【问题】211二次根式1

合集下载

二次根式知识点及典型例题(含答案)

二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。

练习1、x为何值时,下列各式有意义。

【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。

二次根式及经典习题与答案

二次根式及经典习题与答案

二次根式及经典习题与答案二次根式的知识点汇总二次根式的概念是指形如√a的式子,其中被开方数可以是数、单项式、多项式、分式等代数式。

需要注意的是,因为负数没有平方根,所以当a<0时,二次根式无意义。

为了使二次根式有意义,只需要满足被开方数大于或等于零,即a≥0.此外,二次根式的非负性也是一个重要的知识点,即√a表示a的算术平方根,且当a≥0时,√a是一个非负数。

二次根式的性质包括:一个非负数的算术平方根的平方等于这个非负数;一个数的平方的算术平方根等于这个数的绝对值。

需要注意的是,当被开方数是负数时,需要先将其化为绝对值形式,再根据绝对值的意义进行化简。

综上所述,二次根式的知识点包括概念、取值范围、非负性、性质等。

在解题时,需要注意化简时的符号变化和取值范围的限制。

4.当x满足什么条件时,(1-x)²是一个二次根式。

5.在实数范围内分解因式:x⁴-9=(x²+3)(x²-3),x²-22x+2=(x-11-√119)(x-11+√119)。

6.若4x²=2x,则x的取值范围是x=0或1/2.7.已知(x-2)²=2-x,则x的取值范围是x=1-√2或1+√2.8.化简:x²-2x+1÷(x-1),结果是x-1.9.当1≤x≤5时。

10.把a-√a的根号外的因式移到根号内,等于√a(a-1)。

11.使等式(x-1)²+x-5=。

成立的根号外的因式是x-1.12.若a-b+1和a+2b+4互为相反数,则(a-b)²=4.13.在式子x²,2,y+1(y=-2),-2x(x²+1),x+y中,二次根式有3个。

14.下列各式一定是二次根式的是a²+1.15.若2/a-7/a³=2/a²-a,则(2-a)²-(a-3)等于1-2a。

16.若A=√(a²+4)/2,则A=(a+2)/2.17.若a≤1,则(1-a)³化简后为1-a³。

人教版新课标初中数学2二次根式学案

人教版新课标初中数学2二次根式学案

人教版新课标初中数学2二次根式学案16.1《二次根式(1)》一、警句:双重非负是首要,根号平方就去掉。

二、课前展示:复习平方根有关概念三、学习目标:1、理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.四、检查预习情况什么是算数平方根?说出0、25、36、10的算数平方根是什么?五、小组讨论、合作探究:探究(一)1、知识:如3、10、4,0都是一些非负数的算术平方根.像这样6一些非负数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如的式子叫做二次根式,“”称为.例如:形如、、是二次根式。

形如、、不是二次根式。

应用举例1例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、、某某(某>0)、0、42、-2、1、某y(某≥0,y≥0).某y解:二次根式有:;不是二次根式的有:例2.当某是多少时,3某1在实数范围内有意义?解:由得:当时,3某1在实数范围内有意义.(3)注意:1、形如a(a≥0)的式子叫做二次根式的概念;2、利用“a(a≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

探究(二)解决下列问题。

例3.当某是多少时,2某3+例4(1)已知y=2某+某2+5,求(2)若a1+b1=0,求a2004+b2004的值.六、展示汇报、质疑答疑:七、拓展延伸:(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?-731在实数范围内有意义?某1某的值.y7某某41681某(2)、填空题1.形如________的式子叫做二次根式.2.面积为5的正方形的边长为________.七、目标回应:1、_______________________________________2、九、作业:必作题:综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?2.若3某+某3有意义,则某2=_______.3.使式子(某5)2有意义的未知数某有()个.A.0B.1C.2D.无数4.已知a、b为实数,且a5+2102a=b+4,求a、b的值选作题:1、若a1+b1=0,求a2004+b2004的值.2、已知点A(某,y)在第一象限,且的坐标是___________.十、板书设计16.1二次根式1、二次根式:例1:十一、课后反思:16.1《二次根式(2)》一、警句:双重非负是首要,根号平方就去掉。

100道二次根式含答案 (2)

100道二次根式含答案 (2)

100道二次根式题目及答案第一部分:简单题(共50题)1. $\\sqrt{9}$答案:32. $\\sqrt{25}$答案:53. $\\sqrt{81}$答案:94. $\\sqrt{64}$答案:85. $\\sqrt{100}$答案:106. $\\sqrt{121}$答案:11答案:128. $\\sqrt{169}$ 答案:139. $\\sqrt{196}$ 答案:1410. $\\sqrt{225}$ 答案:1511. $\\sqrt{256}$ 答案:1612. $\\sqrt{289}$ 答案:1713. $\\sqrt{324}$ 答案:18答案:1915. $\\sqrt{400}$ 答案:2016. $\\sqrt{441}$ 答案:2117. $\\sqrt{484}$ 答案:2218. $\\sqrt{529}$ 答案:2319. $\\sqrt{576}$ 答案:2420. $\\sqrt{625}$ 答案:25答案:2622. $\\sqrt{729}$ 答案:2723. $\\sqrt{784}$ 答案:2824. $\\sqrt{841}$ 答案:2925. $\\sqrt{900}$ 答案:3026. $\\sqrt{961}$ 答案:3127. $\\sqrt{1024}$ 答案:32答案:3329. $\\sqrt{1156}$ 答案:3430. $\\sqrt{1225}$ 答案:3531. $\\sqrt{1296}$ 答案:3632. $\\sqrt{1369}$ 答案:3733. $\\sqrt{1444}$ 答案:3834. $\\sqrt{1521}$ 答案:39答案:4036. $\\sqrt{1681}$ 答案:4137. $\\sqrt{1764}$ 答案:4238. $\\sqrt{1849}$ 答案:4339. $\\sqrt{1936}$ 答案:4440. $\\sqrt{2025}$ 答案:4541. $\\sqrt{2116}$ 答案:46答案:4743. $\\sqrt{2304}$ 答案:4844. $\\sqrt{2401}$ 答案:4945. $\\sqrt{2500}$ 答案:5046. $\\sqrt{2601}$ 答案:5147. $\\sqrt{2704}$ 答案:5248. $\\sqrt{2809}$ 答案:53答案:5450. $\\sqrt{3025}$答案:55第二部分:中等题(共25题)51. $\\sqrt{10} + \\sqrt{2}$答案:$\\sqrt{10} + \\sqrt{2}$52. $\\sqrt{5} + \\sqrt{20}$答案:$\\sqrt{5} + 2\\sqrt{5} = 3\\sqrt{5}$53. $\\sqrt{15} + \\sqrt{12}$答案:$\\sqrt{15} + \\sqrt{12} = \\sqrt{15} + 2\\sqrt{3}$ 54. $\\sqrt{7} - \\sqrt{8}$答案:$\\sqrt{7} - \\sqrt{8}$55. $\\sqrt{9} - \\sqrt{6}$答案:$\\sqrt{9} - \\sqrt{6} = 3 - \\sqrt{6}$答案:$\\sqrt{26} + \\sqrt{14}$57. $\\sqrt{30} - \\sqrt{10}$答案:$\\sqrt{30} - \\sqrt{10}$58. $\\sqrt{5} \\cdot \\sqrt{10}$答案:$\\sqrt{5} \\cdot \\sqrt{10} = \\sqrt{50}$59. $\\sqrt{10} \\cdot \\sqrt{2}$答案:$\\sqrt{10} \\cdot \\sqrt{2} = 2\\sqrt{5}$60. $\\sqrt{18} \\cdot \\sqrt{3}$答案:$\\sqrt{18} \\cdot \\sqrt{3} = 3\\sqrt{6}$61. $\\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{32} - \\sqrt{8} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$ 62. $\\sqrt{24} - \\sqrt{6}$答案:$\\sqrt{24} - \\sqrt{6} = 4\\sqrt{6} - \\sqrt{6} = 3\\sqrt{6}$答案:$(\\sqrt{2} + \\sqrt{3})^2 = 2 + 2\\sqrt{2}\\sqrt{3} + 3 = 5 +2\\sqrt{6}$64. $(\\sqrt{2} - \\sqrt{3})^2$答案:$(\\sqrt{2} - \\sqrt{3})^2 = 2 - 2\\sqrt{2}\\sqrt{3} + 3 = 5 - 2\\sqrt{6}$65. $(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3})$答案:$(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3}) = 2 - 3 = -1$66. $(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6})$答案:$(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6}) = 5 - 6 = -1$67. $3\\sqrt{2}(\\sqrt{2} - \\sqrt{3})$答案:$3\\sqrt{2}(\\sqrt{2} - \\sqrt{3}) = 3\\sqrt{2} \\cdot \\sqrt{2} -3\\sqrt{2} \\cdot \\sqrt{3} = 6 - 3\\sqrt{6}$68. $(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6})$答案:$(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6}) = \\sqrt{2\\cdot 5} \\cdot \\sqrt{3\\cdot 6} = \\sqrt{10} \\cdot \\sqrt{18} = \\sqrt{180}$69. $\\frac{\\sqrt{8}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{8}}{\\sqrt{2}} = \\sqrt{4} = 2$70. $\\frac{\\sqrt{15}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{15}}{\\sqrt{5}} = \\sqrt{3}$71. $\\frac{\\sqrt{18}}{\\sqrt{6}}$答案:$\\frac{\\sqrt{18}}{\\sqrt{6}} = \\sqrt{3}$72. $\\frac{\\sqrt{50}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{50}}{\\sqrt{2}} = \\sqrt{25} = 5$73. $\\frac{\\sqrt{35}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{35}}{\\sqrt{5}} = \\sqrt{7}$74. $\\frac{\\sqrt{40}}{\\sqrt{8}}$答案:$\\frac{\\sqrt{40}}{\\sqrt{8}} = \\sqrt{5}$75. $\\frac{\\sqrt{72}}{\\sqrt{18}}$答案:$\\frac{\\sqrt{72}}{\\sqrt{18}} = \\sqrt{4} = 2$第三部分:困难题(共25题)76. $\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6}$答案:$\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6} = \\sqrt{6} + \\sqrt{6} = 2\\sqrt{6}$答案:$\\sqrt{7} \\cdot \\sqrt{11} - \\sqrt{77} = \\sqrt{7\\cdot11} - \\sqrt{77} = \\sqrt{77} - \\sqrt{77} = 0$78. $(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2$答案:$(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2 =4\\sqrt{3}\\sqrt{5} = 4\\sqrt{15}$79. $(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2$答案:$(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2 =4\\sqrt{2}\\sqrt{5} = 4\\sqrt{10}$80. $\\sqrt{2\\sqrt{2}}$答案:$\\sqrt{2\\sqrt{2}} = \\sqrt{\\sqrt{2^2}\\sqrt{2}} =\\sqrt{\\sqrt{4}\\sqrt{2}} = \\sqrt{2}\\sqrt{2} = 2$81. $\\sqrt{3\\sqrt{3}}$答案:$\\sqrt{3\\sqrt{3}} = \\sqrt{\\sqrt{3^2}\\sqrt{3}} =\\sqrt{\\sqrt{9}\\sqrt{3}} = \\sqrt{3}\\sqrt{3} = 3$82. $\\sqrt{5\\sqrt{5}}$答案:$\\sqrt{5\\sqrt{5}} = \\sqrt{\\sqrt{5^2}\\sqrt{5}} =\\sqrt{\\sqrt{25}\\sqrt{5}} = \\sqrt{5}\\sqrt{5} = 5$答案:$(\\sqrt{5} + \\sqrt{3})^2 + 2\\sqrt{15} = 5 + 3 + 2\\sqrt{15} = 8 + 2\\sqrt{15}$84. $(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6}$答案:$(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6} = 2 - 2\\sqrt{2}\\sqrt{3} + 3 + 2\\sqrt{6} = 5 + 2\\sqrt{6}$85. $3\\sqrt{2} - \\sqrt{8}$答案:$3\\sqrt{2} - \\sqrt{8} = 3\\sqrt{2} - 2\\sqrt{2} = \\sqrt{2}$86. $2\\sqrt{3} + \\sqrt{12}$答案:$2\\sqrt{3} + \\sqrt{12} = 2\\sqrt{3} + 2\\sqrt{3} = 4\\sqrt{3}$87. $\\sqrt{8} + \\sqrt{72}$答案:$\\sqrt{8} + \\sqrt{72} = 2\\sqrt{2} + 6\\sqrt{2} = 8\\sqrt{2}$88. $\\sqrt{5}\\sqrt{10} - \\sqrt{10}$答案:$\\sqrt{5}\\sqrt{10} - \\sqrt{10} = \\sqrt{5\\cdot10} - \\sqrt{10} = \\sqrt{50} - \\sqrt{10} = 5\\sqrt{2} - \\sqrt{10}$89. $\\sqrt{3}\\sqrt{6} + \\sqrt{18}$答案:$\\sqrt{3}\\sqrt{6} + \\sqrt{18} = \\sqrt{3\\cdot6} + \\sqrt{18} =\\sqrt{18} + \\sqrt{18} = 2\\sqrt{18} = 6\\sqrt{2}$90. $\\sqrt{16} - \\sqrt{32}$答案:$\\sqrt{16} - \\sqrt{32} = 4 - 4\\sqrt{2} = 4(1 - \\sqrt{2})$91. $\\sqrt{12} - \\sqrt{20} + \\sqrt{5}$答案:$\\sqrt{12} - \\sqrt{20} + \\sqrt{5} = 2\\sqrt{3} - 2\\sqrt{5} + \\sqrt{5} = 2\\sqrt{3} - \\sqrt{5}$92. $\\sqrt{7}\\sqrt{35} - \\sqrt{7}$答案:$\\sqrt{7}\\sqrt{35} - \\sqrt{7} = \\sqrt{7\\cdot35} - \\sqrt{7} =\\sqrt{245} - \\sqrt{7}$93. $\\sqrt{50} + \\sqrt{200} - \\sqrt{8}$答案:$\\sqrt{50} + \\sqrt{200} - \\sqrt{8} = 5 + 10\\sqrt{2} - 2\\sqrt{2} = 5 + 8\\sqrt{2}$94. $5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32}$答案:$5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32} = 5\\sqrt{2} - 2\\cdot3\\sqrt{2} + 4\\sqrt{2} = 9\\sqrt{2}$95. $\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8} = 6\\sqrt{2} -3\\sqrt{2} + 4\\sqrt{2} - 2\\sqrt{2} = 5\\sqrt{2}$96. $\\sqrt{3}(\\sqrt{15} - \\sqrt{5})$答案:$\\sqrt{3}(\\sqrt{15} - \\sqrt{5}) = \\sqrt{3}\\sqrt{15} -\\sqrt{3}\\sqrt{5} = \\sqrt{45} - \\sqrt{15} = 3\\sqrt{5} - \\sqrt{15}$97. $\\sqrt{2}(\\sqrt{16} - \\sqrt{8})$答案:$\\sqrt{2}(\\sqrt{16} - \\sqrt{8}) = \\sqrt{2}\\cdot4\\sqrt{2} - \\sqrt{2}\\cdot2\\sqrt{2} = 8 - 4\\sqrt{2} = 4(2 - \\sqrt{2})$98. $\\sqrt{5}(\\sqrt{12} + \\sqrt{3})$答案:$\\sqrt{5}(\\sqrt{12} + \\sqrt{3}) = \\sqrt{5}\\cdot2\\sqrt{3} + \\sqrt{5}\\sqrt{3} = 2\\sqrt{15} + \\sqrt{15} = 3\\sqrt{15}$99. $\\sqrt{7}(\\sqrt{7} + \\sqrt{11})$答案:$\\sqrt{7}(\\sqrt{7} + \\sqrt{11}) = \\sqrt{7}\\cdot\\sqrt{7} + \\sqrt{7}\\sqrt{11} = 7 + \\sqrt{77}$100. $\\sqrt{8}(\\sqrt{6} - \\sqrt{2})$答案:$\\sqrt{8}(\\sqrt{6} - \\sqrt{2}) = \\sqrt{8}\\cdot2\\sqrt{2} - \\sqrt{8}\\cdot\\sqrt{2} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$结束语本文共提供了100道二次根式题目及其答案。

二次根式经典例题

二次根式经典例题

【二次根式典型例题】 一. 利用二次根式的双重非负性来解题(0a (a ≥0),即一个非负数的算术平方根是一个非负数。

) 1.下列各式中一定是二次根式的是( )。

 A 、3 B 、x ; C 、12x ; D 、1x 2.x 取何值时,下列各式在实数范围内有意义。

(1);2x (2)121x (3)xx 21 (4)45xx (5)1 21 3xx (6)若1)1(xxxx ,则x 的取值范围是 (7)若1 3 13 xxxx ,则x 的取值范围是 。

3.若13m 有意义,则m 能取的最小整数值是 4.若20m 是一个正整数,则正整数m 的最小值是________. 5..当x 为何整数时,1110x 有最小整数值,这个最小整数值为 。

 6. 若20042005aaa 2 2004a =_____________. 7.若433xxy yx 8. 设m 、n 满足3 2 9922mmmn ,则mn= 。

9. 若m 适合关系式35223199199xymxymxyxym 的值. 10.若三角形的三边a 、b 、c 满足3442 baa=0,则第三边c 的取值范围是 11.方程0|84|myxx ,当0y 时,m 的取值范围是( ) A 、10m B 、2m C 、2m D 、2m 12. 下列各式不是最简二次根式的是( ) A. 21a B. 21x B. 21x C. C. 24 b  D. 0.1y 13. 已知0xy 2y x x __________。

初三全科目课件教案习题汇总初三全科目课件教案习题汇总 语文语文 数学数学 英语英语 物理物理 化学化学二.利用二次根式的性质2a=|a|=)0()0(0)(aaabaa(即一个数的平方的算术平方根等于这个数的绝对值)来解题 1.已知233xx x3x ,则( )A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0 2.已知a<b ,化简二次根式ba3( )A .aba B .aba C .aba D .aba 3.若化简若化简|1-x|-1682xx 的结果为2x-5则x 的取值范围是()A 、x 为任意实数 B 、1≤x ≤4 C 、x ≥1 D 、x ≤4 4.已知a ,b ,c 为三角形的三边,则2 22)()()(acbacbcba = 5. 当-3<x<5时,化简25109622xxxx= 。

二次根式的化简与计算

二次根式的化简与计算

二次根式的化简与计算在数学中,二次根式是指形如√a的表达式,其中a是一个非负实数。

化简与计算二次根式是我们常见的数学操作之一,本文将介绍二次根式的化简与计算方法。

一、二次根式的化简化简二次根式是将√a表示为最简形式的过程,即将根号下的数a分解成互质因式相乘的形式。

1. 如何判断是否可以化简?二次根式可以化简,当且仅当根号下的数a可以分解成一个完全平方数乘以一个非完全平方数的形式,即a=b²×c,其中b是一个整数,c是一个非完全平方数。

我们可以通过分解质因数的方法判断是否可以化简。

2. 化简方法若根号下的数a可以化简,则√a可以表示为√(b²×c),进一步可以分解为b√c。

其中b是一个整数,c是一个非完全平方数。

例如,化简√75:首先,我们将75分解为3×5×5,可以看出5是一个完全平方数,而3不是完全平方数。

因此,√75=√(5²×3)=5√3。

二、二次根式的计算计算二次根式是指对两个带有根号的数进行运算,一般包括加法、减法、乘法和除法。

下面将分别介绍这些运算的方法。

1. 加减法运算对于√a±√b,只有当a和b相等时,才可以进行加减运算。

此时,结果为2√a(或者2√b)。

例如,计算√5+√5:由于根号下的数相等,√5+√5=2√5。

2. 乘法运算对于√a×√b,可以进行乘法运算,结果为√(a×b)。

例如,计算√3×√5:√3×√5=√(3×5)=√15。

3. 除法运算对于√a÷√b,可以进行除法运算,结果为√(a÷b)。

例如,计算√8÷√2:√8÷√2=√(8÷2)=√4=2。

综上所述,二次根式的化简与计算方法就是将根号下的数分解为互质因式相乘的形式,化简为最简形式。

化简后的二次根式可以进行加减乘除等基本运算。

二次根式的化简与运算规律归纳

二次根式的化简与运算规律归纳

二次根式的化简与运算规律归纳二次根式是指具有平方根符号的数学表达式,常见形式为√a。

在数学中,化简和运算是我们经常需要进行的操作,对于二次根式也不例外。

本文将就二次根式的化简和运算规律进行归纳,并给出相应的例子加以说明。

一、二次根式的化简规律1. 同底数的二次根式可以进行简化。

当两个二次根式的底数相同时,可将它们合并为一个二次根式,并将系数相加。

例如:√2 + √2 = 2√22. 二次根式的乘积与商可以进行简化。

当两个二次根式相乘时,可以将它们的底数相乘并将系数相乘。

例如:√3 × √5 = √15当两个二次根式相除时,可以将它们的底数相除并将系数相除。

例如:√6 ÷ √2 = √33. 二次根式的分子和分母可以进行有理化。

对于分子或分母含有二次根式的分式,可以通过乘以一个适当的二次根式,使分子或分母的二次根式被消去。

例如:(4√2)/(√3) = (4√2) × (√3)/(√3) = 4√6/3二、二次根式的运算规律1. 二次根式的加减法规律当两个二次根式的底数和指数都相同时,可直接对其系数进行加减运算。

例如:3√2 + 2√2 = 5√2当两个二次根式的底数相同但指数不同时,不能直接进行运算,需要将它们化为相同指数的形式后再进行计算。

例如:√2 + √8 = √2 + 2√2 = 3√22. 二次根式的乘法规律当两个二次根式相乘时,可以将它们的底数相乘并将系数相乘,指数保持不变。

例如:√2 × √3 = √(2 × 3) = √63. 二次根式的除法规律当两个二次根式相除时,可以将它们的底数相除并将系数相除,指数保持不变。

例如:√6 ÷ √2 = √(6 ÷ 2) = √3三、二次根式的实际应用二次根式在实际生活和学习中有着广泛的应用。

例如,在几何学中,二次根式被用于计算圆的周长和面积,以及三角形的斜边长度等。

此外,在物理学和工程学中,二次根式也常用于计算物体的速度、加速度、电流等。

二次根式的化简方法

二次根式的化简方法

二次根式的化简方法二次根式在数学中是一个常见的概念,它们经常出现在代数、几何等各个领域的数学问题中。

对于二次根式的化简,很多学生常常感到困惑,不知道如何下手。

其实,二次根式的化简并不难,只要掌握一些基本的方法和技巧,就能轻松应对各种化简问题。

本文将介绍几种常见的二次根式化简方法,希望能帮助读者更好地理解和掌握这一知识点。

首先,我们来看一下二次根式的定义。

一般来说,形如√a的数称为二次根式,其中a为一个非负实数。

如果a是一个非负实数,那么√a就是一个实数;如果a是一个负数,那么√a就是一个虚数。

在实际运用中,我们经常需要对二次根式进行化简,使其更加简洁和方便计算。

下面就介绍几种常见的化简方法。

第一种方法是利用因式分解。

对于形如√ab的二次根式,我们可以将其化简为√a乘以√b。

这是因为二次根式具有乘法性质,即√ab = √a √b。

例如,对于√12,我们可以将其化简为√4乘以√3,即2√3。

这样一来,我们就成功地将二次根式化简为一个更加简洁的形式。

第二种方法是利用有理化的技巧。

有时候,我们会遇到形如a+ √b的二次根式,这时可以利用有理化的方法进行化简。

有理化的基本思想是,通过乘以适当的形式为1的数,将二次根式中的根号消去。

例如,对于√3 + 2,我们可以将其有理化为(√3 + 2)乘以(√3 2),这样就可以消去根号,得到一个更加简洁的形式。

第三种方法是利用配方法。

有时候,我们会遇到形如√a + √b的二次根式,这时可以利用配方法进行化简。

配方法的基本思想是,通过加减适当的数,将二次根式中的根号消去。

例如,对于√5 +√3,我们可以将其配成(√5 + √3)乘以(√5 √3),这样就可以消去根号,得到一个更加简洁的形式。

总的来说,化简二次根式并不是一件困难的事情,只要掌握了一些基本的方法和技巧,就能轻松应对各种化简问题。

希望本文介绍的几种化简方法能够帮助读者更好地理解和掌握二次根式的化简,从而在数学学习和解题中游刃有余。

初中数学知识归纳二次根式的化简及运算

初中数学知识归纳二次根式的化简及运算

初中数学知识归纳二次根式的化简及运算初中数学知识归纳:二次根式的化简及运算二次根式是初中数学中一个重要的概念,它在解方程、图形的性质等各个方面都有广泛的应用。

本文将对二次根式的化简和运算进行归纳总结,并提供相应的例题和解答,以帮助读者更好地理解和掌握这一知识点。

一、二次根式的化简1. 特殊二次根式的化简对于平方数a,可将其开平方后得到一个整数,即√(a^2) = a。

例如,√(4^2) = 4,√(9^2) = 9。

这类二次根式已经是化简到最简形式。

2. 拆分因式法的应用对于二次根式中的非完全平方数,可以利用拆分因式的方法进行化简。

例如,√3 = √(1 × 3) = √1 × √3 = √3。

再例如,√15 = √(3×5) = √3 ×√5 = √15。

3. 有理化分母有时候我们需要将二次根式的分母有理化,即将根号去掉。

例如,对于分母为√2的分式,可以用有理数2来乘以分式的分子和分母,即(3√2)/(√2) = (3√2 × 2)/(√2 × 2) = (6√2)/2 = 3√2。

二、二次根式的运算1. 加减运算当二次根式的根号内部相同,只是前面的系数不同,可以进行加减运算。

例如,√2 + 2√2 = 3√2,3√5 - 2√5 = √5。

2. 乘法运算二次根式的乘法运算遵循乘法分配律。

例如,(√3 + √2) × (√3 - √2) = (√3)^2 - (√2)^2 = 3 - 2 = 1。

3. 除法运算二次根式的除法运算可以进行有理化分母的处理,将分母有理化之后再进行运算。

例如,(4√3)/(2√2) = (4√3 × 2)/(2√2 × 2) = (8√3)/4 = 2√3。

三、例题与解答1. 化简以下的二次根式:√(12) + 5√(27) - √(48)解:√(12) = √(4 × 3) = √4 × √3 = 2√35√(27) = 5√(9 × 3) = 5√9 × √3 = 15√3√(48) = √(16 × 3) = √16 × √3 = 4√3将这些结果代入原式,得到:2√3 + 15√3 - 4√3 = 13√32. 计算以下的二次根式:(√6 + √2) × (√6 - √2)解:根据乘法公式,展开后得到:(√6 + √2) × (√6 - √2) = (√6)^2 - (√2)^2 = 6 - 2 = 43. 计算以下的二次根式:(3√5 - √3)/(2√5)解:利用有理化分母的方法,得到:(3√5 - √3)/(2√5) = (3√5 - √3) × (2√5)/(2√5 × 2) = (6√25 - 2√15)/(4√10) = (6 × 5 - 2√15)/(4√10) = (30 -2√15)/(4√10) = (15 - √15)/(2√10)通过以上的例题与解答,我们可以加深对二次根式化简和运算的理解。

数学学练优五年级答案

数学学练优五年级答案

数学学练优五年级答案【篇一:人教版五年级语文上册配套练习册答案及提示】lass=txt>垛庄镇麦腰小学五年级1 窃读记我会找胸胖胆肿胎胭胳膊窗窥窟窝室穿突帘我会写充足饭碗屋檐书柜知趣我会比略(二)1.“高尔基没办法,只好到月亮下看书或者爬到神龛底下的凳子上,借着长明灯的光去读书。

”“他在灯下看书入了迷,忘记给火炉上的茶壶加水,等到发现时那个茶壶已经烧坏了。

”“只要她答应让我看书,我就不提出控告。

” 2.略 3.爱读书的高尔基 4.c2 小苗与大树的对话我会填绿叶绿林旺盛盛饭传记传说我会说 1.中西贯通古今贯通文理贯通理解略 2.略我会读 1.(1)到处都是,形容及其常见。

(2)比喻事物不受限制地流行。

2.略 3.略 4略3 走遍天下书为侣我会写盒子娱乐某种零用钱我会比略我会填 1.l ling 雨五① 2.s song 讠②我会选 1.作 2.坐 3.座 4.座我会读(一)1.一遍又一遍思考编下去一些片段为什么喜欢它们其他部分列个单子想象 2.动脑思考,编故事,回头欣赏优美片段。

然后,读其他部门,列单子,想象作者的生活经历。

(二)1.毅力生活风光大海艰难货物 2.比喻把书看成非凡的战舰,把书看成神奇的车骑。

3.书可以把我们带到浩瀚的天地,也可以带我们领略人世的真谛,它可以让穷人变成精神上的富人,而且它还装载了人类灵魂中全部的美丽。

所以书是神奇的,我们要热爱读书!4 我的“长生果”我会填流光溢彩悲惨宽大沉甸甸清冷蓝色我会写一心一意如火如荼百战百胜能屈能伸欣欣向荣津津乐道振振有词蒸蒸日上我会读 1.指超出同类,形容超群出众。

2. ①有计划地读书;②猜读。

第一单元综合练习二、伴侣酸楚鼓励囫囵吞枣炒菜忽略支撑毫不犹豫理由惧怕三、踮脚店主零钱雪花贪婪禁不住盒子脸盆赶趟流淌某处谋略屋檐瞻仰偷窃急切四、1.不求甚解 2.与众不同 3.借鉴 4.滚瓜烂熟五、辘辘瓜熟言而喻不同一律欢合求甚解念念2六、1.白首方悔读书迟 2.心到眼到口到 3.多看书 4.书籍七、1.因为虽然但是因此 2.(1)比喻意思是说书是人类的精神食粮,是人类文明延续的营养,充分表达了书与人类文明发展的关系。

(完整版)七年级数学下册第二十一章二次根式有答案

(完整版)七年级数学下册第二十一章二次根式有答案

1.F列说法正确的是()若■、aa,则a<0 C. a4b8a2b42. 二次根式3.2y 2x4.C.5. 3;2(m 3)的值是(B. 2、3y| .x2(x是二次根式,则'ba, b均为非负数a> 0, b>0 a,卜一章二次根式单元测试若;a2 a,则a 05的平方根是C. 2、20)的结果是(C. 2x yb应满足的条件是B . a, b同号D . - 0b3已知a<b,化简二次根式a b的正确结果是a ab B . a abC. a.abD. a ab6. 把m —根号外的因式移到根号内,得(\ mC. D . ■- m7 . F列各式中,一定能成立的是(A. .(2.5)2( 2.5)2(a)2 c. 2x 2x 1 =x-1若x+y=0,则下列各式不成立的是2 2小x y 0 B. VxC. .x2 y20D. 、、x9.当x3时,二次根m :2x 25x 7式的值为、5,贝U m 等于()24B . ± 2C . 2若 x 5不是二次根式,则 x 的取值范围是 L2已知 a<2, (a 2)____ 。

当x= _______ 时,二次根式• x 1取最小值,其最小值为 ____________ 。

计算: 12 . 27 .18 _____ ; (3 48 4、27 2.一 3) ___若一个正方体的长为 2.6cm ,宽为,3cm ,高为.2cm ,则它的体积 3___ c m 。

y 、x3 .3 x 4,则 x y3的整数部分是a ,小数部分是 b ,^U •一 3a b2 1'..3 x3 1,71T x、2 B .C .D. .. 510,则x 等于(A .10.A .11.12.13.14.15. 为_ 16. 17.18.19. 20.21.23.已知a , b ,c 为三角形的三边,则(a b c)2. (b c a)2.(b c a)222.(5,48 6、. 274, 15) .33. x 24. '18 (、2 1) (2)..m(m 3) m ? m 3,则m 的取值范围是1 1 (1)(3)25. J" 1 27('3 1)02 226 •已知:x ------------------ ,求x品1x 1的值。

二次根式专题(含答案详解)

二次根式专题(含答案详解)

数学专题 第六讲:二次根式【基础知识回顾】一、 二次根式式子a ( )叫做二次根式提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o ②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式 二、 二次根式的性质:①(a )2= (a ≥0)③= (a ≥0 ,b ≥0)④= (a ≥0, b ≥0)提醒:二次根式的性质注意其逆用:如比较23和可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化去这一方法进行:如:= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 重点考点例析考点一:二次根式有意义的条件A .x ≠3B .x <3 C .x >3 D .x ≥3(a ≥o )(a <o )思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练 1.使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12C .x≥0且x≠12 D .一切实数 解:由题意得:2x-1≠0,x≥0,解得:x≥0,且x≠12,故选:C .考点二:二次根式的性质例2 实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b .故选C .点评:二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练2.实数a ,b 在数轴上的位置如图所示,则2()a b a ++的化简结果为 .解:∵由数轴可知:b <0<a ,|b|>|a|, ∴2()a b a ++=|a+b|+a =-a-b+a=-b , 故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3.二次根式的混合运算以及负整数指数幂的性质,将各式进行化简是解题关键. 对应训练=4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0, 1+, (1)11)44x x x+=考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .80分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可. 解:2221146450-- =2(11464)(11464)50+-- =1785050⨯- =50(17850)⨯- =50128⨯=222582⨯⨯⨯=2×5×8,=80, 故选D .考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算 【聚焦中考】1.下列运算正确的是( )B .A 2(5)5-=- B .21()164--= C .x 6÷x 3=x 2 D .(x 3)2=x 52.计算:182= .0 3.计算:0(3)123-+⨯= .7【备考真题过关】 一、选择题1.要使式子2x -有意义,则x 的取值范围是( D )A .x >0B .x≥-2C .x≥2 D.x≤2 2.计算102÷=( A )A 5B .5C .52D .1023.计算:322-=( )4.已知3()(221)3m =-⨯-,则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-5 解:3()(221)3m =-⨯- 23213=⨯ 2373=⨯ 2728==,∵252836<<,∴5286<<,即5<m <6, 故选A .5.下列计算正确的是( D ) A .x 3+x 3=x 6B .m 2•m 3=m 6C .3223-=D .14772⨯=6.下列等式一定成立的是( B )A .945-=B .5315⨯=C .93=±D .2(9)9--=7.使式子有意义的x 的取值范围是( ) A . x≥﹣1 B . ﹣1≤x≤2C . x≤2D . ﹣1<x <2解:根据题意,得,解得,﹣1≤x≤2; 故选B .8.在下列各式中,二次根式的有理化因式是( )A .B .C .D .解:∵×=a ﹣b ,∴二次根式的有理化因式是:.故选:C .主要考查了二次根式的有理化因式的概念,熟练利用定义得出是解题关键. 9.下列计算错误的是( )A.B.C.D.分析:根据二次根式的乘法对A、B进行判断;根据二次根式的除法对C进行判断;根据二次根式的性质对D进行判断.解:A、=,所以A选项的计算正确;B、与不是同类二次根式,不能合并,所以B选项的计算错误;C、÷===2,所以C选项的计算正确;D、==×=2,所以D选项的计算正确.故选B.10.下列计算正确的是()A.B.C.D.分析:根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D 进行判断.解:A、与不能合并,所以A选项不正确;B、×=,所以B选项不正确;C、﹣=2=,所以C选项正确;D、÷=2÷=2,所以D选项不正确.故选C.11.下列计算或化简正确的是()A.a2+a3=a5B.C.D.分析:A、根据合并同类项的法则计算;B、化简成最简二次根式即可;C、计算的是算术平方根,不是平方根;D、利用分式的性质计算.解:A、a2+a3=a2+a3,此选项错误;B、+3=+,此选项错误;C、=3,此选项错误;D、=,此选项正确.故选D.考查了合并同类项、二次根式的加减法、算术平方根、分式的性质,解题的关键是灵活掌握有关运算法则,并注意区分算术平方根、平方根.12.下列计算正确的是()A.B.C.D.分析:根据二次根式的乘除法则,及二次根式的化简结合选项即可得出答案.解:A、•=1,故本选项正确;B、﹣≠1,故本选项错误;C、=,故本选项错误;D、=2,故本选项错误;故选A.二、填空题解:∵20n=22×5n. ∴整数n 的最小值为5. 故答案是:5.∴222a <-<,即22b <<.故答案为:22b <<.1205的结果是22的结果是2)222+⨯⨯1。

人教版九年级上册数学同步练习及答案合集

人教版九年级上册数学同步练习及答案合集

21.3 二次根式的加减同步测试题 一、选择题(本题共10小题,每题3分,共30分)
1.与 2 3 是同类二次根式的是( )
A. 18
B. 2 3
2.下列运算正确的是( )
C. 9
A. x 5x 6x B. 3 2 2 2 1
D. 27
C. 2 5 2 5
D. 5 x b x (5 b) x
( 1 3 ) (3) 2
3x y 9 y 22. 解: 5x 2 6 y
3x 5x
2y 9 y8
x y
1 3
23.原式=( 5 3 )2- ( 2 )2 =5-2 15 +3-2=6-2 15 .
( 2 7 4)2 ( 2 7 4)2 22
24.解:( 菱形的边长)2= 2
2
22,面积 1 (2 7 4)(2 7 4) 6
∴菱形的边长=
2
10
人教版九年级上册数学同步练习题及答案
25. 5
26.解:原式=(2 5 +1)( 2 1 + 3 2 + 4 3 +…+ 100 99 )
12.在 8, 12, 18, 20 中,与 2 是同类二次根式的 是

13. 5- 5 的整数部分是_________
14.计算: 12 3 3
15.方程 2 (x-1)=x+1 的解是____________.
x 1
x1
16.已知
5 2 ,则 x 的值等于

17.如图,矩形内两相邻正方形的面积分别是 2 和 6,那么矩形内阴影部分的面积

.(结果可用根号表示)
2
6
18.图 7 是由边长为 1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从 A→B →C 所走的路程为_______m.(结果保留根号)

二次根式练习题及答案

二次根式练习题及答案

二次根式练习题及答案二次根式是数学中的一个重要概念,它在解决实际问题和数学推理中起着重要的作用。

在学习二次根式的过程中,练习题是必不可少的一环。

通过练习题的反复练习,我们可以更好地理解和掌握二次根式的性质和运算规律。

下面,我将为大家提供一些二次根式的练习题及答案,希望能够对大家的学习有所帮助。

1. 化简下列二次根式:√(8)解:√(8)可以写成√(4*2),再进一步化简为√(4) * √(2)。

√(4) = 2,所以√(8) = 2√(2)。

2. 化简下列二次根式:√(18)解:√(18)可以写成√(9*2),再进一步化简为√(9) * √(2)。

√(9) = 3,所以√(18) = 3√(2)。

3. 化简下列二次根式:√(50)解:√(50)可以写成√(25*2),再进一步化简为√(25) * √(2)。

√(25) = 5,所以√(50) = 5√(2)。

4. 求下列二次根式的值:√(16)解:√(16) = 4,因为4的平方等于16。

5. 求下列二次根式的值:√(36)解:√(36) = 6,因为6的平方等于36。

6. 求下列二次根式的值:√(64)解:√(64) = 8,因为8的平方等于64。

7. 化简下列二次根式:√(27)解:√(27)可以写成√(9*3),再进一步化简为√(9) * √(3)。

√(9) = 3,所以√(27) = 3√(3)。

8. 化简下列二次根式:√(75)解:√(75)可以写成√(25*3),再进一步化简为√(25) * √(3)。

√(25) = 5,所以√(75) = 5√(3)。

9. 化简下列二次根式:√(98)解:√(98)可以写成√(49*2),再进一步化简为√(49) * √(2)。

√(49) = 7,所以√(98) = 7√(2)。

10. 求下列二次根式的值:√(100)解:√(100) = 10,因为10的平方等于100。

通过以上的练习题,我们可以发现二次根式的化简和求值方法。

二次根式的化简与运算知识点总结

二次根式的化简与运算知识点总结

二次根式的化简与运算知识点总结二次根式是指具有形如√a的数,其中a为非负实数。

在数学中,我们经常会遇到对二次根式进行化简和运算的情况。

本文将对二次根式的化简和运算的知识点进行总结和归纳。

一、二次根式的化简1. 同底数相乘:当二次根式的底数相同时,可以将它们放在一起进行运算。

例如,√2 × √3 = √(2 × 3) = √6。

2. 分解因式法:对于含有多个因式的二次根式,可以尝试将其进行因式分解,以便更好地进行化简。

例如,√(4 × 9) = √4 × √9 = 2 × 3 = 6。

3. 有理化分母:当二次根式的分母为二次根式时,可以采用有理化分母的方法。

有理化分母的原则是将分母中的二次根式进行化简,同时保持等式的相等性。

例如,√(3/√2) = √(3/√2) × (√2/√2) = √(3√2/2) = (√6)/2。

4. 化简平方根:对于平方根的二次根式,要想将其化简,需要将其表示为一个平方数的乘积。

例如,√16 = 4,√25 = 5。

二、二次根式的运算1. 加减运算:对于相同底数的二次根式,可以直接进行加减运算。

例如,√2 + √3 = √2 + √3(无法进行化简)。

2. 乘法运算:二次根式的乘法运算可以通过将底数相乘,并进行化简得到结果。

例如,√2 × √3 = √(2 × 3) = √6。

3. 除法运算:二次根式的除法运算可以通过将分子及分母都进行有理化分母的操作,并进行化简得到结果。

例如,√(2/√3) = √(2/√3) × (√3/√3) = √(2√3/3) = (√(6))/3。

4. 平方运算:对于二次根式的平方运算,可以直接将指数乘2,并进行化简。

例如,(√2)^2 = 2,(√3)^2 = 3。

通过对二次根式的化简和运算的知识点总结和归纳,我们可以更好地理解和应用这些知识。

掌握二次根式的化简和运算方法,可以帮助我们在解题过程中更加高效和准确地进行计算和推导,提高数学解题能力。

二次根式知识点总结及习题带答案

二次根式知识点总结及习题带答案

二次根式知识点总结及习题带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【基础知识巩固】一、二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

二、取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。

三、二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。

注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

四、二次根式()的性质:一个非负数的算术平方根的平方等于这个非负数。

()注:二次根式的性质公式()是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若,则,如:,.五、二次根式的性质:一个数的平方的算术平方根等于这个数的绝对值。

1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。

六、与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。

但与都是非负数,即,。

因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.七、二次根式的运算1、最简二次根式必须满足以下两个条件(1)被开方数不含分母,即被开方的因式必须是整式;(2)被开方数中不含能开得尽方的因数或因式,即被开方数中每一个因数或因式的指数都是1.2ab a·b(a≥0,b≥0);积的算术平方根的性质即乘法法则的逆用.3、除法法则:b ba a(b≥0,a>0);商的算术平方根的性质即除法法则的逆用.4、合并同类项的法则:系数相加减,字母的指数不变.5、二次根式的加减(1)二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并。

根号计算题及答案

根号计算题及答案
2?
5.已知a、b、c满足(a?)2?b?5?c?32?0
求:(1)a、b、c的值;
(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;
若不能构成三角形,请说明理由.
6.当a
1取值最小,并求出这个最小值。
7.若a,b分别表示的整数部分与小数部分,求a?1
b?4的值。
3
二次根式综合
5?1,那么m?
1
的整数部分是________。m
的值是( ) . (a) 1 (b) 5 (c)
(d) 5
14.a,b,c为有理数,且等式a?b?c??2成立,则2a+999b+1001c的值是()(a)1999(b)2000(c)2001(d)不能确定
15.已知a=2-1,b=22-6,c=-2,那么a,b,c的大小关系是()(a) abc
1.根据数的特点合理变形
例1.化简:14?65
3?
例2.化简??6
2??2
2.先化简,后求值
例3.已知:x=11
2?,y=2?3,求10
x?1?10
y?1的值
3、从整体着手
例4.已知8?x+5?x=5,求8?x)(5?x)的值
例5.已知?x2-25?x2=2,求?x2+25?x2的值
二、课堂训练
1.填空题
.先阅读理解,再回答问题:
?
2,1

?
?3,的整数部分为2

?
4,3

n为正整数)的整数部分为n。
x,小数部分是y,则x-y =______________。
三、计算
2
(1)??24?
????(2)233?(?945)

二次根式秒杀化简法

二次根式秒杀化简法

二次根式秒杀化简法二次根式是高中数学中的一个重要知识点,掌握好二次根式的化简方法可以帮助我们在解题时事半功倍。

其中,二次根式秒杀化简法是一种非常实用的方法,下面我将详细介绍这种方法的步骤和应用。

一、基本概念在介绍二次根式秒杀化简法之前,我们先来了解一下二次根式的基本概念。

1. 什么是二次根式?二次根式指的是形如√a(a≥0)或√(a+b)(a≥0,b≥0)这样的表达式。

其中,√a表示a的平方根,而√(a+b)表示a+b的平方根。

2. 什么是合并同类项?合并同类项指的是将具有相同根号内部分的二次根式合并成一个整体。

例如:√3+2√5和3√3-4√5就可以合并成为:3√3-2√5。

3. 什么是有理化?有理化指的是将分母中含有二次根式的分数转换为分母不含有二次根式的形式。

例如:1/(√2+1)可以通过乘以分子分母都为(√2-1)的分数来实现有理化。

二、二次根式秒杀化简法接下来,我们就进入正题,介绍二次根式秒杀化简法的具体步骤。

步骤一:将所有的二次根式按照大小排列,从大到小或从小到大均可。

例如:将3√5+2√10+√3+4√2按照大小从小到大排列,则为:√2+√3+2√5+2√10。

步骤二:依次将相邻的两个二次根式合并成一个整体,并用一个新的二次根式代替它们。

这个新的二次根式应该是比原来两个二次根式都要小或都要大。

例如:对于上述例子,我们可以先合并2√5和2√10,得到4√2;然后将4√2和3√5合并,得到4√2+3√5;最后将4√2+3√5和√3合并,得到4√2+3√5+ √3。

这样就完成了整个化简过程。

三、应用举例下面我们通过几个例子来演示一下如何使用二次根式秒杀化简法进行化简。

1. 化简∛(8-6∛7)首先,我们可以将3√7看成一个整体,即3√7=x,则有:∛(8-6∛7)=∛(2x³-6x)=2∛(x²-3)接下来,我们再将x²和3看成两个二次根式,并按照大小排列:2∛(x²-3)=2(√3+√x)(√x-√3)然后,我们依次将相邻的二次根式合并起来:2(√3+√x)(√x-√3)=2(x-3)=2(3√7-3)=6√7-6因此,原式化简后为6√7-6。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键字】问题
第二十一章二次根式
教材内容
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).
(3)掌握·=(a≥0,b≥0),=·;
=(a≥0,b>0),=(a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.
(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点
1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)•及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1 二次根式 3课时
21.2 二次根式的乘法 3课时
21.3 二次根式的加减 3课时
教学活动、习题课、小结 2课时
21.1 二次根式
第一课时
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用(a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如(a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“(a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y=3
x
,那么它的图象在第一象限横、•纵坐标相等的点的坐
标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
A
C
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y ,所以x 2=3.因为点在第一象限,所以

问题2:由勾股定理得
问题3:由方差的概念得 二、探索新知
,都是一些正数的算术平方根.像这样一些正数的算术平方
a ≥0)•的式子叫做
二次根式,
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0有意义吗?
老师点评:(略)
例1、1x x>0)、
、1x y
+(x ≥0,y•≥0).
分析;第二,被开方数是正数或0.
(x>0)、(x ≥0,y ≥0);不是二
1x 、1x y +.
例2.当x
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0才能有意义.
解:由3x-1≥0,得:x ≥
13
当x ≥13
三、巩固练习
教材P 练习1、2、3.
四、应用拓展
例3.当x 11x +在实数范围内有意义?
分析11
x +0和11
x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨
+≠⎩ 由①得:x ≥-32
由②得:x ≠-1
当x ≥-32且x ≠-1+11
x +在实数范围内有意义.
例4(1)已知,求x y
的值.(答案:2)
(2)=0,求a 2004+b 2004的值.(答案:
25) 五、归纳小结(学生活动,老师点评)
本节课要掌握:
1a ≥0)的式子叫做二次根式,”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P 8复习巩固1、综合应用5.
2.选用课时作业设计.
第一课时作业设计
一、选择题
1.下列式子中,是二次根式的是()
A.
C
.x
2.下列式子中,不是二次根式的是()
A

1
x
3.已知一个正方形的面积是5,那么它的边长是()
A.5 B

1
5
D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?
2.当x
是多少时,
x
+x2在实数范围内有意义?
3

4.
x有()个.
A.0 B.1 C.2 D.无数
5.已知a、b
=b+4,求a、b的值.
第一课时作业设计答案: 一、1.A 2.D 3.B
二、1
a≥0) 2
.没有
三、1.设底面边长为x,则0.2x2=1,解答:
2.依题意得:
230
x
x
+≥





3
2
x
x

≥-


⎪≠

∴当x>-3
2
且x≠0
+x2在实数范围内没有意义.
3.1 3
4.B
5.a=5,b=-4
此文档是由网络收集并进行重新排版整理.word可编辑版本!。

相关文档
最新文档