臭氧氧化法处理印染废水

合集下载

臭氧氧化法的特征及在废水处理中的应用有哪些

臭氧氧化法的特征及在废水处理中的应用有哪些

臭氧氧化法的特征及在废水处理中的应用有哪些?
臭氧对有机物有一定的氧化能力,用臭氧处理二级处理水,在有机物去除方面有以下特征。

(1)能够被臭氧氧化的有机物有∶蛋白质、氨基酸、木质素、腐殖酸、链式不饱和化合物和氰化物等。

(2)臭氧对有机物的氧化只能进行部分氧化,形成中间产物,难以达到形成 CO2和H2O的完全无机化阶段。

(3)臭氧对有机物的氧化形成的中间产物主要有∶甲醛、丙酮酸、丙酮醛、乙酸。

但如果臭氧足够,还会继续发生氧化,除乙酸外其他物质都可能被臭氧分解。

(4)污水用臭氧进行处理,可提高污水的可生化性。

(5)用臭氧处理二级处理水时,COD去除率与 pH值有关。

pH值升高可以使COD去除率显著提高。

臭氧氧化法在废水处理中主要是污染物氧化分解,主要有以下应用;
(1)印染废水处理臭氧氧化法处理印染废水主要是用于脱色,染料颜色主要是染料中的不饱和基团引起,臭氧能将这些不饱和键打开,生成小分子物质,使其失去颜色,但臭氧对硫化、还原、涂料等不溶于水的分散染料的脱色效果较差。

(2)处理含氰废水利用臭氧的强氧化性将氰离子还原为毒性相对很小的离子,处理过程中不加入其他化学物质,处理后水质较好,
操作简单。

(3)处理含酚废水利用臭氧的强氧化性经过多步反应将酚还原为邻苯醌。

臭氧催化氧化工艺

臭氧催化氧化工艺

臭氧催化氧化工艺一、背景介绍臭氧催化氧化工艺是一种常用的废水处理技术,具有高效、环保等优点,被广泛应用于污水处理、印染废水处理等领域。

二、臭氧催化氧化原理臭氧催化氧化是利用臭氧分解产生的自由基对污染物进行氧化降解的过程。

在催化剂的作用下,臭氧分解生成的自由基能够与有机物发生反应,将其分解成无害物质。

三、工艺流程1. 前处理:将污水经过初步处理后送至臭氧反应器;2. 臭氧反应器:将臭氧与污水混合进入反应器中,在催化剂的作用下进行降解;3. 沉淀澄清:将经过降解后的污水进行沉淀澄清,去除其中细小颗粒和浊度;4. 消毒杀菌:使用消毒剂对污水进行消毒杀菌,确保出水符合排放标准;5. 出水:经过以上步骤处理后,出水可直接排放或进一步利用。

四、工艺参数控制1. 臭氧浓度:臭氧浓度是决定臭氧催化氧化效果的重要因素,一般控制在5-15mg/L;2. 水质pH值:水质pH值对臭氧分解产生的自由基量有影响,一般控制在6-9;3. 反应时间:反应时间是影响臭氧催化氧化效果的重要因素,一般控制在30-60min。

五、工艺优缺点1. 优点:(1)高效:臭氧催化氧化技术具有高效降解污染物的能力;(2)环保:该技术不会产生二次污染,出水符合排放标准;(3)适用范围广:可以处理多种类型的废水。

2. 缺点:(1)成本较高:该技术需要使用昂贵的臭氧发生器和催化剂等设备和药剂;(2)操作难度大:该技术需要专业人员进行操作和维护。

六、应用案例某印染厂废水处理工程采用臭氧催化氧化工艺进行处理。

经过处理后,出水COD浓度从200mg/L降至50mg/L,符合国家排放标准。

七、总结臭氧催化氧化工艺是一种高效、环保的废水处理技术,具有广泛的应用前景。

在实际应用中,需要根据不同的水质和污染物特点进行工艺参数控制,以达到最佳的处理效果。

臭氧氧化法处理印染废水

臭氧氧化法处理印染废水

臭氧氧化法处理印染废水在我国工业废水中,印染废水占的比例较高,因其有机物含量高、碱性大、水质变化大、废水量大,而成为极难处理的工业废水之因具有很强的氧化能力(酸性溶液中氧化还原电位高达2.07V),一。

O3成为诸多难降解工业废水处理工艺的首选氧化剂。

Khadhraoui等在利用臭氧处理刚果红的研究中发现,在氧化初期,臭氧本身可以将刚果红完全氧化脱色,且该实验结果符合假一级反应动力学模型。

臭氧对直接、酸性、碱性、活性等亲水性染料脱色速度快,效果好;对于还原、纳夫妥、氧化、硫化、分散性染料等疏水性染料脱色效果较差,臭氧用量大;对于含铬染料废水,反而会生成六价铬离子,毒性更强。

通过高级氧化和活性炭负载催化剂来提高臭氧催化氧化性能。

1.臭氧氧化机理臭氧氧化有机物的途径有两种:直接反应和间接反应。

直接反应是臭氧通过环加成、亲电或亲核作用直接与污染物反应;间接反应是臭氧在碱、光照或其它因素作用下,生成氧化性更强(氧化还原电位为2.8eV)的羟基自由基(·OH),·OH可以通过不同的反应使溶解态无机物和有机物氧化,主要包括:电子转移反应、抽氢反应和·OH 加成反应。

臭氧直接作用于有机物时反应具有选择性,速度慢。

而臭氧溶于水后形成的·OH,可以无选择性地将水中的有机物矿化,或使结构复杂、有毒的大分子有机物发生断链、开环等反应,生成结构简单、无毒或低毒的小分子化合物,且速度较快。

臭氧的强氧化性能破坏染料分子中的—N==N—、C==C、C==O、—N==O等发色基团,使印染废水脱色。

费庆志等采用臭氧氧化法降解酸性嫩黄染料,发现在酸性条件下(pH=4)臭氧对该染料的脱色效果较好。

Zhang Hui等采用臭氧氧化法降解酸性橙7模拟染料废水时,加入氯化物屏蔽·OH,并未对染料的脱色率造成影响,从而得出了臭氧对该染料的脱色以直接氧化为主的结论。

而章飞芳等用臭氧氧化活性艳红KE-3B模拟染料废水,发现在碱性条件下(pH=10)脱色效果好,且脱色速度较快。

臭氧氧化技术在废水处理中的研究与应用

臭氧氧化技术在废水处理中的研究与应用

臭氧氧化技术在废水处理中的研究与应用一、引言随着工业化的不断发展,环境污染问题日益严重,其中污水处理是非常重要的一环。

废水中含有各种有机物、无机物和重金属离子等物质,这些物质对环境和人类健康造成了严重威胁。

因此,研究和应用高效、低成本的污水处理技术是极为必要的。

臭氧氧化技术在废水处理领域中得到了广泛的研究和应用。

下面就着重介绍臭氧氧化技术的原理、优势和应用,以及将来的研究方向和发展趋势。

二、臭氧氧化技术的原理臭氧氧化技术是一种通过臭氧分解废水污染物的技术。

臭氧是一种强氧化剂,能高效地氧化废水中的有机物和无机物。

该技术的原理是将饱和水蒸气或氧气等气体通过臭氧发生器中的电晕放电区域,使气体中的氧分子部分分裂为激发态氧原子,进而与氧分子结合形成臭氧,臭氧通过氧化分解或者化学吸收的方式将废水中的有机物和无机物氧化分解。

三、臭氧氧化技术的优势1.高效性臭氧氧化技术对大多数有机物和无机物有非常高效的氧化分解作用,其短时间内可以将污染物的浓度降低到很低程度。

2.可控性臭氧氧化技术的处理效果可以根据实际需要进行调整。

通过控制臭氧的投加量和pH值,可以实现对不同污染物的有效处理。

3.环境友好臭氧氧化技术的产物只有水和二氧化碳,与其他污染物相比较于其他处理技术更加环保和卫生。

4.处理成本低臭氧氧化技术不需要添加任何化学试剂,只需要一定的能源投入即可实现有效处理,因此其处理成本相对较低。

四、臭氧氧化技术在废水处理中的应用1.印染废水的处理印染废水是一类难以降解的废水,含有大量的有机色素和浸染剂。

臭氧氧化技术可以将印染废水中的有机色素和浸染剂氧化降解,从而达到有效处理的目的。

2.化工废水的处理化工废水中含有大量的有机物和无机物,其中一些物质具有毒性,危害环境和人体健康。

臭氧氧化技术可以将这些物质氧化分解,从而达到先进的化工废水处理的效果。

3.生活污水的处理生活污水中含有大量的有机物和营养物质,臭氧氧化技术可以将这些物质高效地分解,达到对生活污水的高效处理。

臭氧-混凝沉淀工艺深度处理印染废水的中试实验

臭氧-混凝沉淀工艺深度处理印染废水的中试实验

广 东 化 工 2021年 第2期· 86 · 第48卷 总第436期臭氧-混凝沉淀工艺深度处理印染废水的中试实验李猛,伊学农,樊祖辉(上海理工大学 环境与建筑学院,上海 200093)[摘 要]以江苏某印染厂提标改造为基础,采用臭氧氧化-混凝沉淀耦合工艺对印染厂二沉池出水进行深度处理,通过优化系统运行参数。

考察了该组合工艺对印染废水的降解效果。

结果表明:在反应时间为30 min 、臭氧浓度为45 mg/L 的条件下,臭氧氧化效能达到最高,COD 去除率为24.5 %;通过与混凝沉淀组合,COD 和TP 的去除率为50.1 %和78.4 %,均达到《纺织染整工业水污染物排放标准》(GB4287-2012)排放标准。

中试设备电耗和药剂成本为1.072元/t ,具有较好的经济效益。

[关键词]臭氧氧化;混凝沉淀;印染废水;中试试验[中图分类号]TU992 [文献标识码]A [文章编号]1007-1865(2021)02-0086-02Pilot Experiment of Advanced Treatment of Printing and Dyeing Wastewater byOzone-coagulation Precipitation ProcessLi Meng, Yi Xuenong, Fan Zuhui(School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China)Abstract: Based on the upgrading and transformation of a printing and dyeing plant in Jiangsu, the combined process of ozone oxidation and coagulation sedimentation was used to perform advanced treatment of the effluent from the secondary sedimentation tank of the printing and dyeing plant. By optimizing the operating parameters of the system, the degradation effect of the combined process on the printing and dyeing wastewater was investigated. The results showed that: under the conditions of 30 min reaction time and 45 mg/L ozone concentration, the ozone oxidation efficiency reached the highest, and the COD removal rate was 24.5 %; combined with coagulation precipitation, the removal rate of COD and TP was 50.1 % And 78.4 %, both meet the emission standard of "Water Pollutant Discharge Standard for Textile Dyeing and Finishing Industry" (GB4287-2012). The power consumption of the pilot plant and the cost of medicament are 1.072 yuan/t, which has good economic benefits.Keywords: ozone oxidation ;coagulation ;dyeing wastewater ;pilot test在现代生活中,随着经济的高速发展,物质需求越来越丰富,印染行业作为与大家日常密切相关的行业,所用染料日益复杂,最常用的染料有亚甲基蓝、甲基橙、罗丹明B 、耐酸大红等[1],这些染料的分子结构中一般带有苯环、共轭结构等难分解的致癌物质[2]。

臭氧氧化法深度处理印染废水生化处理出水

臭氧氧化法深度处理印染废水生化处理出水

臭氧氧化法深度处理印染废水生化处理出水臭氧氧化法深度处理印染废水生化处理出水在印染工业中,印染废水的产生是一项严重的环境问题。

大量的印染废水中含有大量的有机物、色素、酸碱物质等有害物质,对环境产生严重的污染。

因此,如何有效地处理印染废水成为了一项重要的任务。

传统的印染废水处理采用生化处理工艺,通过利用微生物将有机污染物分解为无机物,但这种方法存在一些问题,例如处理时间长、容易受到抗生物质的干扰等。

臭氧氧化法作为一种新型的废水处理技术,可以提供一种快速高效的方式来处理印染废水。

臭氧氧化法是通过臭氧气体的强氧化作用,将有机污染物降解为无机物。

其工作原理是在臭氧的作用下,有机污染物中的双键、三键等易被氧化的结构被破坏,产生氧化物质和较低的分子量有机化合物。

同时,臭氧氧化法还可以破坏有机污染物的分子链,降低其毒性。

臭氧氧化法具有处理效率高、处理时间短、不受抗生物质的干扰等优点。

其处理后的废水中有机物降解程度高,色度低,可以达到环境排放标准。

而且,臭氧氧化法还可以通过调节反应条件,使得处理过程更加稳定,提高其处理效率。

在印染废水处理中,臭氧氧化法可以与生化处理工艺相结合,通过两者的协同作用,达到更好的处理效果。

生化处理是一种微生物氧化有机物的过程,可以将残留的有机物进一步分解为无机物。

而臭氧氧化法可以提前将有机物氧化,降低生化处理的难度,提高处理效率。

综上所述,臭氧氧化法是一种高效、快速的处理印染废水的技术。

通过该技术的应用,可以有效降低废水中有机物和色素的含量,使处理后的废水达到环境排放标准。

在实际应用中,可以结合生化处理工艺,通过两种技术的协同作用,进一步提高废水处理效果。

但是,值得注意的是,臭氧氧化法还存在一些问题,例如臭氧产生和利用成本较高、反应器设备成本较高等,需要进一步的研究来解决这些问题臭氧氧化法是一种常用的印染废水处理技术,其具有高效、快速、可降解有机物和色素的优点,可以使处理后的废水达到环境排放标准。

对臭氧在污水深度处理工艺中的应用分析

对臭氧在污水深度处理工艺中的应用分析

对臭氧在污水深度处理工艺中的应用分析发布时间:2022-03-22T06:50:52.368Z 来源:《福光技术》2022年4期作者:丁辉[导读] 臭氧实际上是氧气的同素异形体,主要由三个氧原子构成。

臭氧在常温常压状态下,颜色呈淡蓝色,具有一定刺激性气味,属于不稳定性气体,容易分解成为氧气。

南京工大开元环保科技有限公司摘要:本文主要分析了臭氧在污水深度处理工艺中的应用相关内容,然后阐述了臭氧的基本内涵、性质,以及臭氧的重要作用,最后对臭氧在生活污水处理中的应用、在印染废水处理中的应用、在医药废水水处理中的应用等进行总结,主要目的是确保臭氧能够在污水处理中达到更好效果。

关键词:臭氧;污水;深度处理工艺1、臭氧内涵分析1.1基本概述臭氧实际上是氧气的同素异形体,主要由三个氧原子构成。

臭氧在常温常压状态下,颜色呈淡蓝色,具有一定刺激性气味,属于不稳定性气体,容易分解成为氧气。

臭氧自身具备较强氧化性特点,反应速度较快,在较低浓度下能够实现瞬时反应,臭氧的杀菌能力相较于氯而言,能够提升数百倍。

在臭氧具体应用中,不会产生酚臭味与污泥,不存在二次污染问题。

将臭氧应用在污水深度处理工艺中具有众多优势,比如,能够实现对污水的脱色与除臭,将其中的细菌、藻类等杀死,并将其中的有毒物质,例如,二氧化氮、二氧化硫等去除,减少COD含量。

如今臭氧的重要作用受到人们更多关注,在污水深度处理中发挥着重要作用。

1.2基本性质对于臭氧的基本性质,本文主要从以下几点进行阐述:(1)臭氧的相对浓度要高于氧,是氧的1.5倍,因此,相较于氧而言,臭氧在水中的溶解度较强。

臭氧在水当中的溶解度,与亨利定律之间相符合,并且随着温度的提升,其溶解度会随之降低。

(2)臭氧自身稳定性相对较差,在常温状态下,很容易自动分解成为氧气。

如果臭氧浓度在1%左右,在常温常压状态下,分解半衰期大约为16h。

臭氧在水中的分解速度相较于在空气中的分解速度更快。

在水中如果臭氧浓度是3mg.L-1时,那么半衰期是在五分钟到半小时之间。

臭氧氧化法处理印染废水实验报告

臭氧氧化法处理印染废水实验报告

开放性实验项目报告项目名称臭氧氧化法处理印染废水实验指导教师评价一、实验目的及意义1.了解臭氧制备的工艺流程及装置,掌握臭氧发生器的操作方法和臭氧用于水处理的实验方法;2.测定印染废水用臭氧脱色的效果;3.考察臭氧投加量对脱色效果的影响;4.熟练掌握用稀释倍数法测印染废水的色度。

二、实验内容1.测定不同电压下的臭氧浓度;2.测定通入臭氧后不同反应时间所取的水样的色度。

三、实验原理(1)臭氧的特点1.氧化能力强,对除臭、脱色、杀菌、去除有机物都有明显的效果;2.处理后废水中的臭氧易分解,不产生二次污染;3.制备臭氧的空气和电不必贮存和运输,操作管理也比较方便。

(2)臭氧处理印染废水的原理普遍存在于印染废水中的偶氮染料稳定性高、水溶性大,是一种难降解的有机物。

传统的化学氧化法和生物法难以取得令人满意的效果。

臭氧的氧化性极强,在自然界中其氧化还原电位仅次于氟,常用于工业废水的杀菌消毒、除臭、脱色等。

臭氧化技术作为一种高级氧化技术近年来被用于去除染料和印染废水的色度和难降解有机物。

其反应原理主要是通过活泼的自由基(OH·)与污染物反应,使染料的发色基团中的不饱和键断裂,生成分子量小、无色的有机酸、醛等中间产物,这些中间产物难以被臭氧彻底矿化,但能够被微生物进一步降解,所以臭氧化处理可以作为印染废水的预处理阶段,提高废水的可生化性。

臭氧的产生方法有化学法、电解法、紫外线法和电极放电法,应用最多的是电极放电法。

本实验所用的就是电极放电法,即在高压下产生的电火花把空气中的氧气转化为臭氧。

(3)臭氧浓度的测定一般采用化学碘量法。

利用臭氧与碘化钾的氧化还原反应,置换出与臭氧等当量的碘。

再用硫代硫酸钠与碘作用,待完全反应生成无色碘化钠。

根据硫代硫酸钠的消耗量计算出臭氧浓度。

其化学反应方程式如下:臭氧浓度计算:式中:N2、V2―Na2S2O3的当量浓度(0.1000N)和滴定用量(ml)V1―臭氧取样体积C―臭氧浓度(mg/L)(4)稀释倍数法测定水样的色度取25mL水样置于比色管中,加蒸馏水至50mL,摇匀,与另一个比色管中同体积的蒸馏水相比较,如颜色深,则取此稀释2倍之水样25mL置于比色管,加蒸馏水至50mL摇匀再比较,即每次按稀释2倍的方法做下去,直至所稀释的溶液与蒸馏水比较刚好看不出颜色为止,所稀释的倍数即为所测之色度,按2n计算(n为稀释次数)。

臭氧氧化法处理印染废水

臭氧氧化法处理印染废水

臭氧氧化法处理印染废水实验指导书所属课程名称: 环境工程综合实验实验属性: 综合实验实验学时: 4一实验目的1、了解臭氧发生器的基本结构、原理、操作方法、观察电压和空气流量对臭氧产率的影响。

2、通过臭氧氧化法处理:印染废水、有机含酚废水、生活污水的脱色、除臭、消毒、降解COD、降酚等实验,掌握臭氧氧化法处理工业废水的基本过程、方法和特点。

二实验理论基础与方法要点臭氧是一种强氧化剂,它的氧化能力在天然元素中仅次于氟。

臭氧在污水处理中可用于除臭、脱色、杀菌、消毒、降酚、降解COD、BOD等有机物。

臭氧在水溶液中的强烈氧化作用,不是O3本身引起的,而主要是由臭氧在水中分解的中间产物·OH基及HO2基引起的。

很多有机物都容易与臭氧发生反应。

例如臭氧对水溶性染料、蛋白质、氨基酸、有机氨及不饱和化合物、酚和芳香族衍生物以及杂环化合物、木质素、腐殖质等有机物有强烈的氧化降解作用;还有强烈的杀菌、消毒作用。

臭氧氧化的优点:(1)臭氧能氧化其它化学氧化,生物氧化不易处理的污染物,对除臭、脱色、杀菌、降解有机物和无机物都有显著效果(2)污水经处理后污水中剩余的臭氧易分解,不产生二次污染,且能增加水中的溶解氧(3)制备臭氧利用空气作原料,操作简便。

工业上采用高压(1.5—3万伏)高频放电制取臭氧,通常制得的是含1—4%臭氧的混合气体,称为臭氧化气体。

三实验装置器材与药品设备与器材:(1)臭氧发生器 1台(2)臭氧氧化反应器 1套,如无现成的需自行安装代替500mL锥形瓶3个,与锥形瓶配套的橡皮塞3个(3)医用乳胶管,与乳胶管配套的玻璃管(4)气体转子流量计 1个 (5)酸滴管(50mL ) 1个(6)气体吸收瓶(如无现成的,可用锥形瓶代替) 500mL 锥形瓶2个 (7)量筒100mL 1个 (8)洗气瓶1000mL 2个 材料药品:(1)配制含酚废水,含酚浓度50—100mg/L ,供除酚实验用。

(2)配制印染废水,含染料10—20mg/L ,供脱色用(亚甲蓝)(3)2% KI 溶液:称取20克分析纯碘化钾溶于1升新煮沸并冷却的蒸馏水中,贮于棕色瓶中。

臭氧氧化法深度处理印染废水生化处理出水

臭氧氧化法深度处理印染废水生化处理出水

臭氧氧化法深度处理印染废水生化处理出水臭氧氧化法深度处理印染废水生化处理出水1. 引言印染工业是一种典型的水污染行业,其废水含有大量有机物和颜料。

传统的生物处理方法往往不能完全去除废水中的有机物污染物,而且会产生较高浓度的污泥。

因此,发展一种高效、低能耗的废水处理方法是迫切需要的。

臭氧氧化法是一种被广泛研究的废水处理技术,可以高效降解有机物,但一般难以达到出水要求。

本文将介绍臭氧氧化法在印染废水处理中的应用以及深度处理后的生化处理出水效果。

2. 臭氧氧化法原理臭氧氧化法是利用臭氧(O3)氧化有机物,将其降解为二氧化碳和水的过程。

臭氧氧化法具有较高的反应速率和选择性,可降解多种有机物,如颜料、染料和有机溶剂等。

该方法通过氧化和断裂有机物的分子键使其转化为无机物质,并在高浓度臭氧气体存在下快速进行。

因此,臭氧氧化法被广泛应用于印染废水处理。

3. 印染废水处理中的臭氧氧化法应用在印染废水处理中,臭氧氧化法通常作为预处理方法,用于去除废水中的有机物污染物。

臭氧氧化法可以对废水中的颜料、染料和有机溶剂等进行高效降解,提高废水的可生化性。

同时,臭氧氧化法还能够去除废水中的异味和色度,进一步改善废水的水质。

4. 深度处理后的生化处理出水效果经过臭氧氧化法的预处理后,印染废水被送入生化处理系统中进行进一步处理。

在深度处理过程中,生化处理系统通常采用活性污泥法。

与传统生物处理方法相比,深度处理后的生化处理出水具有以下优势:4.1 更高的去除率臭氧氧化法降解了废水中的大部分有机物污染物,使其转化为无机物质。

这使得生化处理系统在去除废水中的有机物时更加高效。

4.2 降低污泥产量传统的生物处理方法往往会产生较高浓度的污泥,需要进一步处理。

而深度处理后的生化处理系统由于废水中的有机物减少,降低了污泥的产量,减少了后续处理的成本。

4.3 提高水质深度处理后的生化处理出水符合环境保护要求,可以直接排放或作为再利用途径。

经过臭氧氧化法和生化处理的印染废水出水水质优于传统生物处理方法。

臭氧氧化技术在处理印染废水中的应用

臭氧氧化技术在处理印染废水中的应用
■墨

徐 莹
( 赤 峰 市德 润排 水 有 限 责 任公 司 , 内 蒙古 赤 峰 0 2 4 0 0 0 )
臭 氧 氧 化 技 术 在 处 理 印 染 废 水 中 的 应 用
摘 要: 印 染废水 因其到 预 期 的 处理 效 果 。 臭氧 氧 化 法 可 以有 效 进 行 处 理 。 文 章 介 绍 了臭 氧 的 产 生 与作 用机 理 , 臭氧 氧 化 技 术 在 印 染废 水 处 理 领 域 的应 用现 状 和 发 展 趋 势 。 以期 有 助 于臭 氧 氧 化 技 术 的 进 步 深入 研 究 , 适 应社 会 发 展 的 要 求 。 关键 词 : 印 染 废 水 臭 氧 臭氧 氧 化 法

近 年来 我 国 印染 工 业 飞 速 发 展 , 产 量 巨大 , 产 生 的 大 量 印 染 废水 已成 为 当前 重 要 的 水 体 污 染 源 之 一 。 印 染 工业 在 生 产 过 程 中 产生 的废 水 包 括 预 处 理 阶 段 ( 包括烧毛 、 退浆 、 煮炼 、 漂 白、 丝光等工序) 排 出 的退 浆 废 水 、 煮炼废水 、 漂 白废 水 和 丝 光 废水 , 染 色 工 序 阶 段 排 出 的 染 色废 水 . 印 花 工 序 阶 段 排 出 的 印 花 废 水 和皂 液 废 水 , 整 理 工 序 阶 段 排 出 的整 理 废 水 。 国 内外 印染 废 水 的 处理 方 法 不 同可 大 致 分 为三 类 . 即生 化 法、 物化 法 和化 学 法 。采用 臭 氧 氧化 法能 取 得 良好 的处 理 效果 。 且臭 氧 氧化 不 产 生污 泥 和 二次 污 染 , 有一 定 的工 业 应用 前 景 。
1 . 臭 氧 氧 化 法 的 作 用机 理 ( 1 ) 臭氧 , 常温下为无色气体 , 有 一 股 特 殊 的草 腥 味 , 稳 定

臭氧对印染废水处理的应用

臭氧对印染废水处理的应用

臭氧对印染废水处理的应用污水中,印染废水是比较难处理的废水,北京同林臭氧和大家介绍下臭氧印染废水的处理工艺。

臭氧氧化法对印染废水特别是二次出水的处理效果特别好,特别是色度方面,当臭氧消耗量达到6.5mg/mg时,A400可以减少90%以上。

臭氧分子直接对色度和有机物可以直接氧化,但如果进一步去除有机物,则建议用其他的复核工艺,提高自由羟基的形成。

北京同林的复核工艺包括:催化剂法、双氧水—臭氧工艺、UV-臭氧工艺等。

效果显著。

印染染色废水,水量大,色度高,成分复杂,废水中含有染料、浆料、助剂、酸、碱、纤维杂质及无机盐等,染料结构中胺基化合物及铜、铬、锌、砷等重金属元素,具有较大的毒性。

目前染色加工过程中的10-20%的染料排入废水中,严重污染环境。

随着染料工业的发展和印染加工技术的进步,染料结构的稳定性大为提高,给脱色处理增加了难度,目前印染废水的脱色问题已成为国内外废水处理中急需解决的一大难题。

多数印染厂采用化学处理与生化处理相结合的方法,但普遍存在于印染废中的偶氮染料稳定性高、水溶性大,是一种难降解的有机物,传统的化学氧化法和生物法难以取得令人满意的效果。

臭氧作为一种高级氧化技术近年来被用来去除染料和印染废水的色度和难降解有机物,效果非常理想。

臭氧发生器产生臭氧的氧化对染料品种适应性广、脱色效率高,并降低其COD、BOD 值,同时臭氧在废水中的还原产物以及过剩03能迅速在溶液和空气中分解为02,不会对环境造成二次污染。

因此臭氧脱色技术具有一定的工业化应用前景。

目前臭氧氧化的主要缺点是运行费用相对偏高。

因此,采用臭氧氧化法脱色可作为生物处理的预处理,结合生物处理可降低运行费用。

借助氧化还原作用破坏染料的共轭体系或发色基团是印染脱色处理的有效方法。

除常规的氯氧化法外,国内外研究重点主要集中在臭氧氧化、过氧化氢氧化、电解氧化和光氧化方面。

臭氧对印染废水的脱色左右如下:1、印染废水的臭氧氧化处理机理臭氧是良好的氧化剂,在处理印染废水时,臭氧与简单或复杂的有机物反应后得到一些相同的产物,这些产物很容易生化降解,而且没有明显的毒性。

多相催化臭氧氧化法处理印染废水的研究

多相催化臭氧氧化法处理印染废水的研究
wa s t e wa t e r b y h e t e r o g e n e o u s c a t a l y t i c o z o n a t i o n . W he n ma s s r a t i o b e t we e n Fe a nd Mn i s 1 : 2, t he t r e a t me nt e f f i c i e nc y
[ 摘 要 ]采 用浸 渍 法 制 备 了活 性 炭 负载 铁 锰 氧 化 物 的催 化 剂 用 于 对 印 染 废 水 的 多 相催 化 臭 氧 氧化 处 理 , 当 铁锰 质 量 比为 1 : 2时 , 催 化 剂 处 理 效 果 最 佳 。多 相 催 化 臭 氧 氧 化 工 艺 的 最 佳 运 行 参 数 为 : 处理时间 6 0mi n 、 臭 氧 通 气 量 0 . 2 L / mi n 、 催 化 剂 投 加 质量 2 0 g 、 废水 p H= 5 。 经 多相 催 化 臭 氧 氧化 处 理 后 , 印染 废 水 的 C O D、 氨氮 、 T P 、 色度 去 除 率分 别为 8 1 . 7 %、 9 0 . 2 %、 9 7 . 6 %、 9 9 . 1 %, 去除效果较好。 [ 关 键 词 ]多相 催 化 臭 氧 氧 化 ; 催化剂 ; 印染 废 水 [ 中 图分 类 号 ]X 7 0 3 . 1 [ 文献 标 识 码 ]A [ 文章编号]1 0 0 5 — 8 2 9 X( 2 0 1 3 ) 0 4 — 0 0 5 8 — 0 3
第3 3卷 第 4期
2 0 1 3年 4月
工 业水 处理
I n d u s t r i a l Wa t e r T r e a t me n t
V0 l - 3 3 No . 4

活性炭催化臭氧氧化深度处理印染废水

活性炭催化臭氧氧化深度处理印染废水

对C OD、NH3 一N 、TN、TP、色度 的去 除 率 分 别 为 8 . 9 、6 . 1 、5 . 2 、7. 5 和 9. 3 。£ 水 指 标 达 到 了 《 3 5 57 4 7 9 6 5 8 B 太 湖地 区城 镇 地 区 水 处理 厂及 重 点 工 业 行 业 主 要 水 污 染物 排 放 限 值 》 ( B 2 1 7 — 20 ) 的标 准 。 D 3/02 07
ds h r el t fs wa ete t n ln nTah k r a ( 3 / 0 2 2 0 ) ic ag i so e g r ame tpa ti i uLa e a e DB 2 1 7 — 0 7 . mi
Ke r s a tv t d c r o ; c t l t z n to y wo d : c i a e a b n a a y i o o a i n; a v n e r a me t p i tn n y i g wa t wa e c d a c d te t n ; r n i g a d d e n s e t r
Ac i a e r o t l tc Oz n to e ho tv t d Ca b n Ca a y i o a i n M t d
CAI H u a, LI Ke ln, CHEN — z on — i Yi h g, W ANG — p n Li ig
( c o l fEn io m e t l n a e y En i e rn , C a g h u Un v r iy S h o v r n n a d S f t g n e i g o a h n z o i e st ,C a g h u 2 3 6 h n z o 1 1 4, Ch n ) i a

臭氧在印染废水中的应用

臭氧在印染废水中的应用

臭氧在印染废水处理中的应用印染行业是纺织工业用水量较大的行业,水作为媒介参与整个染整加工过程。

印染废水水量大,色度高,成分复杂。

废水中含有染料、浆料、助剂、油剂、酸碱,纤维杂质及无机盐等,染料结构中硝基和胺基化合物及铜、铬、锌、砷等重金属元素具有较大的生物毒性,严重污染环境。

一、废水的特点1、水量大。

2、浓度高。

大部分废水呈碱性,COD较高,色度高。

3、水质波动大。

印染厂的生产工艺和所用染料,随纺织品种类和管理水平的不同而异。

而对于每个工厂,其产品都在不断变化,因此,废水的污染物成分浓度的变化与波动十分频繁。

4、以有机物污染为主。

除酸、碱外,废水中的大部分污染物是天然或合成有机物。

5、处理难度较大。

染料品种的变化以及化学浆料的大量使用,使废水含难生物降解的有机物,可生化性差。

因此,印染废水是较难处理的工业废水之一。

6、部分废水含有毒有害物质。

如印花雕刻废水中含有六价铬,有些染料(如苯胺类染料)有较强的毒性。

二、废水的危害印染废水含大量的有机污染物,排入水体将消耗溶解氧,破坏水生态平衡,危及鱼类和其它水生生物的生存。

沉于水底的有机物,会因厌氧分解而产生硫化氢等有害气体,恶化环境。

印染废水的色度高,严重影响受纳水体外观。

造成水体有色的主要因素是染料。

目前全世界染料年总生产量在60万吨以上,其中50%以上用于纺织品染色;而在纺织品印染加工中,有10%~20%的染料作为废物排出。

印染废水的色度尤为严重,用一般的生化法难以去除。

有色水体还会影响日光的透射,不利于水生物的生长。

在使用化学氧化法去除色度时,虽然能使水溶性染料的发色基团被破坏而褪色,但其残余物的影响仍然存在。

印染废水大部分偏碱性,进入农田,会使土地盐碱化;染色废水的硫酸盐在土壤的还原条件下可转化为硫化物,产生硫化氢。

三、印染废水处理的基本方法印染废水是以有机污染为主的成分复杂的有机废水,处理的主要对象是、不易生物降解或生物降解速度缓慢的有机物、碱度、染料色素以及少量有BOD5毒物质。

臭氧催化氧化技术深度处理印染废水的研究

臭氧催化氧化技术深度处理印染废水的研究

臭氧催化氧化技术深度处理印染废水的研究李桂菊;李弘涛;夏欣;杨浩伟;岳悦【摘要】为了提高臭氧催化氧化技术在印染废水深度处理中的去除效率,提高催化剂的使用寿命,本研究利用混合法自制非均相催化剂,并考察了其在深度降解印染废水中橙黄G的应用.对废水初始pH、催化剂的投加量和臭氧投放速率3个过程参数进行了优化.研究结果表明,臭氧催化氧化降解橙黄G废水的最佳工艺参数是废水初始pH 6~7、反应时间60 min,催化剂的投加量为300 g/L、臭氧投放速率为1.60 mg/(L·min).利用该工艺参数对某印染厂二沉池出水进行深度处理,60 min后出水COD为58.7 mg/L,COD去除率为67.4%,出水COD已经达到国家排放标准(GB 18918—2002)的一级B标准.臭氧催化氧化降解橙黄G的过程符合一级反应动力学模型,反应速率常数随废水pH、臭氧投放速率及催化剂投加量的变化规律与单因素实验结果相吻合.【期刊名称】《天津科技大学学报》【年(卷),期】2019(034)002【总页数】6页(P55-59,80)【关键词】橙黄G;臭氧催化氧化;印染废水【作者】李桂菊;李弘涛;夏欣;杨浩伟;岳悦【作者单位】天津市海洋环境保护与修复技术工程中心,天津科技大学海洋与环境学院,天津 300457;天津市海洋环境保护与修复技术工程中心,天津科技大学海洋与环境学院,天津 300457;天津市海洋环境保护与修复技术工程中心,天津科技大学海洋与环境学院,天津 300457;天津市海洋环境保护与修复技术工程中心,天津科技大学海洋与环境学院,天津 300457;天津市海洋环境保护与修复技术工程中心,天津科技大学海洋与环境学院,天津 300457【正文语种】中文【中图分类】X791染料废水排放量巨大,而且染料废水中难生物降解有机物种类多,具有致畸、致癌和致突变的作用,可生化性差.新的环保法规对印染废水的排放有更严格的要求,因此印染废水的深度处理面临更高的挑战[1-2].当今印染废水的深度处理方法主要有吸附法、电化学法、Fenton氧化法以及臭氧氧化法[3-5].吸附法中吸附剂再生后性能变差,所以需要不断更换,费用较高;电化学法耗电较大、电极消耗较多,产业化还有一定距离;Fenton氧化法药剂成本高,会产生铁泥;而臭氧氧化技术既可以实现有机物的有效降解,又可以很好地脱色,非常适合印染废水的深度处理.但是,单纯的臭氧氧化技术氧化效率不高,当加入催化剂构成催化氧化体系后,可以对有机物实现良好的降解,然而在实际应用过程中,均相催化剂组分存在无法回收的不足[6].本课题组采用混合法制备非均相催化剂,一方面保证了催化剂的机械强度和硬度,易固液分离,有利于催化剂重复利用;另一方面提高了载体与活性组分之间的结合力,降低活性组分的溶出,提高催化剂稳定性[7-9].本研究拟利用自制的催化剂臭氧催化氧化对印染废水进行深度处理,为产业化应用提供理论支持.1 材料与方法1.1 废水来源臭氧催化氧化工艺参数确定时,采用偶氮染料橙黄G(天津市百世化工有限公司)配制的模拟废水,实验所用模拟废水质量浓度为 250mg/L.真实印染废水来自四川绵阳某染料厂的二沉池出水,该废水仅为COD和色度不达标,其他水质参数均达到 GB 18918—2002《城镇污水处理厂污染物排放标准》中的一级 B标准.本实验主要利用臭氧催化氧化技术进行深度处理.实验用水水质指标见表1.表1 实验用水主要水质指标Tab. 1 Main water quality indexes of experimental water?1.2 实验装置臭氧反应装置如图 1所示.该装置主要包括NOP 10P-3-2型臭氧发生器(东绿邦光光电设备有限公司)、臭氧反应柱、气体流量计、臭氧浓度计、臭氧尾气吸收瓶.图1 臭氧反应装置图Fig. 1 Ozone reaction set-up diagram1. 臭氧发生器;2.气体流量计;3. 臭氧反应柱;4. 曝气头;5—7. 臭氧尾气吸收液;8. 臭氧浓度计1.3 臭氧投放速率的计算臭氧投放速率为每分钟通入装置内的臭氧总量与臭氧利用率之积,而臭氧总量为产生气体中臭氧的浓度与臭氧流量之积.反应后的剩余臭氧通过 KI吸收法测定,臭氧的利用率为通入的臭氧总量与剩余臭氧量差值与通入的臭氧总量的比值,所以臭氧的实际投放速率可通过式(1)求得.式中:v为臭氧投放速率,mg/(L·min);ρ为产生混合气体中的臭氧质量浓度,mg/L;Q为气体流量,L/min;η为臭氧利用率;V为废水体积,L.1.4 检测方法使用德国 WTW 公司的 CR2200型消解仪,采用重铬酸钾法进行 COD测定;使用日本岛津公司UV-2550型紫外可见分光光度仪,采用紫外分光光度法进行橙黄G浓度测定;采用稀释倍数法进行色度测定;使用上海奥豪斯公司的STARTER 310型pH计进行pH测定.2 结果与讨论2.1 工艺条件的探索以含橙黄 G的模拟废水为实验对象探讨废水pH、臭氧投放速率以及实验室自制催化剂的投加量对橙黄 G的降解效率的影响,确定臭氧催化氧化的最佳工艺条件.实验室自制催化剂通过将一定量活性炭粉浸渍于质量分数为 6%的硝酸铜溶液中搅拌 2h,过滤烘干后在氮气环境保护下升温至800℃烧结而成.工艺探索过程中所使用催化剂均经过吸附饱和处理,即在实验前将催化剂在250mg/L的橙黄G模拟废水浸泡5h,经测定本催化剂对 COD的饱和吸附量为1.87mg/g.催化剂达到吸附饱和后,再进行催化氧化研究,排除催化剂吸附造成的影响.2.1.1 pH的影响取500mL质量浓度为250mg/L的橙黄G模拟废水于反应容器中,实验室自制催化剂的一次投加量为 300 g/L(固液体积比1∶3),臭氧的投放速率为1.60mg/(L·min).探讨废水 pH 为 3、5、6.5、9、11 对臭氧催化氧化的影响,其中 pH=6.5为原水 pH.结果如图 2、图 3所示.在对不同 pH废水进行降解过程中,随着溶液pH由3逐渐升高到11,COD的去除率先增大后减小,处理效果最佳为原水pH 6.5.反应进行 25min后,在溶液 pH为 6.5的条件下,COD去除率达到了83.17%.分析其原因,在较低pH的条件下,有机染料橙黄 G的降解原理主要为臭氧的直接接触氧化,废水 pH由 3升高至 6.5的过程中,随着溶液 pH 的升高,OH-的浓度增大,产生羟基自由基的速率变快,逐渐转变到臭氧的间接氧化,因而能够提高 COD 的去除率[10-11].但是,随着溶液 pH的进一步升高,COD的去除率反而下降,产生这一现象的原因可能是当溶液 pH过高,溶液中就会存在大量的 OH-,会促使臭氧很快分解产生大量羟基自由基,当溶液中的羟基自由基浓度较大时,羟基自由基之间相互碰撞猝灭的概率将会显著升高,从而致使羟基自由基数量下降,对橙黄 G的降解产生不利影响[12-15].由图3可知:在pH 6.5的条件下,橙黄G的降解效率最高,在 5min左右基本全部被分解,色度几乎为0.图2 废水pH对COD去除率的影响Fig. 2 Effect of different wastewater initial pH on the removel rate of COD图3 废水pH对橙黄G去除率的影响Fig. 3 Effect of different wastewater initial pH on the removel rate of orange G2.1.2 臭氧投放速率的影响取500mL质量浓度为250mg/L的橙黄G模拟废水于反应容器中,实验室自制催化剂的一次投加量为 300g/L,pH 为 6.5,控制臭氧的投放速率分别为0.53、1.07、1.60、2.13、2.66mg/(L·min),确定臭氧催化氧化橙黄 G的臭氧最佳投放速率,其实验结果如图4、图5所示.图4 臭氧投放速率对COD去除率的影响Fig. 4 Effect of different ozone acceleration rate on the removal rate of COD图5 臭氧投放速率对橙黄G去除率的影响Fig. 5 Effect of different ozone acceleration rate on the removal rate of orange G由图 4可知:当臭氧投放速率不断增大时,溶液中 COD的去除率明显提高.这是因为当臭氧投放速率不断增大时,气液两相中的臭氧浓度差异较大,增强了臭氧在溶液中的传质效果,导致大量臭氧分子溶于水中参与降解有机物,这样就会使COD及橙黄 G的去除率增大[16].当臭氧投放速率为0.53mg/(L·min)时,反应25min后 COD的去除率仅为 59.4%;当臭氧投放速率为1.60mg/(L·min)时,25min后COD去除率达到了 83.2%,但当臭氧投放速率增大到2.13mg/(L·min)和2.66mg/(L·min)时,COD 的去除效果没有显著提高,这是因为在标准状况下,1体积水溶解0.494体积臭氧,废水中臭氧的溶解度在一定温度下达到饱和,即使继续增大臭氧投加量,废水中臭氧浓度也不会进一步提升.并且,臭氧再其浓度较大的情况下便会成为羟基自由基的捕获剂,从而影响臭氧降解有机物效率.因此,本研究确定臭氧投放速率为1.60mg/(L·min).2.1.3 催化剂投加量的影响取500mL质量浓度为250mg/L的橙黄G模拟废水,臭氧的投放速率为1.60mg/(L·min),废水的初始 pH为 6.5,实验室自制催化剂的一次投加量分别为50、100、200、300、400g/L,探究实验室自制催化剂的投加量对臭氧催化氧化橙黄 G的影响,其实验结果如图6、图7所示.图6 催化剂投加量对COD去除率的影响Fig. 6 Effect of different catalyst dosage on the removal rate of COD图7 催化剂投加量对橙黄G去除率影响Fig. 7 Effect of different catalyst dosage on the removal rate of orange G由图 6、图 7可知:当实验室自制催化剂的投加量不断增加时,废水中COD及橙黄G的去除率逐渐升高.在 25min时,未投加自制催化剂情况下,废水中 COD的去除率为29.3%,自制催化剂投加量分别为50、100、200、300、400g/L 时,废水中 COD 的去除率分别为 51.9%、67.3%、72.4%、83.2%、84.0%.分析其原因,这主要是由于随着实验室自制催化剂投加量的增加,可利用的活性位点也随着增多,臭氧分子、橙黄 G和实验室自制催化剂碰撞机会和接触面积显著增大,臭氧得到更加充分的利用[17].但当实验室自制催化剂投加量从 300g/L 提高至400g/L时,COD的去除率并没有显著的变化,这可能的原因是,当臭氧浓度一定时,过多的实验室自制催化剂中活性位点无法被完全占据,造成了实验室自制催化剂的浪费;也有可能是因为实验室自制催化剂投加量过高,产生的过多的羟基自由基又可以相互作用形成过氧化氢[18].实验室自制催化剂的一次性臭氧投加量选取300g/L.2.2 臭氧催化氧化的动力学研究对臭氧催化氧化动力学进行研究,不仅可以得知有机物降解过程中的一般规律,而且可以明确各工艺条件对污染物降解的贡献,从而为实践应用提供指导.本实验分别对不同 pH、不同臭氧投放速率以及不同催化剂投加量下COD的降解情况进行一元线性回归分析,其拟合结果如图8和表2所示.由此可见,在不同的条件下,臭氧催化氧化降解橙黄G的过程都能较好地符合一级动力学模型.图8 不同条件下的一级动力学拟合Fig. 8 The first-order reaction kinetics under different conditions随着溶液pH的增大,橙黄G的降解速率常数先增大而后减小,pH为 6.5时,降解速率常数最大,此时橙黄G的降解速率常数为0.035,与前文催化体系最佳pH 筛选结果相吻合.随着臭氧投放速率及催化剂投加量的增加,反应速率常数均增加,进一步验证了单因素的实验结果.表2 不同条件下一级反应动力学反应速率常数Tab. 2 The first-order reaction kinetics constant under different conditionspH K/min-1 R2 3 0.029 0.966 5 0.034 0.996 6.5 0.035 0.975 9 0.030 0.986 11 0.029 0.984臭氧投放速率/(mg·L-1·min-1) K/min-1 R2 0.53 0.023 0.996 1.07 0.025 0.981 1.60 0.034 0.985 2.13 0.034 0.982 2.66 0.037 0.987催化剂投加量/(g·L-1)K/min-1 R2 50 0.027 0.978 100 0.028 0.993 200 0.033 0.999 300 0.035 0.982 400 0.036 0.9892.3 臭氧催化氧化技术处理真实印染废水对单独臭氧氧化降解和臭氧催化氧化降解真实印染废水进行比较,考察催化剂的贡献,结果见表 3和图9.单独臭氧氧化反应120min后,出水COD值为64.9mg/L,而《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级B标准要求 COD的最高值为 60mg/L,即单独臭氧氧化处理 120min仍达不到排放标准,如若进一步延长处理时间来达到排放标准,则相应的成本会大大提高.而臭氧催化氧化处理5min后,色度便降为0,处理60min后,出水COD 为58.7mg/L,出水 BOD5为 19.1mg/L.这一结果已经达到国家排放标准(GB 18918—2002)中的一级B标准.表3 不同处理工艺下真实废水COD出水水质Tab. 3 Effluent quality of wastewater COD with different treatment processesCOD/(mg·L-1)时间/min 单独臭氧氧化臭氧催化氧化15 133.1 93.4 30 106.3 72.9 45 94.7 66.6 60 86.2 58.7 90 79.4 53.8 120 64.9 45.6图9 不同处理工艺对COD去除率的影响Fig. 9 Effect of different treatment processes on the removal of COD由图9可见:催化剂的加入使得在相同的反应时间内,COD的去除率提高了20%~25%.3 结论臭氧催化氧化降解橙黄 G废水的最佳工艺参数:废水初始 pH 为 6~7、催化剂的投加量为300g/L、臭氧投放速率为1.60mg/(L·min).动力学分析表明,臭氧催化氧化降解橙黄 G过程符合一级反应动力学模型.对某印染厂废水二沉池出水的处理结果表明:臭氧催化氧化真实印染废水处理效果显著,处理5min后,色度便降为0;处理60min后出水COD 为 58.7mg/L,出水 BOD5为 19.1mg/L,已经达到国家一级 B的排放标准(GB 18918—2002).催化剂的加入使得在相同的反应时间内,COD的去除率提高了20%~25%.参考文献:【相关文献】[1]张林生. 水的深度处理与回用技术[M]. 北京:化学工业出版社,2004.[2]高俊发. 水环境工程学[M]. 北京:化学工业出版社,2003.[3]刘伟京. 印染废水深度降解工艺及工程应用研究[D].南京:南京理工大学,2013.[4]金建华. 生化/芬顿试剂氧化组合工艺处理印染废水试验研究[D]. 武汉:武汉理工大学,2012. [5]蔡华,李克林,陈毅忠,等. 活性炭催化臭氧氧化深度处理印染废水[J]. 常州大学学报:自然科学版,2010,22(3):38-41.[6]黄仲涛,耿建铭. 工业催化[J]. 2版. 北京:化学工业出版社,2006.[7]Khadhraoui M,Trabelsi H,Ksibi M,et al. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse[J].Journal of Hazardous Materials,2009,161(2):974-981.[8]He Z Q,Lin L L,Song S,et al. Mineralization of C. I.Reactive Blue 19 by ozonation combined with sonolysis:Performance optimization and degradation mechanism[J]. Separation and Purification Technology,2008,62(2):376-381.[9]Zhang H,LÜ Y J,Liu F,et al. Degradation of C. I. Acid Orange 7 by ultrasound enhanced ozonation in a rectangular air-lift reactor[J]. Chemical Engineering Journal,2008,138(1):231-238.[10]吴耀国,赵大为,焦剑,等. 臭氧化的负载型非均相催化剂制备及其作用机理[J]. 材料导报,2005,19(10):8-11.[11]洪浩峰,潘湛昌,徐阁,等. 活性炭负载催化剂臭氧催化氧化处理印染废水研究[J]. 工业用水与废水,2010,41(3):29-33.[12]袁淼卉. 粉煤灰基催化剂催化臭氧氧化深度处理印染废水的研究[D]. 苏州:苏州科技学院,2012.[13]Patnaik P. Handbook of Inorganic Chemicals[M]. New York:McGraw-Hill,2003. [14]He K,Dong Y,Yin L,et al. A facile hydrothermal method to synthesize nanosized Co3O4/CeO2 and study of its catalytic characteristic in catalytic ozonation of phenol[J]. Catalysis Letters,2009,133(1/2):209.[15]Qi F,Xu B,Chen Z,et al. Catalytic ozonation of 2-isopropyl-3-methoxypyrazine in water by γ-AlOOH and γ-Al2O3:Comparison of removal efficiency and mechanism[J]. Chemical Engineering Journal,2013,219:527-536.[16]张冉. 非均相催化臭氧氧化深度处理煤化工废水[D].哈尔滨:哈尔滨工业大学,2011. [17]Li W W,Qiang Z M,Zhang T,et al. Kinetics and mechanism of pyruvic acid degradation by ozone in the presence of PdO/CeO2[J]. Applied Catalysis B:Environmental,2012,113:290-295.[18]Qi F,Xu B,Zhao L,et al. Comparison of the efficiency and mechanism of catalytic ozonation of 2,4,6-trichloroanisole by iron and manganese modified bauxite[J]. Applied Catalysis B:Environmental,2012,121:171-181.。

臭氧氧化法处理印染废水实验报告

臭氧氧化法处理印染废水实验报告

开放性实验项目报告项目名称臭氧氧化法处理印染废水实验指导教师评价一、实验目的及意义1.了解臭氧制备的工艺流程及装置,掌握臭氧发生器的操作方法和臭氧用于水处理的实验方法;2.测定印染废水用臭氧脱色的效果;3.考察臭氧投加量对脱色效果的影响;4.熟练掌握用稀释倍数法测印染废水的色度。

二、实验内容1.测定不同电压下的臭氧浓度;2.测定通入臭氧后不同反应时间所取的水样的色度。

三、实验原理(1)臭氧的特点1.氧化能力强,对除臭、脱色、杀菌、去除有机物都有明显的效果;2.处理后废水中的臭氧易分解,不产生二次污染;3.制备臭氧的空气和电不必贮存和运输,操作管理也比较方便。

(2)臭氧处理印染废水的原理普遍存在于印染废水中的偶氮染料稳定性高、水溶性大,是一种难降解的有机物。

传统的化学氧化法和生物法难以取得令人满意的效果。

臭氧的氧化性极强,在自然界中其氧化还原电位仅次于氟,常用于工业废水的杀菌消毒、除臭、脱色等。

臭氧化技术作为一种高级氧化技术近年来被用于去除染料和印染废水的色度和难降解有机物。

其反应原理主要是通过活泼的自由基(OH·)与污染物反应,使染料的发色基团中的不饱和键断裂,生成分子量小、无色的有机酸、醛等中间产物,这些中间产物难以被臭氧彻底矿化,但能够被微生物进一步降解,所以臭氧化处理可以作为印染废水的预处理阶段,提高废水的可生化性。

臭氧的产生方法有化学法、电解法、紫外线法和电极放电法,应用最多的是电极放电法。

本实验所用的就是电极放电法,即在高压下产生的电火花把空气中的氧气转化为臭氧。

(3)臭氧浓度的测定一般采用化学碘量法。

利用臭氧与碘化钾的氧化还原反应,置换出与臭氧等当量的碘。

再用硫代硫酸钠与碘作用,待完全反应生成无色碘化钠。

根据硫代硫酸钠的消耗量计算出臭氧浓度。

其化学反应方程式如下:臭氧浓度计算:式中:N2、V2―Na2S2O3的当量浓度(0.1000N)和滴定用量(ml)V1―臭氧取样体积C―臭氧浓度(mg/L)(4)稀释倍数法测定水样的色度取25mL水样置于比色管中,加蒸馏水至50mL,摇匀,与另一个比色管中同体积的蒸馏水相比较,如颜色深,则取此稀释2倍之水样25mL置于比色管,加蒸馏水至50mL摇匀再比较,即每次按稀释2倍的方法做下去,直至所稀释的溶液与蒸馏水比较刚好看不出颜色为止,所稀释的倍数即为所测之色度,按2n计算(n为稀释次数)。

臭氧氧化法深度处理印染废水及成本分析

臭氧氧化法深度处理印染废水及成本分析

ISSN 1672-9064CN 35-1272/TK作者简介:冯伟铭(1978~),环境工程工程师,毕业于培正商学院,大专,从事大气污染防治等工作。

臭氧氧化法深度处理印染废水及成本分析冯伟铭夏良媛董龙标(中山市迦南节能环保科技有限公司广东中山528400)摘要随着党和国家绿色经济和环保发展伟大战略蓝图的逐步实施,纺织印染企业正面临着前所未有的生死挑战。

要生存发展就必须不失机遇,顺势而为,剔除陈旧观念,改造工艺流程,充分应用好臭氧氧化法技术,探寻企业发展的新路子,以提高企业的的经济效益。

为此,该文在探讨臭氧氧化法内涵与作用机理的基础上,首先从理论上研究了臭氧氧化法在印染废水深度处理中的应用,然后结合某市印染企业改造升级废水处理系统的实际进行了分析。

关键词臭氧氧化法深度处理印染废水成本分析中图分类号:X506文献标识码:A文章编号:1672-9064(2020)03-104-02治理染料污染是印染行业执行国家环保办厂的重要内容。

在当今对染料废水进行深度处理的方法中,无论是吸附法、电化学法还是Fenton 氧化法,不是电耗大,就是成本高,臭氧氧化技术的应用既可以实现有机物的有效降解,进行有效的脱色,又能降低印染废水深度处理的投资成本,还可以遏制染料废水的污染,有利于工厂的环保生产。

为此,本文在理论上进行探讨的同时,还以广东某市印染企业采用臭氧氧化法,深度处理印染废水的实践,进行分析研究。

1臭氧氧化法的内涵与作用机理(1)臭氧氧化法的内涵。

臭氧是进行自来水净化和废水处理的一种强氧化剂。

臭氧氧化具有反应速度快、且完全彻底、无二次污染等优点,它不但可以让废水提高可生化性,还能使废水有效地降低色度。

随着臭氧氧化技术的发展,该技术又被应用于印染废水的深度处理之中,并且取得较好的效果[1]。

有研究发现,当臭氧在单独应用于印染废水深度处理的时候,去除色度明显,去除率在85%以上,如果采用组合方法时,废水出水所含的COD 仅为44mg/L 左右,色度与COD 去除率均为95%左右,还可降低废水处理的成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

臭氧氧化法处理印染废水
实验指导书
所属课程名称: 环境工程综合实验
实验属性: 综合实验
实验学时: 4
一实验目的
1、了解臭氧发生器的基本结构、原理、操作方法、观察电压和空气流量对臭氧产率的影响。

2、通过臭氧氧化法处理:印染废水、有机含酚废水、生活污水的脱色、除臭、消毒、降解COD、降酚等实验,掌握臭氧氧化法处理工业废水的基本过程、方法和特点。

二实验理论基础与方法要点
臭氧是一种强氧化剂,它的氧化能力在天然元素中仅次于氟。

臭氧在污水处理中可用于除臭、脱色、杀菌、消毒、降酚、降解COD、BOD等有机物。

臭氧在水溶液中的强烈氧化作用,不是O3本身引起的,而主要是由臭氧在水中分解的中间产物·OH基及HO2基引起的。

很多有机物都容易与臭氧发生反应。

例如臭氧对水溶性染料、蛋白质、氨基酸、有机氨及不饱和化合物、酚和芳香族衍生物以及杂环化合物、木质素、腐殖质等有机物有强烈的氧化降解作用;还有强烈的杀菌、消毒作用。

臭氧氧化的优点:(1)臭氧能氧化其它化学氧化,生物氧化不易处理的污染物,对除臭、脱色、杀菌、降解有机物和无机物都有显著效果(2)污水经处理后污水中剩余的臭氧易分解,不产生二次污染,且能增加水中的溶解氧(3)制备臭氧利用空气作原料,操作简便。

工业上采用高压(1.5—3万伏)高频放电制取臭氧,通常制得的是含1—4%臭氧的混合气体,称为臭氧化气体。

三实验装置器材与药品
设备与器材:
(1)臭氧发生器 1台
(2)臭氧氧化反应器 1套,如无现成的需自行安装代替
500mL锥形瓶3个,与锥形瓶配套的橡皮塞3个
(3)医用乳胶管,与乳胶管配套的玻璃管
(4)气体转子流量计 1个 (5)酸滴管(50mL ) 1个
(6)气体吸收瓶(如无现成的,可用锥形瓶代替) 500mL 锥形瓶2个 (7)量筒100mL 1个 (8)洗气瓶1000mL 2个 材料药品:
(1)配制含酚废水,含酚浓度50—100mg/L ,供除酚实验用。

(2)配制印染废水,含染料10—20mg/L ,供脱色用(亚甲蓝)
(3)2% KI 溶液:称取20克分析纯碘化钾溶于1升新煮沸并冷却的蒸馏水中,贮于棕色瓶中。

(4)硫代硫酸钠标准贮备液:称取24.8克Na 2S 2O 3·5H 2O ,溶于煮沸并放冷的蒸馏水中,用水稀释至1000mL ,并贮于棕色瓶中备用,其浓度应为0.100mol/L ,必须标定。

标定:在碘量瓶中(250mL)加入1克碘化钾及50mL 纯水,用移液管移取20.00mL 重铬酸钾标准溶液(0.100mol/L 6
1K 2Cr 2O 7)加入碘量瓶中,并加入5 mL 硫酸(6mol/L 2
1
H 2SO 4),暗处静置5min 后,用硫代硫酸钠溶液滴定至淡黄色,加入1mL 淀粉溶液,继续滴定至蓝色刚好消失为止。

记录用量
227223223
20.00
K Cr O Na S O Na S O C C V ⨯=
(5)硫代硫酸钠标准使用液:将上述标准贮备液稀释为0.005mol/L 的标准使用液。

此溶液1mL 相当于120μg 臭氧,临前用配制。

(6)1%淀粉指示剂
(7)碘标准贮备液:称取13.0克碘及40克碘化钾溶于纯水中,稀释至1000mL ,用砂芯漏斗过滤,贮于棕色瓶中。

标定:准确移取该溶液25.00mL 于碘量瓶中加水至150mL ,用0.100mol/L 硫代硫酸钠标准溶液滴定至淡黄色,加入1mL 淀粉溶液,继续滴定至蓝色刚好消失为终点。

同时作空白试验:取150mL 纯水,加0.05mL 浓度为0.100mol/L 碘标准溶液、1mL 1%淀粉溶液,用0.100mol/L 硫代硫酸钠标准溶液滴定至蓝色消失为终点。

按下式计算碘标准溶液的浓度:
01()25.000.05
V V C
C -⨯=
-
C 1——碘标准溶液的浓度,mol/L V O ——空白试验Na 2S 2O 3用量,mL
V ——滴定碘标准Na 2S 2O 3用量,mL C ——Na 2S 2O 3标准溶液的浓度
(8)碘标准溶液:取0.100mol/L 碘标准溶液临用前准确稀释为0.005mol/L 。

(9)冰醋酸 四 实验步骤
(一)测定臭氧在水中的浓度,采用碘量法
臭氧先用KI 溶液吸收,生成I 2用Na 2S 2O 3标准溶液滴定
O 3+2KI+H 2O===O 2+I 2+2KOH I 2+2Na 2S 2O 3===Na 2S 4O 6+2NaI
测定方法:
1、臭氧吸收:取400mL 2%KI 溶液于吸收瓶中,通入臭氧化气5min(400mLKI 溶液可分成两个吸收瓶串联吸收)。

2、将吸收臭氧的KI 溶液(2%)溶液合并于500mL 锥形瓶中,用冰醋酸酸化调pH ≤2用0.005mol/LNa 2S 2O 3标准溶液滴定至淡黄色时,再加入1mL1%淀粉指示剂,此时溶液为蓝色,再迅速滴定至蓝色消失为终点。

3、空白试验:取400mL KI(2%)溶液,加入冰醋酸,调pH ≤2和加入1mL1%淀粉溶液,进行空白试验(空白试验可能是正值,可能是负值)。

(1)如出现蓝色,用0.005mol/L Na 2S 2O 3滴定至蓝色消失记录用量。

(2)如不出现蓝色,用0.005mol/L 碘溶液滴至蓝色刚出现,记录用量。

水中臭氧浓度的计算:
3120()241000
V V C C V
±⨯⨯⨯=
30C ——水中臭氧浓度,mg/L
V 1——水样滴定时所用Na 2S 2O 3标准溶液的体积,mL
V 2——空白滴定时所用Na 2S 2O 3标准溶液或碘标准溶液的体积,mL 若用Na 2S 2O 3滴定剂(V 1-V 2) 若用I 2液滴定则(V 1+V 2) V ——水样体积,mL
C ——标准滴定液的浓度(即Na 2S 2O 3的标准浓度)
注:①盛水样的洗气瓶,吸收瓶使用前要用臭氧水进行浸泡。

②臭氧吸收实验,检查臭氧吸收效果。

可用润湿的KI —淀粉试纸检查。

③若空白试验用0.005mol/L 碘标准溶液滴定时,则在计算臭氧浓度时应加空白所用去的毫升数。

若碘标准溶液的浓度与硫代硫酸钠标准溶液的浓度不一致时,则(V 1+V 2)应改为(223
2
12Na S O I V C V C ⨯+⨯)。

(二)臭氧氧化实验
1、维持恒定的空气流量和电压条件不变,将臭氧化气通入混合反应器中,同时通入已知浓度的含酚或含印染废水中,调节废水或臭氧流量,通入臭氧5-10min。

测量水中含酚浓度或印染废水的COD cr或色度,求降解COD、色度的百分率。

2、以COD cr或色度为纵坐标,通入臭氧量为横坐标作图可得降解曲线。

五结果与讨论
1、臭氧测定时空白试验的目的是什么?空白试验为什么可能有正值和负值?
2、限于时间关系,本实验臭氧氧化只作了臭氧脱色和降解酚的实验,就你所学知识,试预测臭氧在污水处理中主要有哪几个方面的应用及其发展前景?。

相关文档
最新文档