MATLAB有限元分析与应用

合集下载

matlab 程序 2d有限元方法

matlab 程序 2d有限元方法

matlab 程序2d有限元方法全文共四篇示例,供读者参考第一篇示例:有限元方法是一种数值计算方法,旨在解决工程结构、力学和热力学等领域的复杂问题。

这种方法通过将一个连续的问题离散化为无限多的小单元,然后通过求解每个小单元的方程来逼近整个问题的解。

有限元方法在解决非线性、非定常、多物理场耦合等复杂问题上表现出色,因此在工程领域得到了广泛应用。

2D有限元方法是指在二维平面上建立有限元模型,然后求解其方程得到问题的解。

在MATLAB中,构建2D有限元模型的步骤大致分为三个阶段:几何建模、网格剖分和有限元分析。

首先是几何建模阶段,即对求解问题的几何形状进行建模。

这一步通常通过MATLAB中的绘图函数绘制图形,定义节点和单元信息。

这个阶段的难点在于如何准确表达问题的几何形状和边界条件,因为这将直接影响到后续的网格划分和求解结果的准确性。

接着是网格剖分阶段,即将几何形状离散化为小单元。

在MATLAB中,可以利用自带的网格生成函数或者第三方的网格生成工具箱来生成有限元网格。

网格的质量和密度对求解结果的准确性有很大影响,因此在网格剖分时需要谨慎选择参数和方法。

最后是有限元分析阶段,即对离散化后的有限元模型进行求解。

在MATLAB中,可以利用现成的有限元求解函数来求解线性或非线性方程。

在求解过程中,需要考虑边界条件的处理、材料参数的输入和求解精度的控制等因素,以保证求解的准确性和稳定性。

在实际应用中,2D有限元方法常用于解决板、壳结构的弯曲、扭转、振动等问题,以及流体动力学、电磁场等问题。

MATLAB提供了丰富的工具箱和函数库,使得有限元方法的实现更加简单和高效。

通过合理的建模、网格剖分和求解方法,我们可以快速地解决复杂的工程问题,提高工程设计的效率和精度。

2D有限元方法结合MATLAB工具的应用为工程领域提供了一种高效、准确和可靠的计算方法。

通过不断学习和实践,我们可以更好地利用有限元方法解决实际工程问题,推动工程技术的发展和进步。

MATLAB在线性四面体有限元分析中的应用

MATLAB在线性四面体有限元分析中的应用

Matlab在线性立体有限元分析中的应用摘要:Matlab具有强大的运算功能,本文以线性四面体元为例,详细介绍MATLAB在刚度矩阵推导,静力结构等有限元分析中的具体应用,编写了刚度矩阵,引用边界条件以及后处理各步骤的程序,该方法可以进一步推广到其他单元甚至更复杂的结构分析中。

关键词:Matlab 有限元刚度矩阵0 引言Matlab是美国MathWork公司开发的用于数值计算,算法研究,建模仿真,实时实现的理想集成环境,因其完整的专业体系和强大的运算功能已广泛应用于工业、电子、信号处理、控制、建筑、教学等各个领域。

有限元是近代数值计算最有效方法之一.有限元法的基础是单元划分以及刚度矩阵的推导,目前,有限元分析已有一个相对固定的模式,而烦琐、复杂的矩阵运算、微分、积分是分析过程中的主要内容.通常,这种矩阵运算是由手工来完成的,工作量大,而且极易出错.利用MatLab丰富的符号运算功能,构建有限单元模型,完成刚度矩阵推导及后处理过程中的运算,不但速度快,而且准确性高。

利用Matlab编写函数M文件并在运算过程中调用,能够依据具体问题对模型进行分析运算,并能在类似问题中得到推广应用。

1 线性四面体有限元分析中的基本方程线性四面体(立体)元(liner tetrahedral(solid)element)是既有局部坐标又有总体坐标的三维有限元,用线性函数描述。

线性四面体元的系数有弹性模量E 和泊松比ν,每个线性四面体与元有四个节点并且每个节点有三个自由度,如图1所示。

这四个节点的总体坐标用111x (,y ,z )、222x (,y ,z )、333x (,y ,z )、444x (,y ,z )表示。

单元刚度矩阵给定如下:[][][][]T k V B D B = (1.1)式中V 是单元的体积,由下式给出:11122233344411611x y z x y z V x y z x y z =(1.2)图1 线性四面体(立体)元 矩阵[]B 由下式(1.3)确定:[]312431243124331122443311224431122000000000000000000000000000000000x x x x y y y y z z z z y x y x y x y x z y z y z y z y zxzxN N N N N N N N N N N N B N N N N N N N N N N N N N N N N N N N N N ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂3440zxzx N N N ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥∂∂∂⎢⎥⎢⎥∂∂∂⎣⎦在方程(1.3)中,形函数由下式给出:111111()6N x y z V αβγδ=+++222221()6N x y z V αβγδ=+++333331()6N x y z Vαβγδ=+++444441()6N x y z Vαβγδ=+++ (1.4)在方程(1.1)中,矩阵[]D 由下式(1.5)确定:[]10001000100012000002(1)(12)120000021200002E D νννννννννννννν-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥=⎢⎥+-⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦2 建立的Matlab 函数TetrahedronElementV olume(x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4),该函数根据给出的第一个节点坐标111(,,)x y z ,第二个节点坐标222(,,)x y z ,第三个节点坐标333(,,)x y z 和第四个节点坐标444(,,)x y z 返回单元的体积。

MATLAB有限元分析与应用精选全文完整版

MATLAB有限元分析与应用精选全文完整版
function y = SpringElementForces(k,u)
%SpringElementForces This function returns the element nodal force
%
vector given the element stiffness matrix k
%
and the element nodal displacement vector u.
2019/11/28
§2-1 弹簧元
u1=U(1:2); f1=SpringElementForces(k1,u1);
f1 = -15.0000 15.0000
u2=U(2:3); f2=SpringElementForces(k2,u2);
f2 = -15.0000 15.0000
12
§3-1 弹簧元
%
modulus of elasticity E, cross-sectional
%
area A, and length L. The size of the
%
element stiffness matrix is 2 x 2.
y = [E*A/L -E*A/L ; -E*A/L E*A/L];
2019/11/28
3.1 单元刚度矩阵的形成
function y = SpringElementStiffness(k)
%SpringElementStiffness This function returns the element stiffness %matrix for a spring with stiffness k. %The size of the element stiffness matrix is 2 x 2.

第三章MATLAB有限元分析与应用

第三章MATLAB有限元分析与应用

第三章MATLAB有限元分析与应用有限元分析(Finite Element Analysis, FEA)是一种工程计算方法,用于解决结构力学和流体力学等问题。

它将一个复杂的结构分割成多个简单的离散单元,通过建立数学模型和求解方程组,得到结构的力学、热力学和流体力学等性能参数。

MATLAB是一种功能强大的数学计算软件,具有直观的用户界面和丰富的工具箱,可以方便地进行有限元分析。

本章将介绍在MATLAB中进行有限元分析的基本步骤和方法,以及一些常见的应用例子。

首先,进行有限元分析需要将结构进行离散化。

常用的离散化方法有节点法和单元法。

节点法是将结构的几何形状划分为小的节点,并在节点上进行计算。

单元法是将结构划分为多个小的单元,并在每个单元内进行计算。

在MATLAB中,可以通过创建节点和单元的矩阵来描述结构和单元的关系。

例如,创建一个2D结构形式的节点矩阵:nodes = [0 0; 1 0; 0 1; 1 1];然后,通过创建描述节点连接关系的矩阵,来定义结构的单元:elements = [1 2 3; 2 4 3];这里的每一行代表一个单元,数字表示节点的编号。

接下来,需要定义材料的力学参数和边界条件。

材料的力学参数包括弹性模量、泊松比等。

边界条件包括支座约束和加载条件。

在MATLAB中,可以通过定义力学参数和边界条件的向量来描述。

例如,定义弹性模量和泊松比的向量:E=[200e9200e9];%弹性模量nu = [0.3 0.3]; % 泊松比定义支座约束的向量(1表示固定,0表示自由):constraints = [1 1; 0 0; 0 1; 0 1];定义加载条件的向量(包括点力和面力):最后,通过求解方程组得到结构的应力和位移等结果。

在MATLAB中,可以利用有限元分析工具箱中的函数进行计算。

例如,可以使用“assem”函数将节点和单元的信息组装成方程组,并使用“solveq”函数求解方程组。

最新MATLAB在有限元分析方法中的应用PPT

最新MATLAB在有限元分析方法中的应用PPT

PlaneFrameElementStiffness:
PlaneFrameAssemble:
PlaneFrameElementForces:
PlaneFrameElementAxialDiagram:
PlaneFrameElementShearDiagram PlaneFrameElementMomentDiagram PlaneFrameInclinedSupport——(T) ............
2、可视化及强大的图形功能。
(1)绘图 (2)界面编制
3、含有多种学科的工具箱[ToolBox]以及 程序代码的公开性。
4、程序可移植性好。
二、有限元方法的步骤:
一、离散化域 二、形成单元刚度矩阵 三、集成整体刚度矩阵 四、引入边界条件 五、求解方程 六、后处理
2020/11/11

8
简例: ——平面刚架元
实例:如图所示刚架, 已知各杆EI及A均相同, 且 A=2*10-2m2, I=5*10-5m4,E=210GPa.
PlaneFrameElementStiffness:
PlaneFrameAssemble:
整体刚度矩阵:
引入边界条件:
KUF
后处理:
四、结论和展望
Simple,Powerful and free
结束语
谢谢大家聆听!!!
39
MATLAB在有限元分析方法 中的应用PPT
一、“MATLAB”
1、前置处理 2、求解器 3、后置处理
Simple,Powerful and free
有限元软件的基本模块: 1、前置处理 2、求解器 3、后置处理
C、C++、Fortran等/MATLAB

有限元方法步骤-MATLAB的简略使用指南

有限元方法步骤-MATLAB的简略使用指南

第1章引言这个简短的引言分为两部分,第一部分是对有限元方法步骤的概括介绍,第二部分是MATLAB的简略使用指南。

1.1 有限元方法的步骤有许多关于有限元分析的优秀教材,比如在参考文献[1-18]中列出的那些书目。

因此,本书不准备对有限元理论或有限元方程进行详细地阐述和推导。

每一章只总结概括主要的方程,这些章节都附有示例来说明这些方程。

此外,全书只讨论线弹性结构力学的问题。

有限元方法用于解决工程问题的数值计算过程。

本书假定所有的行为都是线弹性行为。

虽然本书的问题都与结构工程相关,但有限元方法也同样适用于工程的其他领域。

本书中使用有限元方法解决问题共包括6个步骤。

对有限元分析的6个步骤阐述如下:(1) 离散化域——这个步骤包括将域分解成单元和节点。

对于像桁架和刚架这类离散系统,已经离散化,这一步就不需要了。

此处获得的结果应该已经是精确的。

然而,对于连续系统,如板壳,这一步就变得至关重要,因为它只能得到近似的结果。

因此解决方案的精确度取决于所使用的离散化方法。

本书中,我们将手动完成这一步(对连续系统)。

(2) 写出单元刚度矩阵(element stiffness matrices)——写出域内每个单元的单元刚度矩阵。

在本书中,这个步骤通过MATLAB实现。

(3) 集成整体刚度矩阵(global stiffness matrices)——这一步用直接刚度法(direct stiffness approach)实现。

在本书中,该步骤借助于MATLAB实现。

(4) 引入边界条件——诸如支座(supports)、外加载荷(applied loads)和位移(displacements)等。

本书中手动实现这一步骤。

(5) 解方程——这一步骤分解整体刚度矩阵并用高斯消去法求解方程组。

在本书中,在用高斯消去法实现求解部分的时候需要手动分解矩阵。

(6) 后处理——得到额外的信息,如支反力、单元节点力和单元应力。

本书中这一步骤通过MATLAB实现。

matlab 有限元基础

matlab 有限元基础

matlab 有限元基础一、什么是有限元分析?有限元分析(Finite Element Analysis,FEA)是一种数值计算方法,用于解决复杂的工程和科学问题。

它将连续的物理系统分解成离散的有限元素,通过求解线性或非线性方程组来计算系统的行为。

有限元分析可以用于求解结构、流体力学、热传导等领域中的问题。

二、Matlab 有限元基础1. Matlab 基础知识Matlab 是一个数值计算软件,它提供了强大的矩阵运算能力和丰富的绘图功能。

在进行有限元分析时,Matlab 可以用于构建模型、求解方程组和可视化结果。

2. 有限元模型构建在进行有限元分析之前,需要先构建模型。

通常情况下,模型可以通过 CAD 软件进行建模,并导出为 STL 格式。

然后使用 Matlab 中的importGeometry 函数将 STL 文件导入到 Matlab 中,并使用pdegeometry 函数创建几何体对象。

3. 生成网格生成网格是指将几何体对象分割成小块的过程。

在 Matlab 中,可以使用 generateMesh 函数生成简单形状网格或使用 PDE 工具箱中的自动网格生成器生成更复杂形状的网格。

4. 定义边界条件在进行有限元分析时,需要定义边界条件。

边界条件包括约束和载荷。

约束是指物体的运动被限制的方式,载荷是施加在物体上的力或压力。

5. 求解方程组在定义好模型、网格和边界条件后,可以使用 Matlab 中的 pdepe 函数求解偏微分方程组。

pdepe 函数使用有限元方法求解偏微分方程组,并返回解向量。

6. 可视化结果最后一步是可视化结果。

Matlab 提供了丰富的绘图函数,可以用于绘制网格、位移、应力等结果。

三、有限元分析中常用的 Matlab 工具箱1. PDE 工具箱PDE 工具箱是一个专门用于求解偏微分方程问题的工具箱。

它提供了自动网格生成器、求解器和可视化工具,可以用于求解结构、流体力学和热传导等问题。

有限元数值解法在MATLAB中的实现及可视化

有限元数值解法在MATLAB中的实现及可视化

有限元数值解法在MATLAB中的实现及可视化摘要:偏微分方程的数值解法在数值分析中占有很重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题。

在学习初等函数时,总是先画出它们的图形,因为图形能帮助我们了解函数的性质。

而对于偏微分方程,画出它们的图形并不容易,尤其是没有解析解的偏微分方程,画图就显得更加不容易了。

为了从偏微分方程的数学表达式中看出其所表达的图形、函数值与自变量之间的关系,通过MATLAB编程,用有限元数值解法求解了偏微分方程,并将其结果可视化。

关键词:偏微分方程;MATLAB;有限元法;可视化1 引言(Introduction)偏微分方程的数值解法在数值分析中占有很重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题。

近三十多年来,它的理论和方法都有了很大的发展,而且在各个科学技术的领域中应用也愈来愈广泛。

例如,核武器的研制要有理论设计和核试验。

但核反应和核爆炸的过程是在高温高压的条件下进行的,而且巨大的能量在极短的时间内释放出来,核装置内部的细致反应过程及各个物理量的变化是根本不能用仪器测量出来的,核试验只是提供综合的数据。

而描述核反应和爆炸物理过程的数学模型是一个很复杂的非线性偏微分方程组,也根本没有办法得到这个方程组理论上的精确解。

所以发展核武器的国家都在计算机上对核反应过程进行数值模拟,这也称为“数值核实验”,它可以大大减少核试验的次数,节约大量的经费,缩短研制的周期[1]。

在学习初等函数时,总是先画出它们的图形,因为图形能帮助我们了解函数的性质。

而对于偏微分方程,画出它们的图形并不容易,尤其是没有解析解的偏微分方程,画图就显得更加不容易了。

所以本文主要研究如何用MATLAB数值求解偏微分方程,并将其数值解绘制成三维图形的形式,从而可以从复杂的数学表达式中看出其所表达的图像、函数值与自变量之间的关系[2]。

2 有限元法(Finite element method)2.1 有限元法概述有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。

Matlab在有限元中的应用

Matlab在有限元中的应用

基于MATLAB的有限元结构分析王剑(重庆交通大学土木建筑学院,重庆400074)摘要: MATLAB 是当今国际科学界最具影响力和活力的软件。

文章介绍了MATLAB 语言的特点,详细介绍了用MATLAB语言编写结构内力的有限元方法,并通过实例对平面钢架结构进行了内力分析。

关键词:MATLAB 有限元结构0引言MATLAB是Mathworks公司推出的,集算法开发、数值运算、符号运算以及图形处理等强大功能于一体的高级技术计算语言和交互式环境。

MATLAB意为矩阵实验室,它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的编辑模式,代表了当今国际科学计算软件的先进水平。

有限元法的基本思想是将物体(即连续求解域)离散成有限个且按一定方式相互连接在一起的单元组合,来模拟和逼近原来的物体,从而将一个连续的无限自由度问题简化为离散的有限自由度问题求解的数值分析法。

有限元法还有一个特点是,它的理论采用矩阵形式表达。

这并不利于一般的计算机语言编制计算机程序,因为传统的计算机语言处理的对象是标量,使用矩阵形式的有限元理论时,必须把矩阵形式的公式转换成标量表示的公式。

而如果采用MATLAB,这个特点就变成了有限元法的优点,运算更便捷。

1运用MATLAB编写有限元程序的操作步骤1.1建立有限元模型建立有限元模型就是为求解有限元模型做铺垫。

需要对节点、单元以及材料的定义。

同时对约束条件、集中力、分布力进行定义。

然后在M函数文件中以矩阵或向量的形式输入单元号、节点数、材料的性质、约束条件、集中力、分布力。

1.2求解有限元模型用MATLAB写出每个单元的单元刚度矩阵。

按照刚度集成法,把各个单元的刚度矩阵分别放到整体刚度矩阵中的相应位置上,然后根据边界条件进行修正得到整体刚度矩阵。

Matlab程序在有限元热分析中的应用

Matlab程序在有限元热分析中的应用

第35卷第3期2019年6月湖北理工学院学报JOURNAL OF HUBEI POLYTECHNIC UNIVERSITYVol.35No.3Jun.2019doi:10.3969/j.issn.2095-4565.2019.03.001Matlab程序在有限元热分析中的应用徐庆华夏冈『(1.湖北理工学院机电工程学院,湖北黄石435003;2.广州鑫照智控精密制造有限公司,广东广州511442)摘要:在工业生产及科学研究中,热分析具有十分重要的作用,被广泛应用于各个方面。

在采用有限元法分析热传导问题时,需要得到分析单元的特征矩阵。

借助Matlab的符号运算功能,编写了Mat-lab符号运算程序以获取平面三角形单元的导热矩阵,解决了手工运算过程复杂、计算冗长的问题,并且运算结果与推导结果完全一致。

该方法简单实用,可有效提高热分析的准确率和求解效率。

关键词:热分析;有限元;Matlab;符号运算;导热矩阵中图分类号:TG659文献标志码:A文章编号:2095-4565(2019)03-0001-04 Matlab Procedures in Thermal Analysis by Finite Element MethodXU Qinghua,XIA Gang1(1.School of Mechanical and Electronic Engineering,Hubei Polytechnic University,Huangshi Hubei435003;2.Guangzhou Xinzhao Intelligent Control and Precision Manufacturing Co.,Ltd.,Guangzhou Guangdong511442)Abstract:Thermal analysis is of great importance and has been widely conducted in a variety of industrial manufacturing and scientific research.The characteristic matrix of element will be needed when analyzing heat conduction with finite element method(FEM).The symbolic operation program for calculating heat transmis­sion of planar triangle unit has been wriHen with symbolic operation function of MATLAB in this paper,by which complicated and long computation caused by manual deduction can be avoided and the computation re­sult is highly consistent with the deduction result.This method is simple and useful,which can improve effi­ciency and accuracy when performing various thermal analyses.Key words:thermal analysis;FEM;Matlab;symbolic computation;heat transmission matrixo引言在工业生产及科学研究过程中,热分析广泛应用于各个方面,如计算某个系统或部件的温度分布、热量交换、热梯度、热流密度、热应力、相变等,所涉及的领域包括:能源、化工、冶金、建筑、电子、航空航天、制冷、农业、船舶等[1-3]0在机床精密加工过程中,动力源发热、运动副摩擦热与加工切削热导致温度场分布不均而产生热变形,因此需要得到工件的温度场分布,并对机床进行热特性、热模态、“热-结构”耦合等分析与求解[4-5]o对于重型模锻压力机⑷,其温度场分析对保障装备安全可收稿日期=2019-03-21基金项目:湖北省发改委项目(项目编号:2018ZYYD040)。

第三章+matlab有限元分析与应用

第三章+matlab有限元分析与应用
优化设计
在满足一定约束条件下,寻找使某个或多个设 计指标达到最优的设计方案的过程。
目标函数
用于衡量设计方案优劣的数学表达式,通常是 最小化或最大化的某个性能指标。
约束条件
限制设计方案选择的条件,包括设计变量的上下界、设计变量的关系等。
基于Matlab的有限元优化设计方法
MATLAB优化工具箱
提供了一系列用于求解各种优化问题的函数和算法,包括线性规划、非线性规划、混合 整数规划等。
有限元模型
由一组离散化的元素组成,每个 元素代表系统的一部分,并具有 特定的属性和行为。
节点
元素之间的连接点,用于传递力 和位移。
有限元分析的基本步骤
前处理
01
建立有限元模型,包括定义元素类型、几何形状、材料属性、
边界条件和载荷等。
Байду номын сангаас求解
02
应用数学方程求解有限元模型的节点位移和应力分布。
后处理
03
对于一些复杂模型,如具有非线性、大变形、多 材料等特性,建模难度大,需要发展更高级的建 模方法和技术。
数据安全与隐私保护
在进行有限元分析时,需要处理大量的数据,如 何保证数据的安全和隐私保护是一个重要的问题 。需要采取有效的数据加密和保护措施来确保数 据的安全性和隐私性。
未来发展方向与展望
跨学科融合
结果后处理
显示结果
使用Matlab的图形功能,如`plot`、`mesh`等,绘制 结果的可视化图像。
分析结果
对结果进行详细的分析,如查看位移分布、应力分布 等。
结果优化
根据分析结果,对模型进行优化设计,以提高性能或 降低成本。
03
有限元分析实例
Chapter

MATLAB有限元分析与应用

MATLAB有限元分析与应用

MATLAB有限元分析与应用有限元分析是一种基于数值方法的结构分析技术,广泛应用于工程领域中各种结构的设计与优化。

MATLAB作为一种强大的计算软件,提供了丰富的数值计算、数据可视化和编程功能,成为了进行有限元分析与应用的首选工具之一MATLAB的有限元分析工具箱(FEA)提供了一系列函数和工具,用于构建、求解和分析有限元模型。

用户可以根据实际问题构建有限元模型,包括定义几何形状、材料属性、边界条件和加载情况等。

利用有限元分析工具箱提供的函数,用户可以生成刚度矩阵和负载向量,并求解有限元方程组,得到结构的位移、应力和应变等信息。

此外,MATLAB还提供了可视化工具,可以将计算结果以图形的形式展示出来,方便用户进行结果的分析和评估。

1.结构力学:有限元分析可用于评估结构的强度和刚度,进行结构的静力和动力响应分析。

例如,在设计建筑物和桥梁时,可以通过有限元分析评估结构的变形、应力和疲劳寿命,确保结构的安全性和稳定性。

2.流体力学:有限元分析可用于求解流体介质中的运动方程和温度分布,分析流体流动的特性。

例如,在航空航天领域中,可以使用有限元分析来计算飞机机翼的气动性能,并优化机翼的设计。

3.电磁场:有限元分析可用于求解电磁场的分布和场强,以及电磁场对物体的影响。

例如,在电力系统中,可以使用有限元分析来评估导线和电力设备的电磁场分布,预测设备的电磁辐射水平,以及优化电磁屏蔽设计。

4.热传导:有限元分析可用于求解热传导方程,分析物体的温度分布和热流量分布。

例如,在热管理领域中,可以使用有限元分析来优化散热器的设计,提高散热效率。

5.多物理场耦合:有限元分析可用于求解多个物理场的耦合问题,分析各个物理场之间的相互影响。

例如,在电动汽车的电池设计中,可以使用有限元分析来研究电池的温升、电动力学响应和热耦合效应。

总之,MATLAB的有限元分析与应用广泛应用于工程领域中各种结构的设计与优化。

它提供了方便的数值计算、数据可视化和编程功能,可用于求解各种结构的力学、热力学、电磁学等问题。

matlab 有限元基础

matlab 有限元基础

Matlab 有限元基础什么是有限元法有限元法(Finite Element Method,FEM)是一种数值计算方法,常被用于工程和科学领域中的结构力学、流体力学、热传导等问题的求解。

有限元法通过将复杂的实际问题离散化为有限个简单的单元,利用数学模型和计算方法来近似求解问题。

有限元法的基本思想是将计算域划分为有限个小单元,每个小单元的物理性质通过节点上的数学函数进行近似描述。

通过对这些小单元的数学模型进行积分计算,得到整个计算域的方程,并通过求解这些方程来得到问题的近似解。

Matlab 在有限元分析中的应用Matlab作为一种功能强大的数值计算和编程软件,被广泛应用于有限元分析中。

它提供了丰富的数学和计算工具,能够方便地实现有限元法的建模、求解和分析。

有限元法的建模在Matlab中,有限元法的建模主要包括以下几个步骤:1.创建几何模型:通过定义节点和单元来描述计算域的几何形状。

可以使用Matlab提供的图形界面工具或者编程方式来创建几何模型。

2.定义边界条件:根据实际问题的边界条件,为模型的节点或单元指定相应的约束条件。

这些条件通常包括位移、力和温度等。

3.定义材料性质:根据实际问题的材料性质,为模型的节点或单元定义相应的材料参数。

这些参数包括弹性模量、泊松比和热导率等。

4.网格划分:将计算域划分为有限个小单元,形成离散化的网格结构。

在Matlab中,可以使用自带的网格划分工具或者自定义的算法进行网格划分。

5.构建刚度矩阵和载荷向量:根据节点的约束条件和单元的材料性质,利用数学公式和计算方法构建刚度矩阵和载荷向量。

有限元法的求解有限元法的求解主要包括以下几个步骤:1.组装系统方程:根据刚度矩阵和载荷向量,将节点的位移和载荷进行组合,形成整个系统的方程。

2.施加边界条件:将已知的位移和载荷应用于系统方程中的相应位置,形成含有未知位移的方程。

3.求解方程:使用Matlab提供的线性代数求解函数,求解含有未知位移的系统方程,得到位移的近似解。

有限元方法与MATLAB程序设计 有限元分析可视化

有限元方法与MATLAB程序设计 有限元分析可视化
axis 设置绘制图形范围,参数[x1,x2,y1,y2]表示x和y坐标轴的最大和最小值 hold on/off 保持已有图形,否则下一个绘图命令会清除前面的图形 text(x,y,txt) 在指定的位置(x,y)标注文本’tex’
2
A1 MATLAB图形输出函数
(2)空间图形
line(X,Y,Z) 画3维折线函数。X、Y和Z是3个一维数组,分别表示折线各结点坐标 plot3(X,Y,Z) 连接(X,Y,Z)坐标点的空间折线 patch(X,Y.Z,C) (X,Y,Z)为顶点的空间多边形,C为颜色 mesh(X,Y,Zxis equal;
% 设置轴比例相等
A2 桁架和刚架结构变形
s = 2;
if nargin>4, s = 3; end % 桁架为2;刚架为3
4
8
gm = max(abs(max(gxy)-min(gxy))); U = 2e-2*U*gm/max(abs(U)); G = gxy+[U(1:s:end),U(2:s:end)];
mesh(Z) 以Z矩阵列行下标为x,y轴自变量,用网线表示的曲面 surf(X,Y,Z) (X,Y,Z)坐标点张成的曲面
fsurf 以函数f(x,y)或x = funx(u,v), y = funy(u,v), z = funz(u,v)为参数的空间曲面 surf(Z) 以Z矩阵列行下标为x,y轴自变量画曲面 colorbar 图形中颜色对应的值
[1 1 1] w

[0 0 0] k

表A2 线型设定符
propertyvalue '–' '--' ':' '–.'
'none'

matlab有限元求解微分方程的本征值

matlab有限元求解微分方程的本征值

一、概述Matlab是一种常用的数学软件,它提供了丰富的工具和函数,可用于解决各种数学问题。

其中,有限元法是一种常用的数值求解方法,它可用于求解微分方程的本征值问题。

本文将探讨如何使用Matlab进行有限元求解微分方程的本征值问题。

二、有限元法简介有限元法是一种数值分析方法,它通过将连续的物理问题离散化为有限数量的单元或网格,然后利用线性代数方法求解离散问题,从而得到原始的连续问题的近似解。

在微分方程的求解中,有限元法可用于求解微分方程的本征值问题,即确定微分方程的本征值和本征函数。

三、使用Matlab进行有限元求解微分方程的本征值问题1. 离散化微分方程需要将微分方程离散化为有限元形式。

这通常涉及将微分方程转化为一个矩阵形式的代数方程组。

对于一维问题,可以将区域离散化为一系列节点,并将微分方程表示为每个节点上的代数方程。

对于二维或三维问题,可以将区域离散化为网格或单元,并在每个单元中求解微分方程。

2. 构建刚度矩阵和质量矩阵一旦微分方程被离散化,就可以构建刚度矩阵和质量矩阵。

刚度矩阵描述了系统的刚度和连接性,质量矩阵描述了系统的质量和惯性。

这两个矩阵可以通过有限元方法和数值积分计算得到。

3. 求解本征值问题一旦刚度矩阵和质量矩阵被构建,就可以通过求解本征值问题来得到微分方程的本征值和本征函数。

这通常涉及求解特征值问题,即寻找一个非零向量,使得矩阵乘以该向量等于特征值乘以该向量。

4. 使用Matlab进行求解Matlab提供了丰富的工具和函数,可用于构建刚度矩阵和质量矩阵,并求解本征值问题。

使用Matlab的有限元工具箱或相关函数,可以方便地进行有限元求解微分方程的本征值问题。

四、案例分析下面通过一个简单的例子来说明如何使用Matlab进行有限元求解微分方程的本征值问题。

考虑一维弦的振动问题,其微分方程为:$$\frac{d^2u}{dx^2} +\omega^2u = 0$$其中$u$为弦的位移,$x$为弦的位置,$\omega$为本征频率。

matlab有限元分析实例

matlab有限元分析实例

matlab有限元分析实例有限元是一种数值求解偏微分方程的方法。

基本过程大致是设置形函数,离散,形成求解矩阵,数值解矩阵,后处理之类的。

MATLAB要把这些过程均自己实现,不过在数值求解矩阵时可以调用已有函数。

可以理解为MATLAB是一个通用的计算器,当然它的功能远不止如此。

而ANSYS之类的叫做通用有限元软件,针对不同行业已经将上述过程封装,前后处理也比较漂亮,甚至不太了解有限元理论的人也能算些简单的东西,当然结果可靠性又另说了。

比较两者,ANSYS之类的用起来容易得多,但灵活性不如MATLAB。

MATLAB用起来很困难,也有人做了一些模块,但大多数只能解决一些相对简单的问题。

对于大多数工程问题,以及某些领域的物理问题,一般都用通用有限元软件,这些软件还能添加一些函数块,用以解决一些需要额外设置的东西。

但是对于非常特殊的问题,以及一般性方程的有限元解,那只能用MATLAB或C,Fortran之类的了。

matlab的优势是提供一个矩阵化的编程语言,matlab采用COO格式存储稀疏矩阵,在组装全局刚度阵的时候,可以由下标直接组装访问元素,处理单个单元的时候,对于二维模型,需要至少二重循环,加上对单元的遍历,至少循环层数较多。

众所周知,matlab在处理循环时速度较慢,特别是循环嵌套,速度更慢。

采用parfor,也不成熟。

优势就是在矩阵求解,雅可比矩阵与行列式求解的时候,有函数,又快又香。

对于C++,一般采用CSR格式存储稀疏阵,矩阵的行列,非零元,都要注意其存储位置。

编程求解比较费劲。

在处理单个单元的的时候行列式,小矩阵运算,都要自己编程,这个时候逻辑一定要清晰,代码相关的注释一定要写好。

否则编着编者,就把自己绕进去。

采用C++的福音是做并行时更容易控制,采用openmpi并行处理灵活。

在线性方程求解时,intel MKL是另外一个福音,intel的处理器还是intel理解,真的超级快,有机会你可以试一下,体会一下CPU 所有线程飙到100%的快感。

有限元的MATLAB解法

有限元的MATLAB解法

有限元的MATLAB解法1.打开MATLAB。

2.输入“pdetool”再回车,会跳出PDE Toolbox的窗口(PDE意为偏微分方程,是partial differential equations的缩写),需要的话可点击Options菜单下Grid命令,打开栅格。

3.完成平面几何模型:在PDE Toolbox的窗口中,点击工具栏下的矩形几何模型进行制作模型,可画矩形R,椭圆E,圆C,然后在Set formula栏进行编辑并(如双脊波导R1+R2+R3改为RI-R2-R3,设定a、b、s/a、d/b的值从而方便下步设定坐标)用算术运算符将图形对象名称连接起来,若还需要,可进行储存,形成M文件。

4.用左键双击矩形进行坐标设置:将大的矩形left和bottom都设为0,width是矩形波导的X轴的长度,height是矩形波导的y轴的长度,以大的矩形左下角点为原点坐标为参考设置其他矩形坐标。

5.进行边界设置:点击“Boundary”中的“Boundary Mode”,再点击“Boundary”中的“Specify Boundary Conditions”,选择符合的边界条件,Neumann为诺曼条件,Dirichlet为狄利克雷条件,边界颜色显示为红色。

6.进入PDE模式:点击"PDE"菜单下“PDE Mode”命令,进入PDE 模式,单击“PDE Specification”,设置方程类型,“Elliptic”为椭圆型,“Parabolic”为抛物型,“Hyperbolic”为双曲型,“Eigenmodes”为特征值问题。

7.对模型进行剖分:点击“Mesh”中“Initialize Mesh”进行初次剖分,若要剖的更细,再点击“Refine Mesh”进行网格加密。

8.进行计算:点击“Solve”中“Solve PDE”,解偏微分方程并显示图形解,u值即为Hz或者Ez。

9.单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k2 =
200 -200
-200 200
2019/11/28
8
§3-1 弹簧元
4、实例计算分析应用
步骤3:集成整体刚度矩阵
调用 function y = SpringAssemble(K,k,i,j)函数
n=3; K = zeros(n,n); K = SpringAssemble(K,k1,1,2)
y = k * u;
2019/11/28
6
§3-1 弹簧元
4、实例计算分析应用
如图所示二弹簧元结构,假定k1=100kN/m,k2=200kN/m,P=15kN。 求:系统的整体刚度矩阵;
节点2、3的位移; 节点1的支反力; 每个弹簧的内力 解:
步骤1:离散化域
2019/11/28
7
§3-1 弹簧元
0 ? ? 0 ? ? F1 ?
?
200
? ?
??U
2
? ?
?
? ?
0
? ?
200 ?? ??U3 ?? ??15??
2019/11/28
10
§3-1 弹簧元
5、实例计算分析应用
步骤5:解方程
U=zeros(2,1); F=[0;15]; K = K(2:3,2:3);
K(1,:)=[]; K(:,1)=[];
y = [k -k ; -k k];
2019/11/28
4
§3-1 弹簧元
3、MATLAB函数编写
3.2 整体刚度矩阵的形成
function y = SpringAssemble(K,k,i,j)
%SpringAssemble This function assembles the element stiffness
第三章 MATLAB有限元分析与应用
§3-1 弹簧元 §3-2 线性杆元 §3-3 二次杆元 §3-4 平面桁架元 §3-5 空间桁架元
§3-6 梁元
2019/11/28
1
§3-1 弹簧元 1、有限元方法的步骤:
离散化域 形成单刚矩阵 集成整体刚度矩阵 引入边界条件 求解方程 后处理
2019/11/28
K= 000 000 000
K= 100 -100 0 -100 100 0 0 00
K = SpringAssemble(K,k2,2,3)
2019/11/28
K= 100 -100 0 -100 300 -200
9
0 -200 200
§3-1 弹簧元
4、实例计算分析应用
步骤4:引入边界条件
? 100
%
matrix k of the spring with nodes i and j into the
%
global stiffness matrix K.
%
This function returns the global stiffness matrix K
%
after the element stiffness matrix k is assembled.
5、实例计算分析应用
k1=SpringElementStiffness(100);
k2=SpringElementStiffness(200);
2
§3-1 弹簧元
2、基本方程
弹簧元是总体和局部坐标一致的一维有限单元 每个弹簧元有两个节点(node)
单刚矩阵为:
?k k ? ??? k
?k?
k
? ?
总刚矩阵: n ? n
结构方程: ?K ??U?? ?F?
2? 2
单元节点力:?f ?? ?k??u?
2019/11/28
3
§3-1 弹簧元
3、MATLAB函数编写
??? 100 ?? 0
? 100 300 ? 200
0 ? ?U1 ? ? F1 ?
? 200?? 200 ??
??U ??U
2 3
? ? ? ?
?
? ?
F2
? ?
? ?
F3
? ?
已知边界条件: U1 ? 0, F2 ? 0, F3 ? 15
? 100
??? 100 ?? 0
? 00 300 ? 200
K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K;
2019/11/28
5
§3-1 弹簧元
3、MATLAB函数编写
3.3 节点载荷计算
function y = SpringElementForces(k,u)
%SpringElementForces This function returns the element nodal force
%
vector given the element stiffness matrix k
%
and the element nodal displacement vector u.
3.1 单元刚度矩阵的形成
function y = SpringElementStiffness(k)
%SpringElementStiffness This function returns the element stiffness %matrix for a spring with stiffness k. %The size of the element stiffness matrix is 2 x 2.
4、实例计算分析应用
步骤2:形成单元刚度矩阵
调用 function y = SpringElementStiffness(k)函数
k1=SpringElementStiffness(100); k1 =
100 -100 -100 100 k2=SpringElementStiffness(200);
2019/11/28
§2-1 弹簧元
u1=U(1:2); f1=SpringElementForces(k1,u1);
f1 = -15.0000 15.0000
u2=U(2:3); f2=SpringElementForces(k2,u2);
f2 = -15.0000 15.0000
12
§3-1 弹簧元
? 300 ??? 200
? 200? ?U 2
200
? ?
??U
3
? ? ?
?
?0? ??15??
U=K\F
U=inv(K)*F
U= 0.1500
0.2250
2019/11/28
11
5、实例计算分析应用
步骤6:后处理
U=[0;U]
U= 0
0.1500 0.2250
F=K*U F= -15.0000 0.0000 15.0000
相关文档
最新文档