求解线性方程组的直接解法

合集下载

解线性方程组的直接方法

解线性方程组的直接方法

(1.5)
消去法的回代过程是解上三角形方程组(1.5).我们从方程组(1.5)的第三个方 x3 6 / 6 1 ; 程解得 然后将它代入第二个方程得到
x2 ( 5 x3 ) / 3 2;
最后,将 x3 1, x2 2 代第一个方程得到
x1 (3 2 x2 3 x3 ) / 2 2.

(n+1)n/2次运算
i 1 l11 bi lij x j l21 l22 j 1 A xi , i 1, , n lii l l l nn n1 n 2

(n+1)n/2次运算
n u11 u12 u1n bi uij x j u22 u2 n j i 1 A x , i n, ,1 i uii u nn
1,2,...,n)
( 1 .2 )
Ax b,
a1n a2 n , ann
§1 1.1 Gauss 消去法 本章主要介绍求解线性方程组(1.1)的直接法。所谓直接法,就是不考虑 计算过程的舍入误差时,经有限次数的运算便可求得方程组准确解的方法.我 们还将在§5中对计算过程中的舍入误差作一些初步分析.
a11 a 21 A, b ... an 2
之间有一对应关系.不难看出:
a12 a22 ... an 2
... ... ... ...
a1n a2 n ... ann
b1 b2 ... bn
(1.3)
(1)交换矩阵(1.3)的第p,q两行(记作 的第p,q两个方程;

(1.8)
(1.9)
(1.9)式是消元过程的一般计算公式.式中作分母的元素

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。

线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。

线性方程组的解法包括直接解法和迭代解法两种方法。

一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。

这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。

1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。

这种方法可以减少计算量,提高计算效率。

1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。

它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。

Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。

二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。

它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。

Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。

2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。

它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。

Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。

2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。

它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。

SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。

三、总结线性方程组解法是数值分析中的一个重要内容。

直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。

数值分析-线性方程组的直接解法

数值分析-线性方程组的直接解法

算法 Gauss(A,a,b,n,x)
1. 消元 For k=1,2, … , n-1 1.1 if akk=0 , stop; 1.2 For i=k+1,k+2, …, n 1.2.1 l ik=aik /akk => aik 1.2.2 For j=k+1,k+2, … ,n ai j -aik ak j =>aij 1.2.3 bi -aik bk=> bi 2. 回代 2.1 bn / an=>xn; 2.2 For i=n-1,n-2, …, 2,1 2.2.1 bk => S 2.2.2 For j=k+1,k+2, … ,n S –akj xj =>S 2.2.3 S/ akk => xk a1 1 a1 2 a13 a2 1 a2 2 a23
线性方程组的直接解法
刘 斌
线性方程组的直接解法
§1 Gauss消去法 1.1 顺序Gauss消去法
1.2
§2 2.1 2.2 2.3
列主元Gauss消去法
Gauss消去法的矩阵运算 Doolittle分解法 平方根法
直接三角分解方法
2.4
追赶法
引入
在科学计算中,经常需要求解含有n个未知量 的n个方程构成的线性方程组 a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 (1) an1 x1 an 2 x2 ann xn bn
(1) a12 ( 2) a22 0
(1) (1) a13 a1 n ( 2) ( 2) a23 a2 n ( 3) ( 3) a33 a3 n
0

解线性方程组直接法

解线性方程组直接法

第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。

例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。

关于线性方程组的数值解法一般有两类:直接法和迭代法。

1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。

但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。

本章将阐述这类算法中最基本的高斯消去法及其某些变形。

2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。

迭代法适用于解大型的稀疏矩阵方程组。

为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。

3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。

此实数排成的矩形表,称为m 行n 列矩阵。

⎪⎪⎪⎪⎪⎭⎫⎝⎛=⇔∈n n x x x 21x R x x 称为n 维列向量矩阵A 也可以写成其中 a i 为A 的第i 列。

同理 其中Ti b 为A 的第i 行。

矩阵的基本运算:(1) 矩阵加法 )( ,n m nm R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c .(2) 矩阵与标量的乘法 ij j a ci αα== ,A C(3) 矩阵与矩阵乘法 p nk kj ikb acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T n m a c ==∈⨯ , ,A C R A (5) 单位矩阵 ()nn ⨯∈=Re ,,e ,e I n 21 ,其中()T k e 0,0,1,0,0 = k=1,2,…,n(6) 非奇异矩阵 设n n ⨯∈R A ,n n ⨯∈R B 。

数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。

线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。

在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。

高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。

高斯消元法的主要步骤包括消元、回代和得到方程组的解。

消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。

在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。

回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。

回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。

高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。

但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。

另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。

在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。

列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。

LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。

综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。

高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。

在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。

数值分析第二章解线性方程组的直接方法

数值分析第二章解线性方程组的直接方法

a2(22) x2 ... a2(2n) xn b2(2) ,
..............
an(nn) xn bn(n) .
对此方程组进行回代,就可求出方程组的解.
xn
xiΒιβλιοθήκη bn(n) (bi(i )
an(nn) ,
n
ai(ji ) x
j i 1
j
)
ai(ii ) ,
i n 1,n 2,,1.
x3 x3
1 1
4x1 2x2 2x3 3
消去后两个方程中的x1得
x1
2 x2 5 x2
x3 1 2x3 2
6x2 6x3 1
再消去最后一个方程的x2得
x1
2 x2 5 x2
x3 1 2x3 2
42 5
x3
7 5
消元结束.
x1
1 2
经过回代得解:
x2
1 3
互换, 因而程序比较复杂, 计算时间较长.
• 列主元素法的精度虽然稍低于全主元素法, 但其
计算简单, 工作量大为减少, 且计算经验与理论实
践均表明, 它与全主元素法同样具有良好的数值稳
定性.
• 列主元素法是求解中小型稠密线性方程组的最好
方法之一.
27
§2 直接三角分解法
Gauss消元法的矩阵表示
a12
a13
a 1 0 a21 a22 a23 a21 aa11 a22 aa12 a23 aa13
b 0 1 a31 a32 a33 a31 ba11 a32 ba12 a33 ba13
28
n=3时Gauss消元法的矩阵表示
a11 a12 a13 A a21 a22 a23

第三章 线性代数方程组的直接解法1

第三章 线性代数方程组的直接解法1

for
j = n : −1 : 2
y( j ) = y( j ) u( j , j )
y (1 : j − 1) = y (1 : j − 1) − y ( j )u(1 : j − 1, j )
end
y(1) = y(1) u(1,1)
加减乘除运算次数之和)均为 两种算法的工作量(加减乘除运算次数之和 两种算法的工作量 加减乘除运算次数之和 均为 n
高斯变换
a 0
(1) 11

L = I +l e 1
其中 l i 1
T 1 1
l1 = (0, l21,⋯, ln1)
a
(1) 11
T
=
−1 1
a
(1) i1
i = 2, 3,⋯ , n
−1 1 T 1 1

A
( 2)
=L A
(1)
L = I −l e
(1 a11) 0 I n−1 c1 T 1
(i ) ii
的各阶顺序主子式都不等于零 顺序主子式都不等于 A 的各阶顺序主子式都不等于零,即
−1 −1 1 2
1 4 7 0 −3 − 6 = U L2 L1 A = 0 0 1
∴ A = L L U = LU
其中
1 0 0 2 1 0 −1 − 1 L = L1 L2 = 3 2 1
Gauss消去法的矩阵表示 消去法的矩阵表示 设给定 n 阶矩阵 记
1 0 0 −2 1 0 L1 = −3 0 1
设给定矩阵
则有
7 1 4 0 −3 −6 L1 A = 0 −6 −11

线性方程组的直接解法

线性方程组的直接解法

线性方程组的直接解法
线性方程组(linear equation system)是一类几何问题,也是解决线性系统和代数问题的重要方法,线性方程组由多个联立方程组成,这些方程中也可能含有未知量。

直接解法是把数学模型转换为数值模型,并给出实现其解题步骤的算法,它不同于间接求解的方法,既不做任何假设,也不处理不确定性问题,只是简单地直接求解线性方程组。

解线性方程组的直接解法主要分为三种,分别是高斯消元法、列主元消去法和列坐标变换法。

高斯消元法是一种比较常用的方法,主要是把线性方程组的未知量从左到右一步步求出来,其中用到的主要技术是把矩阵中部分元素消去为零,以便求解不定线性方程组的未知量。

而列主元消去法则是以一列为主元,去消除其他联立方程中出现的此列中的变量,从而最终求出其他未知变量的值。

最后,列坐标变换法是将线性方程组转换为一个更有利于求解的矩阵,其中未知量可以直接求得解答。

除了这三种常见方法外,还有一些更特殊的直接解法,比如要解常微分方程的未知函数,可以用拉格朗日方法和分部积分方法,再比如求解雅各比方程的根,可以通过主副方程互解求解,这种方法也叫作特征根法。

综上,解线性方程组的直接解法有高斯消元法、列主元消去法、列坐标变换法等;特殊问题可以采用拉格朗日方法、分部积
分法和特征根法等。

每种方法都有自己的优势,因此在使用时,可以根据问题的特点,选择适合的方法来解决。

计算方法第三章线性方程组的直接解法

计算方法第三章线性方程组的直接解法

5 3
3 1
r3
r1 6
6 1 18 2
1 0
4 5 1 3
3 1
r3 r225
1 0
4 1
5 3
3 1
0 25 48 16
0 0 27 9
林龙
计算方法
6
化原方程组为三角方程组的过程为消元过程. 解三角方程组的过程为回代过程.
也可将上边的增广矩阵进一步化简.
1 4 5 3
1 0 7 1
xi
Di D
(i
1, 2,3,
),由于方程含有n 1个
行列式.如对每个行列式按展开定理来计算.
用克莱姆法则求解,所需要的乘除运算量为
n!(n2 1) n次,若n 20用每秒一千万次的
计算机要三百万年,所以并不是凡直接法都
可以用来做实际运算.
林龙
计算方法
4
设有
§3.1直接法
a11x1 a12 x2 a21x1 a22 x2
解 : 10
7
0
7
r1 r2
5 1 5 6
林龙
计算方法
16
10 3 5
7 2 1
0 6 5
7 4 6
r2
3 10
r1
r3
5 10
r1
10
0
0
7 0.1 2.5
0 7 6 6.1 5 2.5
r2 r3
r3
1 25
r2
10 7 0 7 x3 1
0
2.5
5
2.5
x2
2.5 5x
nn
a11 a12 .... a1n 1 0 0
a21
a22

第3章 线性方程组求解的直接解法

第3章  线性方程组求解的直接解法

线性方程组求解的直接法5.2线性方程组直接解法概述直接解法就是利用一系列公式进行有限步计算,直接得到方程组的精确解的方法.当然,实际计算结果仍有误差,譬如舍入误差,而且舍入误差的积累有时甚至会严重影响解的精度.这是一个众所周知的古老方法,但用在计算机上仍然十分有效.求解线性方程组最基本的一种直接法是消去法.消去法的基本思想是,通过将一个方程乘以或除以某个常数,以及将两个方程相加减这两种手段,逐步减少方程中的变元的数目,最终使每个方程仅含一个变元,从而得出所求的解.高斯(Gauss )消去法是其中广泛应用的方法,其求解过程分为消元过程和回代过程两个环节.消元过程将所给的方程组加工成上三角方程组,所归结的方程组再通过回代过程得出它的解.Gauss 消去法由于添加了回代的过程,算法结构稍复杂,但这种改进的算法明显减少了计算量.直接法比较适用于中小型方程组.对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足.5.3直接解法5.3.1Gauss 消去法Gauss 消去法是一个古老的求解线性方程组的方法,由它改进而来的选主元法是目前计算机上常用的有效的求解低阶稠密矩阵线性方程组的方法.例5.1用Gauss 消去法解方程组1231231232221(5.3.1)1324 (5.3.2)2539(5.3.3)2x x x x x x x x x ⎧++=⎪⎪++=⎨⎪++=⎪⎩解〖JP4〗第1步,式35.3.12⨯-()()加到式(5.3.2)上,式()15.3.1()2⨯-加到式(5.3.3)上,得到等价方程组123232322211(5.4.4)282(5.4.5)x x x x x x x ⎧++=⎪⎪-+=-⎨⎪⎪+=⎩第2步,式()2⨯5.3.4加到式(5.3.5)上得等价的方程组12323322211100(5.3.6)x x x x x x ++=⎧⎪-+=-⎨⎪=⎩第3步,回代法求解方程组(5.3.6),即可求得该方程组的解为32110,1,.2x x x ===-.用矩阵描述其约化过程即为233(2)22221011100100r r r ⨯+⇒⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦→[]122133(1)3()21()222212221,3241/201111395/20282r r r r r r A b ⨯-+⇒⨯-+⇒⎡⎤⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦→.这种求解过程称为具有回代的Gauss 消去法.由此例可见,Gauss 消去法的基本思想是:用矩阵的初等行变换将系数矩阵A 化为具有简单形式的矩阵(如上三角阵、单位矩阵等),而三角形方程组是很容易回代求解的.一般地,设有n 个未知数的线性方程组为11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪++=⎩L L MM M L (5.3.7)1212)(,,)(,,)T T ij n n n n A a X x x x b b b b ⨯===L L (,,,则方程组(5.3.7)化为AX b =.方便起见,记()(1)det 0A AA ==≠,(1)b b =,且()1A的元素记为()()11,ij a b ,的元素记为()1i b ,则消去法的步骤如下:第1步:1110a≠(),,计算(1)11(1)11(2,3,4),i i a m i n a ==L 用()1i m -乘方程组(5.3.7)中的第1个方程加到第i个方程中()2,3,i n =L ,即进行行初等变换()112,3,i i i R m R R i n -⋅→=L ,消去第2个到第n个方程中的未知数1,x ,得等价方程组111121(2)(2)(2)22222(2)(2)(2)2inn n n nn n x a a b x a a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMM LM M L (5.3.8)记为(2)(2)A X b =,其中(2)(1)(1)(2)(1)(1)1111(,2,3),2,3,ij ij i j i i i a a m a i j n b b m b i n =-==-=L L ,,第k 步()1,2,1k n =-L:继续上述消元过程.第1步到第1k -步计算已完成,且得到与原方程组等价的方程组(1)(1)(1)(1)1112111(2)(2)(2)222223()()()()()()nn k k k kkkn k n k k k nk nn n a a a b x a a b xx aa b x a a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦L L LLOM L M MMM L(5.3.9)记为()(()K k A X b =,进行第k 步消元:设()0k kka≠,计算乘数()()(1,)k ikk ik kka m k k n a ==+L ,用ik m -乘方程组(5.3.9)中第k 个方程加到第i 1)i k n =+L (,,,个方程上消去方程组(5.3.9)中第i 1)i k n =+L (,,个方程的未知数k x ,得到与原方程组等价的方程组:(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.10) 记为(1)(1)k k A X b ++=其中(1)(1,k k A b ++)中元素计算公式为(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.11)重复上述过程,且设()0(1,2,1)k kk a k n ≠=-L ,共完成1n -步消元计算,得到与方程组(5.3.7)等价的三角形方程组1111211(2)(2)(2)22222()()n n n n n nn n x a a b x a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMOM M (5.3.12)再用回代法求方程组(5.3.12)的解,计算公式为()()()()1()(),(1,2,1)n n n nn n i i i ij j j i i i ii b x a b a x x i n n a =+⎧=⎪⎪⎨-⎪==--⎪⎩∑L (5.3.13)元素()k kka 称为约化的主元素.将方程组(5.3.7)化为方程组(5.3.12)的过程称为消元过程.方程组(5.3.12)的求解过程(5.3.13)称为回代过程.由消元过程和回代过程求解线性方程组的方法称为Gauss 消去法.定理5.1(Gauss 消去法)设AX b =。

线性方程组直接解法实验

线性方程组直接解法实验

实验一 线性方程组直接解法实验一、实验目的1.运用matlab 软件完成线性方程组的直接实验;2.通过实验,了解Doolittle 分解方法和列主元消去法解方程组的过程,并比较两种方法的优点。

二、实验题目分别用Doolittle 分解方法和列主元消去法解方程组123410-7018-3 2.09999962 5.9000015-15-1521021⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭x x x x . 输出A ,b ;Doolittle 分解方法的L 和U ;解向量x,det A ;列主元方法的行交换次序,解向量x,det A ;比较两种方法所得的结果。

三、实验原理1) Doolittle 分解方法的原理算法原理:应用高斯消去法解n 阶线性方程Ax b =经过1n -步消去后得出一个等价的上三角形方程组()()n n A x b =,对上三角形方程组用逐步回代就可以求出解来。

这个过程也可通过矩阵分解来实现。

将非奇异阵分解成一个下三角阵L 和上三角阵U 的乘积称为对矩阵A 的三角分解,又称LU 分解。

根据LU 分解,将Ax b =分解为Ly bUx y =⎧⎨=⎩形式,简化了求解问题。

程序框图:变量说明:ij a 为系数矩阵元素,i b 为常数矩阵系数,,ij ij l u 分别为下、上三角矩阵元素。

2)列主元消去法解方程组的原理算法原理:列选主元是当变换到第k步时,从k列的kk a及以下的各元素中选取绝对值a的位置上,然后再进行消元过程。

交换系数矩阵中最大的元素,通过行交换将其交换到kk的两行(包括常数项),相当于两个方程的位置交换了。

程序框图:Array变量说明:k表示消元到a为消元第k步时第k步,kk主对角线元素3)四、实验过程及结果1)Doolittle分解方法的输出结果----------计算实习题----------Page64 第1题用Doolittle分解方法解方程组A =10.0000 -7.0000 0 1.0000-3.0000 2.1000 6.0000 2.00005.0000 -1.0000 5.0000 -1.00002.0000 1.0000 0 2.0000b =8.00005.90005.00001.0000L =1.0e+006 *0.0000 0 0 0-0.0000 0.0000 0 00.0000 -2.5000 0.0000 00.0000 -2.4000 0.0000 0.0000 U =1.0e+007 *0.0000 -0.0000 0 0.00000 -0.0000 0.0000 0.00000 0 1.5000 0.57500 0 0 0.0000 X =-0.0000-1.00001.00001.0000det(A)值为-762.00009000----------输出完毕----------2)列主元消去法输出结果----------计算实习题----------Page64 第1题列主元消去法解方程组A =10.0000 -7.0000 0 1.0000-3.0000 2.1000 6.0000 2.00005.0000 -1.0000 5.0000 -1.00002.0000 1.0000 0 2.0000b =8.00005.90005.00001.0000X =0.0000-1.00001.00001.0000detA值为-762.00009000----------输出完毕----------五、实验分析1.运用LU分解法可以成批地解方程组,且速度快.若c先求LU=A3,再解(LU)x=b,则要重新计算,计算量增加;如果按照上述方法计算,能够减少运算次数,加快运算速度.3. ⑴无论当n=10、n=100、n=1000时,x1与x2的值都相等,且随着n的增大,变化的只是解的中间部分数字,头、前后几位数都没有变化.⑵高斯消去法应用于三对角方程组得到的就是所谓的“追赶法”.追赶法不需要对零元素计算,只有6n-5次乘除法计算量,求解速度快.且当系数矩阵对角占优时数值稳定,是解三对角方程组的优秀解法.⑶用LU分解法解此方程组速度慢.顺序高斯消去法实际上就是将方程组的系数矩阵分解成单位下三角矩阵与上三角矩阵的乘积.顺序高斯消去法的消元过程相当于LU分解过程和Ly=b的求解,回代过程则相当于解线性方程组Ux=y,故其求解速度慢.六、附原程序1)Doolittle分解方法原程序fprintf('----------计算实习题----------\n')fprintf('Page64 第1题用Doolittle分解方法解方程组\n')A=[10 -7 0 1 ; -3 2.099999 6 2 ;5 -1 5 -1 ; 2 1 0 2];b=[8;5.900001;5;1];n=length(A);U=zeros(n,n);L=eye(n,n);U(1,:)=A(1,:);L(2:n,1)=A(2:n,1)/U(1,1);for i=2:n;U(i,i:n)=A(i,i:n)-L(i,1:i-1)*U(1:i-1,i:n);L(i+1:n,i)=(A(i+1:n,i)-L(i+1:n,1:i-1)*U(1:i-1,i))/U(i,i); endY=zeros(n);Y(1)=b(1);for i=2:nY(i)=b(i)-L(i,1:i-1)*Y(1:i-1,1);endX=zeros(n,1);if det(U)==0;X=0;elseX(n)=Y(n)/U(n,n);for i=n-1:-1:1X(i)=(Y(i)-U(i,i+1:n)*X(i+1:n,1))/U(i,i);endendAbLUXfprintf('det(A)值为%9.8f\n',det(A))fprintf('----------输出完毕 ----------\n')2)列主元消去法原程序fprintf('----------计算实习题----------\n')fprintf('Page64 第1题列主元消去法解方程组\n')A=[10 -7 0 1 ; -3 2.099999 6 2 ;5 -1 5 -1 ; 2 1 0 2];b=[8;5.900001;5;1];C=[A b];n=length(A);D=zeros(n,n+1);l=zeros(n,1);for i=1:nD=C;k=min(find(C(i:n,i)==max(C(i:n,i))));C(i,i:n+1)=D(k+i-1,i:n+1);C(k+i-1,i:n+1)=D(i,i:n+1);l(i+1:n,1)=C(i+1:n,i)/C(i,i);C(i+1:n,i:n+1)= C(i+1:n,i:n+1)- l(i+1:n,1)*C(i,i:n+1); endX=zeros(n,1);X(n)=C(n,n+1)/C(n,n);for i=n-1:-1:1X(i)=(C(i,n+1)-C(i,i+1:n)*X(i+1:n,1))/C(i,i); endAbXfprintf('detA值为%9.8f\n',det(A))fprintf('----------输出完毕----------\n')。

第三章 解线性方程组的直接法

第三章 解线性方程组的直接法

相等.
定理 线性方程组 AX = b 可以用简单高斯消元法求解的
充要条件是
系数矩阵
A的
k
阶顺序主子式
∆k

0
(k
=1, 2, , n).
8
如果主对角元素 ak(kk) 的绝对值很小, 由第一章的误差分 析可知计算时将会产生很大的计算误差.
例 用简单高斯消元法求解方程组(用四位浮点数计算)
0.012x1 + 0.01x2 + 0.167 x3 = 0.6781,

a(2) 2n
b1(1) b2( 2 )


An
= 0
0
a(3) 33

a(3) 3n
b3( 3 )

.

0
0
0

a(n) nn
bn(n)
对应的同解上三角形方程组为

a(1) 11
x1


+
a(1) 12
x2
a(2) 22
x2
+

+
a(1) 1n
b
0.6781
12.10
981.0

r1 ↔ r3
14
例 用高斯全主元消元法求解方程组(用四位浮点数计算)
0.012x1 + 0.01x2 + 0.167 x3 = 0.6781,

x1
+
0.8334 x2
+
5.91x3
= 12.1,

3200
x1
+
1200 x2
+

9-解线性方程组的直接解法

9-解线性方程组的直接解法

2.4.1 消元过程(化一般方程组为上三角方程组)
以四阶为例:
a11 x1 a12 x 2 a13 x3 a14 x 4 b1 a x a x a x a x b 21 1 22 2 23 3 24 4 2 a31 x1 a32 x 2 a33 x3 a34 x 4 b3 a 41 x1 a 42 x 2 a 43 x3 a 44 x4 b4
a21x1+ a22x2+· · · · + a2nxn = b2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · an1x1+ an2x2+· · · · + annxn = bn
a11 x1 a12 x 2 a1n x n b1 (1) (1) (1) a x a x b 22 2 2n n 2 ( n 1 ) ( n 1 ) a x b nn n n
1 m 1 L1 21 1 mn1
同理 LkA(k-1)=A(k) Lkb(k-1)=b (k)
1 1 其中 Lk mk ,k 1 1 mn ,k 1 1
其系数增广矩阵变为:
计算2个数:[m32 m42]T = [a32(1) a42(1)]T / a22(1) 用-m32乘矩阵第二行后加到矩阵第三行; 用-m42乘矩阵第二行后加到矩阵第四行;
A
( 2)
a11 a12 (1) a22
a13 a
(1) 23 ( 2) a33 ( 2) a43

第2章解线性方程组的直接方法5_6

第2章解线性方程组的直接方法5_6

~ ~ ~ = ∏ uii ⋅ ukk = det Ak −1 ⋅ u kk det Ak
i =1
k −1
~ = det Ak > 0 u kk det Ak −1
(记 det A0 = 1)
以上 k = 1 ,2 , ⋯ , n
2
因此 ~ u11 ~ U= ~ u11 =
4. 解LTx = y:
4.1 xn = yn / ann
4.2 for i=n-1,n-1,…,1 do
xi = ( yi −
k = i +1
∑a
n
ki k
x ) / aii
11
例1.
用平方根法解对称正定方程组
6 7 5 x1 9 7 13 8 x2 = 10 5 8 6 x 9 3
事实上,对称正定方程组也可以用顺序Gauss消去法求解 而不必加入选主元步骤
16
§2.6
对角占优矩阵: 对角占优矩阵
追赶法(Thomas算法 算法) 追赶法 算法 补充
i = 1 ,2 ,⋯ , n
若矩阵A = ( aij )n× n 满足
|aii |> ∑|aij |
j =1 j ≠i
n
则称A为严格对角占优矩阵. 若矩阵A = ( aij )n× n 满足
|aii | ∑|aij | ≥
j =1 j ≠i
n
i = 1 ,2 ,⋯ , n
17
则称A为弱对角占优矩阵.
有一类方程组,在今后要学习的插值问题和边值问题中 有一类方程组 在今后要学习的插值问题和边值问题中 有着重要的作用,即三对角线方程组 其形式为: 即三对角线方程组,其形式为 有着重要的作用 即三对角线方程组 其形式为

3解线性方程组的直接法习题+答案

3解线性方程组的直接法习题+答案




2 1 2 1 2
1 5 2 3 5

1

3
2

3
5





1 0 0
2 1 1

A

LU
,其中 L


1 2
1


0

,
U


0
5 2
3

2

1
3
1
0
0
3

2 5
姓名
第三章 线性方程组的直接解法
学号
班级
习题主要考察点:高斯消去法,LU 分解法,平方根法和追赶法解线性方程组。
要点:(1)利用列主元高斯消去法求解线性方程组
(2)矩阵的 Doolittle 分解
(3)利用系数矩阵的 Doolittle 分解求解线性方程组
例 1 用列主元消元法的方程组

2
x
1
3 x1
4 0 0
5 7
3 1 22 12 6
15
7

2
31



4 5 7 15 4 5 7 15



0 12 6 31 0 12 6 31
主元 0
3
1
7

消去
0
0
1

3

2 2 2
4 8
得等价的线性方程组为:
1 2 3 x1 2 2 7 2 x2 3 4 8 4 x 3 0

线性方程组直接法

线性方程组直接法
类似选主元法
练习 利用LU分解法求解方程组
1 2 3 x1 2 1 3 5 x2 4. 1 3 6 x3 5
1001 2 3 2 1 答L: U 110 01 2 , y 2 ,x 0 .
111 001 1 1
二、解三对角方程组的追赶法
在数值求解常微分方程边值问题、热传导方程和建立
二、向量和矩阵的范数
定义1 ( 向量范数) x 和 y 是 Rn 中的任意向量 , 向量范数‖•‖是定义
在 Rn上的实值函数, 它满足:
(1) ‖ x ‖≥0, 并且当且仅当 x=0 时, ‖ x ‖=0;
(2) ‖k x ‖=|k| ‖ x ‖, k 是一个实数;
(3) ‖ x + y ‖≤ ‖ x ‖+ ‖ y ‖
1 0 01 2 3
A 2 3
1 5
0 0 1 0
1 0
4
24
LU
3=-72/-24; 2=[-10+4*3]/1;
求解
1=[14-(2*2+3*3)]/1]
Ly (14, 18, 20)T , 得y (14, 10,72)T 同理当 ukk 0或 Ux (14, 10, 72)T , 得x (1, 2, 3)T 很小时,可用
子式 Di 0(i 1,2,,k),即
a11 Di
ai1
a1i
aii
0aa1i((i1i1))
0 Di
Di1 0
由于高斯消去法过在程消中元可能ak(出 kk) 现 0的情况, 这时消去法将无;法即进使行主a元 k(kk) 素0但很小时, 用其作除数,会他导元致素其数量级的长严和重舍增
入误差的扩散,使最得后计也算的解不可靠。

线性方程组直接解法实验

线性方程组直接解法实验

实验一 线性方程组直接解法实验一、实验目的1.运用matlab 软件完成线性方程组的直接实验;2.通过实验,了解Doolittle 分解方法和列主元消去法解方程组的过程,并比较两种方法的优点。

二、实验题目分别用Doolittle 分解方法和列主元消去法解方程组123410-7018-3 2.09999962 5.9000015-15-1521021⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭x x x x . 输出A ,b ;Doolittle 分解方法的L 和U ;解向量x,det A ;列主元方法的行交换次序,解向量x,det A ;比较两种方法所得的结果。

三、实验原理1) Doolittle 分解方法的原理算法原理:应用高斯消去法解n 阶线性方程Ax b =经过1n -步消去后得出一个等价的上三角形方程组()()n n A x b =,对上三角形方程组用逐步回代就可以求出解来。

这个过程也可通过矩阵分解来实现。

将非奇异阵分解成一个下三角阵L 和上三角阵U 的乘积A LU =称为对矩阵A 的三角分解,又称LU 分解。

根据LU 分解,将Ax b =分解为Ly bUx y=⎧⎨=⎩形式,简化了求解问题。

程序框图:变量说明:ij a 为系数矩阵元素,i b 为常数矩阵系数,,ij ij l u 分别为下、上三角矩阵元素。

开始输入a ij ,b ii,j=1,2,…,na i1=l i1=a i1/a 11i=2,3,…,nk=2akj=ukj=akj-∑l ktj=k,…,nk=n?k=k+1y 1=b 1,y i =b i -∑l ij y ji=2,…,n x n =y n /u nnx i =(y i -∑u ij x j )/u iii=n-1,…2,1是否a kj =l jk =(a jk -∑l it u tk )/u kkj=k,…,n2)列主元消去法解方程组的原理算法原理:列选主元是当变换到第k步时,从k列的kk a及以下的各元素中选取绝对值最大的元素,通过行交换将其交换到kka的位置上,然后再进行消元过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解线性方程组的直接解法5.2LU分解① Gauss消去法实现了LU分解顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。

将下三角矩阵的对角元改成1,记为L,则有A=LU,这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的历史得到这一点.因为从消元的历史有u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,nm ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,na ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分解,同时还求出了g, Lg=b的解.②直接LU分解上段我们得到(l ij=m ij>u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,nl ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n2诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很容易记住.可写成算法(L和U可存放于A>:for k=1:n-1for j=k:nu kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,jendfor i=k+1:nl ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kkendend这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步计算存储.考察上面的表格会发现还可安排其它计算次序,只要在这一次序下每个元素左边的L的元素与上方的U的元素已计算在先。

例如,逐行自左而右的次序, 逐列自上而下的次序,…易知g的计算规律同U.利用LU分解解Ax=b分三步:1.分解A=LU2.解Lg=b 求g3.解Ux=y 求x例3.用直接LU分解法解解用分解公式计算得求解③其它分解我们用顺序消元和直接分解两种方法实现了LU分解.还有更一般的三角分解,比如,下三角矩阵和单位上三角矩阵之积,又如单位下三角矩阵,对角矩阵,单位上三角矩阵之积,等等.下面给出第二种分解形式的算法LDR分解法。

A=LDR,L是单位下三角矩阵,D是对角矩阵,R是单位上三角矩阵.逐列计算(逐列作LU分解,再用U的对角元素除各行>,结果存入A。

for j=1:nfor i=2:ja ij=a ij-a i1a1j-a i2a2j -…-a i,i-1a i-1,jendfor i=j+1:na ij=(a ij-a i1a1j-a i2a2j -…-a i,j-1a j-1,j>/a jjendfor i=1:j-1a ij= a ij/a iiendend④列主元素的LU分解对照顺序消元和LU分解,列主元素法也可得列主元素的LU分解:PA=LUP是行交换结果的排列阵,L和U同前.例4.列主元素法解方程组并写出系数矩阵的LU分解.括号内是乘数,k=2时2,3行交换.因而有直接作列主元素LU分解,因为在k步要先选主元素,所以作如下改变:for k=1:n-1for i=k:na ik=a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,kend找p:p行k行i k=pfor j=k+1:nu kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,jendfor i=k+1:nl ik= a ik/u kkendend可将l ik存于a ik,u kj存于a kj.二实验部分本章实验内容:实验题目:Gauss消元法,追赶法,范数。

实验内容:①编制用Gauss消元法求解线性方程组Ax=f的程序。

②编制用追赶法求解线性方程组Ax=f的程序。

③编制向量和矩阵的范数程序。

实验目的:①了解Gauss消元法原理及实现条件,熟练掌握Gauss消元法解方程组的算法,并能计算行列式的值。

②掌握追赶法,能利用追赶法求解线性方程组。

③理解向量和矩阵范数定义,性质并掌握其计算方法. 编程要求:利用Gauss消元法,追赶法解线性方程组。

分析误差。

计算算法:①Gauss消元法:1.消元过程设,对计算⒉回代过程②追赶法:1.分解Ax=f:( >2.解Lg=f,求g:(>3.解Ux=g,求x:<)③范数:常用向量范数有:<令x=( x,x2,…,x n>)11-范数:║x║1=│x1│+│x2│+…+│x n│2-范数:║x║2=(│x1│2+│x2│2+…+│x n│2>1/2∞-范数:║x║=max(│x│,│x2│,…,│x n│>1常用的三种向量范数导出的矩阵范数是:1-范数:║A║1= max{║Ax║1/║x║1=1}=2-范数:║A║2=m ax{║Ax║2/║x║2=1}=,λ1是A T A的最大特征值.∞-范数:║A║=max{║Ax║/║x║=1}=实验例题⑴:用Gauss消元法解方程组实验例题⑵:用追赶法解三对角方程组Ax=b,其中实验例题⑶:设,计算A的行列范数.程序①:Gauss消元法function x=Gauss(A,b>%A是线性方程组的系数矩阵,b为自由项.n=length(A>for k=1:n-1m(k+1:n,k>=A(k+1:n,k>/A(k,k>。

A(k+1:n,k+1:n>=A(k+1:n,k+1:n>-m(k+1:n,k>*A(k,k+1:n>。

b(k+1:n>=b(k+1:n>-m(k+1:n,k>*b(k>。

endx=zeros(n,1>。

x(n>=b(n>/A(n,n>。

for k=n-1:-1:1x(k>=(b(k>-A(k,k+1:n>*x(k+1:n>>/A(k,k>。

endx=x'。

disp(sprintf('k x(k>'>>。

for i=0:ndisp(sprintf('%d %f ',i,x(i+1>>>。

end数值结果:x=Gauss(A,b>n =3k x(k>0 1.1111111 0.7777782 2.555556程序②:追赶法function [x,y,beta]=zhuiganfa(a,b,c,f>%a,b,c是三对角阵的对角线上的元素,f是自由项.n=length(b>。

beta(1>=c(1>/b(1>。

for i=2:nbeta(i>=c(i>/(b(i>-a(i>*beta(i-1>>。

endy(1>=f(1>/b(1>。

for i=2:ny(i>=(f(i>-a(i>*y(i-1>>/(b(i>-a(i>*beta(i-1>>。

endx(n>=y(n>。

for i=n-1:-1:1x(i>=y(i>-beta(i>*x(i+1>。

enddisp(sprintf('k x(k> y(k> beta(k>'>>。

for i=0:ndisp(sprintf('%d %f ',i,x(i+1>,y(i+1>,beta(i+1>>>。

end数值结果:a=[0 -1 -1 -1 -1]'。

b=[2 2 2 2 2]'。

c=[-1 -1 -1 -1 0]'。

f=[1 0 0 0 0]'。

[x,y,beta]=zhuiganfa(a,b,c,f>k x(k> y(k> beta(k>0 0.833333 5.000000e-001 -0.5000001 0.666667 3.333333e-001 -0.6666672 0.500000 2.500000e-001 -0.7500003 0.333333 2.000000e-001 -0.8000004 0.166667 1.666667e-001 0.000000程序③:1.列范数:function fan=lie(A>%A为已知矩阵n=length(A>for j=1:nx(j>=0for i=1:nx(j>=x(j>+abs(A(i,j>>。

endendfan=max(x>disp(sprintf('n x(n>'>>。

for i=0:ndisp(sprintf(' %d %f',i,x(i+1>>>。

end数值结果:fan=lie(A>fan =0.8000n x(n>00.70000010.8000002.行范数:function fan=hang(A>%A为已知矩阵n=length(A>for i=1:nx(i>=0for j=1:nx(i>=x(i>+abs(A(i,j>>。

endendfan=max(x>disp(sprintf('n x(n>'>>。

for i=0:ndisp(sprintf(' %d %f',i,x(i+1>>>。

end数值结果:fan=hang(A>fan =1.1000n x(n>0 1.10000010.400000总结:从代数上看,直接分解法和Gauss消去法本质上一样,但如果我们采用”双精度累加”计算,那么直接三角分解法的精度要比Gauss消去法为高.求线性方程组的直接法,其算式繁杂,给人以枯燥沉闷的感觉.为了改善教案效果,本章着重介绍了三对角方程组的追赶法.三对角方程组以及其拓广形式的带状方程组有着广泛的实际应用.追赶法是解三对角线方程组(对角元占优势>的有效方法,它具有计算量少,方法简单,算法稳定等优点,具有鲜明的对称美.复习思考题1. 用消去法解线性方程组为什么最好选主元?怎样的方程组可以不用选主元?2. 用高斯—约当消去法求矩阵的逆,其理论根据是什么?3. 求矩阵A的LU分解的紧凑格式有何规律?写出LU分解法解Ax = b的算法。

相关文档
最新文档