风电并网稳定性开题报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京工程学院
毕业设计开题报告
课题名称:风力发电场并网运行稳定性研究
学生姓名:李金鹏
指导教师:陈刚
所在院部:电力工程学院
专业名称:电气工程及其自动化
南京工程学院
2012年3月5日
说明
1.根据南京工程学院《毕业设计(论文)工作管理规定》,学生必须撰写《毕业设计(论文)开题报告》,由指导教师签署意见、教研室审查,系教学主任批准后实施。
2.开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。
3.毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。
4.本报告中,由学生本人撰写的对课题和研究工作的分析及描述,应不少于2000字,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。
5.开题报告检查原则上在第2~4周完成,各系完成毕业设计开题检查后,应写一份开题情况总结报告。
毕业设计(论文)开题报告
学生姓名李金鹏学号206080923 专业电气工程及其自动化指导教师姓名陈刚职称讲师所在院部电力工程学院课题来源自拟课题课题性质工程研究课题名称风力发电场并网运行稳定性研究
毕业设计的内容和意义
内容:
早期风电的单机容量较小,大多采用结构简单、并网方便的异步发电机,直接和配电网相连,对系统影响不大。但随着风电场的容量越来越大,对系统的影响也越来越明显,而风电场所在地区往往人口稀少,处于供电网络的末端,承受冲击的能力很弱,给配电网带来谐波污染、电压波动及闪变等问题。
因此以恒速恒频异步风力发电机组成的风电场为研究对象,建立风力发电系统的线性化状态方程。研究包含风电场的电力系统潮流算法,利用MATLAB及其仿真平台实现电力系统潮流计算以及机电暂态仿真。分析比较各种潮流算法的优缺点。建立简单系统的小干扰稳定分析线性化状态方程,得出了状态矩阵元素的参数表示形式。用特征值分析方法研究大型风电场接入电网后的系统小干扰稳定问题。分析风电场改变对系统小干扰稳定性的影响。采用时域仿真方法研究大型风电场接入电网后的系统暂态稳定问题。
意义:
据国际能源署统计,全球风力发电机总装机容量1999年的2000兆瓦增加到2005年的60000兆瓦,世界风能市场装机资金达450亿欧元,提供50万个就业岗位。风能这种清洁能源每年可以减少2.04亿吨的二氧化碳排放量。
随着风电装机容量的增加,在电网中所占比例的增大,风能的随机性、间隙性特点,和风电场采用异步发电机的一些特性,使稳态电压值上升、过电流、保护装置的动作误差,电压闪变、谐波、浪涌电流造成的电压降落,从而使得风电的并网运行对电网的安全,稳定运行带来重大的影响。其中最为突出的问题就是使风电系统的电能质量严重下降,甚至导致电压崩溃。风电场脱网事故频发,对电网安全运行构成威胁,所以进行风力发电并网运行稳定性研究是非常必要的。
文献综述国内外风力发电发展现状
20世纪初,法国出现了第一台用现代快速叶轮驱动的发电机。到了20世纪30年代,各国已开始研制中型、大型风力发电机。国际能源署统计全球风力发电机总安装容最从1990年的2000兆瓦增加到2005年底的60000兆瓦。目前,德国的总装机容量已达到21000兆瓦,超过了美国跃居世界首位。到2l世纪初,风能依旧是世界上发展最快的能源。
我国风力发电起步较晚。自80年末引进大型风力发电机以来,经过十多年的不断引进、消化、吸收、积累了一定的经验。我国并网型风力发电技术在80年代中期开始进行试验、示范、经过多年努力,现在逐步转向规模开发.目前我们已掌握600KW 定桨距失速风电机组的组装技术和关键部件。
近年来,我国风电产业持续快速发展。“十一五”期间风电装机容量连续五年翻番,成为全球风电装机规模第一大国。随着风电发展,风电企业和风电设备制造企业迅速成长,配套电网建设逐步加强,风电整体运行态势良好,为我国能源结构调整战略的顺利实施和节能减排目标的实现作出了重要贡献。
目前几种较为流行的风电技术
1.定桨距失速型风电技术(Stall Regulation)
这种技术是以桨叶翼型本身的失速特性为基础,当风速超过额定风速时,气流的攻角增大到失速条件,使桨叶叶表面形成涡流,从而限制功率。其特点是:控制与调节简单可靠,但桨叶与塔架的受力大,根据风能利用系数Cp,不能保证在额定风速之前Cp最大。
2.变桨距型风电技术(Pitch Regulation)
这种技术为达到控制吸收风能,使风轮机叶片安装角随风速变化,将通过变距调节器来调控。叶片节距角在零度附近时,风速在额定以下;当风速在额定以上时,为保证发电机的输出功率在合适范围内,必须调整叶片攻角。变桨距风电机组比定桨距风电机组所需的起动风速低,停机冲击应力小。在实际中,相对风速的反应,风机桨距调节机构有一定的时延,在阵风到来时,桨距调节会因为来不及动作,而造成瞬时风机过载,不利于其运行。由于风能所拥有的随机波动性,并且普通的调节方法跟不上风速变化所引起的发电机功率变化,这显然对电网与风电质量影响极大。
文献综述3.主动定桨距型风电技术(Active Stall Regulation)
国际上风机制造商已在他们的新产品中采用了此技术,这种方法的主要特点是:桨叶应用定桨距失速调节,调节系统采用变桨距技术,输出功率在额定以下时,采用变桨距调节方式;输出功率在额定以上时,采用定桨距调节方式,其优点是:功率输出波动幅度较小且比较平稳。
4.变速恒频风电技术(Variable Speed Constant Frequency)
综合以上几种风电技术,目前最优良的调节技术当属变速恒频技术。它为了达到效率最高,发电系统稳定性提高,系统效率提高,可以在输出功率低于额定功率之前就能实现。最早在上世纪40年代,这种技术就出现了,但当时没能得到很好的发展应用,是受到控制技术和电力电子器件水平的制约,兆瓦级的变速恒频风电技术直到80年代原苏联、日本等国才投入运行。
风力发电有两种不同的类型,即:独立运行的“离网型”和接入电力系统运行的“并网型”。“离网型”的风力发电规模较小,通过蓄电池等储能装置或者与其他能源发电技术相结合(如风电/水电互补系统、风电—柴油机组联合供电系统)可以解决偏远地区的供电问题。“并网型”的风力发电是规模较大的风力发电场,容量大约为几兆瓦到几百兆瓦,由几十台甚至成百上千台风电机组构成。并网运行的风力发电场可以得到大电网的补偿和支撑,更加充分的开发可利用的风力资源,是国内外风力发电的主要发展方向。
风电场并网对电力系统的影响及目前主要解决方法
小规模风电场并网对电力系统的影响主要是以下几个方面:稳态电压值的上升、过电流、保护装置的动作误差,电压闪变、谐波、浪涌电流造成的电压降落。大规模风电场并网对电力系统的影响除了以上那些方面外,还会有电力系统的振荡和电压稳定性问题。
目前提高电网稳定性的主要对策是:1.采用动态无功补偿如静止补偿器SVC等,可以改善系统暂态特性,从而提高风电场的安全容量。动态无功补偿装置SVC等的容量选取需结合具体电网结构、风电场容量和SVC的调节特性确定。2.低电压自动切除风电机组是系统故障后维持电网稳定的有效控制措施,但切除过多要考虑电网的调节控制能力。3.加强电网结构和提高相应负荷的功率因数也可以提高系统的暂态稳定性和风电场的安全容量。4.必要时可考虑直流接入电网的方式,如正规划建