成都七中2014自主招生考试数学试题

合集下载

【解析】四川省成都七中2014-2015学年高一下学期期初考试数学试卷Word版含解析

【解析】四川省成都七中2014-2015学年高一下学期期初考试数学试卷Word版含解析

2014-2015学年四川省成都七中高一(下)期初数学试卷一、选择题(每小题5分,共50分)1.设全集U=R,A={x|x<1},B={x|log2x<1},则A∩B=()A.{x|0<x<1} B.{x|0<x<2} C.{x|﹣1<x<1} D.{x|﹣1<x<2}2.在平行四边形ABCD中,++=()A.B.C.D.3.已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则sinθ=()A.B.C.或﹣D.或﹣4.函数f(x)=3x2﹣e x的零点有()A.有一个B.有两个C.有三个D.不存在5.sin80°cos20°﹣cos80°sin20°的值为()A.B.C.﹣D.﹣6.已知函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2] B.[0,2] C.[1,+∞)D.[﹣1,+∞)7.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式为()A.B.C.D.8.定义在R上的非常值函数f(x)满足y=f(x+1)和y=f(x﹣1)都是奇函数,则函数y=f (x)一定是()A.偶函数B.奇函数C.周期函数D.以上结论都不正确9.非零实数a、b满足4a2﹣2ab+4b2﹣c=0(c>0),当|2a+b|取到最大值时,则的值为()A.B.C.D.10.已知点A、B是函数f(x)=x2图象上位于对称轴两侧的两动点,定点F(0,),若向量,满足•=2(O为坐标原点).则三角形ABO与三角形AFO面积之和的取值范围是()A.(2,+∞)B.[3,+∞)C.[,+∞)D.[0,3]二、填空题(本大题有5小题,每空5分,共25分)11.若向量=(2,m),=(1,﹣3)满足⊥,则实数m的值为.12.若tanα>0,则sin2α的符号是.(填“正号”、“负号”或“符号不确定”)13.已知函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,则f(1)+f(2)+…+f(2016)=.14.将曲线C1:y=ln关于x轴对称得到的曲线C2,再将C2向右平移1个单位得到函数f (x)的图象,则f(+1)=.15.设函数y=f(x)的定义域为D,若存在实数x0,使f(x0)=x0成立.则称x0为f(x)的不动点或称(x0.f(x))为函数y=f(x)图象的不动点;有下列说法:①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2;②若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则实数a的取值范围是0<a≤2;③函数f(x)=ax2+bx+c(a≠0),若y=f(x)没有不动点,则函数y=f(f(x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))为正整数,则x的最小值是121;以上说法正确的是.三、解答题(本题6小题,16~19题各12分,20题13分,21题14分,共75分)16.(12分)(2015春•成都校级月考)(1)化简;(2)计算:4+2log23﹣log2.17.(12分)(2015春•成都校级月考)设=(﹣1,1),=(4,3),=(5,﹣2),(1)求证与不共线,并求与的夹角的余弦值.(2)求在方向上的投影.18.(12分)(2015春•成都校级月考)已知函数f(x)=8x2﹣6kx+2k﹣1.(1)若函数f(x)的零点在(0,1]内,求实数k的范围;(2)是否存在实数k,使得函数f(x)的两个零点x1,x2满足x12+x22=1,x1x2>0.19.(12分)(2015春•成都校级月考)已知函数f(x)=alog2x,g(x)=blog3x(x>1),其中常数a.b≠0.(1)证明:用定义证明函数k(x)=f(x)•g(x)的单调性;(2)设函数φ(x)=m•2x+n•3x,其中常数m,n满足m.n<0,求φ(x+1)>φ(x)时的x的取值范围.20.(13分)(2015春•雅安校级期中)半径长为2的扇形AOB中,圆心角为,按照下面两个图形从扇形中切割一个矩形PQRS,设∠POA=θ.(1)请用角θ分别表示矩形PQRS的面积;(2)按图形所示的两种方式切割矩形PQRS,问何时矩形面积最大.21.(14分)(2015春•成都校级月考)已知函数f(x)=的图象在R上不间断.(1)求正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.求实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,求实数m的取值范围.2014-2015学年四川省成都七中高一(下)期初数学试卷参考答案与试题解析一、选择题(每小题5分,共50分)1.设全集U=R,A={x|x<1},B={x|log2x<1},则A∩B=()A.{x|0<x<1} B.{x|0<x<2} C.{x|﹣1<x<1} D.{x|﹣1<x<2}考点:交集及其运算.专题:集合.分析:求出集合的等价条件,根据集合的基本运算进行求解即可.解答:解:A={x|x<1},B={x|log2x<1}={x|0<x<2},则A∩B={x|0<x<1},故选:A点评:本题主要考查集合的基本运算.比较基础.2.在平行四边形ABCD中,++=()A.B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.分析:根据题意,画出图形,结合图形,利用平面向量的加法运算法则进行运算即可.解答:解:画出图形,如图所示;++=(+)+=+=+=.故选:D.点评:本题考查了平面向量的加减运算问题,解题时应画出图形,结合图形进行解答问题,是容易题.3.已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则sinθ=()A.B.C.或﹣D.或﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件利用任意角的三角函数的定义,分类讨论求得sinθ的值.解答:解:由于角θ的终边在直线y=2x上,若角θ的终边在第一象限,则在它的终边上任意取一点P(1,2),则由任意角的三角函数的定义可得sinθ===.若角θ的终边在第三象限,则在它的终边上任意取一点P(﹣1,﹣2),则由任意角的三角函数的定义可得sinθ===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,体现了分类讨论的数学思想,属于基础题.4.函数f(x)=3x2﹣e x的零点有()A.有一个B.有两个C.有三个D.不存在考点:函数零点的判定定理.专题:函数的性质及应用.分析:令f(x)=0,得到e x=3x2,作出函数y=e x,和y=3x2的图象,利用数形结合即可得到结论解答:解:令f(x)=0,得到e x=3x2,作出函数y=e x,和y=3x2的图象如图:由图象可知两个图象的交点为3个,即函数f(x)=3x2﹣e x的零点的个数为3个,故选:C点评:本题主要考查函数零点公式的判定,利用函数和方程之间的关系转化为两个图象的交点问题是解决本题的关键.5.sin80°cos20°﹣cos80°sin20°的值为()A.B.C.﹣D.﹣考点:两角和与差的正弦函数.专题:三角函数的求值.分析:由条件利用两角和的正弦公式,求得所给式子的值.解答:解:sin80°cos20°﹣cos80°sin20°=sin(80°﹣20°)=sin60°=,故选:B.点评:主要考查两角和的正弦公式的应用,属于基础题.6.已知函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2] B.[0,2] C.[1,+∞)D.[﹣1,+∞)考点:分段函数的应用.专题:函数的性质及应用.分析:根据分段函数的表达式,分别进行求解即可得到结论.解答:解:当x≤1时,x2+1≤2,得﹣1≤x≤1,当x>1时,由1﹣log2x≤2,得log2x≥﹣1.∴x≥,∴x>1综上可知,实数x的取值范围是x≥﹣1.故选:D点评:本题主要考查不等式的求解,利用分段函数的表达式分别进行求解是解决本题的关键.7.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式为()A.B.C.D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:通过函数的图象求出A,周期T,利用周期公式求出ω,图象经过(3,0)以及φ的范围,求出φ的值,得到函数的解析式.解答:解:由函数的图象可知A=2,T=2×(5﹣1)=8,所以,ω=,因为函数的图象经过(3,0),所以0=2sin(),又,所以φ=;所以函数的解析式为:;故选C.点评:本题是基础题,考查三角函数的图象求函数的解析式的方法,考查学生的视图能力,计算能力,常考题型.8.定义在R上的非常值函数f(x)满足y=f(x+1)和y=f(x﹣1)都是奇函数,则函数y=f (x)一定是()A.偶函数B.奇函数C.周期函数D.以上结论都不正确考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由y=f(x+1)奇函数,即有f(1﹣x)=﹣f(1+x),由y=f(x﹣1)是奇函数,即为f(﹣x﹣1)=﹣f(x﹣1),将x换成x﹣1,x+1,再将﹣x换成x,x换成x+2,结合周期函数的定义,即可得到结论.解答:解:y=f(x+1)奇函数,即有f(1﹣x)=﹣f(1+x),将x换成x﹣1,即有f(2﹣x)=﹣f(x),①y=f(x﹣1)是奇函数,即为f(﹣x﹣1)=﹣f(x﹣1),将x换成x+1,即有f(﹣x﹣2)=﹣f(x),②则由①②可得,f(﹣x﹣2)=f(2﹣x),即有f(x﹣2)=f(x+2),将x换成x+2,可得f(x+4)=f(x),即有函数f(x)是最小正周期为4的函数.故选:C.点评:本题考查函数的奇偶性和周期性的定义,考查赋值法的运用,考查一定的推理和分析能力,属于中档题.9.非零实数a、b满足4a2﹣2ab+4b2﹣c=0(c>0),当|2a+b|取到最大值时,则的值为()A.B.C.D.考点:不等式的基本性质.专题:不等式的解法及应用.分析:4a2﹣2ab+4b2﹣c=0(c>0),化为==,利用柯西不等式即可得出.解答:解:4a2﹣2ab+4b2﹣c=0(c>0),化为==,由柯西不等式可得:≥=(2a+b)2,当|2a+b|取到最大值时,=,化为.故选:D.点评:本题考查了柯西不等式的应用,考查了推理能力与计算能力,属于中档题.10.已知点A、B是函数f(x)=x2图象上位于对称轴两侧的两动点,定点F(0,),若向量,满足•=2(O为坐标原点).则三角形ABO与三角形AFO面积之和的取值范围是()A.(2,+∞)B.[3,+∞)C.[,+∞)D.[0,3]考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过设点A(﹣x,x2)(x>0)、利用•=2、计算可知B(,),过点A、B分别作x轴垂线且垂足分别为C、D,通过S△ABO+S△AFO=S梯形ACDB﹣S△ACO﹣S△BDO+S△AFO、利用面积计算公式及基本不等式计算即得结论.解答:解:依题意,不妨设点A(﹣x,x2)(x>0)、B(p,p2)(p>0),∵•=2,即﹣xp+(xp)2=2,∴(xp)2﹣xp﹣2=0,解得:xp=2或xp=﹣1(舍),∴p=,即B(,),过点A、B分别作x轴垂线,垂足分别为C、D,则S△ABO+S△AFO=S梯形ACDB﹣S△ACO﹣S△BDO+S△AFO=(AC+BD)•CD﹣AC•CO﹣BD•OD+OF•CO=(x2+)•(x+)﹣x2•x﹣••+••x=(x3++2x+﹣x3﹣+)=(+2x+)=(+)≥•2(当且仅当=即x=时等号成立)=3,故选:B.点评:本题考查平面向量数量积运算,涉及面积的计算方法、基本不等式等基础知识,注意解题方法的积累,属于中档题.二、填空题(本大题有5小题,每空5分,共25分)11.若向量=(2,m),=(1,﹣3)满足⊥,则实数m的值为.考点:数量积的坐标表达式.专题:平面向量及应用.分析:根据向量垂直的等价条件进行求解即可.解答:解:∵向量=(2,m),=(1,﹣3)满足⊥,∴•=2﹣3m=0,解得m=,故答案为:点评:本题主要考查向量数量积的应用,根据向量垂直的坐标公式进行求解是解决本题的关键.12.若tanα>0,则sin2α的符号是正号.(填“正号”、“负号”或“符号不确定”)考点:二倍角的正弦;三角函数值的符号.专题:三角函数的求值.分析:由已知,利用三角函数的基本关系式可得sin2α==>0,即可得解.解答:解:∵tanα>0,∴sin2α==>0.故答案为:正号.点评:本题主要考查了二倍角的正弦函数公式,三角函数基本关系式的应用,属于基础题.13.已知函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,则f(1)+f(2)+…+f(2016)=0.考点:正弦函数的图象.专题:三角函数的求值.分析:直接利用图象对称轴的距离,求出函数的周期,继而求出f(x)=3sin(x+φ),分别求出f(1),f(2),f(3),f(4)的值,发现其规律得到答案.解答:解:函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,∴周期为4,则ω==,∴f(x)=3sin(x+φ),∴f(1)=3sin(+φ)=3cosφ,f(2)=3sin(π+φ)=﹣3sinφ,f(3)=3sin(+φ)=﹣3cosφ,f(4)=3sin(2π+φ)=3sinφ,∴f(1)+f(2)+…+f(2016)=504[f(1)+f(2)+f(3)+f(4)]=0,故答案为:0.点评:本题考查函数周期的求法以及归纳推理好三角函数的诱导公式,涉及三角函数的图象的应用,考查计算能力.14.将曲线C1:y=ln关于x轴对称得到的曲线C2,再将C2向右平移1个单位得到函数f(x)的图象,则f(+1)=.考点:函数的图象与图象变化.专题:函数的性质及应用.分析:根据函数图象的对称变换和平移变换法则,求出函数f(x)的解析式,将x=+1代入可得答案.解答:解:将曲线C1:y=ln关于x轴对称得到的曲线C2,∴曲线C2的方程为:y=﹣ln,再将C2向右平移1个单位得到函数f(x)的图象,∴函数f(x)=﹣ln,∴f(+1)=﹣ln=﹣ln=﹣(﹣)=,故答案为:点评:本题考查的知识点是函数的图象与图象变化,函数求值,根据函数图象的对称变换和平移变换法则,求出函数f(x)的解析式,是解答的关键.15.设函数y=f(x)的定义域为D,若存在实数x0,使f(x0)=x0成立.则称x0为f(x)的不动点或称(x0.f(x))为函数y=f(x)图象的不动点;有下列说法:①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2;②若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则实数a的取值范围是0<a≤2;③函数f(x)=ax2+bx+c(a≠0),若y=f(x)没有不动点,则函数y=f(f(x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))为正整数,则x的最小值是121;以上说法正确的是①③④.考点:命题的真假判断与应用.专题:函数的性质及应用.分析:根据已知中函数不动点的定义,逐一分析四个结论的真假,最后综合讨论结果,可得答案.解答:解:令2x2﹣x﹣4=x,解得x=﹣1,或x=2,故①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2,故①正确;若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则ax2+(b+1)x+b﹣2=x有两个不相等的实根,则△=b2﹣4a(b﹣2)=b2﹣4ab+8a>0恒成立,则16a2﹣32a<0,解得0<a<2,即实数a的取值范围是0<a<2,故②错误;③函数f(x)=ax2+bx+c(a≠0),若y=f(x)没有不动点,则ax2+(b﹣1)x+c=0无实根,则函数y=f(f(x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))={[(x﹣1)﹣1]﹣1}=为正整数,则x的最小值是121,故④正确;故正确的命题的序号为:①③④,故答案为:①③④点评:本题考查的知识点是命题的真假判断与应用,此类题型往往综合较多的其它知识点,综合性强,难度中档.三、解答题(本题6小题,16~19题各12分,20题13分,21题14分,共75分)16.(12分)(2015春•成都校级月考)(1)化简;(2)计算:4+2log23﹣log2.考点:对数的运算性质;运用诱导公式化简求值.专题:函数的性质及应用;三角函数的求值.分析:(1)根据诱导公式和二倍角公式化简即可;(2)根据对数的运算性质计算即可.解答:解:(1)==﹣;(2)4+2log23﹣log2=2+log29﹣log2=2+log28=5.点评:本题考查的知识点是对数的运算性质,和三角形函数的化简,属于基础题.17.(12分)(2015春•成都校级月考)设=(﹣1,1),=(4,3),=(5,﹣2),(1)求证与不共线,并求与的夹角的余弦值.(2)求在方向上的投影.考点:数量积表示两个向量的夹角;向量的投影.专题:综合题.分析:(1)根据共线向量的判断方法易得与不共线,再结合向量的数量积的运算,可得cos<a,b>的值,(2)根据数量积的运算与投影的概念,可得在方向上的投影为,代入向量的坐标,计算可得答案.解答:解:(1)∵=(﹣1,1),=(4,3),且﹣1×3≠1×4,∴与不共线,又•=﹣1×4+1×3=﹣1,||=,||=5,∴cos<,>===﹣.(2)∵•=﹣1×5+1×(﹣2)=﹣7,∴在方向上的投影为==﹣.点评:本题考查向量的数量积的运用,要求学生能熟练计算数量积并通过数量积来求出向量的模和夹角或证明垂直.18.(12分)(2015春•成都校级月考)已知函数f(x)=8x2﹣6kx+2k﹣1.(1)若函数f(x)的零点在(0,1]内,求实数k的范围;(2)是否存在实数k,使得函数f(x)的两个零点x1,x2满足x12+x22=1,x1x2>0.考点:一元二次方程的根的分布与系数的关系;根的存在性及根的个数判断.专题:函数的性质及应用.分析:(1)由条件利用二次函数的性质求得实数k的范围.(2)由条件利用二次函数的性质求得实数k的值,再结合(1)中k的范围,得出结论.解答:解:(1)由函数f(x)=8x2﹣6kx+2k﹣1的零点在(0,1]内,可得,求得<k≤.(2)由题意可得,求得k>.再根据x12+x22=1=﹣2x1x2=1,可得k2﹣=1,求得k=,或k=(舍去).结合(1)可得<k≤.故不存在实数k满足题中条件.点评:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化、分类讨论的数学思想,属于基础题.19.(12分)(2015春•成都校级月考)已知函数f(x)=alog2x,g(x)=blog3x(x>1),其中常数a.b≠0.(1)证明:用定义证明函数k(x)=f(x)•g(x)的单调性;(2)设函数φ(x)=m•2x+n•3x,其中常数m,n满足m.n<0,求φ(x+1)>φ(x)时的x的取值范围.考点:对数函数的图像与性质.专题:函数的性质及应用.分析:(1)任取区间(1,+∞)上两个实数x 1,x2,且x1<x2,则k(x1)÷k(x2)=()2∈(0,1),进而分当ab>0时和当ab<0时两种情况,可得函数k(x)=f(x)•g(x)的单调性;(2)由函数φ(x)=m•2x+n•3x,可将φ(x+1)>φ(x)化为m•2x+2n•3x>0,结合m•n <0,分当m>0,n<0时和当m<0,n>0时两种情况,可得满足条件的x的取值范围.解答:证明:(1)任取区间(1,+∞)上两个实数x1,x2,且x1<x2,则∈(0,1),∵函数f(x)=alog2x,g(x)=blog3x(x>1),∴k(x 1)÷k(x2)=(ab•log2x1•log3x1)÷(ab•log2x2•log3x2)=()2∈(0,1),当ab>0时,k(x1)<k(x2),函数k(x)=f(x)•g(x)在区间(1,+∞)上单调递增;当ab<0时,k(x1)>k(x2),函数k(x)=f(x)•g(x)在区间(1,+∞)上单调递减;(2)∵函数φ(x)=m•2x+n•3x,φ(x+1)>φ(x),m•n<0,∴φ(x+1)﹣φ(x)=m•2x+2n•3x>0,当m>0,n<0时,>,则x>,当m<0,n>0时,<,则x<,点评:本题考查的知识点是对数函数的图象与性质,函数单调性的判断与证明,其中熟练掌握函数单调性的证明方法定义法(作商法)的方法和步骤是解答本题的关键.20.(13分)(2015春•雅安校级期中)半径长为2的扇形AOB中,圆心角为,按照下面两个图形从扇形中切割一个矩形PQRS,设∠POA=θ.(1)请用角θ分别表示矩形PQRS的面积;(2)按图形所示的两种方式切割矩形PQRS,问何时矩形面积最大.考点:弧度制的应用.专题:三角函数的求值.分析:(1)根据矩形的面积公式,分别表示即可,(2)根据三角函数中θ的范围,分别计算求出各自的最大值,比较即可.解答:解:(1)对于图1,由题意知PS=OPsinθ=2sinθ,OS=OPcosθ=2cosθ,∴S PQRS=S1=OP•OS=4sinθcosθ=2sin2θ,(0<θ<),对于图2由题意知,设PQ的中点为N,PM=2sin(﹣θ),∴MN=0M﹣ON=2cos(﹣θ)﹣=sinθ,∴S PQRS=S2=2PM•MN=4sin(﹣θ)•sinθ=sin(﹣θ)sinθ,(0<θ<),(2)对于图1,当sin2θ=1时,即θ=时,S max=2,对于图2,S2=sin(﹣θ)sinθ=[sin(2θ+)﹣],∵0<θ<,∴<2θ+<,∴<sin(2θ+)≤1,当sin(2θ+)=1,即θ=时,S max=,综上所述,按照图2的方式,当θ=时,矩形面积最大.点评:本题考查了图形的面积最大问题,关键是三角形函数的化简和求值,属于中档题.21.(14分)(2015春•成都校级月考)已知函数f(x)=的图象在R上不间断.(1)求正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.求实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,求实数m的取值范围.考点:分段函数的应用.专题:函数的性质及应用.分析:(1)根据函数f(x)=的图象在R上不间断,可得x=0时,两段函数的函数值相等,即4=2×|﹣a|,解得正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.k≥,分当x∈[1,2]时和当x∈(2,+∞)时,两种情况讨论,可得满足条件的实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,函数y=f(x)与y=m|x|的图象有四个交点,对m值进行分类讨论,数形结合可得实数m的取值范围.解答:解:(1)∵函数f(x)=的图象在R上不间断.∴4=2×|﹣a|,解得a=2,或a=﹣2(舍去),∴正实数a=2,(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0,即k≥,当x∈[1,2]时,k≥=﹣2为减函数,故k≥2,当x∈(2,+∞)时,k≥=2﹣为增函数,故k≥0;综上所述:k≥2,即实数k的取值范围为[2,+∞),(3)若关于x的方程f(x)=m|x|=0恰好有4个解,即函数y=f(x)与y=m|x|的图象有四个交点,①当m<0时,函数y=f(x)与y=m|x|的图象无交点,不满足条件;②当m=0时,函数y=f(x)与y=m|x|的图象有三个交点,不满足条件;③当m>0时,若与y=mx与y=2x﹣4平行,即m=2,则函数y=f(x)与y=m|x|的图象有三个交点,则m≥2时,函数y=f(x)与y=m|x|的图象有三个交点,若y=﹣mx与y=﹣(x2+5x+4)相切,则函数y=f(x)与y=m|x|的图象有五个交点,即x2+(5﹣m)x﹣4=0的△=(5﹣m)2﹣16=0,解得:m=1,或m=9(舍去),即m=1时,函数y=f(x)与y=m|x|的图象有五个交点,0<m<1时,函数y=f(x)与y=m|x|的图象有六个交点,故当1<m<2时,函数y=f(x)与y=m|x|的图象有四个交点,故实数m的取值范围为(1,2)点评:本题考查的知识点是分段函数的应用,函数的零点与方程的根,恒成立问题,是函数图象和性质的综合应用,难度较大.。

2014年四川省成都市中考数学试卷(附答案与解析)

2014年四川省成都市中考数学试卷(附答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前四川省成都市2014年高中阶段教育学校统一招生考试数 学本试卷满分150分,考试时间120分钟.A 卷(共100分)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在2-,1-,0,2这四个数中,最大的数是 ( ) A .2- B .1- C .0 D .22.下列几何体的主视图是三角形的是 ( )ABCD3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到290亿元.用科学记数法表示290亿元应为 ( )A .829010⨯元B .929010⨯元C .102.9010⨯元D .112.9010⨯元 4.下列计算正确的是( )A .23x x x +=B .235x x x +=C .235()x x =D .632x x x ÷= 5.下列图形中,不是轴对称图形的是( )ABC D6.函数5y x =-中,自变量x 的取值范围是( )A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤7.如图,把三角板的直角顶点放在直尺的一边上,若130∠=,则2∠的度数为 ( )A .60B .50C .40D .308.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分) 60 70 80 90 100 人 数4 812 115则该班学生成绩的众数和中位数分别是( )A .70分,80分B .80分,80分C .90分,80分D .80分,90分 9.将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为 ( )A .2(1)4y x =++B .2(1)2y x =++C .2(1)4y x =-+D .2(1)2y x =-+ 10.在圆心角为120的扇形AOB 中,半径6cm OA =,则扇形AOB 的面积是 ( )A .26π cmB .28πcmC .212πcmD .224πcm第Ⅱ卷(非选择题 共70分)二.填空题(本大题共4小题,每小题4分,共16分,请把答案填在题中的横线上)11.计算:|2|=- .12.如图,为估计池塘岸边A ,B 两点间的距离,在池塘的一侧选取点O ,分别取OA ,OB 的中点M ,N ,测得32m MN =,则A ,B 两点间的距离是 m .13.在平面直角坐标系中,已知一次函数21y x =+的图象经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y 2y (填“>”“<”或“=”). 14.如图,AB 是O 的直径,点C 在AB 的延长线上,CD 切O 于点D ,连接AD .若25A ∠=,则C ∠= 度.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第4页(共28页)三、解答题(本大题共6小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分,每题6分)(1)计算:0294sin30(2014π)2-+--.(2)解不等式组:315,2(2)7xx x-⎧⎨++⎩>①<②.16.(本小题满分6分)如图,在一次数学课外实践活动中,小文在点C处测得树的顶端A的仰角为37,20mBC=,求树的高度AB.(参考数据:sin370.60≈,cos370.80≈,tan370.75≈)17.(本小题满分8分)先化简,再求值:22(1)b ba b a b-÷--,其中31a=+,31b=-.18.(本小题满分8分)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.19.(本小题满分10分)如图,一次函数5y kx=+(k为常数,且0k≠)的图像与反比例函数8yx=-的图象交于(2,)A b-,B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移(0)m m>个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.20.(本小题满分10分)如图,矩形ABCD中,2AD AB=,E是AD边上一点,1DE ADn=(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB a=(a为常数),3n=时,求FG的长;(3)记四边形BFEG的面积为1S,矩形ABCD的面积为2S,当121730SS=时,求n的值(直接写出结果,不必写出解答过程).B卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)21.在开展“国学诵读”活动中,某校为了解全校1 300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1 300名学生一周的课外阅读时间不少于7小时的人数是.22.已知关于x的分式方程111x k kx x+-=+-的解为负数,则k的取值范围是.23.在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如,图中的三角形ABC是格点三角形,其中2S=,0N=,6L=;图中格点多边形DEFGHI所对应的S,N,L分别是.经探究发现,任意格点多边形的面积S可表示为S aN bL c=++,其中,,a b c为常数,则当5N=,14L=时,S=(用数值作答).数学试卷第3页(共28页)数学试卷 第5页(共28页) 数学试卷 第6页(共28页)24.如图,在边长为2的菱形ABCD 中,=60A ∠,M 是AD 边的中点,N 是AB 边上一动点,将AMN △沿MN 所在的直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是 .25.如图,在平面直角坐标系xOy 中,直线32y x =与双曲线6y x=相交于A ,B 两点, C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若PBC △的面积是20,则点C 的坐标为 .二、解答题(本大题共3小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设m AB x =.(1)若花园的面积为2192m ,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.27.(本小题满分10分)如图,在O 的内接ABC △中,90ACB ∠=,2AC BC =,过C 作AB 的垂线l 交O于另一点D ,垂足为E .设P 是AB 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:PAC PDF △∽△; (2)若5AB =,AP BP =,求PD 的长;(3)在点P 运动过程中,设AGx BG=,tan AFD y ∠=,求y 与x 之间的函数关系式(不要求写出x 的取值范围).28.(本小题满分12分)如图,已知抛物线(2)(4)8ky x x =+-(k 为常数,且0k >)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B的直线y x b =+与抛物线的另一交点为D . (1)若点D 的横坐标为5-,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与ABC △相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF .一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少?毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页)数学试卷 第8页(共28页)四川省成都市2014年高中阶段教育学校统一招生考试数学答案解析A 卷 第Ⅰ卷一、选择题 1.【答案】D【解析】将各数在数轴上表示,通过数轴比较大小,其中最大的是2,故选D . 【考点】有理数的大小比较 2.【答案】B【解析】观察四种几何体,可以判断主视图为三角形的为圆锥,故选B . 【考点】简单几何体的三视图. 3.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中1||10a <<,n 为整数,a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,为负整数,n 的绝对值等于原数左起第一个非零数字前零的个数(含整数位上的零).1029029 000 000 000 2.910==⨯亿,故选C .【考点】科学记数法 4.【答案】B【解析】A ,B 为整式的加减运算,整式加减运算的实质为合并同类项,A 中两项不是同类项,不能合并,A 错误,B 正确;C 为幂的乘方,底数不变,指数应相乘,C 错误;D 为同底数幂的除法,同底数幂相除,底数不变,指数相减,D 错误,故选B . 【考点】整式的计算 5.【答案】A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,B ,C ,D 选项中的图形沿竖直的直线折叠直线两旁的部分都能重合,A 中的图形不能重合,故选A . 【考点】轴对称图形 6.【答案】C第Ⅱ卷5/ 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)tan BC C . 2037BC m C ==,∠20tan3720AB ∴=≈答:树高AB 约为15m. 【考点】三角函数 17.【答案】23【解析】解:=原式(2)用列表法表示如下:或画树状图如下:)点7/ 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)平移后的直线与反比例函数的图像有且只有一个公共点FC GBO ∠BOG ∴△BG EF ∴=∴四边形BFEG 又FG BE ⊥平行四边形2)当AB Rt ABE △2+BE AB =A EOF =∠∠9 / 1456=483aOE AB a a AE a =【考点】四边形的综合应用B 卷22数学试卷 第19页(共28页)数学试卷 第20页(共28页)00000166166(33)2(33)2022x x x x x ++-+++-=,得ACB =∠是O 的直径 APB ∴∠ CPB PBA +∠l AB ⊥于点FAE +=∠PB ∴=∠∠ABP AFE ACP ==∠∠PAC =又∠(2)在Rt ABC △由勾股定理,得1122ABC S AB CE AC BC ==△,2CE ∴=,可得4AE =.当AP BP =时,有PA PB =,则OABP 为等腰直角三角形25222PAB AP AB ∴===∠,EF AB ⊥由垂径定理,得由(1)知故5622DF PA PD AC ⨯==)方法一:过点G 作,ACH ∠,,l AB AC AD ⊥∴=∠tan GHPH ∴=AP AD AG DB BG=12BD AG BC x AD BG AC == 1tan 2AP AFD ABP x PB ==∠=之间的的函数关系式为12y x = 【考点】圆,相似三角形,勾股定理,三角函数直线点22144144(6)81616k k -++26=2216k -=,即 又0,2k k >∴=A P AB227272(6)44k k -++2166=45k -=,即,0,k k >∴4255或 作DG y ⊥轴于点G ,过点A 作43)3。

成都七中学校自主招生测验试题

成都七中学校自主招生测验试题

成都七中学校⾃主招⽣测验试题成都七中学校⾃主招⽣测验试题————————————————————————————————作者:————————————————————————————————⽇期:成都七中实验学校⾃主招⽣考试试题数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题36分;第Ⅱ卷为⾮选择题114分;全卷共150分.考试时间为120分钟.2.本试卷的选择题答案⽤2B 铅笔涂在机读卡上,⾮选择题在卷Ⅱ上作答.3.考⽣务必将⾃⼰的姓名及考号写在密封线以内指定位置.4.⾮选择题必须在指定的区域内作答,不能超出指定区域或在⾮指定区域作答,否则答案⽆效.卷I (选择题,共36分)⼀.选择题:本⼤题共12个⼩题,每⼩题3分,共36分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.计算3×(-2) 的结果是( )A .5B .-5C .6D .-62.如图1,在△ABC 中,D 是BC 延长线上⼀点,∠B = 40°,∠ACD = 120°,则∠A 等于( ) A .60° B .70°C .80°D .90°3.下列计算中,正确的是( )A .020=B . 623)(a a = C .93=± D .2a a a =+4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为( ) A .6 B .9 C .12D .155.把不等式2x -< 4的解集表⽰在数轴上,正确的是( )6.如图3,在5×5正⽅形⽹格中,⼀条圆弧经过A ,B ,C 三点,ABABCD40°120°图1MR Q ABCP A -B D2 0 C 0 - 2那么这条圆弧所在圆的圆⼼是( ) A .点P B .点M C .点RD .点Q7.若2230x x y ++-=,则xy 的值为()A .6或0B .6-或0C .5或0D .8-或08.已知y x a b b y b b a x b a ,,,,0则--=-+=<<的⼤⼩关系是()A .y x >B .x =yC .y x <D .与a 、b 的取值有关 9.如图4,已知边长为1的正⽅形ABCD ,E 为CD 边的中点,动点P在正⽅形ABCD 边上沿A B C E →→→运动,设点P 经过的路程为 x ,△APE 的⾯积为y ,则y 关于x 的函数的图象⼤致为()10.如图5,两个正六边形的边长均为1,其中⼀个正六边形⼀边恰在另⼀个正六边形的对⾓线上,则这个图形(阴影部分)外轮廓线的周长是( )D .1011.如图6,已知⼆次函数2y ax bx c =++的图像如图所⽰,则下列6个代数式,,,,2,ab ac a b c a b c a b ++-++2a b -中其值为正的式⼦个数为()A .1个B .2个C .3个D .4个12.将正⽅体骰⼦(相对⾯上的点数分别为1和6、2和5、3和4)放置于⽔平桌⾯上,如图7-1.在图7-2中,将骰⼦向右翻滚90°,然后在桌⾯上按逆时针⽅向旋转90°,则完成⼀次变换.若骰⼦的初始位置为图7-1所⽰的状态,那么按上述规则连续完成10次变换后,骰⼦朝上⼀⾯的点数是( )A .2B .3C .5D .6卷Ⅱ(⾮选择题,共114分)图7-1图7-2向右翻滚逆时针旋转90°图5x (yO2.(1(x yO2.1(x y2.1 ABC E PD 图4图6O 1 1yx⼆.填空题:本⼤题共6个⼩题,每⼩题4分,共24分.将答案直接填写在题中横线上.13.5-的相反数是.14.如图8,矩形ABCD的顶点A,B在数轴上,CD = 6,点A对应的数为1-,则点B所对应的数为.15.如图9,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率为.16.已知x = 1是⼀元⼆次⽅程02=++nm++的值为.17.把三张⼤⼩相同的正⽅形卡⽚A,B,C叠放在⼀个底⾯为正⽅形的盒底上,底⾯未被卡⽚覆盖的部分⽤阴影表⽰.若按图10-1摆放时,阴影部分的⾯积为S1;若按图10-2摆放时,阴影部分的⾯积为S2,则S1S2(填“>”、“<”或“=”).18.南⼭中学⾼⼀年级举办数学竞赛,A、B、C、D、E五位同学得了前五名,发奖前,⽼师让他们猜⼀猜各⼈的名次排列情况.A说:B第三名,C第五名;B说:E第四名,D第五名;C说:A第⼀名,E第四名;D说:C第⼀名,B第⼆名;E说:A第三名,D第四名.⽼师说:每个名次都有⼈猜对,试判断获得第⼀⾄第五名的依次为 .三、解答题(本⼤题共7个⼩题,共90分.解答应写出⽂字说明、证明过程或演算步骤)19.(1)(本⼩题满分8分)解⽅程:1211+=-xx.(2)(本⼩题满分8分)先化简再求值:22214()a a a a a----÷++++,其中22430a a+-=.20.(本⼩题满分12分)甲、⼄两校参加区教育局举办的学⽣英语⼝语竞赛,两校参赛⼈数相等.⽐赛结束后,发现学⽣成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表图10-1ACBCBA图10-2⼄校成绩扇形统计图图11-110分9分8分72°54°7分A 0图8BCD图9(1)在图11-1中,“7分”所在扇形的圆⼼⾓(3)经计算,⼄校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的⾓度分析哪个学校成绩较好.(4)如果该教育局要组织8⼈的代表队参加市级团体赛,为便管理,决定从这两所学校中的⼀所挑选参赛选⼿,请你分析,应选哪所学校?21.(本⼩题满分12分)如图12,在直⾓坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反⽐例函数xmy =(x >0)的图象经过点M ,求该反⽐例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(3)若反⽐例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围. 22.(本⼩题满分12分)某仪器⼚计划制造A 、B 两种型号的仪器共80套,该公司所筹资⾦不少于2090万元,但不超过2096万元,且所筹资⾦全部⽤于制造仪器,两种型号的制造成本和售价如下表:A B 成本(万元/套) 25 28 售价(万元/套)3034(1)该⼚对这两种型号仪器有哪⼏种制造⽅案?(2)该⼚应该选⽤哪种⽅案制造可获得利润最⼤?(3)根据市场调查,每套B 型仪器的售价不会改变,每套A 型仪器的售价将会提⾼a 万元(a >0),且所制造的两种仪器可全部售出,问该⼚⼜将如何制造才能获得最⼤利润?分数 7 分 8 分 9 分 10 分⼈数118xMN yDAB C E O8 6 48分 9分分数⼈数 210分图11-2 7分 08 45图13-2ADOBC21 MN图13-1ADBM N12图13-3ADOBC21 MNO(1)如图13-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图13-1中的MN 绕点O 顺时针旋转得到图13-2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ;(3)将图13-2中的OB 拉长为AO 的k 倍得到图13-3,求ACBD的值. 24.(本⼩题满分12分)如图14,在直⾓梯形ABCD 中,AD ∥BC ,90B ∠=?,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后⽴刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三⾓形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P,Q 同时出发,当点P 返回到点M 时停⽌运动,点Q 也随之停⽌.设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t 的取值范围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的⾯积.(3)随着时间t 的变化,线段AD 会有⼀部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最⼤值,请回答:该最⼤值能否持续⼀个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.M A D C B P QE 图14 A D C B (备⽤图) M25.(本⼩题满分14分)如图15,抛物线2(0)y ax bx c a =++≠经过x 轴上的两点1(,0)A x 、2(,0)B x 和y 轴上的点3(0,)2C -,P 的圆⼼P 在y 轴上,且经过B 、C 两点,若3b a =,23AB =.求:(1)抛物线的解析式;(2)D 在抛物线上,且C 、D 两点关于抛物线的对称轴对称,问直线BD 是否经过圆⼼P ?并说明理由;(3)设直线BD 交P 于另⼀点E ,求经过点E 和P 的切线的解析式.C M B yQxD E O AP 图152011年数学参考答案⼀、选择题BCADBCABBC⼆、填空题13.5 14.5 15. 71016.1 17. = 18. C 、B 、A 、E 、D. 三、解答题19.(1)解:)1(21-=+x x ,3=x .经检验知,3=x 是原⽅程的解.………………8分(2)解:………………6分由已知得2322a a +=,代⼊上式的原式23=………………8分20.解:(1)144;………………3分(2)如图1;………………6分(3)甲校的平均分为8.3分,中位数为7分;………………8分由于两校平均分相等,⼄校成绩的中位数⼤于甲校的中位数,所以从平均分和中位数⾓度上判断,⼄校的成绩较好.………………9分⼄校成绩条形统计图 86 48分 9分分数⼈数2 10分图17分 0 8322212[](2)(2)4(2)(2)(1)2(2)442(2)442(2)41(2)12a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a--+=-?++--+--+=+---++=?+--+=?+-=+=+原式(4)因为选8名学⽣参加市级⼝语团体赛,甲校得10分的有8⼈,⽽⼄校得10分的只有5⼈,所以应选甲校.………………12分21.解:(1)设直线DE 的解析式为b kx y +=,∵点D ,E 的坐标为(0,3)、(6,0),∴ ?+==.60,3b k b解得=-=.3,21b k ∴ 321+-=x y .………………2分∵点M 在AB 边上,B (4,2),⽽四边形OABC 是矩形,∴点M 的纵坐标为2.⼜∵点M 在直线321+-=x y 上,∴ 2 = 321+-x .∴ x = 2.∴ M (2,2).………………4分(2)∵x(x >0)经过点M (2,2),∴ 4=m .∴xy 4=.………………5分⼜∵点N 在BC 边上,B (4,2),∴点N 的横坐标为4.∵点N 在直线321+-=x y 上,∴ 1=y .∴ N (4,1). ………………8分∵当4=x 时,y =4x= 1,∴点N 在函数 xy 4=的图象上.………………9分(3)4≤ m ≤8.………………12分22.解:(1)设A 种型号的仪器造x 套,则B 种型号的仪器造(80-x)套, 由题意得:()20968028252090≤-+≤x x解之得:5048≤≤x ………………2分所以 x=48、49、50 三种⽅案:即:A 型48套,B 型32套;A 型49套,B 型31套;A 型50套,B 型30套。

(答案)成都七中2011-2012学年上期2014级半期考试数学试卷

(答案)成都七中2011-2012学年上期2014级半期考试数学试卷

成都七中2011-2012学年上期2014级半期考试数学试卷考试时间:120分钟 总分:150分命题人:张世永 审题人:杜利超 罗林丹一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.)1.已知集合{}3x |x M ->=,N={}2x |x ≥,则以下正确的是( ) A .N 4∈-B .M 3∈-C .M }2{⊆D .N M ⊆2.已知集合{}1,0M =,集合N 满足M ∪N={0,1},则集合N 的个数为( ) A .1B .2C .3D .43.函数12x x 1)x (f -++-=的定义域为( )A .)(1,2-B . [-2,1]C .(-∞,1]D .[-2,+∞)4.函数}3,2,1{n ,1n 2)n (f ∈-=的图象为( ) A .某直线上三个离散点B .一条直线C .一条线段D .某直线上无数个离散点5.函数1x 2)x (f -=在x ∈[2,5]上的最小值为( ) A .2B .1C .32D .21 6.以下函数为R 上的偶函数的是( ) A .2x y =B .5x y =C .x1x y +=D .4x 1y =7.以下结论错误的是( ) A .041log 4log 33=+ B .52100lg 5= C .y x )y x (44-=- D .827811643=⎪⎭⎫ ⎝⎛-8.给出四个数6.1log 8.0,8.1log 8.0,1.70.3,0.93.1,它们的大小关系正确的是( ) A .6.1log 8.0>8.1log 8.0>1.70.3>0.93.1B .1.70.3>0.93.1>6.1log 8.0>8.1log 8.0C .1.70.3>8.1log 8.0>6.1log 8.0>0.93.1D . 0.93.1>1.70.3>6.1log 8.0>8.1log 8.09.已知lg2=a ,lg3=b ,则用a ,b 表示15log 12的结果为( ) A .ba 2ba ++ B .ba 2ba 1++-C .b2a ba ++D .b2a ba 1++-10.已知函数f(x)=2x ,则f(1-x)的图象为 ( )AB C D11.已知实数a≠0,函数⎩⎨⎧≥--<+=)2x (a2x )2x (ax 2)x (f ,若)a 2(f )a 2(f +=-,则a 的值为( ) A .23-B .233--或 C .23 D .3或23 12.已知函数x x 33)x (f -=,若0)t (mf )t 2(f 3t ≥-对于]1,2[t --∈恒成立,则实数m 范围是( )A .⎪⎭⎫⎢⎣⎡∞+,91B .⎥⎦⎤ ⎝⎛∞-91,C .⎪⎭⎫⎢⎣⎡∞+,910 D .⎥⎦⎤⎝⎛∞-910,二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中的横线上13.函数02x )x 3(log y +-=的定义域为 .14.函数2x x 2321y --⎪⎭⎫⎝⎛=的单调递增区间为 .15.已知函数)x 1x lg(x )x (f 2++=,且)1(f )a 2(f -<-,则实数a 的取值范围是 .16.已知函数f(x)的定义域为R ,对任意实数y x ,满足21)()()(++=+y f x f y x f ,且0)21(=f ,当21>x 时,f(x)>0.给出以下结论:①21)0(-=f ;②23)1(-=-f ;③f(x)为R 上减函数;④21)(+x f 为奇函数;⑤f(x)+1为偶函数.其中正确结论的序号是 .三.解答题(17-21每小题12分,22题14分,共74分.解答应写出文字说明,证明过程或演算步骤.)17.已知函数x1x1lg)x (f -+=的定义域为集合A ,函数x 3)x (g -=的定义域为集合B .(1)求集合A ,B ;(2)求A∩B ,(C R A )∩(C R B ).18.已知函数4mx x )x (f 2++=,m 2x 2x )x (g 2-+=.(1)若方程0)x (f =与0)x (g =至少有一个有实根,求实数m 的范围; (2)若方程0)x (g =在区间(2,-∞-)与(1,2-)各有一个实根,求实数m 的范围.19.在边长为1的正方形ABCD 的边界上,有动点P 从顶点A 出发,依次经过B 、C 、D 而回到A .今以x 表示动点P 走过的路程,y 表示以AP 为边的正方形的面积,试求函数)x (f y =的解析式,并画出)x (f 的图象.20.已知函数22a 4a )x (f 1x x +⋅-⋅=+在区间[-2,2]上的最大值为3,求实数a 的值.21.已知奇函数c xbax )x (f ++=的图象经过点A (1,1),),(12-B .(1)求函数f(x)的解析式;(2)求证:函数f(x)在(0,+∞)上为减函数;(3)若)x (f |1t |≤-+2对]2,1[]1,2[x --∈恒成立,求实数t 的范围.22.已知函数n mx x f +=)(的图像经过点A (1,2),),(01-B ,且函数xp x h 2)(=(p>0)与函数n mx x f +=)(的图像只有一个交点. (1)求函数)(x f 与)(x h 的解析式;(2)设函数)x (h )x (f )x (F -=,求)x (F 的最小值与单调区间;(3)设R a ∈,解关于x 的方程)x 4(h log )x a (h log ]1)1x (f [log 224---=--.成都七中2011-2012学年上期A2014级半期考试数学试卷(参考答案)考试时间:120分钟 总分:150分命题人:张世永 审题人:杜利超 罗林丹一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.)CDBA DACB BCAC二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中的横线上 13. {x|x<3,且x≠0} 14. [-1,1] 15. (1,3) 16. ① ② ④三.解答题(17-21每小题12分,22题14分,共74分.解答应写出文字说明,证明过程或演算步骤.)17.解:(1)由0x 1x 1>-+,得01x 1x <-+,则1x 1<<-, ∴}1x 1|x {A <<-=. ……3分 由0x 3≥-,得3x ≤,}3x |x {B ≤=. ……6分 (2)}1x 1|x {B A <<-= ; ……9分又}1x ,1x |x {A C R ≥-≤=或,C R B={x|x>3},∴}3x |x {)B C ()A C (R R >= . ……12分 18.解:(1)由04mx x 2=++有实根,得016m 2≥-=∆,则4m -≤或4m ≥; ……2分由0m 2x 2x 2=-+有实根,得0m 84≥+=∆,则21m -≥. ……4分综上得4m -≤或21m -≥. ……6分(2)由⎩⎨⎧>-=<-=-0m 23)1(g 0m 2)2(g ,得⎪⎩⎪⎨⎧<>23m 0m ,则23m 0<< . ……12分 19.解:当1x 0≤<时,x AP =,2x )x (f = ; ……2分 当2x 1≤<时,2)1x (1AP -+=,1)1x ()x (f 2+-= ; ……4分 当3x 2≤<时,2)x 3(1AP -+=,1)3x ()x (f 2+-=; ……6分 当4x 3≤<时,x 4AP -=,2)x 4()x (f -= . ……8分∴⎪⎪⎩⎪⎪⎨⎧∈-∈+-∈+-∈=4)(3,x )4x (]3,2(x 1)3x (]2,1(x 1)1x (]1,0(x x y 2222 . ……10分……12分20.解:令x 2t =,则22)(2+-=at at t g (4t 41≤≤) 当0a =时,32)(≠=t g ,舍去a=0; ……4分 当0a ≠时,a t a t g -+-=2)1()(2;当a>0时,328)4()(max =+==a g t g ,∴81a =. ……7分 当a<0时,32)(max =-=a t g ,∴1a -=. ……10分 综上,81a =或1a -=. ……12分 21.解:(1)由x≠0,f(x)为奇函数,得0)x (f )x (f =+- ∴2c=0,即c=0,xbax )x (f +=. 又f(x)的图象过A 、B ,则⎪⎩⎪⎨⎧-=+=+12ba 21b a ,解得⎩⎨⎧=-=2b 1a . ∴x2x )x (f +-= (x≠0). ……4分x(2)证明:设任意x 1,x 2∈(0,+∞),且x 1<x 2. ∴2112221121x 2x 2)x x ()x 2x ()x 2x ()x (f )x (f -+-=+--+-=- 211212x x )x x (2)x x (-+-=212112x x )2x x )(x x (+-=.由x 1,x 2∈(0,+∞),得x 1x 2>0,x 1x 2+2>0. 由x 1<x 2,得0x x 12>-.∴0)x (f )x (f 21>-,即)x (f )x (f 21>. ∴函数x2x )x (f +-=在(0,+∞)上为减函数. ……8分 (3)由f(x)为奇函数,知f(x)在(0,∞-)也为减函数. 当]1,2[x --∈时,1)1(f )x (f min -=-= 当]2,1[x ∈时,1)2(f )x (f min -== 综上,1)x (f min -=,从而1|1t |≤-∴2t 0≤≤. ……12分22.解:(1)由函数n mx x f +=)(的图像经过点A (1,2),B (-1,0), 得2=+n m ,0-=+n m ,解得1==n m ,从而1)(+=x x f . ……2分 由函数x p x h 2)(=(p>0)与函数1)(+=x x f 的图像只有一个交点, 得 012-=+x p x ,0442=-=∆p ,又0>p ,从而1=p ,()h x ∴=x ≥0). ……4分(2)2()11)F x x =-= (x ≥0).1=,即1x =时,min ()0F x =. ……6分 )x (F 在[0,1]为减函数,在[1,)+∞为增函数. ……8分(3)原方程可化为x 4log x a log )1x (log 224---=-, 即()x 41x log x 4log )1x (log 21x a log 2222-⋅-=-+-=-.⎪⎩⎪⎨⎧+--=<<<⇔⎪⎪⎩⎪⎪⎨⎧--=->->->-⇔5)3x (a ax 4x 1)x 4)(1x (x a 0x a 0x 401x 2 . ……10分 令5)3x (y 2+--=,y=a.如图所示,①当4a 1≤<时,原方程有一解a 53x --=;②当5a 4<<时,原方程有两解a 53x 1--=,a 53x 2-+=; ③当a=5时,原方程有一解x=3;④当1a ≤或5a >时,原方程无解. ……14分y。

四川省成都七中2013-2014学年高二下学期开学考试数学(理)试题Word版含答案

四川省成都七中2013-2014学年高二下学期开学考试数学(理)试题Word版含答案

四川省成都七中2013-2014学年高二下学期开学考试数学(理)试题Word版含答案成都七中高2015届高二下期入学考试数学试题(理)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合{|2,}xM y y x R ==∈,集合,{|lg(1)}S x y x ==-则下列各式中正确的是( )A.M S M =B.M S S =C.M S =D.M S =?2. 对四组数据进行统计,获得以下散点图,关于其相关系数比较,正确的是( )相关系数为1r相关系数为2r相关系数为3r相关系数为4rA.24310r r r r <<<<B.42130r r r r <<<<C.42310r r r r <<<<D.24130r r r r <<<<3. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,l ?α,l ?β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 4. 阅读如图所示的程序框图,运行相应的程序,输出的s 值等于( ) A.3- B.21- C.3 D.21 5. 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,则球的表面积为( ) A.1200π B.1400π C.1600π D.1800π 6. 下列判断正确的是( )A. 若命题p 为真命题,命题q 为假命题,则命题“p q ∧”为真命题B.命题“若0xy =,则0x =”的否命题为“若0xy =,则0x ≠”C. “1sin 2α=”是” 6πα=”的充分不必要条件D. .命题“,20xx ?∈>R ”的否定是“ 00,20xx ?∈≤R ”7. 将函数y =3cos x +sin x(x ∈R)的图像向左平移m(m>0)个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6 8. 设0x 是方程ln 4x x +=的解,则0x 属于区间( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)9. 已知x,y 满足2420x x y x y c ≥??+≤??-++≥?且目标函数z=3x+y 的最小值是5,则z 的最大值是( )A.10B.12C.14D.16 10. 直线032=--y x 与圆()()22239x y -++=交于E.F 两点,则?EOF (O 是原点)的面积为( ) A.23 B.43C.52D.556二、填空题:本大题共5小题,每小题5分,共20分.11. 已知向量a →,b →不共线,若向量a →+λb →与b →+λa →的方向相反,则实数λ的值为 . 12. 在ABC ?中,角A 、B 、C 所对的边分别为a 、b 、c,且满足sin cos a B b A =,则2sin cos B C -的最大值是 .13. 如果直线()21400,0ax by a b -+=>>和函数()()110,1x f x mm m +=+>≠的图象恒过同一个定点,且该定点始终落在圆()()221225x a y b -+++-=的内部或圆上,那么ba的取值范围是______. 14. 如果不等式x a x x )1(42->-的解集为A ,且}20|{<① 已知,,a b m 都是正数,且a m ab m b+>+,则a b <;② 若函数)1lg()(+=ax x f 的定义域是}1|{③ 已知x ∈(0,π),则2sin sin y x x=+的最小值为22;④ 已知a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 也成等差数列,则ycx a +的值等于2;⑤ 已知函数2()1,()43xf x eg x x x =-=-+-,若有()()f a g b =,则b 的取值范围为(22,22)-+.其中正确命题的序号是________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;……第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中,(1)求成绩在区间[80,90)内的学生人数;(2)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间[90,100]内的概率.17. (本小题满分12分)设数列{a n }是公差大于零的等差数列,已知12a =,23210a a =-.(1)求{a n }的通项公式;(2)设数列{b n }是以函数f(x)=4sin 2πx 的最小正周期为首项,以3为公比的等比数列,求数列{a n ?b n }的前n 项和n S .18. (本小题满分12分)(1)设函数f(x)=(sin ωx+cos ωx)2+2cos 2ωx(ω>0)的最小正周期为23π,将y=f(x)的图像向右平移2π个单位长度得到函数y=g(x)的图像,求y=g(x)的单调增区间.(2)设?ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,3cos()cos 2A CB -+=,b 2=ac ,求角B 的大小.19. (本小题满分12分)如图,建立平面直角坐标系xoy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.20.(本小题满分13分)已知几何体A BCED -的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求异面直线DE 与AB 所成角的余弦值;(2)求二面角A ED B --的正弦值.21. (本小题满分14分)已知圆C :x 2+y 2-2x +4y -4=0.问在圆C 上是否存在两点A 、B 关于直线y =kx -1对称,且以AB 为直径的圆经过原点?若存在,写出直线AB 的方程;若不存在,说明理由.成都七中高2015届高二下期入学考试数学试题(理答案)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,集合,则下列各式中正确的是( )A. B.C. D.解析:A 由题意得,,所以根据选项可得,所以选A.2.对四组数据进行统计,获得以下散点图,关于其相关系数比较,正确的是( )相关系数为相关系数为相关系数为相关系数为A. B.C. D.【答案】A【解析】由相关系数的定义以及散点图所表达的含义可知.3.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l?α,l?β,则( )A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l 【答案】D [解析] 若α∥β,则m∥n与m,n为异面直线矛盾,故A错.若α⊥β且l⊥β,则由n⊥平面β知l ∥n 与l ⊥n矛盾,故B错.若α与β相交,设垂直于交线的平面为γ,则l ⊥γ,又l ⊥m,l ⊥n,m⊥平面α,n⊥平面β,故交线平行于l.故选D.4.阅读如图所示的程序框图,运行相应的程序,输出的值等于( )A. B. C. D.解析:A 程序执行循环六次,依次执行的是,,故输出值等于.5.球面上有三点、、组成这个球的一个截面的内接三角形三个顶点,其中,、,球心到这个截面的距离为球半径的一半,则球的表面积为( )A. B. C. D.解析:A ∵,,,∴,是以为斜边的直角三角形.∴的外接圆的半径为,即截面圆的半径,又球心到截面的距离为,∴,得.∴球的表面积为.6.下列判断正确的是( )A. 若命题为真命题,命题为假命题,则命题“”为真命题B.命题“若,则”的否命题为“若,则”C. “”是””的充分不必要条件D. .命题“”的否定是“”【答案】D【解析】A项中,因为真假,所以为假命题.故A项错误;B项中,“若,则”的否命题为“若,则”,故B项错误;C项中,是的必要不充分条件,故C项错误;D选项正确.7.将函数y=cos x+sin x(x∈R)的图像向左平移m(m>0)个单位长度后,所得到的图像关于y轴对称,则m的最小值是( )A.12πB.6πC.3πD.65π 【答案】B[解析] 结合选项,将函数y =cos x +sin x =2sin 3π的图像向左平移6π个单位得到y =2sin 2π=2cos x ,它的图像关于y 轴对称,选B. 8. 设是方程的解,则属于区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【答案】C 【解析】设,因为,,所以.所以.9. 已知x,y 满足且目标函数z=3x+y 的最小值是5,则z 的最大值是( ) A.B.C.D.解析:由,则,因为的最小值为,所以,作出不等式对应的可行域,由图象可知当直线经过点时,直线的截距最小,所以直线的直线方程为,由,解得,代入直线得即直线方程为,平移直线,当直线经过点时,直线的截距最大,此时有最大值,由,得,即,代入直线得。

成都七中学校自主招生考试试题

成都七中学校自主招生考试试题

成都七中实验学校自主招生考试试题数学试题注意事项:1•本试题分第I卷和第U卷两部分•第I卷为选择分;第U卷为非选择题14分;全卷共150分.考试时间为120分钟.2. 本试卷的选择题答案用2B 铅笔涂在机读卡上,非选择题在卷山作答3. 考生务必将自己的姓名及考号写在密封线以内指定位置4. 非选择题必须在指定的区域内作答,不能超出指定区域或在非指定区域作答,否则答案无效卷I (选择题,共36 分)一•选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1. 计算3X( _2)的结果是()A. 5B. -5C. 62. 如图1,在厶ABC中,D是BC延长线上一点, Z B = 40 °/ACD = 120 ° 则/A 等于()A. 60°B. 70°C. 80°D. 90°3•下列计算中,正确的是()A. 20=0B. (a3)2二a6C. .9=3 24. 如图2,在口ABCD 中,AC 平分Z DAB,AB = 3,则口ABCD的周长为()A. 6B. 9C. 12D. 155. 把不等式-2x< 4的解集表示在数轴上,正确的是()-2 0A右 -- 1---- *-2 0C6. 如图3,在5X5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是() A .点P B .点M C .点R D .点Q7•若 x 2 +2x + Jy —3 = 0,则 xy 的值为()A . 6或0B . -6或0C . 5或0 D. -8或0&已知 0 :: a ::: b,x = a b - . b, y =A. x y B . x = y C . x y D .与a 、b 的取值有关12•将正方体骰子(相对面上的点数分别为1和6、7-1.在图7-2中,将骰子向右翻滚90°然后在桌面上按逆时针方向旋转90°则完成一次变换.若 骰子的初始位置为图7-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点-b - b - a,则x, y 的大小关系是(为 x , △ APE10.如图5,两个正六边形的边长均为1,其中一个正六边形一边恰在另一个正六边形的对角线上, 分)外轮廓线的周长是() A . 7C . 9 则这个图形(阴影部B . 8 D . 1011.如图6,已知二次函数y =ax o bx c 的图像如图所示,则下列6个代数式ab,ac,a b c, a - b c,2a b,2a -b 中其值为正的式子个数为()A. 1个 B . 2个 C . 3个 D . 4个 5、3和4)放置于水平桌面上,如图9•如图4,已知边长为1在正方形ABCD 边(2)(本小题满分8分)先化简再求值: 20. (本小题满分12分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等•比 赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下 尚不完整的统计图表.甲校成绩统计表•填空题:本大题共6个小题,每小题4分,共24分•将答案直接填写在题中横线 上.13. ____________________ _ . 5的相反数是 •14. 如图8,矩形ABCD 的顶点A , B 在数轴上,CD = 6,点A 对应的数为_1,则点B 所对应的数为 _______ .15. 如图9,有五张点数分别为2, 3,7,8, 9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率为 _________*<宅9*16. 已知x = 1是一元二次方程x 2 mx n = 0的一个根,则m 2 ■ 2mn ■ n 2 的值为 ______ .17. 把三张大小相同的正方形卡片A , B , C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用 阴影表示.若按图10-1摆放时,阴影部分的面积为S 1; 若按图10-2摆放时,阴影部分的面积为生,则S 1 _____________________________________ S 2(填 “〉” “V” 或“=”).18. 南山中学高一年级举办数学竞赛,A B C D E 五位同学得了前五名,发奖前,老师让他们猜一猜各人的名次排列情况•A 说:B 第三名,C 第五名;B 说:E 第四名,D 第五名;C 说:A 第一名,E 第四名;D 说:C 第一名,B 第二名;E 说:A 第三名,D 第四名.老师说:每个名次都有人猜对,试判断获得第一至第五名的依次为 ____ .三、解答题(本大题共7个小题,共90分•解答应写出文字说明、证明过程或演算步骤)19. (1)(本小题满分8分)解方程: 1 x -1 a -2a 2 2a,其中2a 2 4a -3~D ______________ C A 0 B图8 图9丿 图 10-2乙校成绩扇形统计图图 11-分数7分8分9分10分人数1108(1)在图11-1中,“7分”所在扇形的圆心角(2)请你将图11-2的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出乙校成绩条形统计图甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4 )如果该教育局要组织8人的代表队参加市级团体赛,为便管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?21. (本小题满分12分)如图12,在直角坐标系中,矩形OABC的顶点0与坐标原点重合,顶点A, C分别在坐标轴上,顶点B 的坐标为(4, 2).过点D (0, 3)和E (6, 0)的直线分别与AB, BC交于点M, N.(1) 求直线DE的解析式和点M的坐标;(2) 若反比例函数y=m(x>0)的图象经过点M,x求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3) 若反比例函数y =m(x>0)的图象与有公共点,请直憐出m的取值范围.x22. (本小题满分12 分)某仪器厂计划制造A B两种型号的仪器共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于制造仪器,两种型号的制造成本和售价如下表:A B成本(万元/套) 2528售价(万元/套) 3034(1)该厂对这两种型号仪器有哪几种制造方案?(2)该厂应该选用哪种方案制造可获得利润最大?(3)根据市场调查,每套B型仪器的售价不会改变,每套A型仪器的售价将会提高a万元(a>0),且所制造的两种仪器可全部售出,问该厂又将如何制造才能获得最大利润?23. (本小题满分12分)在图13-1至图15-3中,直线MN与线段AB相交于点0,/1 = Z2 = 45 °(1)如图13-1,若AO =0B,请写出A0与BD 的数量关系和位置关系;(2)将图13-1中的MN绕点0顺时针旋转得到图13-2,其中AO = 0B .求证:AC = BD, AC 丄BD;(3)将图13-2中的0B拉长为A0的k倍得到图13-3,求BD的值.AC24. (本小题满分12分)如图14,在直角梯形ABCD 中,AD //BC, . B =90 , AD = 6, BC = 8, AB=3、, 3,点M 是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P, Q 的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P, Q同时出发,当点P返回到点M时停止运动,点Q也随之停止. 设点P, Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).(2)当BP = 1时,求△ EPQ与梯形ABCD重叠部分的面积.(3)随着时间t的变化,线段AD会有一部分被△ EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不M(备用图)25. (本小题满分14分)如图15,抛物线y二ax2• bx • C a = 0)经过x轴上的两点人(为,0)、B(x2,0)和y轴上的点C(0,—扌),L P的圆心P在y轴上,且经过B、C两点,若b = , 3a , AB = 2、、3 .求:(1)抛物线的解析式;(2)D在抛物线上,且C、D两点关于抛物线的对称轴对称,问直线BD是否经过圆心P ? 并说明理由;(3)设直线BD交L P于另一点E ,求经过点E和L P的切线的解析式.图152011 年数学参考答案题号123456789101112答案「D C B C A D B C A B B C13.、5 14.5 15. —16.1 17. = 18. C B A E D.10三、解答题19. (1)解:x 1 =2(x -1) , X =3 •经检验知,x =3是原方程的解. ........... 8分⑵解:原式=[「2土丄]电工a(a+2) (a+2)2a—4(a「2)(a 2)「a(a -1) a 22a(a 2) a -42 2a-4「a a a 2= ------------------------------- X -----------a(a 2)2 a -4a -4 a 2= ---- -------------- X -------------a(a 2)2 a - 41a(a 2)1a2 2a.....................6分2 3 2由已知得a22a ,代入上式的原式2 3乙校成绩条形统计图20. ............................................. 解:(1) 144; 3分(2)如图1 ; .......... 6分(3)....................................................................................... 甲校的平均分为8.3分,中位数为7分; ................................................... 8分由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.............. 9分(4)因为选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校.21. 解:(1)设直线DE的解析式为y二kx b ,•••点 D , E 的坐标为(0, 3)、(6, 0),...3 旳0=6k b.L _ 1 1解得J __2,二y=_—x+3 . ..................................... 2 分小二2点M在AB边上,B (4, 2),而四边形OABC是矩形,点M的纵坐标为2.又•/点M在直线y =:-1一x 3 上,2• 2 =:-2x 3 . • x2=2. • M (2, 2)(2)m /c、经过点M (2, 2),• m.. 4=4 ・• • yx................. 5分又•/点N在BC边上, B (4, 2),•••点N的横坐标为4.1•••点N在直线y =-1x - 3上,2y =1 N (4, 1). ............ 8分4•.•当x =4 时,y = = 1,x4•••点N在函数y 的图象上. ............ 9分x(3) 4< m W8. ....................... 12分22. 解:(1)设A种型号的仪器造x套,则B种型号的仪器造(80-x)套,由题意得:2090 乞25x 28 80 - x < 2096解之得:48乞x空50 ............... 2分所以x=48、49、50三种方案:即:A型48套, B型32套;A型49套,B型31 套;A型50套, B型30套。

四川省成都七中2014级5月周考数学理科试卷含答案

四川省成都七中2014级5月周考数学理科试卷含答案

成都七中2014级考试数学试卷(理科)一、选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的.) 1.若{1,2,3,4,5,6,7,8}U =,{1,3,4},{5,6,7},A B ==则()()U U C A C B =( )(A){2,8} (B){2,6,8} (C){1,3,5,7} (D){1,2,3,5,6,7}2.若βα,表示两个不同的平面,b a ,表示两条不同的直线,则α//a 的一个充分条件是( ) (A)ββα⊥⊥a , (B)b a b //,=βα (C)α//,//b b a (D)ββα⊂a ,//3.已知等比数列{}n a 的前n 项和215,,5n n S t n N -*=⋅-∈则实数t =( ) (A)4 (B)5 (C)45 (D)154.某几何体的三视图如图所示,则该几何体的体积为( )(A)6 (B)(C)3 (D)5.若1cos23θ=,则44sin cos θθ+的值为( ) (A)59 (B)1118 (C)1318(D)16.已知0,0,228,x y x y xy >>++=则2x y +的最小值是( ) (A)3 (B)4 (C)9 (D)11(A) (B) (C) (D)8.若函数3()3f x x x a =-+有3个不同的零点,则实数a 的取值范围是( )(A)(,1)-∞- (B)[2,2]- (C)(2,2)- (D)(1,)+∞ 9.如图,四边形ABCD 是边长为1的正方形,延长CD 至E ,使得2DE CD =.动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,AP AB AE λμ=+.则λμ-的取值范围为( )(A)[1,1]- (B)[1,2]- (C)[2,1]- (D)[0,2]10.从1232,2,2,,2n 这n 个数中取m *(,,2)n m N m n ∈≤≤个数组成递增的等比数列,所有可能的递增等比数列的个数记为(,)n m ϕ,则(100,10)ϕ=( )(A)504 (B)505 (C)506 (D)507二、填空题(每小题5分,共25分.把答案填在题中横线上.)11.已知12z i =+,则3z =12.若点(,)P x y 满足线性约束条件20220,0x y x y y -≤⎧⎪-+≥⎨⎪≥⎩则4z x y =+的最大值为13.阅读右面的程序框图,运行相应的程序,输出的结果为14.设A 、B 、P 是椭圆22221(0)x y a b a b+=>>上不同的三个点,且A 、B 连线经过坐标原点,若直线PA 、PB 的斜率之积为14-,则该椭圆的离心率为15.若ABC ∆的三个内角,,A B C 所对的边,,a b c 满足2a c b +=,则称该三角形为“中庸”三角形.已知ABC ∆为“中庸”三角形,给出下列结论: ①1(,2)2a c ∈; ②112a c b+≥; ③3B π≥; ④若2,AB AB AC BA BC CA CB =⋅+⋅+⋅则4sin 5B =. 其中正确结论的序号是 .(写出所有正确结论的序号)三、解答题(本大题共6小题.共75分.1619-题每题12分,20题13分,21题14分,解答应写出文字说明、证明过程或演算步骤.)16.数列{}n a 满足*212(),n n n a a a n N ++=-∈数列{}n b 满足2*12(),n n n b b b n N ++=∈11221, 2.a b a b ====(1)求数列{}n a ,{}n b 的通项公式; (2)设n n n c a b =,求数列{}n c 的前n 项和n T .17.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知222b c a bc +=-.(1)求A 的大小; (2)如果cos B =2b =,求ABC ∆的面积.18.在如图所示的多面体中,四边形ABCD 为正方形,四边形A D P Q 是直角梯形,AD D P ⊥,CD ⊥平面ADPQ ,12AB AQ DP ==. (1)求证:PQ ⊥平面DCQ ; (2)求二面角B CQ P --的大小.19.高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃.让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的高尔顿板有7层小木块,小球从通道口落下,第一次与第2层中间的小木块碰撞,以12的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为1,2,,7的球槽内.例如小球要掉入3号球槽,则在6次碰撞中有2次向右4次向左滚下. (1)若进行一次高尔顿板试验,这个小球掉入2号球槽的概率.(2)某高三同学在研究了高尔顿板后,制作了一个如图所示的高尔顿板来到社团文化节上进行盈利性“抽奖”活动.10元可以玩一次高尔顿板游戏,小球掉入m 号球槽得到的奖金为ξ元,其中|205|m ξ=-.高尔顿板游戏火爆进行,很多同学参加了游戏.试求ξ的分布列,如果你在活动现场,你通过数学期望的计算后,你觉得这位高三同学能盈利吗?A B CD P20.已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为6.若12,l l 是椭圆C 的两条相互垂直的切线,12,l l 的交点为点P . (1)求椭圆C 的方程;(2)记点P 的轨迹为C ',设12,l l 与轨迹C '的异于点P 的另一个交点分别为,M N ,求PMN ∆的面积的取值范围.21.已知函数2()(),()ln .ln x f x a R g x x x ax x=∈=-+ (1)当0a =时,求()f x 在(1,)+∞上的最小值;(2)若()y f x =与()y g x =的图象恰有三个不同的交点112233(,),(,),(,)A x y B x y C x y (123x x x <<).(i)求实数a 的取值范围; (ii)求证:()22123123()()()f x f x f x x x x =.成都七中2014级考试数学试卷(理科)参考答案11. 12. 13. 14. 15. ②④16.解:(1)即.所以数列是首项为1,公差为1的等差数列,.,,所以数列是首项为1,公比为2的等比数列,.…………………………………6分(2),则两式相减得:整理得.……………………………………………………………………12分17.解(1)因为,所以,又因为,所以.……………………………………………………………6分(2)因为,,所以.由正弦定理,得.因为,所以,解得,因为,所以.故的面积.………………………………………………12分18.解:因为,平面,所以两两垂直.以为原点,所在直线为轴,轴,轴建立空间直角坐标系.不妨设,则,,,, (1)分(1),,,,,故,,又,所以平面. (6)分(2),,设平面的一个法向量为.,故.,,设平面的一个法向量为.,故.则.可以判断二面角是钝角,所以二面角的大小为……………12分19.解(1)设这个小球掉入2号球槽为事件.掉入2号球槽,需要向右1次向左5次,所以.所以这个小球掉入2号球槽的概率为. …………………………………………………5分(2)的可能取值为.这位高三同学能盈利. …………12分20解(1)所以又从而所以椭圆的方程为.………………………………………………………5分(2)①若直线的斜率存在且不为零时,设为,设,则直线的方程为.即,令..直线是椭圆的切线,所以,所以, 坐标原点到直线的距离,所以.设坐标原点到直线的距离为,同理可得.所以.②若直线的斜率不存在或为零时,容易验证所以点的轨迹是圆…………………………………………10分.若直线的斜率存在且不为零时,,则;若直线的斜率为零,则;若直线的斜率不存在,则.所以.,令则.,画的图象,则.所以的面积的取值范围为.…………………………………………………13分21.解(1),,所以当时,在上的最小值为 (3)分(2) (i),分离参数得,令通过求导分析容易证得,所以或.,,,.画的草图,实数的取值范围为.…………………7分\注意到,若,则,矛盾. 所以时,三个不同的交点均使得成立.所以实数的取值范围为.…………………………………………………9分(ii)由(i)知,,令,则,即,,画图象.不妨设,则,,.………………………………………14分。

2014年成都某七中嘉祥外国语学校招生入学数学真卷(内部直升)及答案解析

2014年成都某七中嘉祥外国语学校招生入学数学真卷(内部直升)及答案解析

○342014年成都某七中嘉祥外国语学校招生入学数学真卷(内部直升) (满分:100分 时间:100分钟)一、选择。

(每题1分,共7分) 1.某项工程,原计划50天完成,实际提前10天完成,工作效率比原来提高( )。

A.10% B.20% C.25% D.80%2.把一个正方形,按1:200的比例尺画在图上,已知量得图上边长为5厘米,那么这个正方形的实际面积是( )平方米。

A.10B.100C.4000D.1000000 3.一件大衣,如果卖150元,可赚20%;如果要赚40%,那么这件大衣应该卖( )元。

A.170B.175C.180D.210 4.把一个圆柱体展开,它的侧面是一个面积为4平方分米的正方形,这个圆柱体的表面积是( )平方分米。

A.π4 B.441+π C.44+π D.42+π5.在比例尺为1:5000000的地图上量得甲乙两地的距离是8.4厘米,如果一辆汽车以每小时60千米的速度从甲地开出,16时到达乙地,这辆汽车是上午( )出发的。

A.8时B.9时C.10时D.11时6.(导学号 90672138)5个同样大小的正方体堆成一个多面体,从上面看如右图,则从左面看,图形的形状可能情况一共有( )种。

A.2B.3C.4D.5 7.下列判断中正确的有( )个。

①因为周长相等的两个圆,面积一定相等,所以周长相等的两个长方形,面积也一定相等;②圆锥的体积是等底等高的圆柱体积的31;③xy=k+5.4(k+5.4≠0),当k 一定时x 和y 成反比例;④一个圆的半径增加10%,它的面积增加21%;⑤甲数比乙数多51,乙数比甲数少61。

A.4B.3C.2D.1 二、填空。

(1-7每空1分,其余每空2分,共34分)1.3.05立方米= 立方分米 1.3小时= 分2. 26比一个数的52多6,这个数是 。

3. 千克比20千克多30%, 米的40%是40米。

4.把3米长的绳子平均截成5段,每段占这根绳子的 ,每段长 米。

2014年成都七中自主招生考试数学试卷

2014年成都七中自主招生考试数学试卷

x y xy−=−2014年成都七中自主招生考试数学试题考试时间:120分钟 满分:150一、单项选择题(本大题共10小题,每题6分,共60分)1、如图,一个长为2、宽为1的矩形ABCD 内接于半圆O,矩形的长BC 在半圆半径上,则半圆O 的面积为( )A、2πB、23πC、πD、2π2=( ) A、7 B、8 C、9 D、103、从上午9点整到下午3点整,时针与分针位置重叠的次数为( )4、 A、4 B、5 C、6 D、75、令1512a ⎛⎞+=⎜⎟⎜⎟⎝⎠、6b n =、102c =,则a 、b 、c 的大小关系是( ) A、a b c >> B、a c b >> C、c a b >> D、b c a >> 5、如图所示,A、B、C 为长方体的三个顶点,则ABC ∆的形状是( ) A、锐角三角形 B、直角三角形 C、钝角三角形 D、无法确定 6、关于一次函数1y ax a =+的下列说法中,正确的个数是( )c 当0a <时,其图象不过第二象限;d 其图像与X 轴整半轴无交点e 其图像与线段OA 相交,O、A 坐标分别为(0,0)、(1,1)A、0B、1C、2D、3 7、方程的整数解的组数为( )A、1B、2C、3D、4k y x =k y x=A BCk >8、已知A 点位于平面直角坐标系第二象限内,过点A 作X 轴垂线,与X 轴交于点M,与反比例函数 ( )图像交于B 点,再过A 作y 轴垂线,与y轴交于N 点,与反比例函数 ( )图像交于C 点,关于直线MN 与BC的位置关系的下列说法中,正确的是( )A.直线MN 与BC 始终平行B.若直线MN 与BC 平行,则两平行线间的距离与A 点坐标无关B.C.直线MN 与BC 始终相交 D 直线MN 与BC 相交,则交点位置与A 点坐标无关 9、二次函数2y ax bx c =++的图像如右图,下列不等关系中分析错误的是( )A.3a+b>0B.a+b+2c< 0C.4a+b+c>0D.a-3b+c<010.如图,在边长为1的正方形ABCD 中,E、F 分别为线段AB、AD 上的动点,若以EF 为折线翻折,A 点落在正方形ABCD 所在平面的A 点的位置,那么A 所有可能位置形成的区域面积为( ) A.D. 二、填空题(本大题共4小题,每小题7分,共28分)11.若a 和b 是方程240x −+=的两根,则2233________ba ab a b −=−12.关于x 的方程2121(1)ax x x x −=−−−有增根,则a=___________.13.满足条件22231x x y x yx y ⎧+<<+⎪⎨⎪−=⎩的x 的取值范围是_________________0k >0k >A BCD E F124π1−12π−14.在RtABC 中,90B ∠=o,D 点在直角边BC 上,且满足BD=DC,若1sin 4BAD ∠=,则sin ________DAC ∠=三、填空题(本大题共4小题,每题8分,共32分)15.如图,矩形ABCD 的对角线BD 经过坐标原点O,矩形的边平行于坐标轴,点C 在反比例函数21k y x +=的图象上,若点A 的坐标为(3,3)−−,则k=__________.16.已知310071212310071352013x x x x x x x x ====++++L ,且21210071007x x x +++=L ,则1007_______x = 17.注意到218324=,224576=,他们分别由三个连续数码2、3、4以及5、6、7经适当排列而成,而2664356=,则是由四个连续号码3、4、5、6适当排列而成,下一个这种平方数是_____________.18.若非零整数a、b、c 使得方程20ax bx c ++=的两个相异实数根也是方程320x bx ax c +++=的根,则________a =四、解答题(本大题共2小题,19题12分,20题18分,共30分) 19.如图,已知正方形ABCD 的边长为2,在CD 的延长线上取一点E,以CE 为直径作圆交AD 的延长线于点F,连接FB 交圆于另一点G,且GB=DF. (1)证明:GF=GE (2)试求五边形ABCFE 的面积。

四川省成都七中2014届九年级(上)入学考试数学试题

四川省成都七中2014届九年级(上)入学考试数学试题

说明:请将试卷中所有题的答案或解答过程全部写在后面的答题卷上。

A 卷(100分)一、选择题(每小题3分,共30分) 1.下列运算正确的是( ).A .2222)2(4a a a =-B .632)(a a a =⋅-C .6328)2(x x -=-D . x x x -=÷-2)( 2.当x 为任意实数时,下列分式一定有意义的是( )A .112-x B .222+x C .22x D .31+x 3.已知3是关于x 的方程012342=+-a x 的一个解,则2a 的值是 ( )A.11B.12C.13D.14 4.函数11-+=x x y 中,自变量x 的取值范围是( ) A .1≠x B .x>1-且1≠x C . x ≥1- D . x ≥1-且1≠x 5.已知代数式3121y x a -与b a b y x +--23是同类项,则a 、b 的值分别是( ). A .⎩⎨⎧-==12b a B .⎩⎨⎧==12b a C .⎩⎨⎧-=-=12b a D . ⎩⎨⎧=-=12b a6.方程)2()2(+-=+x x x x 的根是( )A .2,021==x xB .2,021-==x xC .0=xD .2=x7.方程2650x x +-=的左边配成完全平方后所得方程为( )A.14)3(2=-x B. 2(3)4x += C.21)6(2=+x D.14)3(2=+x . 8.若分式3342-+-x x x 的值为0,则x 的值为( )A .3B .1C .3或1D .3-9.下列命题正确的个数是( )①等腰三角形腰长大于底边;②三条线段a 、b 、c ,如果b a +>c ,则这三条线段一定可以组成三角形;③等腰三角形是轴对称图形,它的对称轴是底边上的高;④面积相等的两三角形全等.A .0个B .1个C .2个D .3个 10.如图,三角形纸片ABC , 10cm 7cm 6cm AB BC AC ===,,, 沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED △的周长为( )A .9 cmB .1 3 cmC .16 cmD .10 cm 二、填空题(每小题4分,共20分)11.若3)3(+>+a x a 的解集是1<x ,那么a 取值范围是 .12.甲、乙两人各打靶5次,甲、乙所中的环数的平均数均为8,方差为6.02=甲S ,5.02=乙S ,那么成绩较为稳定的是 . 13. 若a b c a b c,247b++===则 . 14.分解因式:y x y x 62922-+-=_______________________. 15.如图,在□ABCD 中,E 在AD 上,45=ED AE ,CE 交BD 于F , 则BF :DF = . 三、计算题(每小题6分,共18分)16. (1)解不等式组:⎪⎪⎩⎪⎪⎨⎧-≥+-+<+-4321352)1(3x x x x xABCFE D(15题图)(2) 解方程:221242-=+-x x x x(3)先化简,再求值:2225241244a a a a a a ⎛⎫-+-+÷ ⎪+++⎝⎭,其中2a =ABCDEF17.在如图所示的平面直角坐标系中,△ABC 为“格点三角形”,点B 的坐标为(1-,1-). (1)把△ABC 向左平移4格后得到△A 1B 1C 1,画出△A 1B 1C 1的图形并写出点B 1的坐标; (2)把△ABC 绕点C 按顺时针方向旋转90°后得到△A 2B 2C 画出△A 2B 2C 并写出点B 2的坐标;(3)把△ABC 以点A 为位似中心放大,使放大前后对应边长的比为1:2,画出△AB 3C 3的图形.18.已知如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连结AE 、CF . (1) 求证:AF =CE ;(2) 若AC =EF ,试判断四边形AFCE 是什么样的四边形,并证明你的结论.19.已知关于x的方程x2-(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根.(2)若等腰△ABC的一边为a=1,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.20.如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,△DEF 的顶点E 与△ABC 的斜边BC 的中点重合.将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图①,当点Q 在线段AC 上,且AP =AQ 时,求证:△BPE ≌△CQE ;(2)如图②,当点Q 在线段CA 的延长线上时,求证:△BPE ∽△CEQ ;并求当a BP = ,a CQ 29=时,P 、Q 两点间的距离 (用含a 的代数式表示).B 卷(共50分)一、填空题:(每小题4分,共20分)21.如果b a +=8,ab =15,则a 2b +ab 2的值为 .22.若不等式组0,122x a x x -⎧⎨->-⎩≥恰有两个整数解,则a 的取值范是 .23.如图,正方形ABCD 中,AB =4,E 是BC 的中点,点P 是对角线AC 上一 动点,则PE +PB 的最小值为 _________ . 24.若关于x 的分式方程有正整数解,则整数a = _ .25.如图,R t △ABC 中,90C ∠=︒,3BC =cm ,5AB =cm .点P 从点A 出发沿AC 以1.5cm/s 的速度向点C 匀速运动,到达点C 后立刻以原来的速度沿CA 返回;点Q 从点B 出发沿BA 以1cm/s的速度向点A 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线PC CB BQ --于点E .点P 、Q 同时出发,当点Q 到达点A 时停止运动,点P也随之停止.设点P 、Q 运动的时间是t 秒(0t >),则当t = 秒时,四边形BQDE为直角梯形. 二、(本题共8分)26.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋 价格甲乙进价(元/双) m m ﹣20 售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. (1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?AD EBCPQ(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?三、(本题共10分)27.在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,DC=2.对角线AC和BD相交于点O,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转.(1)如图1,当三角板旋转到点E落在BC边上时,线段DE与BF的位置关系是,数量关系是;(2)继续旋转三角板,旋转角为α.请你在图2中画出图形,并判断(1)中结论还成立吗?如果成立请加以证明;如果不成立,请说明理由;(3)如图3,当三角板的一边CF与梯形对角线AC重合时,EF与CD相交于点P,若,求PE的长.四、综合题(本题共12分)28.如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC2C的坐标为(-18,0)。

成都七中数学考试题及答案

成都七中数学考试题及答案

成都七中数学考试题及答案成都七中作为中国四川省内知名的重点中学,其数学考试题目通常具有较高的难度和创新性。

以下是一套模拟的成都七中数学考试题及答案,仅供参考。

一、选择题(每题4分,共20分)1. 下列哪个选项不是实数集R的子集?A. 有理数集QB. 整数集ZC. 无理数集D. 复数集C答案:D2. 若函数\( f(x) = x^2 - 4x + 4 \),则\( f(2) \)的值为:A. 0B. 4C. 8D. -4答案:A3. 已知三角形ABC的三个内角分别为A、B、C,若\( \sin A + \sinB + \sinC = 2 \),则三角形ABC的类型是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形答案:B4. 一个圆的半径为1,圆心到直线的距离为0.5,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 直线经过圆心答案:B5. 已知等差数列的前n项和为S,若\( S_{10} = 100 \),且\( a_1 = 2 \),则第10项\( a_{10} \)的值为:A. 12B. 14C. 16D. 18答案:A二、填空题(每题5分,共15分)6. 若\( \cos \alpha = \frac{4}{5} \),且\( \alpha \)为锐角,则\( \sin \alpha = \frac{3}{5} \)。

7. 一个长方体的长、宽、高分别为a、b、c,若体积为120,且a=4b,则c的值为\( \frac{15}{b} \)。

8. 已知\( e^x = 3 \),则\( x = \ln 3 \)。

三、解答题(共65分)9.(15分)证明:若\( a, b, c \)为正数,且\( a + b + c = 1 \),则\( \sqrt{a} + \sqrt{b} + \sqrt{c} \leq \frac{3}{2} \)。

证明:略10.(20分)已知函数\( f(x) = \ln(x) + x^2 \),求\( f(x) \)在区间[1, e]上的最大值和最小值。

成都七中数学考试试卷真题

成都七中数学考试试卷真题

成都七中数学考试试卷真题一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. πB. -3C. √2D. i2. 如果函数f(x) = 2x^2 - 5x + 3,那么f(-1)的值是多少?A. 10B. 8C. 6D. 43. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 84. 以下哪个不等式是正确的?A. |-5| < 5B. |-5| > 5C. |-5| = 5D. |-5| ≠ 55. 如果一个圆的半径是5,那么它的面积是多少?B. 50πC. 100πD. 125π6. 以下哪个数列是等差数列?A. 1, 3, 5, 7, ...B. 2, 4, 6, 8, ...C. 1, 1, 1, 1, ...D. 3, 6, 9, 12, ...7. 以下哪个是二次方程的解?A. x^2 - 4x + 4 = 0B. x^2 + 4x + 4 = 0C. x^2 - 4x - 4 = 0D. x^2 + 4x - 4 = 08. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = sin(x)9. 以下哪个是线性方程组的解?A. x + y = 2B. x - y = 1C. x + 2y = 3D. x - 2y = 410. 如果一个数列的前n项和为S(n),且S(n) = n^2,那么这个数列的第5项是多少?B. 11C. 12D. 13二、填空题(每题4分,共20分)11. 一个长方体的长、宽、高分别为2、3、4,它的体积是________。

12. 如果一个函数f(x)在x=0处可导,且f'(0)=2,那么在x=0处的切线斜率是________。

13. 一个圆的周长为12π,那么它的半径是________。

14. 如果一个数列的通项公式为a_n = 2n - 1,那么它的第10项是________。

【134】2014年成都某七中嘉祥外国语学校招生入学数学真卷(内部直升)和名师详解

【134】2014年成都某七中嘉祥外国语学校招生入学数学真卷(内部直升)和名师详解

2014年成都某七中嘉祥外国语学校招生入学数学真卷(内部直升)(满分:100分 时间:100分钟)一、选择。

(每题1分,共7分) 1.某项工程,原计划50天完成,实际提前10天完成,工作效率比原来提高( )。

A.10% B.20% C.25% D.80%2.把一个正方形,按1:200的比例尺画在图上,已知量得图上边长为5厘米,那么这个正方形的实际面积是( )平方米。

A.10B.100C.4000D.1000000 3.一件大衣,如果卖150元,可赚20%;如果要赚40%,那么这件大衣应该卖( )元。

A.170B.175C.180D.210 4.把一个圆柱体展开,它的侧面是一个面积为4平方分米的正方形,这个圆柱体的表面积是( )平方分米。

A.π4 B.441+π C.44+π D.42+π5.在比例尺为1:5000000的地图上量得甲乙两地的距离是8.4厘米,如果一辆汽车以每小时60千米的速度从甲地开出,16时到达乙地,这辆汽车是上午( )出发的。

A.8时B.9时C.10时D.11时6.(导学号 90672138)5个同样大小的正方体堆成一个多面体,从上面看如右图,则从左面看,图形的形状可能情况一共有( )种。

A.2B.3C.4D.5 7.下列判断中正确的有( )个。

①因为周长相等的两个圆,面积一定相等,所以周长相等的两个长方形,面积也一定相等;②圆锥的体积是等底等高的圆柱体积的31;③xy=k+5.4(k+5.4≠0),当k 一定时x 和y 成反比例;④一个圆的半径增加10%,它的面积增加21%;⑤甲数比乙数多51,乙数比甲数少61。

A.4B.3C.2D.1 二、填空。

(1-7每空1分,其余每空2分,共34分)1.3.05立方米= 立方分米 1.3小时= 分2. 26比一个数的52多6,这个数是 。

3. 千克比20千克多30%, 米的40%是40米。

4.把3米长的绳子平均截成5段,每段占这根绳子的 ,每段长 米。

四川省成都七中2013-2014学年高二上学期入学考试数学试题 Word版含答案[ 高考]

四川省成都七中2013-2014学年高二上学期入学考试数学试题 Word版含答案[ 高考]

成都七中2013-2014学年高二上学期入学考试数学试题一、 选择题:(每小题5分,共50分) 1. 在∆ABC 中,下列名式一定成立的是( )A.a=bsinAcosBB.b=asinAsinBC.c=acosB+bcosAD.b=csinCsinB2. 在等比数列{a n }中,a n >0,若a 1,a 99是方程x 2-10x+16=0的两个实数根,则a 40a 50a 60=( )A.32B.64C.256D.±64 3. 不等式(1+x)(1-|x|)>0的解集是( )A.{x|0≤x<1}B.{x|x<0且x ≠-1}C.{x|-1<x<1}D.{x|x<1且x ≠-1} 4. 若数列{a n }满足a n+1=1- 1a n,且a 1=2,则a 2013=( )A.-1B.- 12C. 32D. 125. 若一个等差数列{a n }的前3项和为34,最后三项和为146,其所有项的和为390,则这个数列有( )A. 10项B.12项C.13项D.14项6. 若S n =1-2+3-4+⋯+(-1)n-1n(n ∈N *),则S 17+S 33+S 50等于( )A.1B.-1C.2D.-27. 若过点M(-1,0),且斜率为k 的直线与圆x 2+4x+y 2-5=0在第四象限内的圆弧有交点,则k的取值范围是( ) A.0<k<5 B. 0<k<13 C. 0<k< 5 D.-5<k<0 8. 在数列{a n }中,a n =43-3n,则当S n 取最大值时,n=( )A.13B.14C.15D.14或15 9. 把直线3x-y+1=0绕点(0,1)旋转30︒,得到的直线方程为( )A.x-3y+1=0B.x-3y+3=0C. x-3y+1=0或x=0D. x-3y+3=0或x=010. 若点P(a,b)在直线x+y-4=0上运动,则a 2+b 2的最小值为( )A.4B.4 2C.8D.8 2 二、填空题:(每小题5分,25分)11. 已知圆x 2+y 2=4,直线L:y=x+b,若圆上恰有三个点到直线的距离都等于1,则b=___; 12. 若集合A={(x,y)|⎩⎨⎧x-y+1≥0x+y-4≤0x ≥0y ≥0},B={(x,y)|(y-x)(y+x)≤0},M=A ∩B,则M 的面积为=_____;13. 已知x>0,x,a,b,y 成等差数列,x,c,d,y 成等比数列,则(a+b)2cd 的最小值等于=______;14. 设点P 为直线x-2y-1=0上的动点,过点P 作圆(x+6)2+(y-4)2=5的切线,则切线长的最小值是____;15. 下列结论中正确的有____________.在∆ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,(a 2-b 2)sin(A+B)=(a 2+b 2)sin(A-B),则∆ABC的形状是等腰直角三角形;●在∆ABC中,a=33,b=3, ∠B=30︒,则∠C=30︒ ;●已知直线L1:2x-y+1=0,L2:3x-y=0,则直线L2关于L1对称的直线的方程为13x-9y+14=0;●圆x2+y2+2x+2y-2=0与圆x2+y2-4x-6y+4=0有3条公切线;●已知函数y=log a(x+3)-1(a>0,a≠1)的图象恒过定点A,直线mx+ny+1=0经过点A,mn>0,则1m +2n的最小值等于8.三、解答题:(共75分)16.(12分)要将两种大小不同的钢板截成A、B、C三种规格,第一种钢板可截得A规格2块,B规格1块,C规格1块,第二种钢板可截得A规格1块,B规格2块,C规格3块,今需要A、B、C三种规格的成品分别15,18,27块,应各截这两种钢板多少张可得所需A、B、C三种规格成品,且使用钢板张数最少?17.(12分)已知点P(x0,y0),直线L:Ax+By+C=0,请写出并证明点P到直线L的距离公式.18.(12分)已知三角形的三边为a、b、c,设p=12(a+b+c),S为三角形的面积,r为三角形的内切圆半径,证明:(1)秦九韶—海伦公式:S=p(p-a)(p-b)(p-c);(2)三角形内切圆半径公式:r=p(p-a)(p-b)(p-c)p.19.(12分)选菜问题:学校餐厅每天供应500名学生用餐,每星期一有A、B两种菜可供选择.调查资料表明,凡是在星期一选A种菜的,下星期一有20%改选B种菜;而选B种菜的,下星期一会有30%改选A种菜.用a n,b n分别表示在第n个星期选A的人数和选B的人数,如果a1=300,求a n.20.(13分)已知数列{a n}满足:a1=3,a n=2a n-1+2n-1(n≥2).(1)求{a n}的通项公式;(2)求{a n}的前n项和S n.21.(14分)已知圆C的方程是x2+y2-2ax+2(a-2)y+2=0.(1)求实数a组成的集合A.(2)圆C是否恒过定点?若恒过定点,求出定点坐标;若不恒过定点,请说明理由.(3)求证:当a1,a2∈A,且a1≠a2时,对应的圆C1与圆C2相切.(4)求证:存在直线L,使与圆C中的所有圆都相切.高二上期入学考试题(答案)一、 选择题:(每小题5分,共50分)二、填空题:(每小题5分,25分)11. 已知圆x 2+y 2=4,直线L:y=x+b,若圆上恰有三个点到直线的距离都等于1,则b=___; 12. 若集合A={(x,y)|³£³³y0x0},B={(x,y)|(y-x)(y+x)0},M=A ∩B,则M 的面积为=_____;213. 已知x>0,x,a,b,y 成等差数列,x,c,d,y 成等比数列,则cd a+b2的最小值等于=______;4 14. 设点P 为直线x-2y-1=0上的动点,过点P 作圆(x+6)2+(y-4)2=5的切线,则切线长的最小值是____;15. 下列结论中正确的有____________.③④⑤二、 在ABC 中,a,b,c 分别是A,B,C 的对边,(a 2-b 2)sin(A+B)=(a 2+b 2)sin(A-B),则ABC 的形状是等腰直角三角形;三、 在ABC 中,a=3,b=3, B=30,则C=30 ; 四、 已知直线L 1:2x-y+1=0,L 2:3x-y=0,则直线L 2关于L 1对称的直线的方程为13x-9y+14=0;五、 圆x 2+y 2+2x+2y-2=0与圆x 2+y 2-4x-6y+4=0有3条公切线; 六、 已知函数y=log a (x+3)-1(a>0,a 1)的图象恒过定点A,直线mx+ny+1=0经过点A,mn>0,则m 1+n 2的最小值等于8. 三、解答题:(共75分)16. (12分)要将两种大小不同的钢板截成A、B、C三种规格,第一种钢板可截得A规格2块,B规格1块,C规格1块,第二种钢板可截得A规格1块,B规格2块,C规格3块,今需要A、B、C三种规格的成品分别15,18,27块,应各截这两种钢板多少张可得所需A、B、C三种规格成品,且使用钢板张数最少?17. (12分)已知点P(x0,y0),直线L:Ax+By+C=0,请写出并证明点P到直线L的距离公式.18. (理)(12分)已知三角形的三边为a 、b 、c,设p=21(a+b+c),S 为三角形的面积,r 为三角形的内切圆半径,证明:(1) 秦九韶—海伦公式:S=; (2) 三角形内切圆半径公式:r=p p-c.(文)(12分)在ABC 中, A 、B 、C 对边分别是 a 、b 、c,c=27,C=60,SABC=23,求a+b 的值. 21119. (12分)选菜问题:学校餐厅每天供应500名学生用餐,每星期一有A 、B 两种菜可供选择.调查资料表明,凡是在星期一选A 种菜的,下星期一有20%改选B 种菜;而选B 种菜的,下星期一会有30%改选A 种菜.用a n ,b n 分别表示在第n 个星期选A 的人数和选B 的人数,如果a 1=300,求a n .20. (13分)已知数列{a n }满足:a 1=3,a n =2a n-1+2n-1(n2).(1) 求证:{2n an-1}是等差数列,并求{a n }的通项公式;(2) 求{a n }的前n 项和S n .(1)a n =n 2n+1;(2)S n =(n-1)2n+1+n+2.21. (14分)已知圆C 的方程是x 2+y 2-2ax+2(a-2)y+2=0.(1) 求实数a 组成的集合A.(2) 圆C 是否恒过定点?若恒过定点,求出定点坐标;若不恒过定点,请说明理由. (3) 求证:当a 1,a 2A,且a 1a 2时,对应的圆C 1与圆C 2相切. (4) 求证:存在直线L,使与圆C 中的所有圆都相切.。

四川省成都七中2014-2021学年高一下学期期初考试数学试卷 Word版含解析

四川省成都七中2014-2021学年高一下学期期初考试数学试卷 Word版含解析

2022-2021学年四川省成都七中高一(下)期初数学试卷一、选择题(每小题5分,共50分)1.设全集U=R,A={x|x<1},B={x|log2x<1},则A∩B=()A.{x|0<x<1} B.{x|0<x<2} C.{x|﹣1<x<1} D.{x|﹣1<x<2}2.在平行四边形ABCD 中,++=()A.B.C.D.3.已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则sinθ=()A.B.C.或﹣D.或﹣4.函数f(x)=3x2﹣e x的零点有()A.有一个B.有两个C.有三个D.不存在5.sin80°cos20°﹣cos80°sin20°的值为()A.B.C.﹣D.﹣6.已知函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2] B.[0,2] C.[1,+∞)D.[﹣1,+∞)7.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式为()A.B.C.D.8.定义在R上的格外值函数f(x)满足y=f(x+1)和y=f(x﹣1)都是奇函数,则函数y=f(x)肯定是()A.偶函数B.奇函数C.周期函数D.以上结论都不正确9.非零实数a、b满足4a2﹣2ab+4b2﹣c=0(c>0),当|2a+b|取到最大值时,则的值为()A.B.C.D.10.已知点A、B是函数f(x)=x2图象上位于对称轴两侧的两动点,定点F(0,),若向量,满足•=2(O为坐标原点).则三角形ABO与三角形AFO面积之和的取值范围是()A.(2,+∞)B.[3,+∞)C.[,+∞)D.[0,3]二、填空题(本大题有5小题,每空5分,共25分)11.若向量=(2,m ),=(1,﹣3)满足⊥,则实数m 的值为.12.若tanα>0,则sin2α的符号是.(填“正号”、“负号”或“符号不确定”)13.已知函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,则f(1)+f(2)+…+f (2022)=.14.将曲线C1:y=ln关于x轴对称得到的曲线C2,再将C2向右平移1个单位得到函数f(x)的图象,则f (+1)=.15.设函数y=f(x)的定义域为D,若存在实数x0,使f(x0)=x0成立.则称x0为f(x)的不动点或称(x0.f (x))为函数y=f(x)图象的不动点;有下列说法:①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2;②若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则实数a的取值范围是0<a≤2;③函数f(x)=ax2+bx+c(a≠0),若y=f(x)没有不动点,则函数y=f(f(x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))为正整数,则x的最小值是121;以上说法正确的是.三、解答题(本题6小题,16~19题各12分,20题13分,21题14分,共75分)16.(12分)(2021春•成都校级月考)(1)化简;(2)计算:4+2log23﹣log 2.17.(12分)(2021春•成都校级月考)设=(﹣1,1),=(4,3),=(5,﹣2),(1)求证与不共线,并求与的夹角的余弦值.(2)求在方向上的投影.18.(12分)(2021春•成都校级月考)已知函数f(x)=8x2﹣6kx+2k﹣1.(1)若函数f(x)的零点在(0,1]内,求实数k的范围;(2)是否存在实数k,使得函数f(x)的两个零点x1,x2满足x12+x22=1,x1x2>0.19.(12分)(2021春•成都校级月考)已知函数f(x)=alog2x,g(x)=blog3x(x>1),其中常数a.b≠0.(1)证明:用定义证明函数k(x)=f(x)•g(x)的单调性;(2)设函数φ(x)=m•2x+n•3x,其中常数m,n满足m.n<0,求φ(x+1)>φ(x)时的x的取值范围.20.(13分)(2021春•雅安校级期中)半径长为2的扇形AOB 中,圆心角为,依据下面两个图形从扇形中切割一个矩形PQRS,设∠POA=θ.(1)请用角θ分别表示矩形PQRS的面积;(2)按图形所示的两种方式切割矩形PQRS,问何时矩形面积最大.21.(14分)(2021春•成都校级月考)已知函数f(x)=的图象在R上不间断.(1)求正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.求实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,求实数m的取值范围.2022-2021学年四川省成都七中高一(下)期初数学试卷参考答案与试题解析一、选择题(每小题5分,共50分)1.设全集U=R,A={x|x<1},B={x|log2x<1},则A∩B=()A.{x|0<x<1} B.{x|0<x<2} C.{x|﹣1<x<1} D.{x|﹣1<x<2}考点:交集及其运算.专题:集合.分析:求出集合的等价条件,依据集合的基本运算进行求解即可.解答:解:A={x|x<1},B={x|log2x<1}={x|0<x<2},则A∩B={x|0<x<1},故选:A点评:本题主要考查集合的基本运算.比较基础.2.在平行四边形ABCD 中,++=()A.B.C.D.考点:向量的加法及其几何意义.专题:平面对量及应用.分析:依据题意,画出图形,结合图形,利用平面对量的加法运算法则进行运算即可.解答:解:画出图形,如图所示;++=(+)+=+=+=.故选:D.点评:本题考查了平面对量的加减运算问题,解题时应画出图形,结合图形进行解答问题,是简洁题.3.已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则sinθ=()A.B.C.或﹣D.或﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件利用任意角的三角函数的定义,分类争辩求得sinθ的值.解答:解:由于角θ的终边在直线y=2x上,若角θ的终边在第一象限,则在它的终边上任意取一点P(1,2),则由任意角的三角函数的定义可得sinθ===.若角θ的终边在第三象限,则在它的终边上任意取一点P(﹣1,﹣2),则由任意角的三角函数的定义可得sinθ===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,体现了分类争辩的数学思想,属于基础题.4.函数f(x)=3x2﹣e x的零点有()A.有一个B.有两个C.有三个D.不存在考点:函数零点的判定定理.专题:函数的性质及应用.分析:令f(x)=0,得到e x=3x2,作出函数y=e x,和y=3x2的图象,利用数形结合即可得到结论解答:解:令f(x)=0,得到e x=3x2,作出函数y=e x,和y=3x2的图象如图:由图象可知两个图象的交点为3个,即函数f(x)=3x2﹣e x的零点的个数为3个,故选:C点评:本题主要考查函数零点公式的判定,利用函数和方程之间的关系转化为两个图象的交点问题是解决本题的关键.5.sin80°cos20°﹣cos80°sin20°的值为()A.B.C.﹣D.﹣考点:两角和与差的正弦函数.专题:三角函数的求值.分析:由条件利用两角和的正弦公式,求得所给式子的值.解答:解:sin80°cos20°﹣cos80°sin20°=sin(80°﹣20°)=sin60°=,故选:B.点评:主要考查两角和的正弦公式的应用,属于基础题.6.已知函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2] B.[0,2] C.[1,+∞)D.[﹣1,+∞)考点:分段函数的应用.专题:函数的性质及应用.分析:依据分段函数的表达式,分别进行求解即可得到结论.解答:解:当x≤1时,x2+1≤2,得﹣1≤x≤1,当x>1时,由1﹣log2x≤2,得log2x≥﹣1.∴x ≥,∴x>1综上可知,实数x的取值范围是x≥﹣1.故选:D点评:本题主要考查不等式的求解,利用分段函数的表达式分别进行求解是解决本题的关键.7.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式为()A.B.C.D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:通过函数的图象求出A,周期T,利用周期公式求出ω,图象经过(3,0)以及φ的范围,求出φ的值,得到函数的解析式.解答:解:由函数的图象可知A=2,T=2×(5﹣1)=8,所以,ω=,由于函数的图象经过(3,0),所以0=2sin (),又,所以φ=;所以函数的解析式为:;故选C.点评:本题是基础题,考查三角函数的图象求函数的解析式的方法,考查同学的视图力量,计算力量,常考题型.8.定义在R上的格外值函数f(x)满足y=f(x+1)和y=f(x﹣1)都是奇函数,则函数y=f(x)肯定是()A.偶函数B.奇函数C.周期函数D.以上结论都不正确考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由y=f(x+1)奇函数,即有f(1﹣x)=﹣f(1+x),由y=f(x﹣1)是奇函数,即为f(﹣x﹣1)=﹣f(x﹣1),将x换成x﹣1,x+1,再将﹣x换成x,x换成x+2,结合周期函数的定义,即可得到结论.解答:解:y=f(x+1)奇函数,即有f(1﹣x)=﹣f(1+x),将x换成x﹣1,即有f(2﹣x)=﹣f(x),①y=f(x﹣1)是奇函数,即为f(﹣x﹣1)=﹣f(x﹣1),将x换成x+1,即有f(﹣x﹣2)=﹣f(x),②则由①②可得,f(﹣x﹣2)=f(2﹣x),即有f(x﹣2)=f(x+2),将x换成x+2,可得f(x+4)=f(x),即有函数f(x)是最小正周期为4的函数.故选:C.点评:本题考查函数的奇偶性和周期性的定义,考查赋值法的运用,考查肯定的推理和分析力量,属于中档题.9.非零实数a、b满足4a2﹣2ab+4b2﹣c=0(c>0),当|2a+b|取到最大值时,则的值为()A.B.C.D.考点:不等式的基本性质.专题:不等式的解法及应用.分析:4a2﹣2ab+4b2﹣c=0(c>0),化为==,利用柯西不等式即可得出.解答:解:4a2﹣2ab+4b2﹣c=0(c>0),化为==,由柯西不等式可得:≥=(2a+b)2,当|2a+b|取到最大值时,=,化为.故选:D.点评:本题考查了柯西不等式的应用,考查了推理力量与计算力量,属于中档题.10.已知点A、B是函数f(x)=x2图象上位于对称轴两侧的两动点,定点F(0,),若向量,满足•=2(O为坐标原点).则三角形ABO与三角形AFO面积之和的取值范围是()A.(2,+∞)B.[3,+∞)C.[,+∞)D.[0,3]考点:平面对量数量积的运算.专题:平面对量及应用.分析:通过设点A(﹣x,x2)(x>0)、利用•=2、计算可知B (,),过点A、B分别作x轴垂线且垂足分别为C、D,通过S△ABO+S△AFO=S梯形ACDB﹣S△ACO﹣S△BDO+S△AFO、利用面积计算公式及基本不等式计算即得结论.解答:解:依题意,不妨设点A(﹣x,x2)(x>0)、B(p,p2)(p>0),∵•=2,即﹣xp+(xp)2=2,∴(xp)2﹣xp﹣2=0,解得:xp=2或xp=﹣1(舍),∴p=,即B (,),过点A、B分别作x轴垂线,垂足分别为C、D,则S△ABO+S△AFO=S梯形ACDB﹣S△ACO﹣S△BDO+S△AFO=(AC+BD)•CD ﹣AC•CO ﹣BD•OD+OF•CO=(x2+)•(x+)﹣x2•x ﹣••+••x=(x3++2x+﹣x3﹣+)=(+2x+)=(+)≥•2(当且仅当=即x=时等号成立)=3,故选:B.点评:本题考查平面对量数量积运算,涉及面积的计算方法、基本不等式等基础学问,留意解题方法的积累,属于中档题.二、填空题(本大题有5小题,每空5分,共25分)11.若向量=(2,m ),=(1,﹣3)满足⊥,则实数m 的值为.考点:数量积的坐标表达式.专题:平面对量及应用.分析:依据向量垂直的等价条件进行求解即可.解答:解:∵向量=(2,m),=(1,﹣3)满足⊥,∴•=2﹣3m=0,解得m=,故答案为:点评:本题主要考查向量数量积的应用,依据向量垂直的坐标公式进行求解是解决本题的关键.12.若tanα>0,则sin2α的符号是正号.(填“正号”、“负号”或“符号不确定”)考点:二倍角的正弦;三角函数值的符号.专题:三角函数的求值.分析:由已知,利用三角函数的基本关系式可得sin2α==>0,即可得解.解答:解:∵tanα>0,∴sin2α==>0.故答案为:正号.点评:本题主要考查了二倍角的正弦函数公式,三角函数基本关系式的应用,属于基础题.13.已知函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,则f(1)+f(2)+…+f (2022)=0.考点:正弦函数的图象.专题:三角函数的求值.分析:直接利用图象对称轴的距离,求出函数的周期,继而求出f(x)=3sin(x+φ),分别求出f(1),f(2),f(3),f(4)的值,发觉其规律得到答案.解答:解:函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,∴周期为4,则ω==,∴f(x)=3sin(x+φ),∴f(1)=3sin(+φ)=3cosφ,f(2)=3sin(π+φ)=﹣3sinφ,f(3)=3sin(+φ)=﹣3cosφ,f(4)=3sin(2π+φ)=3sinφ,∴f(1)+f(2)+…+f(2022)=504[f(1)+f(2)+f(3)+f(4)]=0,故答案为:0.点评:本题考查函数周期的求法以及归纳推理好三角函数的诱导公式,涉及三角函数的图象的应用,考查计算力量.14.将曲线C1:y=ln关于x轴对称得到的曲线C2,再将C2向右平移1个单位得到函数f(x)的图象,则f(+1)=.考点:函数的图象与图象变化.专题:函数的性质及应用.分析:依据函数图象的对称变换和平移变换法则,求出函数f(x)的解析式,将x=+1代入可得答案.解答:解:将曲线C1:y=ln关于x轴对称得到的曲线C2,∴曲线C2的方程为:y=﹣ln,再将C2向右平移1个单位得到函数f(x)的图象,∴函数f(x)=﹣ln,∴f(+1)=﹣ln=﹣ln=﹣(﹣)=,故答案为:点评:本题考查的学问点是函数的图象与图象变化,函数求值,依据函数图象的对称变换和平移变换法则,求出函数f(x)的解析式,是解答的关键.15.设函数y=f(x)的定义域为D,若存在实数x0,使f(x0)=x0成立.则称x0为f(x)的不动点或称(x0.f (x))为函数y=f(x)图象的不动点;有下列说法:①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2;②若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则实数a的取值范围是0<a≤2;③函数f(x)=ax2+bx+c(a≠0),若y=f(x)没有不动点,则函数y=f(f(x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))为正整数,则x的最小值是121;以上说法正确的是①③④.考点:命题的真假推断与应用.专题:函数的性质及应用.分析:依据已知中函数不动点的定义,逐一分析四个结论的真假,最终综合争辩结果,可得答案.解答:解:令2x2﹣x ﹣4=x,解得x=﹣1,或x=2,故①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2,故①正确;若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则ax2+(b+1)x+b﹣2=x有两个不相等的实根,则△=b2﹣4a(b﹣2)=b 2﹣4ab+8a>0恒成立,则16a2﹣32a<0,解得0<a<2,即实数a的取值范围是0<a<2,故②错误;③函数f(x)=ax2+bx+c(a ≠0),若y=f(x)没有不动点,则ax2+(b﹣1)x+c=0无实根,则函数y=f(f (x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))={[(x﹣1)﹣1]﹣1}=为正整数,则x的最小值是121,故④正确;故正确的命题的序号为:①③④,故答案为:①③④点评:本题考查的学问点是命题的真假推断与应用,此类题型往往综合较多的其它学问点,综合性强,难度中档.三、解答题(本题6小题,16~19题各12分,20题13分,21题14分,共75分)16.(12分)(2021春•成都校级月考)(1)化简;(2)计算:4+2log23﹣log2.考点:对数的运算性质;运用诱导公式化简求值.专题:函数的性质及应用;三角函数的求值.分析:(1)依据诱导公式和二倍角公式化简即可;(2)依据对数的运算性质计算即可.解答:解:(1)==﹣;(2)4+2log 23﹣log 2=2+log 29﹣log2=2+log 28=5.点评:本题考查的学问点是对数的运算性质,和三角形函数的化简,属于基础题.17.(12分)(2021春•成都校级月考)设=(﹣1,1),=(4,3),=(5,﹣2),(1)求证与不共线,并求与的夹角的余弦值.(2)求在方向上的投影.考点:数量积表示两个向量的夹角;向量的投影.专题:综合题.分析:(1)依据共线向量的推断方法易得与不共线,再结合向量的数量积的运算,可得cos<a,b>的值,(2)依据数量积的运算与投影的概念,可得在方向上的投影为,代入向量的坐标,计算可得答案.解答:解:(1)∵=(﹣1,1),=(4,3),且﹣1×3≠1×4,∴与不共线,又•=﹣1×4+1×3=﹣1,||=,||=5,∴cos<,>===﹣.(2)∵•=﹣1×5+1×(﹣2)=﹣7,∴在方向上的投影为==﹣.点评:本题考查向量的数量积的运用,要求同学能娴熟计算数量积并通过数量积来求出向量的模和夹角或证明垂直.18.(12分)(2021春•成都校级月考)已知函数f(x)=8x2﹣6kx+2k﹣1.(1)若函数f(x)的零点在(0,1]内,求实数k的范围;(2)是否存在实数k,使得函数f(x)的两个零点x1,x2满足x12+x22=1,x1x2>0.考点:一元二次方程的根的分布与系数的关系;根的存在性及根的个数推断.专题:函数的性质及应用.分析:(1)由条件利用二次函数的性质求得实数k的范围.(2)由条件利用二次函数的性质求得实数k的值,再结合(1)中k的范围,得出结论.解答:解:(1)由函数f(x)=8x2﹣6kx+2k﹣1的零点在(0,1]内,可得,求得<k ≤.(2)由题意可得,求得k >.再依据x12+x22=1=﹣2x1x2=1,可得k2﹣=1,求得k=,或k=(舍去).结合(1)可得<k ≤.故不存在实数k满足题中条件.点评:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化、分类争辩的数学思想,属于基础题.19.(12分)(2021春•成都校级月考)已知函数f(x)=alog2x,g(x)=blog3x(x>1),其中常数a.b≠0.(1)证明:用定义证明函数k(x)=f(x)•g(x)的单调性;(2)设函数φ(x)=m•2x+n•3x,其中常数m,n满足m.n<0,求φ(x+1)>φ(x)时的x的取值范围.考点:对数函数的图像与性质.专题:函数的性质及应用.分析:(1)任取区间(1,+∞)上两个实数x1,x2,且x1<x2,则k(x1)÷k(x2)=()2∈(0,1),进而分当ab>0时和当ab<0时两种状况,可得函数k(x)=f(x)•g(x)的单调性;(2)由函数φ(x)=m•2x+n•3x,可将φ(x+1)>φ(x)化为m•2x+2n•3x>0,结合m•n<0,分当m>0,n<0时和当m<0,n>0时两种状况,可得满足条件的x的取值范围.解答:证明:(1)任取区间(1,+∞)上两个实数x1,x2,且x1<x2,则∈(0,1),∵函数f(x)=alog2x,g(x)=blog3x(x>1),∴k(x1)÷k(x2)=(ab•log2x1•log3x1)÷(ab•log2x2•log3x2)=()2∈(0,1),当ab>0时,k(x1)<k(x2),函数k(x)=f(x)•g(x)在区间(1,+∞)上单调递增;当ab<0时,k(x1)>k(x2),函数k(x)=f(x)•g(x)在区间(1,+∞)上单调递减;(2)∵函数φ(x)=m•2x+n•3x,φ(x+1)>φ(x),m•n<0,∴φ(x+1)﹣φ(x)=m•2x+2n•3x>0,当m>0,n<0时,>,则x >,当m<0,n>0时,<,则x <,点评:本题考查的学问点是对数函数的图象与性质,函数单调性的推断与证明,其中娴熟把握函数单调性的证明方法定义法(作商法)的方法和步骤是解答本题的关键.20.(13分)(2021春•雅安校级期中)半径长为2的扇形AOB 中,圆心角为,依据下面两个图形从扇形中切割一个矩形PQRS,设∠POA=θ.(1)请用角θ分别表示矩形PQRS的面积;(2)按图形所示的两种方式切割矩形PQRS,问何时矩形面积最大.考点:弧度制的应用.专题:三角函数的求值.分析:(1)依据矩形的面积公式,分别表示即可,(2)依据三角函数中θ的范围,分别计算求出各自的最大值,比较即可.解答:解:(1)对于图1,由题意知PS=OPsinθ=2sinθ,OS=OPcosθ=2cosθ,∴S PQRS=S1=OP•OS=4sinθcosθ=2sin2θ,(0<θ<),对于图2由题意知,设PQ的中点为N,PM=2sin (﹣θ),∴MN=0M﹣ON=2cos (﹣θ)﹣=sinθ,∴S PQRS=S2=2PM•MN=4sin (﹣θ)•sinθ=sin (﹣θ)sinθ,(0<θ<),(2)对于图1,当sin2θ=1时,即θ=时,S max=2,对于图2,S2=sin (﹣θ)sinθ=[sin(2θ+)﹣],∵0<θ<,∴<2θ+<,∴<sin(2θ+)≤1,当sin(2θ+)=1,即θ=时,S max =,综上所述,依据图2的方式,当θ=时,矩形面积最大.点评:本题考查了图形的面积最大问题,关键是三角形函数的化简和求值,属于中档题.21.(14分)(2021春•成都校级月考)已知函数f(x)=的图象在R上不间断.(1)求正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.求实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,求实数m的取值范围.考点:分段函数的应用.专题:函数的性质及应用.分析:(1)依据函数f(x)=的图象在R上不间断,可得x=0时,两段函数的函数值相等,即4=2×|﹣a|,解得正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.k ≥,分当x∈[1,2]时和当x∈(2,+∞)时,两种状况争辩,可得满足条件的实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,函数y=f(x)与y=m|x|的图象有四个交点,对m值进行分类争辩,数形结合可得实数m的取值范围.解答:解:(1)∵函数f(x)=的图象在R上不间断.∴4=2×|﹣a|,解得a=2,或a=﹣2(舍去),∴正实数a=2,(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0,即k ≥,当x∈[1,2]时,k ≥=﹣2为减函数,故k≥2,当x∈(2,+∞)时,k ≥=2﹣为增函数,故k≥0;综上所述:k≥2,即实数k的取值范围为[2,+∞),(3)若关于x的方程f(x)=m|x|=0恰好有4个解,即函数y=f(x)与y=m|x|的图象有四个交点,①当m<0时,函数y=f(x)与y=m|x|的图象无交点,不满足条件;②当m=0时,函数y=f(x)与y=m|x|的图象有三个交点,不满足条件;③当m>0时,若与y=mx与y=2x﹣4平行,即m=2,则函数y=f(x)与y=m|x|的图象有三个交点,则m≥2时,函数y=f(x)与y=m|x|的图象有三个交点,若y=﹣mx与y=﹣(x2+5x+4)相切,则函数y=f(x)与y=m|x|的图象有五个交点,即x2+(5﹣m)x﹣4=0的△=(5﹣m)2﹣16=0,解得:m=1,或m=9(舍去),即m=1时,函数y=f(x)与y=m|x|的图象有五个交点,0<m<1时,函数y=f(x)与y=m|x|的图象有六个交点,故当1<m<2时,函数y=f(x)与y=m|x|的图象有四个交点,故实数m的取值范围为(1,2)点评:本题考查的学问点是分段函数的应用,函数的零点与方程的根,恒成立问题,是函数图象和性质的综合应用,难度较大.。

成都七中高一2013-2014学年度下期数学半期考试带答案

成都七中高一2013-2014学年度下期数学半期考试带答案

成都七中高2013级2013-2014学年度下期数学半期考试命题人:祁祖海 审题人:黄太平 考试时长:120分钟 满分150分一、选择题(本大题共10题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. sin 75=( )A.B. 2. 数列, (815),274,93,32--的一个通项公式是( ) A. n n n 31)1(+- B. n n n 31)1(1+-+ C. 13)1(+-n n n D. 1(1)3n n n +-3. 已知(2,1),(,2),a b x ==-若a b ⊥,则x =( )A. 4-B. 1-C. 1D. 44. 已知1sin 3α=-,且3(,)2παπ∈,则sin 2α=( )A. B. C. D. 5. D 是ABC ∆的边AB 的中点,则向量CD =( )A. BA CB 21+B. BA CB 21-C. BA BC 21-D. BA BC 21+6. 在ABC ∆中,c b a ,,分别为角A,B,C 的对边, 若1a =,b =,60A =,则B =( )A. 135B. 45C. 45或135D. 无法确定7. tan20tan403tan20tan40++⋅=( )A.B. C. 1 D. 8. 若,54cos )cos(sin )sin(=---ββαββα且α为第二象限角,则tan(2)α=( )A. 247-B. 2425-C. 247D. 24259. 在ABC ∆中,c b a ,,分别为角A ,B ,C 的对边,若ac a B 22cos 2+=.则ABC ∆的形状为( ) A. 直角三角形 B. 正三角形 C. 等腰三角形 D. 等腰三角形或直角三角形10. βα,均为锐角,且,21cos cos ,21sin sin =--=-βαβα则)tan(βα-的值为( ) A . 37 B. 37- C. 37± D. 375-二、填空题(本大题共5题,每小题5分,共25分)11. 数列{}n a 满足132n n a a -=+,10a =,则3a = .12. ABC ∆的内角,,A B C 满足:B 是A 与C 的等差中项,则B = .13. 己知(1,3),(2,2),a b =-=-则()()a b a b ⋅+= . 14. 已知α为锐角,,53)6cos(=+πα则=+)122cos(πα . 15. 给出下列命题:①若0,a ≠则由=能推出⋅=⋅,由⋅=⋅也能推出=.② 在ABC ∆中,则由B A >能推出B A sin sin >,由B A sin sin >也能推出B A >. ③已知(3,4),(0,1),a b ==-则a 与b 的夹角的正弦值为53. ④函数x x x f 44cos sin )(+=的最小正周期为π.其中正确命题的序号是 (请将所有正确命题的序号都填上).三、解答题(本大题共6题,16~19题每题12分,20题13分,21题14分,共75分. 解答应写出文字说明,证明过程或演算步骤)16. 等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S ,且满足27323a a a =-=, (1)求1a 和d 的值;(2)若100n S =,求n 的值.17. 若sin()2βα-=cos()2αβ-=且2παπ<<,02πβ-<<,求co s ()2αβ+ 的值.18. 已知||2a =,||3b =,a 与b 的夹角为120, (1)求|2|a b +的值;(2)求2a b +在a 方向上的投影.19. 已知(2cos ,sin )a x x =,(cos ,sin )b x x x =,设函数()f x a b =⋅, (1)求()f x 图象的对称轴方程; (2)求()f x 在5[,]12ππ上的最大值和最小值.20. 在ABC ∆中,有2=32ABC S BA BC ∆-⋅= (1)求角B 的大小;(2)求2sin()sin()AC A B B C ++的值; (3)若2BD BC =,求2AD 的最小值.21. 在ABC ∆所在平面上,有cos sin n nn AP AB AC αα=+,其中n N +∈,(0,)2πα∈,且令cos sin n n n λαα=+, (1)若12//AP AP ,求α的值;(2)若n P 在ABC ∆内部,求n 的取值范围;(3)若321(1)m m λλλ=+-,求实数m 的取值范围.成都七中高2013级2013-2014学年度下期数学半期考试参考答案(注:每道题号前面的红色序号表示该题在得分明细表中填写的对应位置。

四川省成都七中自主招生数学试卷(含答案)

四川省成都七中自主招生数学试卷(含答案)

四川省成都七中自主招生数学试卷副标题一、选择题(本大题共12小题,共60.0分)1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个2.如图,O是线段BC的中点,A、D、C到O点的距离相等.若∠ABC=30°,则∠ADC的度数是()A. 30°B. 60°C. 120°D. 150°3.如图,△ACB内接于⊙O,D为弧BC的中点,ED切⊙O于D,与AB的延长线相交于E,若AC=2,AB=6,ED+EB=6,那么AD=()A. 2B. 4C. 6D. 84.(课改)现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y 来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为()A. 118B. 112C. 19D. 165.不等式组{48x−3≥−15x−3<−1的所有整数解的和是()A. -1B. 0C. 1D. 26.如果自然数a是一个完全平方数,那么与a之差最小且比a大的一个完全平方数是()A. a+1B. a2+1C. a2+2a+1D. a+2√a+17.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则这个正方形的面积为()A. 7+3√52B. 3+√52C. √5+12D. (1+√2)28.对于两个数,M=2008×20 092 009,N=2009×20 082 008.则()A. M=NB. M>NC. M<ND. 无法确定9.如图,已知∠A=∠B,AA1,PP1,BB1均垂直于A1B1,AA1=17,PP1=16,BB1=20,A1B1=12,则AP+PB等于()A. 12B. 13C. 14D. 1510.若实数abc满足a2+b2+c2=9,代数式(a-b)2+(b-c)2+(c-a)2的最大值是()A. 27B. 18C. 15D. 1211.成都七中学生网站是由成都七中四大学生组织共同管理的网站,该网站是成都七中历史上首次由四大学生组织共同合作建成的一个学生网站,其内容囊括了成都七中学生学习及生活的各个方面.某学生在输入网址“http:∥www.cdqzstu.com”中的“cdqzstu.com”时,不小心调换了两个字母的位置,则可能出现的错误种数是()A. 90B. 45C. 88D. 4412.已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有()A. 4种B. 9种C. 13种D. 15种二、填空题(本大题共4小题,共16.0分)13.判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n= ______ (n是整数,且1≤n<7).14.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金______ 元.15.如果关于x的一元二次方程2x2-2x+3m-1=0有两个实数根x1,x2,且它们满足不等式x1x2x1+x2−3<1,则实数m的取值范围是______ .16. 黑、白两种颜色的正六边形地砖按如图所示的规律拼成若干个图案:则第n 个图案中有白色地砖______块.(用含n 的代数式表示)三、解答题(本大题共6小题,共24.0分)17. (1)先化简,再求值:5(x 2-2)-2(2x 2+4),其中x =-2;(2)求直线y =2x +1与抛物线y =3x 2+3x -1的交点坐标.18. 如图,⊙O 与直线PC 相切于点C ,直径AB ∥PC ,PA 交⊙O 于D ,BP 交⊙O 于E ,DE 交PC 于F .(1)求证:PF 2=EF •FD ;(2)当tan ∠APB =12,tan ∠ABE =13,AP =√2时,求PF 的长;(3)在(2)条件下,连接BD ,判断△ADB 是什么三角形?并证明你的结论.19. 已知:如图,直线y =−34x +3交x 轴于O 1,交y 轴于O 2,⊙O 2与x 轴相切于O点,交直线O 1O 2于P 点,以O 1为圆心,O 1P 为半径的圆交x 轴于A 、B 两点,PB 交⊙O 2于点F ,⊙O 1的弦BE =BO ,EF 的延长线交AB 于D ,连接PA 、PO . (1)求证:∠APO =∠BPO ; (2)求证:EF 是⊙O 2的切线;(3)EO 1的延长线交⊙O 1于C 点,若G 为BC 上一动点,以O 1G 为直径作⊙O 3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.20.如图,五边形ABCDE为一块土地的示意图.四边形AFDE为矩形,AE=130米,ED=100米,BC截∠F交AF、FD分别于点B、C,且BF=FC=10米.(1)现要在此土地上划出一块矩形土地NPME作为安置区,且点P在线段BC上,若设PM的长为x米,矩形NPME的面积为y平方米,求y与x的函数关系式,并求当x为何值时,安置区的面积y最大,最大面积为多少?(2)因三峡库区移民的需要,现要在此最大面积的安置区内安置30户移民农户,每户建房占地100平方米,政府给予每户4万元补助,安置区内除建房外的其余部分每平方米政府投入100元作为基础建设费,在五边形ABCDE这块土地上,除安置区外的部分每平方米政府投入200元作为设施施工费.为减轻政府的财政压力,决定鼓励一批非安置户到此安置区内建房,每户建房占地120平方米,但每户非安置户应向政府交纳土地使用费3万元.为保护环境,建房总面积不得超过安置区面积的50%.若除非安置户交纳的土地使用费外,政府另外投入资金150万元,请问能否将这30户移民农户全部安置?并说明理由.21.如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).(1)求点B的坐标;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.22.数独(sūdoku)是一种源自18世纪末的瑞士,后在美国发展、并在日本发扬光大的数学智力拼图游戏.拼图是九宫格(即3格宽×3格高)的正方形状,每一格又细分为一个九宫格.在每一个小九宫格中,分别填上1至9的数字,让整个大九宫格每一列、每一行的数字都不重复.下面是一个数独游戏,请完成该游戏.(您只需要完整地填出其中的5个小九宫格即可)(评分标准:完整地填出其中的5个小九宫格且5个均正确即可给满分.未填出5个不给分.若填出超过5个且无错给满分,若填出超过5个且有任何一处错误不给分.)答案和解析1.【答案】B【解析】解:∵抛物线的开口方向向下,∴a<0,∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,∵抛物线对称轴在y轴右侧,∴对称轴为x=>0,又∵a<0,∴b>0,故abc<0;由图象可知:对称轴为x=<1,a<0,∴-b>2a,∴b+2a<0,由图象可知:当x=1时y>0,∴a+b+c>0;当x=-1时y<0,∴a-b+c<0.∴②、③正确.故选B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.考查二次函数y=ax2+bx+c系数符号的确定.2.【答案】D【解析】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADC=150°.故选D.根据圆内接四边形的性质即可求出∠ADC的度数.本题考查的是圆内接四边形的性质:圆内接四边形的对角互补.3.【答案】B【解析】解:设AD与BC交于点F∵ED+EB=6∴DE2=BE•AE=BE(BE+AB)=BE2+BE•AB∴(DE+BE)(DE-BE)=BE•AB即6×(DE-BE)=BE×6∴DE=2BE∵DE2=BE2+BE•AB∴BE=2,DE=4连接BD,则∠EDB=∠EAD∵D为弧BC的中点∴∠DAC=∠BAD∴∠CBD=∠BDE∴BC∥DE∴BF:DE=AB:AE∴BF=3∵AD是∠BAC的平分线∴AB:BF=AC:CF∴CF=1∴BC=BF+CF=4∴BF•CF=AF•DF=3∵BF:ED=AF:AD=AF:(AF+DF)∴DF=1,AF=3∴AD=AF+DF=4.设AD与BC交于点F,由切线长定理知DE2=BE•AE=BE(BE+AB)=BE2+BE•AB,可求得DE=2BE.利用DE2=BE2+BE•AB求得,BE=2,DE=4,连接BD,由弦切角的性质知,∠EDB=∠EAD,得到BF:DE=AB:AE作为相等关系可求出BF=3,根据AD是∠BAC的平分线,由角的平分线定理得,AB:BF=AC:CF,由相交弦定理得,BF•CF=AF•DF=3,所以可求出DF=1,AF=3,从而求得AD的值.本题利用了切割线定理,切线长定理,弦切角的性质,圆周角定理,角的平分线定理,相交弦定理,平行线的判定和性质求解,综合性比较强.4.【答案】B【解析】解:点P的坐标共有36种可能,其中能落在抛物线y=-x2+4x上的共有(1,3)、(2,4)、(3,3)3种可能,其概率为.故选:B.因为掷骰子的概率一样,每次都有六种可能性,因此小莉和小明掷骰子各六次,P的取值有36种.可将x、y值一一代入找出满足抛物线的x、y,用满足条件的个数除以总的个数即可得出概率.本题综合考查函数图象上点的坐标特征与概率的确定.5.【答案】C【解析】解:由不等式①得由不等式②得x<2所以不等组的解集为不等式的整数解0,1,则所有整数解的和是1.故选C.首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】D【解析】解:∵自然数a是一个完全平方数,∴a的算术平方根是,∴比a的算术平方根大1的数是+1,∴这个平方数为:(+1)2=a+2+1.故选:D.当两个完全平方数是自然数时,其算术平方根是连续的话,这两个完全平方数的差最小.解此题的关键是能找出与a之差最小且比a大的一个完全平方数是紧挨着自然数后面的自然数:+1的平方.7.【答案】A【解析】解:根据图形和题意可得:(a+b)2=b(a+2b),其中a=1,则方程是(1+b)2=b(1+2b)解得:b=,所以正方形的面积为(1+)2=.故选A.从图中可以看出,正方形的边长=a+b,所以面积=(a+b)2,矩形的长和宽分别是a+2b,b,面积=b(a+2b),两图形面积相等,列出方程得=(a+b)2=b(a+2b),其中a=1,求b的值,即可求得正方形的面积.本题的关键是从两图形中,找到两图形的边长的值,然后利用面积相等列出等式求方程,解得b的值,从而求出边长,求面积.8.【答案】A【解析】解:根据数的分成和乘法分配律,可得M=2008×(20 090 000+2009)=2008×20 090 000+2008×2009=2008×2009×10000+2008×2009=2009×20 080 000+2008×2009,N=2009×(20 080 000+2008)=2009×20 080 000+2009×2008,所以M=N.故选:A.根据有理数大小比较的方法,以及乘法分配律可解.熟练运用乘法分配律进行数的计算,然后比较各部分即可.9.【答案】B【解析】解:如图,AA1,PP1,BB1均垂直于A1B1,∴AA1∥PP1∥BB1,过点P作PF⊥AA1,交AA1于点D,交BB1于点F,延长BP交AA1于点C,作CG⊥BB1,交BB1于点G,∴四边形DFB1A1,DPP1A1,FPP1B1,FDGC,CGB1A1是矩形,∴DA1=PP1=FB1=16,CG=A1B1=12,∵AA1∥BB1,∴∠B=∠ACB,∵∠A=∠B∴∠A=∠BCA,∴AP=CP,∵PF⊥AA1,∴点D是AC的中点,∵AA1=17,∴AD=CD=17-16=1,BF=20-16=4,FG=CD=1,BG=4+1=5,∴BP+PA=BP+PC=BC===13.故选B.如图,AA1,PP1,BB1均垂直于A1B1,过点P作PF⊥AA1,交AA1于点D,交BB1于点F,延长BP交AA1于点C,作CG⊥BB1,交BB1于点G,然后根据矩形和直角三角形的性质求解.本题通过作辅助线,构造矩形和直角三角形,利用矩形和直角三角形的性质和勾股定理求解.10.【答案】A【解析】解:∵a2+b2+c2=(a+b+c)2-2ab-2ac-2bc,∴-2ab-2ac-2bc=a2+b2+c2-(a+b+c)2①∵(a-b)2+(b-c)2+(c-a)2=2a2+2b2+2c2-2ab-2ac-2bc;又(a-b)2+(b-c)2+(c-a)2=3a2+3b2+3c2-(a+b+c)2=3(a2+b2+c2)-(a+b+c)2②①代入②,得3(a2+b2+c2)-(a+b+c)2=3×9-(a+b+c)2=27-(a+b+c)2,∵(a+b+c)2≥0,∴其值最小为0,故原式最大值为27.故选A.根据不等式的基本性质判断.本题主要考查了不等式a2+b2≥2ab.11.【答案】D【解析】解:“cdqzstu.com”中共有10个字母;若c与后面的字母分别调换,则有:10-1=9种调换方法;依此类推,调换方法共有:9+8+7+…+1=45种;由于10个字母中,有两个字母相同,因此当相同字母调换时,不会出现错误.因此出现错误的种数应该是:45-1=44种.故选D.“cdqzstu.com”中字母有10个.相同字母有2个.若第一个错误的字母是第一个字母c,那么c和它后面除c外任何一个字母调换后都可能出现错误,则错误的种类可能有8种.若第1个错误的字母是第二个字母d,排除和第一个字母已经计算过的错误后,可能出现的错误应该有8种,按照此种方法,错误的种类依次为:7,6,5,4,3,2,1;共有:16+7+6+5+4+3+2+1=44种.解答本题时需注意:相同字母调换后结果不会出现错误.12.【答案】B【解析】解:根据平行四边形的判定,符合四边形ABCD是平行四边形条件的有九种:(1)(2);(3)(4);(5)(6);(1)(3);(2)(4);(1)(5);(1)(6);(2)(5);(2)(6)共九种.故选B.平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定,任取两个进行推理.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.13.【答案】2【解析】解:∵和的时候,是尾数的5倍,能被7整除,任意一个正整数写成P=10a+b,b是P的个位数.根据已知结论,P是7的倍数等价于a+5b是7的倍数,而a+5b=a-2b+7b,a+5b和a-2b相差7的倍数,所以它们两个同时是7的倍数或者同时不是7的倍数.因此n=2符合要求.∴差的时候,应是尾数的2倍,∴n=2.故填2.根据题意,知方法一是去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.所以若改为求差,则应是尾数的2倍.因为要能够被7整除,根据方法一,即可看出和的时候,是尾数的5倍,则差的时候,应是尾数的2倍.14.【答案】3520【解析】解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8-x辆,则40x+50(8-x)≥360,解得:x≤4,整数解为0、1、2、3、4.汽车的租金W=400x+480(8-x)即W=-80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.故答案为:3520.若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,但有一辆不能坐满.只租甲种客车正好坐满,这种方式一定最贵.因而两种客车用共租8辆.两种客车的载客量大于360,根据这个不等关系,就可以求出两种客车各自的数量,进而求出租金.本题是一次函数与不等式相结合的问题,能够通过条件得到两种客车共租8辆,是解决本题的关键.15.【答案】-1<m≤12【解析】解:根据一元二次方程根与系数的关系知,x1+x2=1,x1•x2=,代入不等式得<1,解得m>-1,又∵方程有两个实数根,∴△=b2-4ac≥0,即(-2)2-4×2×(3m-1)≥0,解得m≤,综合以上可知实数m的取值范围是-1<m≤.故本题答案为:-1<m≤.把两根之和与两根之积代入已知条件中,求得m的取值范围,再根据根的判别式求得m的取值范围.最后综合情况,求得m的取值范围.一元二次方程根与系数的关系为,x1+x2=-,x1•x2=,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.16.【答案】4n+2【解析】解:分析可得:第1个图案中有白色地砖4×1+2=6块.第2个图案中有白色地砖4×2+2=10块.…第n个图案中有白色地砖4n+2块.通过观察,前三个图案中白色地砖的块数分别为:6,10,14,所以会发现后面的图案比它前面的图案多4块白色地砖,可得第n个图案有4n+2块白色地砖.本题考查学生通过观察、归纳的能力.此题属于规律性题目.注意由特殊到一般的分析方法,此题的规律为:第n个图案有4n+2块白色地砖.17.【答案】解:(1)5(x2-2)-2(2x2+4)=5x2-10-4x2-8=x2-18=(-2)2-18=4-18=-14(2)把y=2x+1代入y=3x2+3x-1,可得3x2+x-2=0,解得x=23或x=-1,①当x=23时,y=2×23+1=43+1=213②当x=-1时,y=2×(-1)+1=-2+1=-1所以直线y=2x+1与抛物线y=3x2+3x-1的交点坐标是(23,213)、(-1,-1).【解析】(1)首先去掉括号,再合并同类项,然后把x=-2代入,求出算式5(x2-2)-2(2x2+4)的值是多少即可.(2)把y=2x+1代入y=3x 2+3x-1,求出x 的值是多少,进而求出y 的值,确定出直线y=2x+1与抛物线y=3x 2+3x-1的交点坐标即可.(1)此题主要考查了整式的化简求值问题,解答此题的关键是注意去括号时符号的变化.(2)此题还考查了直线与抛物线的交点坐标的求法,采用代入法即可.18.【答案】解:(1)∵AB ∥PC ,∴∠BPC =∠ABE =∠ADE .又∵∠PFE =∠DFP ,△PFE ∽△DFP ,∴PF :EF =DF :PF ,PF 2=EF •FD .(2)连接AE ,∵AB 为直径,∴AE ⊥BP .∵tan ∠APB =12=AE PE ,tan ∠ABE =13=AE BE ,令AE =a ,PE =2a ,BE =3a ,AP =√5a =√2,∴a =√105=AE ,PE =25√10,BE =3√105. ∵PC 为切线,∴PC 2=PE •PB =4.∴PC =2.∵FC 2=FE •FD =PF 2∴PF =FC =PC 2=1,∴PF =1.(3)△ADB 为等腰直角三角形.∵AB 为直径,∴∠ADB =90°.∵PE •PB =PA •PD ,∴PD =2√2BD =√BP 2−PD 2=√2=AD .∴△ADB 为等腰Rt △.【解析】(1)欲证PF 2=EF•FD ,可以证明△PFE ∽△DFP 得出;(2)求PF 的长,根据∠APB 的正切,需连接AE ,求出AE ,PE ,BE 的长,再根据PC 为切线,求出PC 的长,通过相似的性质,切线的性质得出PF=FC 即可; (3)判断△ADB 是什么三角形,根据圆周角定理得出∠ADB=90°,再求出AD ,DB ,AB 的长,可以得出△ADB 为等腰Rt △.乘积的形式通常可以转化为比例的形式,通过证明三角形相似得出,同时综合考查了三角函数,三角形的判断,切线的性质等.19.【答案】解:(1)连接O2F.∵O2P=O2F,O1P=O1B,∴∠O2PF=∠O2FP,∠O1PB=∠O1BP,∴∠O2FP=∠O1BP.∴O2F∥O1B,得∠OO2F=90°,∴∠OPB=1∠OO2F=45°.2又∵AB为直径,∴∠APB=90°,∴∠APO=∠BPO=45°.(2)延长ED交⊙O1于点H,连接PE.∵BO为切线,∴BO2=BF•BP.又∵BE=BO,∴BE2=BF•BP.而∠PBE=∠EBF,∴△PBE∽△EBF,∴∠BEF=∠BPE,∴BE=BH,有AB⊥ED.又由(1)知O2F∥O1B,∴O2F⊥DE,∴EF为⊙O2的切线.(3)MN的长度不变.过N作⊙O3的直径NK,连接MK.则∠K=∠MO1N=∠EO1D,且∠NMK=∠EDO1=90°,又∵NK=O1E,∴△NKM≌△EDO1,∴MN=ED.而OO1=4,OO2=3,∴O1O2=5,∴O1A=8.即AB=16,∵EF与圆O2相切,∴O2F⊥ED,则四边形OO2FD为矩形,∴O2F=OD,又圆O2的半径O2F=3,∴OD=3,∴AD=7,BD=9.ED2=AD•BD,∴ED=3√7.故MN的长度不会发生变化,其长度为3√7.【解析】(1)可通过度数来求两角相等.连接O2F,那么∠O2PF=∠O2FP=∠OBP,因此O2F∥AB,这样可得出圆O2的圆心角∠OO2F=90°.因此∠OPF=45°,那么∠APO=90°-45°=45°,因此两角相等.(2)由于(1)中得出了O2F∥AB,因此只要证得DE⊥AB,就能得出DE⊥O2F,也就得出了DE是圆O2的切线的结论,那么关键是证明DE⊥AB.可通过垂径定理来求.延长ED交⊙O1于点H,那么就要求出DE=DH或BE=BH,那么就要先求出∠BEH=∠BHE.连接PE,那么∠BHE=∠EPB,那么证∠EPB=∠DEB即可.可通过相似三角形BEF和BPE来求得,这两个三角形中,已知了一个公共角,我们再看夹这个角的两组对边是否成比例.由于BO2=BF•BP,而BO=BE,因此BE2=BF•BP,由此可得出两三角形相似,进而可根据前面分析的步骤得出本题的结论.(3)MN的长度不变.这是因为点G是BC上的一个动点,但的O1C长度是不变的,它等于⊙的半径8,另外∠BO1C的大小也是始终不变的,因为所有的⊙O3都是等圆,故弧MGN也都是相等的,故弦MN都是相等的,求MN的长,可通过构建全等三角形来求解,过N作⊙O3的直径NK,连接MK,那么三角形NKM和EDO1全等,那么只要求出DE的长即可,根据直线的解析式,可得出O1,O2的坐标,也就求出了OO1,OO2的值,也就能得出圆O1的半径的长,进而可求出AD,BD的长然后根据DE2=AD•DB即可得出MN的值.本题主要考查了圆与圆的位置关系,全等三角形,相似三角形的判定和性质以及一次函数等知识点的综合应用.图中边和角较多,因此搞清楚图中边和角的关系是解题的关键.20.【答案】解:(1)延长MP交AF于点H,则△BHP为等腰直角三角形.BH=PH=130-xDM=HF=10-BH=10-(130-x)=x-120则y=PM•EM=x•[100-(x-120)]=-x2+220x由0≤PH≤10得120≤x≤130因为抛物线y=-x2+220x的对称轴为直线x=110,开口向下.所以,在120≤x≤130内,当x=120时,y=-x2+220x取得最大值.其最大值为y=12000(㎡)(2)设有a户非安置户到安置区内建房,政府才能将30户移民农户全部安置.由题意,得30×100+120a≤12000×50%×10×0.02≤150+3a30×4+(12000-30×100-120a)×0.01+90+1002≤a≤25解得181721因为a为整数.所以,到安置区建房的非安置户至少有19户且最多有25户时,政府才能将30户移民农户全部安置;否则,政府就不能将30户移民农户全部安置.【解析】(1)要求矩形的面积就应该知道矩形的长和宽,可以延长MP交AF于点H,用PH表示出PM和PN,然后根据矩形的面积=长×宽,得出函数关系式,然后根据PH的取值范围和函数的性质,得出面积最大值.(2)本题的不等式关系为:非安置户的建房占地面积+安置户的建房占地面积≤安置区面积×50%;安置户的补助费+安置户的基础建设费+安置户的设施施工费≤150万元+非安置户缴纳的土地使用费.以此来列出不等式,求出自变量的取值范围.本题考查了二次函数和一元一次不等式的综合应用,读清题意,找准等量关系是解题的关键.21.【答案】解:(1)在Rt△OAB中,∵∠AOB=30°,∴OB =√3,过点B 作BD 垂直于x 轴,垂足为D ,则OD =32,BD =√32, ∴点B 的坐标为(32,√32).(1分)(2)将A (2,0)、B (32,√32)、O (0,0)三点的坐标代入y =ax 2+bx +c ,得{4a +2b +c =094a +32b +c =√32c =0(2分) 解方程组,有a =−2√33,b =4√33,c =0.(3分) ∴所求二次函数解析式是y =−2√33x 2+4√33x .(4分)(3)设存在点C (x ,−2√33x 2+4√33x )(其中0<x <32),使四边形ABCO 面积最大 ∵△OAB 面积为定值,∴只要△OBC 面积最大,四边形ABCO 面积就最大.(5分)过点C 作x 轴的垂线CE ,垂足为E ,交OB 于点F ,则S △OBC =S △OCF +S △BCF =12|CF |•|OE |+12|CF |•|ED |=12|CF |•|OD |=34|CF |,(6分)而|CF |=y C -y F =−2√33x 2+4√33x -√33x =-2√33x 2+√3x , ∴S △OBC =−√32x 2+3√34x .(7分) ∴当x =34时,△OBC 面积最大,最大面积为9√332.(8分) 此时,点C 坐标为(34,5√38),四边形ABCO 的面积为25√332.(9分) 【解析】(1)在Rt △OAB 中,由∠AOB=30°可以得到OB=,过点B 作BD 垂直于x 轴,垂足为D ,利用已知条件可以求出OD ,BD ,也就求出B 的坐标;(2)根据待定系数法把A ,B ,O 三点坐标代入函数解析式中就可以求出解析式;(3)设存在点C (x ,x 2+x ),使四边形ABCO 面积最大,而△OAB 面积为定值,只要△OBC 面积最大,四边形ABCO 面积就最大.过点C 作x 轴的垂线CE ,垂足为E ,交OB 于点F ,则S △OBC =S △OCF +S △BCF =|CF|•|OE|+|CF|•|ED|=|CF|•|OD|=|CF|,而|CF|=y C-y F=x2+x-x=-x2+x,这样可以得到S△OBC =x2+x,利用二次函数就可以求出△OBC面积最大值,也可以求出C的坐标.本题考查了待定系数法求二次函数解析式、图形变换、解直角三角形、利用二次函数探究不规则图形的面积最大值重要知识点,综合性强,能力要求极高.考查学生分类讨论,数形结合的数学思想方法.22.【答案】解:【解析】根据横列、竖列和方格的限制条件排除各个点不可能的数字,并从1-9将各个可能的数字用小字体逐个写进每个空白的格子.然后再进行审查即可.本题要根据已有横列和竖列的数字来划定要填的空的数的范围,然后再逐个进行试验,直到发现某一个数字在各个横列、竖列或方格中出现的次数仅一次时,这个数字就填写正确了.然后重复上面的步骤进行填写即可.第21页,共21页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中2014自主招生考试数学试题成都市第七中学(林荫校区)2014面向省内外招生考试
出卷人:成都七中时间:90分钟满分:100分
一、选择题(共12小题,每小题5分,满分60分)
21、已知二次函数y=ax+bx+c(a?0)的图象如图所示,则下列结
论?a+b+c,0;?a,b+c,0;?b+2a,0;?abc,0,其中正确的个数是( )
A、1个
B、2个
C、3个
D、4个
2、如图,O是线段BC的中点,A、D、C到O点的距离相等(若?ABC=30?,则?ADC的度数是( )
A、30?
B、60?
C、120?
D、150?
3、如图,?ACB内接于?O,D为弧BC的中点,ED切?O于D,与AB的延长线相交于E,若AC=2,AB=6,ED+EB=6,那么AD=( )
A、2
B、4
C、6
D、8
4、现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)(用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),
2那么它们各掷一次所确定的点P落在已知抛物线y=,x+4x上的概率为( )
A、 B、 C、 D、
5、不等式组的所有整数解的和是( )
A、,1
B、0
C、1
D、2
6、如果自然数a是一个完全平方数,那么与a之差最小且比a大的一个完全平方数是( )
22 A、a+1 B、a+1 C、a+2a+1 D、a+2+1
7、如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则这个正方形的面积
为( )
2 A、 B、 C、 D、(1+)
8、对于两个数,M=2008×20 092 009,N=2009×20 082 008(则( )
A、M=N
B、M,N
C、M,N
D、无法确定
9、如图,已知?A=?B,AA,PP,BB均垂直于AB,AA=17,PP=16,BB=20,
AB=12,1111111111则AP+PB等于( )
A、12
B、13
C、14
D、15
22222210、若正实数abc满足a+b+c=9,代数式(a,b)+(b,c)+(c,a)的最大值是( )
A、27
B、18
C、15
D、12
11、成都七中学生网站是由成都七中四大学生组织共同管理的网站,该网站是成都七中历史上首次由四大学生组织共同合作建成的一个学生网站,其内容囊括了成都七中学生学习及生活的各个方面(某学生在输入网址
“http:?www(cdqzstu(com”中的“cdqzstu(com”时,不小心调换了两个字母的位置,则可能出现的错误种数是( )
A、90
B、45
C、88
D、44
12、已知四边形ABCD,从下列条件
中:(1)AB?CD;(2)BC?AD;(3)AB=CD;(4)BC=AD;(5)?A=?C;(6)?B=?D(任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有( )
A、4种
B、9种
C、13种
D、15种
二、填空题(共4小题,每小题4分,满分16分)
13、(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除(如果这个和能被7整除,则原数就能被7整除(如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除(类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=
(n是整数,且1?n,7)(
14、假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元(则租用该公司客车最少需用租金元(
215、(2001•呼和浩特)如果关于x的一元二次方程2x,2x+3m,1=0有两个实数根x,x,12且它们满足不等式,则实数m的取值范围是 (
16、(2006•菏泽)黑、白两种颜色的正六边形地砖按如图所示的规律拼成若干个图案:则第n个图案中有白色地砖块((用含n的代数式表示)
17、(1)先化简,再求值:,其中x=,2,;
2(2)求直线y=2x+1与抛物线y=3x+3x,1的交点坐标(
18、如图,?O与直线PC相切于点C,直径AB?PC,PA交?O于D,BP交?O于E,DE交PC于F(
2(1)求证:PF=EF•FD;
(2)当tan?APB=,tan?ABE=,AP=时,求PF的长;
(3)在(2)条件下,连接BD,判断?ADB是什么三角形,并证明你的结论(
19、(2005•武汉)已知:如图,直线交x轴于O,交y轴于O,?O与x轴相切于O点,122
交直线OO于P点,以O为圆心OP为半径的圆交x轴于A、B两点,PB交?O于点F,12112?O的弦BE=BO,EF的延长线交AB于D,连接PA、PO( 1
(1)求证:?APO=?BPO;
(2)求证:EF是?O的切线; 2
(3)EO的延长线交?O于C点,若G为BC上一动点,以OG为直径作?O交OC于点11131M,交OB于N(下列结论:?OM•ON为定值;?线段MN的长度不变(只有一个是正111
确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值(
20、(2005•重庆)如图,五边形ABCDE为一块土地的示意图(四边形AFDE为矩形,AE=130米,ED=100米,BC截?F交AF、FD分别于点B、C,且BF=FC=10米( (1)现要在此土地上划出一块矩形土地NPME作为安置区,且点P在线段BC上,若设PM
的长为x米,矩形NPME的面积为y平方米,求y与x的函数关系式,并求当x 为何值时,安置区的面积y最大,最大面积为多少,
(2)因三峡库区移民的需要,现要在此最大面积的安置区内安置30户移民农户,每户建房占地100平方米,政府给予每户4万元补助,安置区内除建房外的其余部分每平方米政府投入100元作为基础建设费,在五边形ABCDE这块土地上,除安置区外的部分每平方米政府投入200元作为设施施工费(为减轻政府的财政压力,决定鼓励一批非安置户到此安置区内建房,每户建房占地120平方米,但每户
非安置户应向政府交纳土地使用费3万元(为保护环境,建房总面积不得超过安置
区面积的50%(若除非安置户交纳的土地使用费外,政府另外投入资金150万元,
请问能否将这30户移民农户全部安置,并说明理由(
21、(2005•资阳)如图,已知O为坐标原点,?AOB=30?,?ABO=90?,且点A的
坐标为(2,0)(
(1)求点B的坐标;
2(2)若二次函数y=ax+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四
边形ABCO的面积最大,若存在,求出这个最大值及此时点C的坐标;若不存在,请
说明理由(
22、数独(sūdoku)是一种源自18世纪末的瑞士,后在美国发展、并在日本发
扬光大的数学智力拼图游戏(拼图是九宫格(即3格宽×3格高)的正方形状,每一
格又细分为一个九宫格(在每一个小九宫格中,分别填上1至9的数字,让整个大
九宫格每一列、每一行的数字都不重复(下面是一个数独游戏,请完成该游戏((您
只需要完整地填出其中的5个小九宫格即可)
(评分标准:完整地填出其中的5个小九宫格且5个均正确即可给满分(未填出5
个不给分(若填出超过5个且无错给满分,若填出超过5个且有任何一处错误不给
分()。

相关文档
最新文档