a ++---,第二个式子:221314112(1)3=(3)(3)a a a +-+---=-,第三个式子:2311029123(1)9=(3)(3)a a a +++--=-,第四个式子:2413161531)14(27=(3)(3)a a a +-+--=--,第五个式子:25142512645(1)=(3)(381)a a a +++--=-….则第n 个式子为:()121(1)3n n n a ++---(n 为正整数). 故答案是:()121(1)3n n n a ++---(n 为正整数).【点睛】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.变式训练【变式4-1】(2021·云南九年级一模)观察下列关于x 的单项式:﹣x ,4x 2,﹣7x 3,10x 4,﹣13x 5,16x 6,…,按照上述规律,策2021个单项式是____.【答案】﹣6061x 2021.【分析】根据题目中的单项式,可以发现它们的变化规律,从而可以写出第n 个单项式,进而求得第2021个单项式,本题得以解决.【详解】∵一列关于x 的单项式:﹣x ,4x 2,﹣7x 3,10x 4,﹣13x 5,16x 6……,∵第n 个单项式为:(﹣1)n •(3n ﹣2)x n ,∵第2021个单项式是(﹣1)2021•(3×2021﹣2)x 2021=﹣6061x 2021,故答案为:﹣6061x 2021.【点睛】此题主要考查了单项式,正确得出数字变化规律是解题关键.【变式4-2】(2021·云南中考真题)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( )A .21n n a +B .21n n a -C .1n n n a +D .()21n n a + 【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决.【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,...,∵第n 个单项式为21n n a +,故选:A .【点睛】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.【变式4-3】(2021·云南九年级一模)按一定规律排列的单项式:x ,23x -,39x ,427x -,581x ,…,第n 个单项式是( )A .1(3)n n x --B .1(3)n n x +-C .13n n x --D .(3)n n x -【答案】A 【分析】分别观察每个单项式的系数与次数部分,根据规律总结出结论即可.【详解】根据已知单项式的规律可知,从第一项开始,对于系数,后一项是前一项的-3倍,则第n 个单项式的系数表示为()13n --;对于次数,后一项的次数比前一项次数多1,则第n 个单项式表示为()1113n n n x ---,即:1(3)n n x --, 故选:A .【点睛】本题考查整式相关的规律探究问题,注意从系数与次数两部分进行分析是解题关键.【真题1】(2020·山东中考真题)单项式﹣3ab 的系数是( )A .3B .﹣3C .3aD .﹣3a 【答案】B【分析】根据单项式系数的定义即可求解.【详解】解:单项式﹣3ab 的系数是﹣3.故选:B .【点睛】本题考查单项式,解题关键是单项式的系数是单项式字母前的数字因数.【真题2】(2020·云南中考真题)按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,…,第n 个单项式是( )A .()12n a --B .()2n a -C .12n a -D .2n a【答案】A【分析】先分析前面所给出的单项式,从三方面(符号、系数的绝对值、指数)总结规律,发现规律进行概括即可得到答案.【详解】解: a ,2a -,4a ,8a -,16a ,32a -,…,可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a --链接中考故选A .【点睛】本题考查了单项式的知识,分别找出单项式的系数和次数的规律是解决此类问题的关键.【真题3】(2021·湖南中考真题)单项式23x y 的系数是______.【答案】3【分析】根据单项式的系数定义判断即可.【详解】单项式223x 3x y y ,其中数字因式为3,则单项式的系数为3.故答案为3.【点睛】本题考查了单项式的系数定义的掌握情况,单项式的系数:单项式中的数字因数.【拓展1】(2020·抚顺市顺城区长春学校七年级期中)观察下列一串单项式的特点:xy ,23x y - ,35x y ,47x y - ,59x y ,…(1)写出第10个和第2020个单项式.(2)写出第n 个单项式.【答案】(1)﹣19x 10y ,﹣4039x 2020y ;(2)(﹣1)n +1(2n ﹣1)x n y .【分析】(1)通过观察题意可得:10为偶数,单项式的系数为负数,是﹣19,x 的指数为10,y 的指数不变,还是1,由此可得出第10个单项式,同理第2020个单项式也可由此得出;(2)通过观察题意可得:n 为奇数时,单项式的系数为正数,n 为偶数时,单项式的系数为负数.系数的数字部分是连续的奇数,可用2n ﹣1来表示,第n 个单项式的x 的指数为n ,y 的指数不变,还是1,由此可解出本题.【详解】解:(1)∵当n =1时,xy ,当n =2时,﹣3x 2y ,当n =3时,5x 3y ,当n =4时,﹣7x 4y ,当n =5时,9x 5y ,∵第10个单项式是﹣(2×10﹣1) x 10y ,即﹣19x 10y .第2020个单项式是﹣(2×2020﹣1) x 2020y ,即﹣4039x 2020y .故答案为:﹣19x 10y ,﹣4039x 2020y .满分冲刺(2)∵n 为奇数时,单项式的系数为正数,n 为偶数时,单项式的系数为负数.∵符合可用(﹣1)n +1表示,∵系数的数字部分是连续的奇数,∵可用2n ﹣1来表示,又∵第n 个单项式的x 的指数为n ,y 的指数不变,还是1,∵第n 个单项式可表示为(﹣1)n +1(2n ﹣1)x n y .故答案为:(﹣1)n +1(2n ﹣1)x n y .【点睛】本题考查的是单项式,根据题意找出各式子的规律是解答此题的关键.【拓展2】(2020·湖南岳阳市·七年级期中)观察下列单项式:x -,23x ,35x -,47x ,…,1937x -,2039x ,…写出第n 个单项式.为解决这个问题,特提供下面的解题思路:通过观察单项式的结构特征,分三步确定:先确定符号,再确定系数的绝对值,最后确定次数.(1)这组单项式系数的符号规律是________系数的绝对值规律是________;(2)这组单项式的次数的规律是________;第六个单项式是________;(3)根据上面的归纳,可以猜想第n 个单项式是________;(4)请你根据猜想,写出第2019个单项式.【答案】(1)(-1)n ,2n -1;(2)从1开始的连续自然数,11x 6;(3)(-1)n (2n -1)x n ;(4)-4037x 2019【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n -1.故答案为:(-1)n ,2n -1;(2)这组单项式的次数的规律是从1开始的连续自然数.第6个单项式为:11x 6故答案为:从1开始的连续自然数,11x 6.(3)第n 个单项式是:(-1)n (2n -1)x n .故答案为:(-1)n (2n -1)x n ;(4)第2019个单项式是-4037x 2019.故答案为:-4037x 2019.【点睛】此题主要考查了单项式变化规律,得出次数与系数的变化规律是解题关键.【拓展3】(2020·北京海淀区·北大附中七年级期中)由于(﹣1)n=()()11n n ⎧-⎪⎨⎪⎩为奇数为偶数,所以我们通常把(﹣1)n 称为符号系数.(1)观察下列单项式:﹣2341234,,,3153563x x x x -,…按此规律,第5个单项式是 ,第n 个单项式是 .(2)()122n a b a b +-+-的值为 ; (3)你根据(2)写出一个当n 为偶数时值为2,当n 为奇数时值为0的式子 .【答案】(1)599-, ()241n n x n --;(2)b 或a ;(3)1+(﹣1)n . 【分析】(1)观察发现,奇数项为负,偶数项为正,系数的分子与项数相同,系数的分母的规律是4n 2﹣1,字母x 的指数与项数相同,据此可解;(2)分n 为奇数和n 为偶数两种情况来计算即可;(3)取指数为n 的项的底数与不含n 的项互为相反数,则不难得出答案.【详解】(1)观察下列单项式:2341234,,,3153563x x x x --,…按此规律,第5个单项式是599-,第n 个单项式是2()41nn x n -- 故答案为:599-,2()41nn x n --. (2)n 为奇数时,()12222n a b a b a b a b b +-+-+-=-=, n 为偶数时,()12222n a b a b a b a b a +-+-+-=+=. 故答案为:b 或a .(3)可以这样写一个当n 为偶数时值为2,当n 为奇数时值为0的式子:1+(﹣1)n .故答案为:1+(﹣1)n .【点睛】此题考查单项式规律的探究,观察并发现数字间的规律是解题的关键.。

整式 辅导资料(含答案).

整式 辅导资料(含答案).

整式学习本节先复习单项式的系数和次数、多项式的项等概念,为学习同类项的概念及合并同类项法则做好准备.主要包括 单项式的系数和次数,多项式的项和每项的系数.一单项式、多项式的概念及它们各自对应的系数,项这是本节的重点;【典例引路】中例2,【当堂检测】中第2题,【课时作业】中第3题。

二.正确的判断所给代数式的系数或项这是本节的难点;【典例引路】中例2,【当堂检测】中第3题,【课时作业】中第10题。

三.易错题目单项式的次数,多项式的次数是同学们易错的地方. 【典例引路】中例2,【基础练习】中第2题,【当堂检测】中第4题,【课时作业】中第9题。

知识点击一:单项式的概念及其次数与系数(1)单项式的定义:像 1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式.注:①单独一个数与一个字母也是单项式.②形如21+x 形式的代数式不是单项式.(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.注:单独一个数的次数是0次.(3)单项式的系数:单项式中的数字因数叫做单项式的系数.注:①单个字母的系数为1;②单项式的系数包括符号.知识点击二:多项式的概念及其项数与次数(1)多项式的概念:几个单项式的和叫做多项式.注:①多项式概念中的和指代数和,即省略了加号的和的形式.②多项式中不含字母的项叫做常数项.(2)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(3)多项式的项数:多项式中单项式的个数叫做多项式的项数.知识点击三:整式的概念单项式和多项式统称为整式.区别是否整式:关键:分母中是否含有字母.针对性练习:一、判断题.(对的打“∨”,错的打“×”)1.x是单项式.()2.6不是单项式.()3.m的系数是0,次数也是0.()【解答】1.∨ 2.× 3.× 4.∨类型之一:应用创新型例1.根据题意列出代数式,并判断是否为整式.3月12日是植树节,七年级一班和二班的同学参加了植树活动,一班种了a棵树,二班种的比一班的2倍多b棵,这两个班一共种了多少棵树?【解答】(2a+b+a) 棵, 是整式.类型之二:明辨是非型例2 判断下列各说法是否正确,错误的改正过来;(1)单项式的系数是,次数是2次.()(2)单项式的次数是1次.()(3)任何两个单项式的和是多项式.()(4)是单项式.()(5)不是单项式.()(6)的系数是,次数是1次.()(7)没有系数.()(8)多项式是一次二项式.()(9)是二次三项式.解:(1)错.的系数是-,次数是3次.(2)错.单项式的次数是3次.(3)错.任何两个单项式的和不一定是单项式;(4)错.是多项式.(5)错.是单项式.(6)对(7)错.的系数是1.(8)错.多项式是三次二项式.(9)对说明:单项式的次数是单项式中所有字母的指数和,如 的次数是次.任何两个单项式的和不一定是多项式,如单项1与单项式的和为 ,而 为单项式. 可写成 ,因此多项式 是二次三项式.1.下列代数式分别有几项?每一项的系数分别是多少?2x -3y 4a 2-4ab +b 2 -31x 2y +2y -x 【解答】 2x -3y 有2项,每一项的系数分别是2,-3;4a 2-4ab +b 2有3项,每一项的系数分别是:4,-4,1. -31x 2y +2y -x 有3项,每一项的系数分别是-31,2,-1. 2.若-2a m +2b 4是7次单项式,则m =_______;【解析】:m+2+4=7,m=1;3.多项式x 2-3x -4共有_____项,次数是________.【解析】3,2;4.x 2yz 的系数是________,次数是________.【解析】1, 4.5.如果单项式-2x 2y n 与单项式a 4b 的次数相同,则n=________.【解析】3.6.写出系数为5,含有x 、y 、z •三个字母且次数为4•的所有单项式,•它们分别是_______.【解析】5xy 3,5x 2y 2,5x 3y1.代数式ab -mn -81πn 2+1是哪几项的和?每项的系数分别是什么? 【解析】式子中数与字母的积为一项,如ab ,-mn ,每一项应包含它前面的符号.单独一个数或一个字母也是一项,字母前的数字因数是它的系数,如ab 的系数是1,-mn 的系数是-1,-81πn 2的系数是-81π,因为π是常数. 【解答】ab -mn -81πn 2+1分别是ab ,-mn ,-81πn 2,1四项的和, 每项的系数分别是1,-1,-81π,1. 2.下列代数式中,哪些是整式?单项式?多项式?ab +c ,ax 2+bx +c ,-5,π,2y x -,12-x x 【解析】整式: ab +c ,ax 2+bx +c ,-5,2y x -; 单项式: -5; 多项式: ab +c ,ax 2+bx +c ,2y x -; 3.求下列各单项式的系数及次数:73xy ,-ab 2c 【解析】73xy 的系数及次数:73,2; -ab 2c 的系数及次数:-1,4; 4.说出下列多项式为几次几项式? -31x -x 2y +2π,6x 3y 2-5+xy 3-x 2 【解析】-31x -x 2y +2π,6x 3y 2-5+xy 3-x 2 5.根据题意列出代数式,并判断是否为整式.①ab 两数的积除以ab 两数的和;②ab 两数的积的一半的平方;【解析】:①ab÷(a+b)=b a ab +;(2)(ab 21)2=2241b a ;例1、将多项式3+6x 2y -2xy -5x 3y 2-4x 4y 先按字母x 升幂排列,再按x 降幂排列。

(完整版)整式知识点总结

(完整版)整式知识点总结

15整式知识点一、基本概念:1.代数式:用基本的运算符号(指加、减、乘、除、乘方及今后要学的开方)把数或表示数的字母连接而成的式子.2.单项式:数字与字母的积,这样的代数式叫做单项式.(1)单独的一个数或一个字母也是单项式.(2)单项式中的数字因数叫做这个单项式的系数.(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数.3.多项式:几个单项式的和叫做多项式.(1)在多项式中,每个单项式叫做多项式的项,其中,不含字母的项叫做常数项.(2)一般地,多项式里次数最高的项的次数,就是这个多项式的次数.4.整式:单项式和多项式统称整式.5.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项.6.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.二、基本运算法则:7.整式加减法法则:几个整式相加减,先去括号,合并同类项.8.合并同类项法则:合并同类项时,把系数相加,字母和字母指数不变.9.同底数幂的乘法法则:a m·a n = a m+n (m,n是正整数).同底数幂相乘,底数不变,指数相加.10.幂的乘方法则:(a m)n = a m n (m,n是正整数).幂的乘方,底数不变,指数相乘.11.积的乘方的法则:(a b)m = a m b m (m是正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.12.平方差公式:(a+b)(a-b)=a2-b2.两个数的和与这两个数的差的积,等于这两个数的平方差.13.完全平方公式:(a+b)2=a2+2a b+b2,(a-b)2=a2-2a b+b2.两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.14.单项式与多项式相乘的乘法法则:m(a+b+c)=am+bm+cm单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.15.多项式乘法法则:( m+n)(a+b)= m(a+b)+ n(a+b)=am+bm+an+bn.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.16.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.17.同底数幂的除法法则:a m ÷a n =a m-n (a ≠0,m ,n 都是正整数,并且m >n).同底数幂相除,底数不变,指数相减.18.单项式除法法则: 单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 规定:()010a a =≠ 19.多项式除以单项式的除法法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.三、因式分解: 把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解。

2.1.2整式(2)

2.1.2整式(2)
多项式的次数是4。
例2.指出下列多项式是几次几项式:
(1) x3 x 1
(2) x3 2x 2 y 2 3y 2
解:(1) x3 x 1 是一个三次三项式.
(2)
x3 2x2 y 2 3y 2 是一个四次三项式.
• 例3 用多项式填空,并指出他们的项和次数。
• (1)温度由t℃下降5℃后是(
(其中不含字母的项叫做常数项)
次数:多项式中次数最高的项的次数。
提高究
1.已知n是自然数,多项式 y n+1+3x3-2x 是三次三项式,那么n可以是哪些数?
2.多项式 5xmy2 (m 2)xy 3x
如果的次数为4次,则m为多少? 如果多项式只有二项,则m为多少?
例1、代数式3xa+1+ 4x – 2b是四次二 项 解式:,∵试代数求式a,的b次的数值是四次
1、什么叫做单项式、单项式的系数、 单项式的次数?
2、填空: (1) 单项式-5y的系数是_-__5__,次数是_1____ (2) 单项式a3b的系数是__1___,次数是_4____
3
(3) 单项式 3ab 的系数是__2___,次数是_2___
2
(4) 5x2 yz与 15x zyn是同次单项式则n 2
2ab+2ah-2bh
2ab、2ah、-2bh 三项式
πR2 - πr 2 5x-4
πR2和- πr 2 5x、-4
二项式 二项式
2rh 1 πr 2 2
2rh和 1 πr 2 2
二项式
注意:指出每一项时必须包含前面的符号.
知识要点
三、多项式里不含字母的项常数项。
5v2 8; 6m3 5 y 8; 1 a3 3. 2

2.1+整式-第2课时+单项式+课件++2023-2024学年人教版七年级数学上册

2.1+整式-第2课时+单项式+课件++2023-2024学年人教版七年级数学上册
字母

数或字母
1.(2022重庆期末)下列式子中,为单项式的是( )A.m+n B.C.x=1 D.2m
D
知识点二:单项式的系数和次数及应用(1)单项式的系数①单项式是由数字因数和字母因式两部分组成的, 叫做单项式的系数; ②单项式的系数包括前面的符号,且只与数字因数有关;③只含有字母因式的单项式,当系数是1时,往往省略不写;当系数是-1时,只写性质符号“-”;④圆周率π是数字,不是字母.
人教版七年级数学上册课件
第二章 整式的加减
第2课时 单项式
2.1 整式
自主学习
学习目标
1.理解并掌握单项式的概念.
2.会确定单项式的系数与次数.
自主导学
1. 由数与字母的______组成的式子叫做单项式.单独的一个______或一个________也是单项式.


字母
2. 单项式中的数字因数叫做这个单项式的________.一个单项式中,所有字母的指数的______叫做这个单项式的________.
解:系数是,次数是1.
解:系数是π,次数是2.
(5)(人教7上P57、北师7上P83)产量由m kg 增长10%,就达到 kg.
(4)(人教7上P57、北师7上P83)全校学生总数是x,其中女生人数占总数的48%,则女生人数是 ,男生人数是 ;
数字因数
(2)单项式的次数①一个单项式中,所有字母的指数的 是单项式的次数; ②次数为m的单项式,简称为m次单项式;③特别地,单项式如果是单独一个非零的数字,其次数为0;④次数只与字母有关,例如:-a3的系数是 ,次数是 ; -32x2的系数是 ,次数是 ; 2πr的系数是 ,次数是 .
系数

2021-2022学年人教版七年级数学上册第二章2.1《整式-单项式》专项练习

2021-2022学年人教版七年级数学上册第二章2.1《整式-单项式》专项练习

专题2.2 整式-单项式(专项练习)一、填空题知识点一、用字母表示数1.一个两位数的个位上的数字是1,十位上的数字比个位上的数字大a,则这个两位数是______.2.今年五月份,由于禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a元/千克,则五月份的价格为________元/千克.3.某大型超市从生产基地以每千克a元的价格购进一种水果m千克,运输过程中重量损失了10%,超市在进价的基础上增加了30%作为售价,假定不计超市其他费用,那么售完这种水果,超市获得的利润是_____元(用含m、a的代数式表示)4.设n为自然数,则奇数表示为_____,能被5整除的数为_____,被4除余3的数为_____.知识点二、列代数式5.标价m元的上衣,打八五折后,便宜了_____元钱.6.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是__万元.7.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费_____元.8.如图,用代数式表示图中阴影部分的面积为___________________.知识点三、用代数式表示数、图形规律9.观察下列单项式:3a2、5a5、7a10、9a17、11a26…它们是按一定规律排列的,那么这列式子的第n个单项式是_____.10.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=_____.11.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.12.观察下列各等式:231-+=56784--++=1011121314159---+++=171819202122232416----++++=……根据以上规律可知第11行左起第一个数是__.知识点四、代数式概念13.下列式子中是代数式________;是单项式________;是整式________;是多项式________.2y ,5a -,2y ,24a b ,6-,223a ab b ++,a ,1x =,3π,x -,1123>,0. 14.在x y +,0,21>,2a b -,210x +=中,代数式有______个.15.若0<a <1,则a ,-a ,1a ,-1a 的大小关系是_________.(用“>”连接) 16.下列式子2x ,2x y x y -+,0p <,ab ,2S r π=,5-,262a b ++.其中是代数式的有__________个. 知识点五、代数式的书写方法17.下列代数式中,符合代数式书写要求的有______________.(1)2ab c ÷; (2)3m n ; (3)2135x y ; (4)3()m n ⨯+; (5)235a b -; (6)3ab ⋅. 18.下列各式:2ab ⋅,2m n ÷;53xy ,113a ,4ab -其符合代数式书写规范的有______个. 19.带有字母的和式,如果后接单位,则和式要加____________.20.进入初中后学习数学,对于代数式书写规范,教材中指出:“在含有字母的式子中如果出现乘号‘⨯’ ,通常将乘号写作‘• ’或者省略不写”.其实还有一些书写规范,比如,在代数式中如果出现除号“÷”,通常用分数线“—”来取代;数字与字母相乘时,一般数字写在前面,根据以上书写要求,将代数式2(4)4ac b ⨯-÷简写为__________. 知识点六、代数式表示的实际意义21.赋予式子“ab”一个实际意义:_____.22.体育委员带了500元钱去买体育用品,若2个足球a 元,1个篮球b 元,则代数式50032a b --表示________.23.明明带了a 元去书店买了一套《四大名著》,每本名著售价b 元,一套有4本,还剩_______元.如果150a =,36.45b =元,还剩_______元.24.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是50km/h ,水流速度是a km/h . 则2h 后两船相距____千米.知识点七、单项式的判定25.下列各式中,3a+4b ,0,﹣a ,am+1,﹣xy , 1x ,x a ﹣1, 2x y +单项式有______个,多项式有_______个 26.在代数式2-12a ,-3xy 3,0,4ab,3x 2-4,7xy ,n 中,单项式有____个. 27.将下列代数式的序号填入相应的横线上.①223a b ab b ++;①2a b +;①23xy -;①0;①3y x -+;①2xy a ;①223x y +;①2x ;①2x . (1)单项式:_______________;(2)多项式:_______________;(3)整式:_________________;(4)二项式:_______________.28.在①xy ,①5x -,①75ab -,①2a b -+①0,①2415x -+,①2x y +-,①4x -,①2b π中,单项式有:________,多项式有:________,整式有:________ (填序号)知识点八、单项式的次数、系数29.单项式2335x yz -的系数是___________,次数是___________. 30.代数式213x π-的系数是________,次数是________.31.单项式−2x 2y 3的系数与次数之积为___________.32.单项式327a b π的系数是__________次数是__________.知识点九、写出满足单项式的一些特征33.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________34.如果单项式的字母因数是a 3b 2c ,且a=1,b=2,c=3时,这个单项式的值为4,则这个单项式为_____. 35.请写一个系数为-1,且只含有字母a ,b ,c 的四次单项式为__________.36.单项式235x y 的系数是a ,次数是b ,则ab=______. 知识点十、单项式的规律题37.观察一列单项式:a ,﹣2a 2,4a 3,﹣8a 4,…,根据你发现的规律,第10个单项式为_____.38.观察下列单项式:x ,24x -,39x ,416x -,…写出第10个式子是__________.39.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.3 2x,254x-,376x,498x-,….按照排列规律,第n个单项式是______.40.观察一组关于x的单项式:参考答案1.10a+11【分析】先表示出十位上的数字,然后再表达出这个两位数的大小【详解】①个位数是1,十位数比个位数大a①十位数是1+a①这个两位数为:10(a+1)+1=10a+11故答案为:10a+11【点拨】本题考查用字母表示数字,解题关键是:若十位数字为a ,则应表示为10a2.0.9a【分析】因为原来鸡肉价格为a 元/千克,现在下降了10%,所以现在的价格为(1-10%)a ,即0.9a 元/千克.【详解】①原来鸡肉价格为a 元/千克,现在下降了10%,①五月份的价格为a -10%a=(1-10%)a=0.9a ,故答案为0.9a .-3.0.17am【分析】根据题意可以用含a 的代数式表示出超市获得的利润,本题得以解决.【详解】由题意可得,超市获得的利润是:a (1+30%)×[m (1﹣10%)]﹣am =0.17am (元),故答案为0.17am .【点拨】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.4.21n 或21n - 5n 43n【分析】能被2整除的数是偶数,因此偶数通常可以表示为2n ,偶数2n 的前一位或后一位都是奇数,则奇数可以表示为21n 或21n -;同理,能被5整除的数必含5这个因数;能被4除余3的数,应为4的倍数且加上3. 【详解】因为偶数中含有2这个因数,则偶数可以表示为2n ,偶数2n 的前一位或后一位都是奇数,则奇数可以表示为21n 或21n -;能被5整除的数必含5这个因数,则能被5整除的数可表示为5n ;能被4除余3的数可表示为4n +3.故答案为21n 或21n -;5n ;4n +3. 【点拨】本题考查了列代数式的知识点,熟练掌握所求的数的特征是解决本题的关键,属于基础题.注意:能被某数整除的数中必含有除数的因数.5.0.15m .【分析】根据题意,上衣打八五折出售,也就是按原价的85%出售,那么便宜了原价的1-85%=15%,然后再进一步解答.【详解】解:根据题意得:m•(1﹣85%)=0.15m (元),答:便宜了0.15m 元.故答案为:0.15m .【点拨】此题考查百分数的实际应用,解题关键在于根据题意列出式子计算.6.1.1a【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【详解】解:根据题意可得今年产值=(1+10%)a =1.1a 万元,故答案为1.1a .7.39.5【详解】根据题意可得:10×2.2+(2.2+1.3)×(15-10)=22+3.5×5=39.5,故答案为39.5.8.212ab b π- 【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差.长方形的面积是ab ,两个扇形的圆心角是90①,①这两个扇形是分别是半径为b 的圆面积的四分之一. ①2211242ab b ab b ππ-⨯=- . 【点拨】本题考查了列代数式, 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积长方形的面积-2个14圆的面积是解题的关键. 9.(2n+1)21n a +【分析】先找出前3项的规律,然后通过后面的几项进行验证,找到规律得到答案即可.【详解】3a 2=(2×1+1)211a +,5a 5=(2×2+1)221a +,7a 10=(2×3+1)231a +,… 第n 个单项式是:(2n+1)21na +, 故答案为(2n+1)21n a +.【点拨】本题考查了规律题——数字的变化类,根据前几项发现规律,通过观察发现每一项的系数与次数都与该项的序数有关是解题的关键.10.1010【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【详解】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n 幅图中共有(2n ﹣1)个.当图中有2019个菱形时,2n ﹣1=2019n =1010,故答案为1010【点拨】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律. 11.120.【详解】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n 个图形有(n +1)2-1个小五角星.①第10个图形有112-1=120个小五角星.12.-122.【分析】观察规律即可解题.【详解】解:由已知等式知第n 行左起第1个数为-(n 2+1),当n=11时,-(n 2+1)=-(121+1)=-122,故答案为:-122.【点拨】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.13.2y ,5a -,2y ,24a b ,6-,223a ab b ++,a ,3π,x -,0; 2y ,4a 2b ,-6,a ,3π,-x ,0; 2y ,a -5,4a 2b ,-6,a 2+3ab+b 2,a ,3π,-x ,0; 5a -,223a ab b ++【分析】根据代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式;单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;几个单项式的和叫做多项式;单项式和多项式统称为整式进行分析即可. 【详解】解:代数式2y ,5a -,2y ,24a b ,6-,223a ab b ++,a ,3π,x -,0; 单项式2y ,4a 2b ,-6,a ,3π,-x ,0;整式2y ,a -5,4a 2b ,-6,a 2+3ab+b 2,a ,3π,-x ,0; 多项式a -5,a 2+3ab+b 2. 故答案为:2y ,5a -,2y ,24a b ,6-,223a ab b ++,a ,3π,x -,0; 2y ,4a 2b ,-6,a ,3π,-x ,0;2y ,a -5,4a 2b ,-6,a 2+3ab+b 2,a ,3π,-x ,0;a -5,a 2+3ab+b 2.【点拨】此题主要考查了整式、代数式、单项式、多项式,关键是掌握整式、代数式、单项式、多项式的定义. 14.3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点拨】本题考查了代数式的定义,理解定义是关键.15.1a >a >-a >-1a【分析】先由0<a <1求出- a 的范围,1a 范围,-1a 的范围,再根据范围按要求排序,用“>”连接即可. 【详解】若0<a <1,-1<-a <0,11a >,1a -<-1 则a ,-a ,1a ,-1a 的大小关系1a >a >-a >-1a . 故答案为:1a >a >-a >-1a. 【点拨】本题考查有理数的大小比较问题,掌握相反数,倒数与倒数的相反数概念,会求倒数,能比较它们的大小,会利用a 的范围确定相反数与倒数的范围,及倒数的相反数的范围是解题关键.16.5【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【详解】解:①0p <,2S r π=中含有<、=,则它们不是代数式,①2x ,2x y x y -+,ab ,5-,262a b ++是代数式, ①代数式有5个,故答案为:5.【点拨】此题考查代数式的判断,注意掌握代数式的定义.17.(2)(5).【分析】根据代数式的书写要求判断各项.【详解】解:(1)的书写格式是2ab c ,故错误; (2)、(5)的书写格式正确,故正确;(3)的正确书写格式是2165x y ,故错误; (4)的正确书写格式是3(m +n ),故错误;(6)的正确书写格式是3ab ,故错误;故答案是:(2)(5).【点拨】本题考查了代数式.代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“·”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.18.2【分析】根据书写规则直接解答即可. 【详解】解:符合代数式书写规范的是;53xy ,4a b -, 一共有2个符合书写规则.故答案为:2.【点拨】本题考查代数式书写规则 ,掌握书写规则①两字母相乘、数字与字母相乘、字母与括号相乘以及括号与括号相乘时,乘号都可以省略不写.如:“x 与y 的积”可以写成“xy”;“a 与2的积”应写成“2a”,“m 、n 的和的2倍”应写成“2(m+n)”. ①带分数112作为因数,要先把它化为假分数,再写乘“a”的形式,写成“32a”. ①代数式中不能出现除号,相除关系要写成分数的形式 ①数字与数字相乘时,乘号仍应保留不能省略,或直接计算出结果.例如“3×71xy”不能写成“3·71xy”更不能写成“371xy”直接写成“213xy”最好. ①代数式出现和或差后面有单位时要用括号.19.括号【分析】由代数式的书写方法,即可得到答案.【详解】解:根据代数式的书写方法,则带有字母的和式,如果后接单位,则和式要加括号;故答案为:括号.【点拨】本题考查了代数式的书写问题,解题的关键是熟练掌握代数式的书写方法进行解题.20.244ac b - 【分析】根据题意即可写出答案.【详解】解:简写为:244ac b -, 故答案为:244ac b -. 【点拨】本题考查代数式的写法,解题的关键是正确理解题意给出的方法,本题属于基础题型.21.边长分别为a ,b 的矩形面积【分析】赋予单项式实际意义,结合实际情境作答,答案不唯一.【详解】一个长为a ,宽为b 的长方形的面积是ab .故答案为边长分别为a ,b 的矩形面积.【点拨】赋予单项式实际意义,此类问题应结合实际,根据代数式的特点解答.22.体育委员买了6个足球,2个篮球后剩余的经费【分析】本题需先根据买两个足球a 元,一个篮球b 元的条件,表示出3a 和2b 的意义,最后得出正确答案即可.【详解】解:①买两个足球a 元,一个篮球b 元,①3a 表示买了6个足球,2b 表示买了2个篮球,①代数式500﹣3a ﹣2b :表示体育委员买了6个足球、2个篮球后剩余的经费.故答案为体育委员买了6个足球、2个篮球后剩余的经费.【点拨】本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.23.4a b - 4.2【分析】用总钱数减去买名著的钱数就是剩下的钱数,然后把a=150,b=36.45,代入含有字母的式子,即可求出还剩下的钱数.【详解】解:根据题意,则买完一套名著剩下的钱为:4a b -;当150a =,36.45b =元时,①4150436.45 4.2a b -=-⨯=(元);故答案为:4a b -;4.2;【点拨】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.24.200【分析】先表示出甲船顺水速度,乙船逆水速度,再根据路程=速度⨯时间,即可得出结果.【详解】①两船在静水中的速度都是50km/h ,水流速度是a km/h①=v 甲(50+a )km/h ,=v 乙(50a -)km/h①两船背向而行①2h 后两船距离为:2(50+a )+2(50a -)=200(km )故答案为:200.【点拨】熟练掌握顺水速度,逆水速度的表示,及路程=速度⨯时间,是解题的关键.25.3 3【分析】根据单项式、多项式的定义解答即可.【详解】①0 ,-a ,-xy 是由数或字母的积组成的式子,①0 ,-a ,-xy 是单项式,共3个, ①2x y +=22x y +, ①2x y +是多项式, ①3a 2+4b 和am+1是几个单项式的和组成的,①3a 2+4b 和am+1是多项式,①3a 2+4b ,am+1,2x y +是多项式,共3个, 故答案为3;3;【点拨】本题考查多项式和多项式的定义,由数或字母的积组成的式子叫做单项式;几个单项式的和叫做多项式.熟练掌握定义是解题关键.26.5【解析】【分析】根据单项式的概念找出单项式的个数.【详解】单项式有:-3xy 3,0,4ab ,xy 7,n ,共5个. 故答案为:5.【点拨】本题主要考查单项式的概念,熟悉掌握是关键.27.①①① ①①① ①①①①①① ①①【分析】根据单项式,多项式,整式,二项式的定义即可求解. 【详解】(1)单项式有:①23xy -,①0,①2x ; (2)多项式有:①223a b ab b ++,①2a b +,①3y x -+; (3)整式有:①223a b ab b ++,①2a b +,①23xy -,①0,①3y x -+,①2x ; (4)二项式有:①2a b +,①3y x -+; 故答案为:(1)①①①;(2)①①①;(3)①①①①①①;(4)①①【点拨】本题考查了整式,关键是熟练掌握单项式,多项式,整式,二项式的定义.28.①①①① ①①① ①①①①①①①【分析】根据单项式和多项式的定义、整式的定义求解.【详解】解:由定义可知:在①xy ,①5x -,①7ab ﹣5,①2a b -+①0,①45-x 2+1,①2x y +-,①,4x -,①2b π中,单项式有:①①①①,多项式有:①①①,整式有:①①①①①①①(填序号).故答案为①①①①;①①①;①①①①①①①.【点拨】本题重点考查了整式、单项式、单项式定义.29.35六 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六. 【点拨】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 30.13π- 2【分析】根据单项式的次数、系数的定义解答.【详解】代数式213x π-的系数是13π-,次数是2. 故答案是:13π-;2【点拨】本题考查单项式,解题关键是熟练掌握单项式的定义.31.-2【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.【详解】解:根据单项式定义得:单项式的系数是﹣23,次数是3;其系数与次数之积为﹣23×3=﹣2.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 32.7π 5【分析】根据单项式的基本性质得到答案.【详解】单项式327a b 的系数是7π,次数是3+2=5,故答案为7π,5.【点拨】本题主要考查了单项式的基本性质,解本题的要点在于熟知单项式的基本性质.33.-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点拨】此题考查单项式,多项式,解题关键在于掌握其定义.34.13a 3b 2c . 【解析】【分析】设这个单项式的数字因数为M ,则原单项式为Ma 3b 2c ,代入其字母的值求解M 即可.【详解】解:设这个单项式的数字因数为M ,则原单项式为Ma 3b 2c ,由题意得,M×13×22×3=4,解得:M=13, 所以原单项式为:13a 3b 2c . 故答案为:13a 3b 2c . 【点拨】理解单项式是由数字因数和字母因数两部分组成的是解题关键.35.-ab 2c (答案不唯一)【解析】分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.详解:先构造系数为﹣1,即数字因数为﹣1,然后使a 、b 、c 的指数和是4即可.如﹣ab 2c 、﹣abc 2、﹣a 2bc (答案不唯一).故答案为﹣a 2bc (答案不唯一).点拨:本题考查了单项式的定义,解答此题关键是构造单项式的系数和次数,把一个单项式分成数字因数和字母因式的积,是找准单项式的系数和次数的关键.36.95【分析】单项式中的数字因式是其系数,字母因式中各字母指数之和为其次数.【详解】解:由单项式系数和次数定义可知,a=35,b=2+1=3,则ab=39355⨯=, 故答案为:95. 【点拨】本题考查了单项式系数和次数的定义.37.-512 a 10【解析】【分析】本题须先通过观察已知条件,找出这列单项式的规律即可求出结果.【详解】根据观察可得:第n 个单项式为 (-2)n -1a n .所以,第10个单项式为(-2)10-1a 10=-512 a 10故答案为-512 a 10【点拨】本题考核知识点:观察单项式的规律. 解题关键点:运用乘方知识总结规律.38.10100x -【分析】系数按照1,−4,9,−16,25,…(−1)n+1n 2进行变化,x 的指数按照1,2,3,4,5进行变化,所以按这个规律即可写出第10个式子.【详解】解:由题意可得:写出第10个式子是1121010(1)10100x x -=-,故答案为:10100x -.【点拨】本题考查数字规律问题,需要注意观察数字的变化规律.39.8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n -1a n ,①第8个式子为:27a 8=128a 8,故答案为:128a 8.【点拨】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.40.()12112n n n++-⨯n x 【分析】通过观察发现单项式的系数和次数的变化规律, 即可求解. 【详解】观察发现单项式的系数可以用通式()12112n n n ++-⨯来表示,次数可以用n x 来表示,则第n 个单项式为()12112n n n++-⨯n x . 故答案为()12112n n n ++-⨯n x . 【点拨】本题考查了单项式的规律探索,解答的关键是仔细观察前几项单项式系数及次数的变化规律,总结出一般的规律.。

最新初中年级数学整式知识点

最新初中年级数学整式知识点

最新初中年级数学整式知识点最新初中年级数学整式知识点在日常的学习中,是不是听到知识点,就立刻清醒了?知识点就是一些常考的内容,或者考试经常出题的地方。

哪些才是我们真正需要的知识点呢?以下是店铺收集整理的最新初中年级数学整式知识点,欢迎阅读,希望大家能够喜欢。

最新初中年级数学整式知识点1整式的运算一、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉。

括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

二、合并同类项:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

同类项合并的依据:乘法分配律。

三、整式运算的法则:1.整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接2. 整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式,相同字母相乘(除)要用到同底数幂的运算性质:多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加3.整式的乘方单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式单项式的乘方要用到幂的乘方性质与积的乘方性质:4.乘法公式整式的加减第一部分一、全章知识结构二、基本概念1、单项式的概念:数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。

(1)单项式的系数单项式中的数字因数叫做单项式的系数。

(2)单项式的次数一个单项式中,所有字母的指数的和叫做这个单项式的次数。

规定:对于单独一个非零的数,规定它的次数为02、多项式的概念:几个单项式的和叫做多项式(1)多项式的项:在多项式中,每个单项式叫做多项式的项,其中不会字母的项叫做常数项。

(2)多项式的次数:多项式里,次数最高的项的次数,叫做这个多项式的次数。

人教版七年级数学上册整式(第1课时)--单项式教案

人教版七年级数学上册整式(第1课时)--单项式教案
重点、难点:
2.教学重点:1、理解单项式的概念,能判断一个代数式是不是单项式,
2、掌握单项式的系数和次数的概念,对于一个单项式能说出它的系数和次数。
3.教学难点:1、理解单项式的概念,能判断一个代数式是不是单项式,
2、掌握单项式的系数和次数的概念,对于一个单项式能说出它的系数和次数。
教学准备:
PPT课件和微课等。
二、自主学习、合作探究
1.单项式的概念是什么?
2.如何确定单项式的系数与次数?
三、释疑解难、精讲点拨
1、单项式的概念:数与字母或字母与字母乘积组成的代数式叫做单项式
单项式的含义:只有数与字母的积的代数式。
单独的一个数字或字母也叫单项式.
单项式中的数字因数叫做这个单项式的系数.
2、一个单项式中,所有字母指数的和叫做这个单项式的次数.
拓展:
6、
7、由题意可知: ,解得 。
(1) = =25,(2) = 。
(1)、(2)两题结果相等。
教学反思:
本节课教学的重点是:①理解单项式的概念;②辨认单项式的系数和次数。反思“单项式”一课的教学过程,我进一步得到了以下几方面的认识。
1、数学教学要让学生经历数学知识的形成过程。新课程标准指出“抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。”本节课的教学重点是单项式概念的形成,力图从实际问题出发,使学生指点一些简单的实际问题中的数量关系用代数式表示出来。在本节课上第一组列出的一般代数式,使学生理解了代数式是用“加、减、乘、除、乘方、开方”等运算符号将数或表示数的字母连结而成的式子。学生再列第二组代数式,引出了“你所填入的这四个代数式有什么相同点?”的问题。这使学生进一步探究代数式这一概念的形成过程和代数式这一概念的特点,从而进一步深化了对代数式这一概念理解。

整式加减的公式

整式加减的公式

整式加减的公式(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、代数式与有理式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、整式和分式统称为有理式。

3、含有加、减、乘、除、乘方运算的代数式叫做有理式。

二、整式和分式1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

2、有除法运算并且除式中含有字母的有理式叫做分式。

三、单项式与多项式1、没有加减运算的整式叫做单项式。

(数字与字母的积---包括单独的一个数或字母)2、几个单项式的和,叫做多项式。

其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档