2019年初一数学上期末模拟试题(含答案) (2)
人教版七年级数学上学期期末冲刺模拟测试卷 (二)含答案与解析
人教版七年级上学期期末冲刺模拟测试卷 (二)数 学学校:___________姓名:___________班级:___________考号:___________(考试时间:120分钟 试卷满分:120分)注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字笔填写在答题卷相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卷上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题(每小题3分,共30分)1.(2020湘潭) 6-的绝对值是( )A .6-B .6C .61-D .16 2.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A .A→C→D→B B .A→C→F→BC .A→C→E→F→BD .A→C→M→B 3.若|b+2|与(a ﹣3)2互为相反数,则b a 的值为( )A .﹣bB .﹣18C .﹣8D .8 4.下列说法中,正确的是( )A .单项式223x y -的系数是﹣2,次数是3 B .单项式a 的系数是0,次数是0C .﹣3x 2y+4x ﹣1是三次三项式,常数项是1D .单项式232ab -的次数是2,系数为92- 5.下列说法正确的是( )A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位6.(2020金华)如图,在编写数学谜语题时;“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+27.(2020黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程23t=32,未知数系数化为1,得t=1D.方程10.20.5x x--=1化成3x=69.(2020河北)如图1,已知∠ABC,用尺规作它的角平分线,如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长10.(2020西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…若第n个相同的数是103,则n等于()A.18B.19C.20D.21二、填空题(每小题3分,共24分)11.在式子:2a、3a、1x y、﹣12、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.12.(2020绵阳)若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=_____.13.3x m+5y2与x3y n是同类项,则m n的值是13.(2020广东)已知:x=5-y,xy=2,计算:3x+3y-4xy的值为______.14.若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.16.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm17.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.18.(2020黄冈一模)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②, ②一①得:3S ―S =39-1,即2S =39-1,∴S =39―12. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2020的值?如能求出,其正确答案是___________.三、解答题(共66分)19.(8分)化简并求值:﹣6(a 2﹣2ab+b 2)+2(2a 2﹣3ab+3b 2),其中a=1,b=12. 20.(8分)解方程:(1)x+5(2x ﹣1)=3﹣2(﹣x ﹣5)(2)32x +﹣2=﹣225x -. 21.(6分)已知多项式x 2y m+1+xy 2﹣3x 3﹣6是六次四项式,单项式6x 2n y 5﹣m 的次数与这个多项式的次数相同,求m+n 的值.22.(8分)线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长?(2)若AC=4cm ,求DE 的长.23.(8分)一位同学做一道题:“已知两个多项式A 、B ,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x 2﹣2x+7,已知B=x 2+3x ﹣2,求正确答案.24.(2020广州)(8分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.25.(2020安徽)(10分)某超市有线上和线下两种销售方式与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下线下销售额(直接在表格中填写结果);时间销售总额(元) 线上销售额(元) 线下销售额(元) 2019年4月份a x a-x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.26.(10分)如图,已知OE 是∠AOC 的角平分线,OD 是∠BOC 的角平分线. (1)若∠AOC=120°,∠BOC=30°,求∠DOE 的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE 的度数.参考答案与解析一、选择题(每小题3分,共30分)1.(2020湘潭) 6-的绝对值是( )A .6-B .6C .61-D .16【答案】B【解析】根据绝对值的定义,得|6|6-=,故选:B .2.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 【答案】B【解析】根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.3.若|b+2|与(a﹣3)2互为相反数,则b a的值为()A.﹣b B.﹣18C.﹣8 D.8【答案】C【解析】∵|b+2|与(a﹣3)2互为相反数,∴|b+2|+(a﹣3)2=0,∴b+2=0,a﹣3=0,解得:b=﹣2,a=3.∴b a=(﹣2)3=﹣8.故选:C.4.下列说法中,正确的是()A.单项式223x y-的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式232ab-的次数是2,系数为92-【答案】D【解析】A、单项式223x y-的系数是﹣23,次数是3,系数包括分母,错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,错误;D、单项式232ab-的次数是2,系数为92-,符合单项式系数、次数的定义,正确;故选:D.5.下列说法正确的是()A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位【答案】D【解析】A、近似数4.60精确到百分位,4.6精确到十分位,故错误;B、近似数5千万精确到千万位,近似数5000万精确到万位,故错误;C、近似数4.31万精确到百位.故错误;D、正确.故选:D.6.(2020金华)如图,在编写数学谜语题时;“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2【答案】D【解析】设“□”内数字为x,根据题意可得;3×(20+x)+5=10x+2,故选D.7.(2020黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元【答案】C【解析】设该商品每件的进价为x元,依题意,得12×0.8-x=2,解得,x=7.6.故选C.8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程23t=32,未知数系数化为1,得t=1D.方程10.20.5x x--=1化成3x=6【答案】D【解析】A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项错误;C、方程23t=32,未知数系数化为1,得t=94,故本选项错误;D、方程10.20.5x x--=1化成3x=6,故本选项正确.故选:D.9.(2020河北)如图1,已知∠ABC,用尺规作它的角平分线,如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长【答案】B【解析】以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为圆心画弧时,b必须大于12DE,否则没有交点.故选:B.10.(2020西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…若第n个相同的数是103,则n等于()A.18B.19C.20D.21【答案】A【解析】第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…第n个相同的数是6(n-1)+1=6n-5,所以6n-5=103,解得n=18.故选:A.二、填空题(每小题3分,共24分)11.在式子:2a、3a、1x y、﹣12、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.【答案】3.【解析】1﹣x﹣5xy2、6xy+1、a2﹣b2是多项式,共3个,故答案为:3.12.(2020绵阳)若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=_____.【答案】0或8.【解析】∵xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,∴n-2=0,1+|m-n|=3,∴n-n=2或n-m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.13.3x m+5y2与x3y n是同类项,则m n的值是【答案】4【解析】∵3x m+5y2与x3y n是同类项,∴m+5=3,n=2,解得:m=﹣2,n=2,∴m n=(﹣2)2=4.故答案为:4.13.(2020广东)已知:x=5-y,xy=2,计算:3x+3y-4xy的值为______.【答案】7【解析】∵x=5-y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)-4xy=3×5-4×2=15-8=7.故答案为:7.14.若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.【答案】﹣1,92.【解析】由一元一次方程的特点得10 ||1aa-≠⎧⎨=⎩,解得:a=﹣1,将a=﹣1代入方程得﹣2x+3=6,解得:x=92.故答案为:﹣1,92.15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.【答案】72°,162°.【解析】∵BO⊥AO,∠BOC与∠BOA的度数之比为1:5,∴∠COA=45×90°=72°,则∠BOC=18°,故∠BOC的补角=180°﹣18°=162°.故答案为:72°,162°.16.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm【答案】C【解析】∵C是线段AB的中点,AB=12cm,∴AC=BC=12AB=12×12=6(cm),点D是线段AC的三等分点.①当AD=23AC时,如图,BD=BC+CD/=BC+13AC=6+4=10(cm).所以线段BD的长为10cm或8cm.17.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.【答案】35°【解析】∵OE ⊥AB ,∴∠AOE=90°∵∠1=55°,∴∠AOC=90°﹣55°=35°,∴∠BOD=∠AOC=35°(对顶角相等).18.(2020黄冈一模)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②, ②一①得:3S ―S =39-1,即2S =39-1,∴S =39―12. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2020的值?如能求出,其正确答案是___________.【答案】S =202111m m --. 【解析】设S =1+m +m 2+m 3+m 4+…+m 2020,在所示设式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2020+m 2021,两式相减可得出答案.设S =1+m +m 2+m 3+m 4+…+m 2020…………………①,在①式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2020+m 2021 …………………② ②一①得:mS ―S =m 2021-1.∴S =202111m m --. 三、解答题(共66分)19.(8分)化简并求值:﹣6(a 2﹣2ab+b 2)+2(2a 2﹣3ab+3b 2),其中a=1,b=12. 【答案】﹣2a 2+6ab ,1.【解析】原式=﹣6a 2+12ab ﹣6b 2+4a 2﹣6ab+6b 2=﹣2a2+6ab,当a=1、b=12时,原式=﹣2×12+6×1×1 2=﹣2+3=1.20.(8分)解方程:(1)x+5(2x﹣1)=3﹣2(﹣x﹣5)(2)32x+﹣2=﹣225x-.【答案】(1)x=2;(2)x=1.【解析】(1)去分母,得:x+10x﹣5=3+2x+10,移项,得:x+10x﹣2x=3+10+5,合并同类项,得:9x=18,系数化为1,得:x=2;(2)去分母,得:5(x+3)﹣20=﹣2(2x﹣2),去括号,得:5x+15﹣20=﹣4x+4,移项,得:5x+4x=4﹣15+20,合并同类项,得:9x=9,系数化为1,得:x=1.21.(6分)已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.【答案】m+n=3+2=5.【解析】∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,∴m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.22.(8分)线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,求DE的长?(2)若AC=4cm,求DE的长.【答案】(1)DE的长是6cm;(2)DE的长是6cm.【解析】(1)∵AB=12cm,点C恰好是AB中点,∴AC=BC=6cm,∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=3cm,∴DE=CD+CE=6cm,即DE的长是6cm;(2)∵AB=12cm,AC=4cm,∴CB=8cm,∵点D、E分别是AC和BC的中点,∴DC=2cm,CE=4cm,∴DE=DC+CE=6cm,即DE的长是6cm.23.(8分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x﹣2,求正确答案.【答案】2A+B=15x2﹣13x+20.【解析】根据题意得A=9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=(9﹣2)x2﹣(2+6)x+4+7=7x2﹣8x+11.所以2A+B=2(7x2﹣8x+11)+x2+3x﹣2=14x2﹣16x+22+x2+3x﹣2=15x2﹣13x+20.24.(2020广州)(8分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【答案】(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.【解析】(1)50×(1-50%)=25(万元),故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是x辆,则今年每改装的无人驾驶出租车是(260-x),辆,依题意有50×(260-x)+25x=9000,解得,x=160.故明年改装的无人驾驶出租车是160辆.25.(2020安徽)(10分)某超市有线上和线下两种销售方式与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【答案】(1)该超市2020年4月份线下销售额为1.04(a-x)元;(2)2020年4月份线上销售额与当月销售总额的比值为0.2.【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a-x)元.(2)依题意,得1.1a=1.43x+1.04(a-x),解得:x=213a,∴21.43 1.430.22130.21.1 1.1 1.1ax aa a a⋅===答:2020年4月份线上销售额与当月销售总额的比值为0.2.26.(10分)如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.【答案】(1)∠DOE=45°;(2)∠DOE=45°.【解析】(1)∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOC=120°,∠BOC=30°,∴∠EOC=60°,∠DOC=15°,∴∠DOE=∠EOC﹣∠DOC=60°﹣15°=45°;(2))∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOB=90°,∠BOC=α,∴∠EOC=12(90°﹣α),∠DOC=12α,∴∠DOE=∠EOC﹣∠DOC=12(90°﹣α)﹣12α=45°.。
人教版2019-2020学年七年级(上)期末数学试卷 含答案解析
人教版2019-2020学年七年级(上)期末数学试卷含答案解析一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记3分,不涂、错涂或多涂记0分.1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣22.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,53.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.95.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<08.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.110.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天二、填空题(每小题3分,共18分)11.﹣1的倒数是.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为.13.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为km.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有.(填序号)三、解答题(本大题共72分)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.18.计算:(1)10﹣(﹣5)+(﹣9)+6﹣12018﹣6÷(﹣2)×(2)19.解方程:(1)2(3﹣x)=﹣4(x+5)(3)20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.24.去年微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?参考答案与试题解析一.选择题(共10小题)1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣2【分析】将各数按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣2<﹣1<0<5,则最小的数是﹣2,故选:D.2.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,5【分析】根据单项式系数及次数的定义来求解.【解答】解:根据单项式系数的定义,单项式﹣x3y的系数是﹣1,次数是5.故选:A.3.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=【分析】根据一元一次方程的定义,可得答案.【解答】解:A、是一元二次方程,故A错误;B、是一元一次方程,故B正确;C、是二元一次方程,故C错误;D、是分式方程,故D错误;故选:B.4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.9【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而得出m,n的值,即可分析得出答案.【解答】解:∵﹣x3y n与3x m y2是同类项,∴m=3,n=2,则mn=6.故选:C.5.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点【分析】根据线段的性质:两点之间,线段最短进行解答即可.【解答】解:2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是两点之间,线段最短,故选:B.6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°【分析】直接利用方向角的概念分别分析得出答案.【解答】解:A、射线OA的方向是北偏东30°方向,故此选项错误;B、射线OB的方向是北偏西25°,故此选项错误;C、射线OC的方向是东南方向,正确;D、射线OD的方向是南偏西15°,故此选项错误;故选:C.7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<0【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且|a|>|b|,∴a+b<0,∴选项B不正确,选项D正确;∵|a|>|b|,∴|a|﹣|b|>0,∴选项C不正确;故选:D.8.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可.【解答】解:根据题意可知,“你”在上面,则“年”在下面,“乐”在前面,则“祝”在后面,从而“新”在右边,“快”在左边.故不正确的是C.故选:C.9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.1【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2018÷3,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,∴个位数字分别为3、9、7、1依次循环,∵2018÷4=504……2,∴32018的个位数字与循环组的第2个数的个位数字相同,是9,故选:B.10.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天【分析】此题是工程问题,把此工作分段进行分析,甲自己做了3天做了,则可知道甲自己做需要3÷=12天,再用方程求出各自做完需要的时间,利用工作量=工作时间×工作效率求剩余时间,而后即可求得总时间.【解答】解:设乙自己做需x天,甲自己做需3÷=12天,根据题意得,2(+)=﹣解得x=24则还需÷(+)=4天所以完成这项工作共需4+5=9天故选:A.二.填空题(共6小题)11.﹣1的倒数是﹣.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣1=﹣的倒数是:﹣.故答案为:﹣.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为 1 .【分析】根据一元一次方程的解得概念即可求出m的值.【解答】解:将x=2代入mx﹣2=02m﹣2=0m=1故答案为:113.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=﹣7 .【分析】将a﹣b=﹣10、c+d=3代入原式=a+d﹣b+c=a﹣b+c+d,计算可得.【解答】解:当a﹣b=﹣10、c+d=3时,原式=a+d﹣b+c=a﹣b+c+d=﹣10+3=﹣7,故答案为:﹣7.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为9或25 km.【分析】设A、B两地的距离为xkm,分C地在A、B两地之间、A地在B、C两地之间两种情况考虑,根据时间=路程÷速度即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设A、B两地的距离为xkm,当C地在A、B两地之间时(如图1所示),有+=5.1,解得:x=25;当A地在B、C两地之间时(如图2所示),有+=5.1,解得:x=9.故答案为:9或25.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有①②④.(填序号)【分析】根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.【解答】解:∵∠A和∠B互补,∴∠A+∠B=180°,①∵∠B+(90°﹣∠B)=90°,∴90°﹣∠B是∠B的余角,②∵∠B+(∠A﹣90°)=∠B+∠A﹣90°=180°﹣90°=90°,∴∠A﹣90°是∠B的余角,③∵∠B+(∠A+∠B)=∠B+×180°=∠B+90°,∴(∠A+∠B)不是∠B的余角,④∵∠B+(∠A﹣∠B)=(∠A+∠B)=×180°=90°,∴(∠A﹣∠B)是∠B的余角,综上所述,表示∠B余角的式子有①②④.故答案为:①②④.三.解答题(共9小题)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.【分析】(1)根据直线是向两方无限延伸的,射线是向一方无限延伸的画图即可;(2)找出线段AB的中点E,画射线DE与射线CB交于点O;(3)画线段AD,然后从A向D延长使DF=AD.【解答】解:如图所示:.18.计算:(1)10﹣(﹣5)+(﹣9)+6(2)﹣12018﹣6÷(﹣2)×【分析】(1)将减法转化为加法,再计算即可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=10+5﹣9+6=21﹣9=12;(2)原式=﹣1+3×=﹣1+1=019.解方程:(1)2(3﹣x)=﹣4(x+5)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2x=﹣4x﹣20,移项合并得:2x=﹣26,解得:x=﹣13;(2)去分母得:9+3x﹣6=2x+4,移项合并得:x=1.20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2,当x=﹣2,y=1时,原式=﹣10+1=﹣9.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,然后乘以0.3即可解答本题.【解答】解:(1)(+8)+(﹣9)+(+4)+(﹣7)+(﹣2)+(﹣10)+(+11)+(﹣3)+(+7)+(﹣5)=8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=8+4+11+7﹣9﹣7﹣2﹣10﹣3﹣5=30﹣36=﹣6(千米),答:收工时,检修工在A地的西边,距A地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5|=8+9+4+7+2+10+11+3+7+5=66(千米)66×0.3=19.8(升)答:从A地出发到收工时,共耗油19.8升.22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.【分析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单价利润×数量即可求出销售完这批货物的总利润,用其除以进价×100%再与40%比较后,即可得出结论.【解答】解:(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据题意得:10x+15(100﹣x)=1300,解得:x=40,∴100﹣x=60.答:该店用1300元可以购进A种型号的文具40只,B种型号的文具60只.(2)(12﹣10)×40+(23﹣15)×60=560(元),∵560÷1300×100%≈43.08%>40%,∴若把所购进A,B两种型号的文具全部销售完,利润率超过40%.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.【分析】(1)先根据角平分线定义求出∠AOC、∠COB的度数,再求出∠BOD的度数即可求解;(2)求出∠BOE的度数,根据角的和差关系即可得出答案.【解答】解:(1)∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∴∠AOC=∠BOD;(2)∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.24.去年(2017年)微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.【分析】(1)先根据题中所描述的6条规则,列出式子得到一个三位数,然后根据规则判断手机号的最后一位及年龄,再根据年份验证即可;(2)根据题意列出代数式,从数学式子进行解释即可;(3)根据(2)中的式子进行判断是否符合,然后根据年份为2018,修改规则即可.【解答】解:(1)根据题意得:(7×2+5)×50+1767﹣2004=713第一位数字7是你手机号的最后一位,接下来13就是你的实际年龄,2017﹣2004=13,准确;(2)设手机尾号为x,由题意得:(2x+5)×50+1767=100x+2017去年是2017年,此数减去你出生的那一年后,正好是你的年龄,而百位上的第一个数字是手机尾号;(3)设手机尾号为x,(2x+5)×50+1767=100x+2017今年是2018年,用2017年这个数减去你出生的那一年后,不符合,可以修改规则⑤为:“把得到的数目加上1768”(2x+5)×50+1767=100x+2018,这样在今年就仍然准了.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?【分析】(1)利用非负数的性质求出a与b的值,确定出AB即可;(2)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可;(3)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可.【解答】解:(1)∵|a+2|+(b﹣5)2=0,∴a+2=0,b﹣5=0,解得:a=﹣2,b=5,则AB=|a﹣b|=|﹣2﹣5|=7;(2)若点P在A、B之间时,PA=|x﹣(﹣2)|=x+2,|PB|=|x﹣5|=5﹣x,∴PA+PB=x+2+5﹣x=7<10,∴点P在A、B之间不合题意,则不存在x的值使PA+PB=10;(3)若点P在AB的延长线上时,PA=|x﹣(﹣2)|=x+2,PB=|x﹣5|=x﹣5,由PA+PB=10,得到x+2+x﹣5=10,解得:x=6.5;若点P在AB的反向延长线上时,PA=|x﹣(﹣2)|=﹣2﹣x,PB=|x﹣5|=5﹣x,由PA+PB=10,得到﹣2﹣x+5﹣x=10,解得:x=﹣3.5,综上,存在使PA+PB=10的x值,分别为6.5或﹣3.5.。
四川省自贡市2019-2020学年七年级(上)期末数学试卷
2019-2020 学年四川省自贡市七年级(上)期末数学试卷一、选择题(本题有 8 个小题,每小题 3 分,满分 24 分,每小题只有一个选项符合题意) 1.(3 分)如果水位升高 2m 时水位变化记作+2m ,那么水位下降 2m 时水位变化记作( )A .﹣2mB .﹣1mC .1mD .2m2.(3 分)下列各式错误的是( A .|﹣ |= )B .﹣ 的相反数是 D .﹣ <﹣C .﹣ 的倒数是﹣3.(3 分)用四舍五入法按要求对 0.05037 分别取近似值,其中错误的是( A .0.1(精确到 0.1) )B .0.05 (精确到千分位)C .0.05 (精确到百分位)D .0.0504 (精确到 0.0001) 4.(3 分)下列计算正确的是( A .x ﹣(y ﹣z )=x ﹣y 一 z B .﹣(x ﹣y+z )=﹣x ﹣y ﹣z C .x+3y ﹣3z =x ﹣3(z+y ))D .﹣(a ﹣b )﹣(﹣c ﹣d )=﹣a+c+d+b5.(3 分)一双没有洗过的手,带有各种细菌约 75000 万个,75000 万用科学记数法表示为 ()A .7.5×104B .7.5×105C .7.5×108D .7.5×1096.(3 分)将一副直角三角尺如图放置,若∠B O C =165°,则∠AO D 的大小为()A .15° 7.(3 分)有理数 a ,b 在数轴上的对应点如图,下列式子:①a >0>b ;②|b |>|a |;③ab <0;④a ﹣b >a+b ,其中正确的个数是(B .20°C .25D .30°)A.1B.2C.3D.48.(3分)某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折二、填空题(本题有6个小题,每小题3分,共计18分)9.(3分)计算:|﹣2|﹣1=10.(3分)如图,∠A O C=140°,则射线OA的方向是D.九折..11.(3分)如果x=3是方程x+a=2的解,则a的值是.12.(3分)如图,长方形纸片ABC D,点E,F分别在边AB,C D上,连接EF,将∠BEF 对折B落在直线EF上的点B′处,得折痕E M;将∠AEF对折,点A落在直线EF上的点A′得折痕EN,若∠BE M=62°15′,则∠AE N=.13.(3分)如图,是一个简单的数值运算程序,当输入x的值为﹣1时,则输出的数值为.14.(3分)已知一组单项式:﹣2x,4x3,﹣8x5,16x7,…则按此规律排列的第2020个单项式是.三、解答题(本题有5个小题,每小题5分,共计25分)15.(5分)计算:(﹣1)3﹣2×[6﹣(﹣3)2]16.(5分)如图是2020年1月的日历,小明用矩形按图示方向从中任意框出4个日期,若这四个日期的和为68,则C处上的日期是1月几日?17.(5分)解方程:﹣1=18.(5分)一个锐角的补角比它的余角的4倍小30°,求这个锐角的度数.19.(5分)已知线段AB,在直线AB上取一点C,使AC=2BC,在AB的反向延长线上取一点D,使DA=2AB,求线段AC:DB的值.四、解答题(本题有3个小题,每小题6分,共计18分)20.(6分)如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=;(2)先化简,再求值:5a2b﹣[3a2b﹣2(3abc﹣a2b)+4abc]21.(6分)已知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.(1)画直线A D、射线BC相交于点O,画线段A C;(2)图中以字母A、B、C、D、O为端点的线段共有条,请写出图中的一个钝角.22.(6分)如图,O为直线AB上一点,∠C O E=90°,OF平分∠AO E.(1)若∠B OE=80°,求∠C O F的度数.(2)若∠C O F=a(0°<a<90°),则∠B OE=(用含a的式子表示).五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.(7分)A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品只差4个就能装满6箱.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?24.(8分)已知线段AB=60cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B 点向A点以4厘米/秒运动,问经过几秒后P、Q相遇?(2)在(1)的条件下,几秒钟后,P、Q相距12cm?(3)如图2,A O=P O=10厘米,∠P OB=40°,点P绕着点O以10度/秒的速度顺时针旋转一周停止,同时点Q沿线段BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.2019-2020学年四川省自贡市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.(3分)如果水位升高2m时水位变化记作+2m,那么水位下降2m时水位变化记作(A.﹣2m B.﹣1m C.1m D.2m)【分析】根据水位升高2m时水位变化记作+2m,从而可以表示出水位下降2m时水位变化记作什么,本题得以解决.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降2m时水位变化记作﹣2m,故选:A.2.(3分)下列各式错误的是(A.|﹣|=)B.﹣的相反数是D.﹣<﹣C.﹣的倒数是﹣【分析】直接利用绝对值以及相反数和倒数的定义分别分析得出答案.【解答】解:A、|﹣|=,不合题意;B、﹣的相反数是,不合题意;C、﹣的倒数是﹣,不合题意;D、﹣>﹣,原式错误,符合题意.故选:D.3.(3分)用四舍五入法按要求对0.05037分别取近似值,其中错误的是(A.0.1(精确到0.1))B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.0504(精确到0.0001)【分析】根据近似数的精确度对各选项进行判断.【解答】解:0.05037≈0.1(精确到0.1);0.05037≈0.050(精确到千分位);0.05037≈0.05(精确到百分位);0.05037≈0.0504(精确到0.0001).故选:B.4.(3分)下列计算正确的是()A.x﹣(y﹣z)=x﹣y一zB.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+3y﹣3z=x﹣3(z+y)D.﹣(a﹣b)﹣(﹣c﹣d)=﹣a+c+d+b【分析】根据去括号法则:括号前面是正号,去掉括号和正号,括号里面的各项不变号,括号前面是负号,去掉括号和负号,括号里面的各项都变号进行分析即可.【解答】解:A、x﹣(y﹣z)=x﹣y+z,故原题计算错误;B、﹣(x﹣y+z)=﹣x+y﹣z,故原题计算错误;C、x+3y﹣3z=x﹣3(z﹣y),故原题计算错误;D、﹣(a﹣b)﹣(﹣c﹣d)=﹣a+c+d+b,故原题计算正确;故选:D.5.(3分)一双没有洗过的手,带有各种细菌约75000万个,75000万用科学记数法表示为()A.7.5×104B.7.5×105C.7.5×108D.7.5×109【分析】科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定nn的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:75000万=750000000=7.5×10吨.8故选:C.6.(3分)将一副直角三角尺如图放置,若∠B O C=165°,则∠AO D的大小为()ArrayA.15°B.20°C.25D.30°【分析】依据∠CO B=∠C O D+∠AO B﹣∠A O D求解即可.【解答】解:∵∠C O B=∠C O D+∠A OB﹣∠A O D,∴90°+90°﹣∠A O D=165°,∴∠A O D=15°.故选:A.7.(3分)有理数a,b在数轴上的对应点如图,下列式子:①a>0>b;②|b|>|a|;③ab <0;④a﹣b>a+b,其中正确的个数是()A.1B.2C.3D.4【分析】先由数轴得a<0<b,且|a|>|b|,再逐个序号判断即可.【解答】解:由数轴可得:a<0<b,且|a|>|b|①由a<0<b可知,a>0>b不正确;②由|a|>|b|可知|b|>|a|不正确;③由a,b异号,可知ab<0正确;④由b>0,可知a﹣b>a+b错误;综上,只有③正确.故选:A.8.(3分)某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打(A.六折B.七折C.八折)D.九折【分析】设打x折,利用销售价减进价等于利润得到120•﹣80≥80×5%,然后解不等式求出x的范围,从而得到x的最小值即可.【解答】解:设打x折,根据题意得120•﹣80≥80×5%,解得x≥7.所以最低可打七折.故选:B.二、填空题(本题有6个小题,每小题3分,共计18分)9.(3分)计算:|﹣2|﹣1=1.【分析】根据有理数减法的运算方法,求出算式的值是多少即可.【解答】解:|﹣2|﹣1=2﹣1=1故答案为:1.10.(3分)如图,∠A O C=140°,则射线OA的方向是北偏东40°.【分析】根据方向角的概念,看图正确表示出方向角,即可求解.【解答】解:已知∠A O C=140°,∴∠A OB=180°﹣∠A O C=40°,由方位角的概念可知,射线OA的方向是北偏东40°.故答案为:北偏东40°.11.(3分)如果x=3是方程x+a=2的解,则a的值是﹣1.【分析】把x=3代入方程计算即可求出a的值.【解答】解:把x=3代入方程得:3+a=2,解得:a=﹣1,故答案为:﹣112.(3分)如图,长方形纸片ABC D,点E,F分别在边AB,C D上,连接EF,将∠BEF 对折B落在直线EF上的点B′处,得折痕E M;将∠AEF对折,点A落在直线EF上的点A′得折痕EN,若∠BE M=62°15′,则∠AE N=27°45′.【分析】根据折叠的性质即可求解. 【解答】解:根据折叠可知: E M 平分∠BEB ′,∴∠B ′E M =∠BE M =62°15′,∴∠AEA ′=180°﹣2×62°15′=55°30′, E N 平分∠AEA ′, ∴∠AEN =∠A ′E N = 故答案为:27°45′.AEA ′=55°15′=27°45′,13.(3 分)如图,是一个简单的数值运算程序,当输入 x 的值为﹣1 时,则输出的数值为 ﹣ 2 .【分析】根据有理数的混合运算的运算方法,用﹣1 乘 4,求出积是多少;然后用所得的 积减去﹣2,求出输出的数值是多少即可. 【解答】解:(﹣1)×4﹣(﹣2) =(﹣4)﹣(﹣2) =﹣2∴输出的数值为﹣2. 故答案为:﹣2.14.(3 分)已知一组单项式:﹣2x ,4x 3,﹣8x 5,16x 7,…则按此规律排列的第 2020 个单 项式是 2 .2020 4039 x【分析】根据题目中的这列单项式,可以写出第n 个单项式的,从而可以得到第2020 个 单项式.【解答】解:∵一组单项式:﹣2x ,4x ,﹣8x ,16x ,… 3 5 7 ∴第 n 的单项式是:(﹣1) •2 x ,n n 2n ﹣1 ∴按此规律排列的第 2020 个单项式是:(﹣1)2020•2 =2 x 2020 4039, 2020 2×2020﹣1 x 故答案为:2 x.2020 4039三、解答题(本题有 5 个小题,每小题 5 分,共计 25 分)15.(5 分)计算:(﹣1)3﹣2×[6﹣(﹣3)2]【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:原式=﹣1﹣2×(6﹣9)=﹣1+6=5.16.(5分)如图是2020年1月的日历,小明用矩形按图示方向从中任意框出4个日期,若这四个日期的和为68,则C处上的日期是1月几日?【分析】设C处日期为x日,则A处为(x﹣16)日,B处为(x﹣6)日,c处为(x+6)日,根据三个日期和为68,列方程求解.【解答】解:设C处上的数字为x,得:x+6+x+x﹣6+x﹣12=68.4x=80,x=20.答:C处上的数字为20.17.(5分)解方程:﹣1=【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+8﹣4=6x+2,移项合并得:3x=2,解得:x=.18.(5分)一个锐角的补角比它的余角的4倍小30°,求这个锐角的度数.【分析】设这个锐角为x度,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【解答】解:设这个锐角为x度,得:180﹣x=4(90﹣x)﹣30,解得x=50.答:这个锐角的度数为50°.19.(5分)已知线段AB,在直线AB上取一点C,使AC=2BC,在AB的反向延长线上取一点D,使DA=2AB,求线段AC:DB的值.【分析】①如图,当点C在线段AB上时:②如图,当点C在线段AB延长线上时:③当点C在线段AB的反向延长线上时,根据线段的和差即可得到结论.【解答】解:①如图,当点C在线段AB上时:设BC=x,∵AC=2BC,∴AC=2x,∴AB=AC+BC=3x,∵A D=2AB∴A D=6x∴B D=A D+AB=9x∴AC:D B=2x:9x=2:9;②如图,当点C在线段AB延长线上时:设BC=x,∵AC=2BC,∴AC=2x,∴AB=AC﹣BC=x,∵A D=2AB∴A D=2x∴B D=A D+AB=3x∴AC:D B=2x:3x=2:3;③当点C在线段AB的反向延长线上时,不满足AC=2BC,所以这种情况不存在.综上所述AC:D B的值为或.四、解答题(本题有3个小题,每小题6分,共计18分)20.(6分)如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=1,b=﹣3,c=2;222(2)先化简,再求值:5a b﹣[3a b﹣2(3abc﹣a b)+4abc]【分析】(1)先根据长方体的平面展开图确定a、b、c所对的面的数字,再根据相对的两个面上的数互为相反数,确定a、b、c的值;(2)化简代数式后代入求值.【解答】解:(1)由长方体纸盒的平面展开图知,a与﹣1、b与3、c与﹣2是相对的两个面上的数字或字母,因为相对的两个面上的数互为相反数,所以a=1,b=﹣3,c=2.(2)原式=5a2b﹣3a2b+6abc﹣2a2b﹣4abc=2abc,∴原式=2×1×(﹣3)×2=﹣12.故答案为:1,﹣3,2.21.(6分)已知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.(1)画直线A D、射线BC相交于点O,画线段A C;(2)图中以字母A、B、C、D、O为端点的线段共有7条,请写出图中的一个钝角∠AC O.【分析】(1)根据直线没有端点,射线有一个端点,线段两个端点画图即可;(2)分别找出以字母A、B、C、D、O为端点的线段;再找出大于90°的一个角即可.【解答】解:(1)如图所示;(2)以A为端点的线段:AC,A D,A O;以B为端点的线段:BC,B O;以D为端点的线段:D O;以O为端点的线段:C O共7条,钝角∠AC O,故答案为:7;∠A C O.22.(6分)如图,O为直线AB上一点,∠C O E=90°,OF平分∠AO E.(1)若∠B OE=80°,求∠C O F的度数.(2)若∠C O F=a(0°<a<90°),则∠B OE=2α(用含a的式子表示).【分析】(1)根据∠B OE=80°,∠C O E=90°,OF平分∠A O E即可求∠C O F的度数;(2)根据OF平分∠A OE,可得∠A OE=2∠E O F,即可求得∠B O E=180°﹣∠A O E=180°﹣2∠E OF=180°2(90°﹣∠C O F)=180°﹣180°+2α=2α.【解答】解:(1)∵∠B OE=80°,∠A OB=180°∴∠A OE=∠A O B﹣∠B OE=100°∵OF平分∠A O E,∴∠E OF=∠AO E=50°∵∠C O E=90°,∴∠C O F=∠C O E﹣∠E O F=90°﹣50°=40°.(2)∵∠C O E=90°,O F平分∠A O E,∴∠A OE=2∠E O F,∠B OE=180°﹣∠A OE=180°﹣2∠E O F=180°2(90°﹣∠C O F)=180°﹣180°+2α=2α.故答案为2α.五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.(7分)A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品只差4个就能装满6箱.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?【分析】设每箱装x个产品,根据每台A型机器比每台B型机器一天少生产2个产品,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解;设每箱装x个产品,得:+2=.解得:x=54.答:每箱装54个产品.24.(8分)已知线段AB=60cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B 点向A点以4厘米/秒运动,问经过几秒后P、Q相遇?(2)在(1)的条件下,几秒钟后,P、Q相距12cm?(3)如图2,A O=P O=10厘米,∠P OB=40°,点P绕着点O以10度/秒的速度顺时针旋转一周停止,同时点Q沿线段BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分P、Q在点O左右两边相遇来解答.【解答】解:(1)设经过ts后,点P、Q相遇,得:2t+4t=60,解得t=10.答:经过10秒钟后P、Q相遇;(2)设经过xs,P、Q两点相距12cm,遇前相距12cm,有2x+4x+12=60,解得:x=8遇后相距12cm,有2x+4x﹣12=60,解得:x=12.答:经过8秒钟或12秒钟后,P、Q相距12cm;(3)点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为:40÷10=4s或(40+180)÷10=22s.设点Q的速度为ycm/s,则有:4y=60﹣20,或22y=60.解得y=10或y=.答:点Q运动的速度为10cm/s或cm/s.=180°﹣180°+2α=2α.故答案为2α.五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.(7分)A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品只差4个就能装满6箱.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?【分析】设每箱装x个产品,根据每台A型机器比每台B型机器一天少生产2个产品,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解;设每箱装x个产品,得:+2=.解得:x=54.答:每箱装54个产品.24.(8分)已知线段AB=60cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B 点向A点以4厘米/秒运动,问经过几秒后P、Q相遇?(2)在(1)的条件下,几秒钟后,P、Q相距12cm?(3)如图2,A O=P O=10厘米,∠P OB=40°,点P绕着点O以10度/秒的速度顺时针旋转一周停止,同时点Q沿线段BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分P、Q在点O左右两边相遇来解答.【解答】解:(1)设经过ts后,点P、Q相遇,得:2t+4t=60,解得t=10.答:经过10秒钟后P、Q相遇;(2)设经过xs,P、Q两点相距12cm,遇前相距12cm,有2x+4x+12=60,解得:x=8遇后相距12cm,有2x+4x﹣12=60,解得:x=12.答:经过8秒钟或12秒钟后,P、Q相距12cm;(3)点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为:40÷10=4s或(40+180)÷10=22s.设点Q的速度为ycm/s,则有:4y=60﹣20,或22y=60.解得y=10或y=.答:点Q运动的速度为10cm/s或cm/s.。
2019年初一数学上期末一模试卷含答案
2019年初一数学上期末一模试卷含答案一、选择题1.下列说法:(1)两点之间线段最短; (2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( ) A .一个 B .两个 C .三个 D .四个 2.若﹣x 3y a 与x b y 是同类项,则a+b 的值为( ) A .2B .3C .4D .53.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是04.下列方程变形中,正确的是( ) A .由3x =﹣4,系数化为1得x =34- B .由5=2﹣x ,移项得x =5﹣2C .由123168-+-=x x ,去分母得4(x ﹣1)﹣3(2x+3)=1 D .由 3x ﹣(2﹣4x )=5,去括号得3x+4x ﹣2=55.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1 C .(-1)n -1x 2n +1D .(-1)n x 2n +16.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A .甲B .乙C .丙D .丁7.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯8.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元9.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x =- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 10.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1 11.一副三角板不能拼出的角的度数是( )(拼接要求:既不重叠又不留空隙) A .75︒B .105︒C .120︒D .125︒12.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A .3B .9C .7D .1二、填空题13.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.14.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元. 15.已知∠AOB =72°,若从点O 引一条射线OC ,使∠BOC =36°,则∠AOC 的度数为_____.16.一个角的余角比这个角的12多30°,则这个角的补角度数是__________. 17.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.18.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.19.某同学做了一道数学题:“已知两个多项式为 A 、B ,B=3x ﹣2y ,求 A ﹣B 的 值.”他误将“A ﹣B”看成了“A+B”,结果求出的答案是 x ﹣y ,那么原来的 A ﹣B 的值应该是 . 20.若2x ﹣1的值与3﹣4x 的值互为相反数,那么x 的值为_____.三、解答题21.一个角的补角比它的余角的2倍大20゜,求这个角的度数.22.如下图时用黑色的正六边形和白色的正方形按照一定的规律组合而成的两色图案(1)当黑色的正六边形的块数为1时,有6块白色的正方形配套;当黑色的正六边形块数为2时,有11块白色的正方形配套;则当黑色的正六边形块数为3,10时,分别写出白色的正方形配套块数;(2)当白色的正方形块数为201时,求黑色的正六边形的块数.(3)组成白色的正方形的块数能否为100,如果能,求出黑色的正六边形的块数,如果不能,请说明理由23.化简求值:2222222(2)3()(22)ab a b ab a b ab a b ---+-,其中 2,1a b ==. 24.计算:(1)223(3)3(2)|4|-÷-+⨯-+-(2)1515158124292929⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭25.解方程: (1)14123x x -=+ (2)3(21)2(21)143x x +--=【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】(1)根据线段的性质即可求解; (2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C.【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.2.C解析:C【解析】试题分析:已知﹣x3y a与x b y是同类项,根据同类项的定义可得a=1,b=3,则a+b=1+3=4.故答案选C.考点:同类项.3.D解析:D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.4.D解析:D【解析】【分析】根据解方程的方法判断各个选项是否正确,从而解答本题.【详解】解:3x=﹣4,系数化为1,得x=﹣43,故选项A错误;5=2﹣x,移项,得x=2﹣5,故选项B错误;由123168-+-=x x,去分母得4(x﹣1)﹣3(2x+3)=24,故选项C错误;由 3x﹣(2﹣4x)=5,去括号得,3x﹣2+4x=5,故选项D正确,【点睛】本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.5.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负, ∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n +, ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.6.D解析:D 【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D .7.B解析:B 【解析】解:将2400000用科学记数法表示为:2.4×106.故选B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.B解析:B 【解析】解:设商品的进价为x 元,则:x (1+20%)=120×0.9,解得:x =90.故选B . 点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.9.A解析:A 【解析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.10.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:Q 单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.11.D解析:D 【解析】 【分析】 【详解】解:一副三角板的度数分别为:30°、60°、45°、45°、90°,因此可以拼出75°、105°和120°,不能拼出125°的角. 故选D . 【点睛】本题考查角的计算.12.C解析:C【解析】【分析】根据已知的等式找到末位数字的规律,再求出20193的末位数字即可.【详解】∵133=,末位数字为3,239=,末位数字为9,3327=,末位数字为7,4381=,末位数字为1,53243=,末位数字为3,63729=,末位数字为9,732187=,末位数字为7,836561=,末位数字为1,故每4次一循环,∵2019÷4=504 (3)∴20193的末位数字为7故选C【点睛】此题主要考查规律探索,解题的关键是根据已知条件找到规律进行求解.二、填空题13.265【解析】【分析】根据经过一次输入结果得131经过两次输入结果得131…分别求满足条件的正数x的值【详解】若经过一次输入结果得131则5x +1=131解得x=26;若经过二次输入结果得131则5解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.14.100【解析】【分析】设这件童装的进价为x元根据利润=售价﹣进价即可得出关于x的一元一次方程解之即可得出结论【详解】解:设这件童装的进价为x元依题意得:120﹣x=20x解得:x=100故答案为:1解析:100【解析】【分析】设这件童装的进价为x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设这件童装的进价为x元,依题意,得:120﹣x=20%x,解得:x=100.故答案为:100.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.36°或108°【解析】【分析】先根据题意画出图形分两种情况作图结合图形来答题即可【详解】①如图∠AOC=∠AOB+∠BOC=72°+36°=108°②如图∠AOC=∠AOB﹣∠BOC=72°﹣36解析:36°或108°.【解析】【分析】先根据题意画出图形,分两种情况作图,结合图形来答题即可.【详解】①如图,∠AOC=∠AOB+∠BOC=72°+36°=108°②如图,∠AOC =∠AOB ﹣∠BOC =72°﹣36°=36°故答案为36°或108°. 【点睛】本题考查了角的和差关系计算,注意要分两种情况讨论.16.【解析】【分析】设这个角为x°根据题意列出方程求出这个角的度数再根据补角的性质即可求出这个角的补角度数【详解】设这个角为x°由题意得解得故这个角为这个角的补角度数故答案为:【点睛】本题考查了角的问题 解析:140︒【解析】 【分析】设这个角为x °,根据题意列出方程求出这个角的度数,再根据补角的性质即可求出这个角的补角度数. 【详解】设这个角为x °,由题意得90302xx -=+ 解得40x = 故这个角为40︒这个角的补角度数18040140=-=︒︒︒ 故答案为:140︒. 【点睛】本题考查了角的问题,掌握解一元一次方程的方法、余角的性质、补角的性质是解题的关键.17.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒据此可得答案【详解】∵图①中火柴数量为5=1+4×1图②中火柴数量为9=1+4×2图③中火柴数量为13=1+4×3……∴摆第n解析:(4n +1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.18.40°【解析】解:由角的和差得:∠AOC=∠AOD-∠COD=140°-90°=50°由余角的性质得:∠COB=90°-∠AOC=90°-50°=40°故答案为:40°解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.19.﹣5x+3y【解析】【分析】先根据题意求出多项式A然后再求A-B【详解】解:由题意可知:A+B=x-y∴A=(x-y)-(3x-2y)=-2x+y∴A-B=(-2x+y)-(3x-2y)=-5x+3解析:﹣5x+3y.【解析】【分析】先根据题意求出多项式A,然后再求A-B.【详解】解:由题意可知:A+B=x-y,∴A=(x-y)-(3x-2y)=-2x+y,∴A-B=(-2x+y)-(3x-2y)=-5x+3y.故答案为:-5x+3y.【点睛】本题考查多项式的加减运算,注意加减法是互为逆运算.20.x=1【解析】【分析】互为相反数的两个数的和等于0根据题意可列出方程【详解】解:根据题意得:2x-1+3-4x=0解得x=1故答案为:1【点睛】本题主要考查了相反数的定义解题关键是要读懂题目的意思根解析:x=1【解析】互为相反数的两个数的和等于0,根据题意可列出方程.【详解】解:根据题意得:2x-1+3-4x=0,解得x=1.故答案为:1.【点睛】本题主要考查了相反数的定义,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.三、解答题21.这个角的度数是20°.【解析】试题分析:设这个角的度数是x ,则它的补角为:180,x -o余角为90x -o ;根据题意列出方程,再解方程即可,试题解析:设这个角的度数是x ,则它的补角为:180,x -o 余角为90x -o ;由题意,得:(180)2(90)20.x x ---=o o o解得:20.x o = 答:这个角的度数是20.o 22.(1)16;51;(2)40;(3)成白色的正方形的块数不能为100,理由见解析【解析】【分析】(1)第一副图为黑1,白6,第二幅图黑色增加1,白色增加5,第三幅图黑色增加1,白色增加5,由此可知黑色为3,10时白色的配套数量;(2)由(1)可知白色的增加规律为51n +,其中n 为黑色正六边形的数量,根据关系式求出黑色即可;(3)根据关系式判断即可.【详解】(1)观察图形可知:每增加1块黑色正六边形,配套白色正方形增加5个,当黑色的正六边形块数为3,白色正方形为16,当黑色的正六边形块数为10,白色正方形为51;故答案为:16,51;(2)观察可知每增加1块黑色正六边形,配套白色正方形增加5个故第n 个图案中有51n +个正方形,当51201n +=时,40n =;故答案为:黑色的正六边形的块数为40;(3)当51100n +=时,n 无法取整数,故白色正方形无法为100.本题考查了图形的变化规律,解题时必须仔细观察规律,通过归纳得出结论.注意由特殊到一般的分析方法,此题的规律为:第n 个图案中有51n +个正方形.23.ab 2−3a 2b ;-10【解析】【分析】根据整式乘法的运算法则,去括号后合并同类项,将原式化成最简,将2,1a b ==代入求值即可.【详解】原式222222324322ab a b ab a b ab a b +=--+-222222232432ab ab ab a b a b a b =-+-+-223ab a b =-将2,1a b ==得:2×1²-3×2²×1=-10【点睛】本题考查了整式乘法的化简求值,解决本题的关键是熟练掌握整式运算的顺序,找出同类项将整式化成最简.24.(1)-3(2)0【解析】【分析】(1)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)原式=()99324-÷+⨯-+-=164--+=-3.(2)原式= ()15812429⎛⎫-⨯-+- ⎪⎝⎭, = 15029⎛⎫-⨯ ⎪⎝⎭=0.【点睛】题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(1)95x =-(2)52x =-【分析】两方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:(1)原方程去分母得:3(x-1)=8x+6,去括号得:3x-3=8x+6,整理得:-5x=9, 解得:95x =-; (2)原方程变形为:()()92112821x x +-=-,去括号得:18x+9-12=16x-8,整理得:2x=-5, 解得:52x =-. 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.。
七年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册惠州惠城区
惠城区2019-2020学年度第一学期期末教学质量检测七年级数学试题说明:1、答卷前,考生必须将自己的学校、班级、学号按要求填写在左边密封线内的空格内. 2.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷(或答题卡)上,但不能用铅笔或红笔.(注:画图用铅笔)3.本试卷共五大题,25小题,满分120分,100分钟内完成,相信你一定会有出色的表现!一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选择项中,只有一个是正确的,请将正确选择项前的字母填在下面表格中相应的位置. 1.2-等于( )A .-2B .12-C .2D .122.如图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )A .B .C .D .3.地球上的海洋面积约为36100000km 2,用科学记数法可表示为( )km 2A .3.61×106B .3.61×107C .0.361×108D .3.61×109 4.下面运算正确的是( )A .3ab +3ac =6abcB . 4a 2b -4b 2a =0C .2x 2+7x 2=9x 4D .3y 2-2y 2=y 2 5.多项式xy 2+xy +1是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式6.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2x D .21=+y y7.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1B .3(x ﹣1)+2(2x +3)=1C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x +3)=68.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店请你帮助他选择一条最近的路线是( ) A .A →C →D →B B .A →C →F →B C .A →C →E →F →BD .A →C →M →B第8题图 第9题图9.如图,把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°10. 下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .58B .66C .74D .112二、填空题:(本大题共6小题,每小题4分,共24分)请把答案直接填写在相应位置上,不需写出解答过程.11.13-______-0.3 ( 用“<”,“>”,“=”填空 ). 12.若212n ab +与3222n a b --是同类项,则=n .13.小红在计算3+2a 的值时,误将“+”号看成“-”号,结果得13,那么3+2a 的值应为 .14.一个角的5倍等于71°4′30″,这个角的余角是 .15.因为∠1+∠2=180°,∠2+∠3=180°,所以∠1=∠3,根据是 . 16.若25x xy -=,426xy y +=-,则23x xy y -+= .B2 8424 62246 844m 6三、解答题:(每小题6分,共18分) 17.计算:2321353752⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:()()222321231x y x y xy ---+,其中,12x =-,2y =-19.如图,小雅家(图中点O 处)门前有一条东西走向的公路,测得学校(图中点A 处)在距她家北偏西60°方向的500米处,文具商店在距她家正东方向的1500米处,请你在图中标出文具商店的位置(保留画图痕迹).四、解答题:(每小题7分,共21分) 20.已知方程23101124x x -+-=与关于x 的方程23xax -=的解相同,求a 的值.21.如图,点M 为AB 中点,BN =12AN ,MB =3 cm ,求AB 和MN 的长.22.100cm )年数(n )高度(cm ) 1 100+12 2 100+24 3 100+36 4 100+48 …………假设以后各年树苗高度的变化与年数的关系保持上述关系,回答下列问题:⑴ 生长了10年的树高是 cm ,用式子表示生长了n 年的树高是 cm ⑵ 种植该种树多少年后,树高才能达到2.8m ?五、解答题:(每小题9分,共27分)23.某电器商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,故进货量减少了10台. ⑴ 商场第二次购进这款电风扇时,进货价为 元; ⑵ 这两次各购进电风扇多少台?⑶ 商场以210元/台的售价卖完这两批电风扇,商场获利多少元?24. 如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 、ON 分别是∠AOC 、 ∠AOB 的平分线,∠MON =56°.⑴ ∠COD 与∠AOB 相等吗?请说明理由; ⑵ 求∠BOC 的度数;⑶ 求∠AOB 与∠AOC 的度数.25.阅读下面材料并回答问题.Ⅰ 阅读:数轴上表示-2和-5的两点之间的距离等于(-2)-(-5)=3 数轴上表示1和-3的两点之间的距离等于1-(-3)=4一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数. Ⅱ 问题:如图,O 为数轴原点,A 、B 、C 是数轴上的三点,A 、C 两点对应的数互为相反数,且A 点对应的数为-6,B 点对应的数是最大负整数. ⑴ 点B 对应的数是 ,并请在数轴上标出点B 位置;⑵ 已知点P 在线段BC 上,且PB =25PC ,求线段AP 中点对应的数; ⑶ 若数轴上一动点Q 表示的数为x ,当QB =2时,求22100a c x bx +⋅-+的值(a,b,c 是点A 、B 、C 在数轴上对应的数).密封线内不要答题2019~2020学年度第一学期期末教学质量检查七年级数学试题答卷说明:1.答卷共4页.考试时间为100分钟,满分120分.2.答卷前必须将自己的姓名、座号等信息按要求填写在密封线左边的空格内一、选择题(本题共10小题,每小题3分,共30分.)二、填空题(本题共6小题,每小题4分,共24分.11.12.13.14.15. 16.三、解答题(一)(本题共3小题,每小题6分,共18分)19.解:四、解答题(二)(本题共3小题,每小题7分,共21分)20.解:21.解:22.解:五、解答题(三)(本题共3小题,每小题9分,共27分)23.解:五、解答题(三)(本题共3小题,每小题9分,共27分)24.解:25.解:密封线内不要答题惠城区2019-2020学年度第一学期期末教学质量检测七年级数学答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CABDDADBDC二、填空题:(本大题共6小题,每小题4分,共24分)11. < 12.3 13.-714. 75°47′6″ 15.同角的补角相等 (或等量减等量差相等)16.12三、解答题:(每小题6分,共18分) 17.解:原式=()118-+-……4分 =19=-……6分18.解:原式=22263622x y x y xy --+- =225xy -……4分当12x =-,2y =-时, 原式=()2122592⎛⎫⨯-⨯--=- ⎪⎝⎭……6分19.解:……5分如图点B 为文具商店的位置……6分四、解答题:(每小题7分,共21分)20.解:解方程23101124x x -+-=,得3x =-……4分 将3x =-代入方程23xax -=,得231a +=- 解得:1a =-……7分21.解:∵点M 为AB 中点∴ AB =2MB =6……3分 ∴ AN +NB =6∵ BN =12AN ∴ 2BN +NB =6 ∴ NB =2……6分∴ MN =MB -NB =1……7分22解.⑴ 220 cm ,(100+12 n ) cm ……4分⑵ 设种植该种树n 年后,树高达到2.8m 由100+12 n =280,得 n =15答:种植该种树15年后,树高才能达到2.8m ……7分五、解答题:(每小题9分,共27分)23.解:⑴ 180元……1分⑵ 设第一次购进了x 台,根据题意得:150x =(150+30)(x -10) ……4分化简得 30x =1800, 解得 x =60.所以 x -10=60-10=50.答:第一次购进了60台,第二次购进了50台. ……5分 ⑶(210-150)×60+(210-180)×50=3600+1500=5100(元). ……7分24.解:⑴ ∠COD =∠AOB .理由如下: 如图 ∵点O 在直线AD 上∴∠AOC +∠COD =180°又∵∠AOC 与∠AOB 互补 ∴∠AOC +∠AOB =180° ∴∠COD =∠AOB⑵ ∵ OM 、ON 分别是∠AOC 、∠AOB 的平分线 ∴∠AOM =∠COM ,∠AON =∠BON∴∠BOC =∠BOM +∠COM11 =∠BOM +∠AOM=(∠MON -∠BON )+(∠MON +∠AON ) =2 ∠MON=112°⑶由⑴得:∠COD =∠AOB∵ ∠AOB +∠BOC + +∠COD =180°∴ ∠AOB =12(180°-∠B OC )=12(180°-112°)=34° ∴ ∠AOC =180°-∠AOB =180°-34°=146°.25.解:⑴点B 对应的数是 -1 ……1分点B 位置如图:……2分⑵ 设点P 对应的数为p∵ 点P 在线段BC 上∴ PB =p -(-1)=p +1PC =6-p ∵ PB =25PC ∴ p +1=25(6-p ) ∴p =1设AP 中点对应的数为t则t -(-6)=1-t∴ t =-2.5∴AP 中点对应的数为-2.5……5分⑶ 由题意:a +c =0,b =-1当点Q 在点B 左侧时,-1 - x =2,x =-3∴ 22100a c x bx +⋅-+=0-(-1)×(-3)+2=-1……7分 当点Q 在点B 右侧时,x -(-1)=2,x =1∴ 22100a c x bx +⋅-+=0-(-1)×1+2=3……9分。
2019北京海淀初一(上)期末数学含答案
2019北京海淀初一(上)期末数学考生须知:1.本试卷满分100分。
2.在试卷和答题卡上准确填写学校、班级、姓名和学号。
3.试题答案一律填写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题须用2B铅笔将选中项涂黑涂满,其他试题用黑色字迹签字笔作答。
5.考试结束时,将本试卷、答题卡一并交回。
一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定2.(3分)﹣5的绝对值是()A.5 B.﹣5 C.D.±53.(3分)2018年10月23日,世界上最长的跨海大桥﹣港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为()A.5.5×103B.55×103C.5.5×104D.6×1044.(3分)下列计算正确的是()A.3a+2b=5ab B.3a﹣(﹣2a)=5aC.3a2﹣2a=a D.(3﹣a)﹣(2﹣a)=1﹣2a5.(3分)若x=﹣1是关于x的方程2x+3=a的解,则a的值为()A.﹣5 B.5 C.﹣1 D.16.(3分)如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是()A.27°40′B.57°40′C.58°20′D.62°20′7.(3分)已知AB=6,下面四个选项中能确定点C是线段AB中点的是()A.AC+BC=6 B.AC=BC=3 C.BC=3 D.AB=2AC8.(3分)若x=2时x4+mx2﹣n的值为6,则当x=﹣2时x4+mx2﹣n的值为()A.﹣6 B.0 C.6 D.269.(3分)从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.10.(3分)数轴上点A,M,B分别表示数a,a+b,b,那么下列运算结果一定是正数的是()A.a+b B.a﹣b C.ab D.|a|﹣b二、填空题(本大题共16分,每小题2分)11.(2分)比较大小:﹣3﹣2.1(填“>”,“<”或“=”).12.(2分)图中A,B两点之间的距离是厘米(精确到厘米),点B在点A的南偏西°(精确到度).13.(2分)如图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是:.14.(2分)如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a,b的式子表示).15.(2分)如图,点O在直线AB上,射线OD平分∠COA,∠DOF=∠AOE=90°,图中与∠1相等的角有(请写出所有答案).16.(2分)传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x表示珐琅书签的销量,则可列出一元一次方程.17.(2分)已知点O为数轴的原点,点A,B在数轴上,若AO=10,AB=8,且点A表示的数比点B表示的数小,则点B表示的数是.18.(2分)如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x的值,当滚珠发生撞击,就输出相撞滚珠上的代数式所表示数的和y.已知当三个滚珠同时相撞时,不论输入x的值为多大,输出y 的值总不变.(1)a=;(2)若输入一个整数x,某些滚珠相撞,输出y值恰好为﹣1,则x=.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)5﹣32÷(﹣3);(2)﹣8×(+1﹣1).20.(8分)解方程:(1)5x+8=1﹣2x;(2).21.(4分)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.22.(4分)如图,点C在∠AOB的边OA上,选择合适的画图工具按要求画图.(1)反向延长射线OB,得到射线OD,画∠AOD的角平分线OE;(2)在射线OD上取一点F,使得OF=OC;(3)在射线OE上作一点P,使得CP+FP最小;(4)写出你完成(3)的作图依据:.四、解答题(本大题共11分,23题6分,24题5分)23.(6分)已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)如图1,求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断点M是否为线段CD的中点,并说明理由.24.(5分)洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S,则每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S=;【第二步】再设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x.请你根据上述探究,列方程求出中间数x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=﹣4时,方程◇的解为;(2)若方程◇的解为x=﹣3,写出一组满足条件的k,b值:k=,b=;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)﹣b=0的解.26.(6分)如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD=;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.27.(7分)数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a*b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3*2=3.(1)对于数阵A,2*3的值为;若2*3=2*x,则x的值为;(2)若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a*a=a;条件二:(a*b)*c=a*c;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:(填“是”或“否”);②已知一个“有趣的”数阵满足1*2=2,试计算2*1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a*b=b*a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.2019北京海淀初一(上)期末数学参考答案一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.2.【分析】根据绝对值的含义和求法,可得﹣5的绝对值是:|﹣5|=5,据此解答即可.【解答】解:﹣5的绝对值是:|﹣5|=5.故选:A.【点评】此题主要考查了绝对值的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:∵3a+2b不能合并,故选项A错误;∵3a﹣(﹣2a)=3a+2a=5a,故选项B正确;∵3a2﹣2a不能合并,故选项C错误;∵(3﹣a)﹣(2﹣a)=3﹣a﹣2+a=1,故选项D错误,故选:B.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【分析】把x=﹣1代入方程计算即可求出a的值.【解答】解:把x=﹣1代入方程得:﹣2+3=a,解得:a=1,则a的值为1,故选:D.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.【分析】根据∠BAC=60°,∠1=27°40′,求出∠EAC的度数,再根据∠2=90°﹣∠EAC,即可求出∠2的度数.【解答】解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°﹣∠EAC=90°﹣32°20′=57°40′;故选:B.【点评】本题主要考查了度分秒的换算,关键是求出∠EAC的度数,是一道基础题.7.【分析】根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.【解答】解:A、AC+BC=6,C不一定在线段AB中点的位置,不符合题意;B、AC=BC=3,点C是线段AB中点,符合题意;C、BC=3,点C不一定是线段AB中点,不符合题意;D、AB=2AC,点C不一定是线段AB中点,不符合题意.故选:B.【点评】本题考查了两点间的距离,要注意根据条件判断出A、B、C三点是否共线.8.【分析】把x=2代入求出4m﹣n的值,再将x=﹣2代入计算即可求出所求.【解答】解:把x=2代入得:16+4m﹣n=6,解得:4m﹣n=﹣10,则当x=﹣2时,原式=16+4m﹣n=16﹣10=6,故选:C.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【分析】数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,再根据整式的加减乘法运算的计算法则即可求解.【解答】解:数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,则a﹣b<0,ab<0,|a|﹣b<0,故运算结果一定是正数的是a+b.故选:A.【点评】考查了列代数式,数轴,正数和负数,绝对值,关键是得到a<0,a+b>0,b>0且|a|<|b|.二、填空题(本大题共16分,每小题2分)11.【分析】直接根据负数比较大小的法则进行比较即可.【解答】解:∵|﹣3|>|﹣2.1|,∴﹣3<﹣2.1,故答案为:<.【点评】本题考查的是有理数大小,熟知以下知识是解答此题的关键:正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小.12.【分析】根据长度的测量可求图中A,B两点之间的距离;根据方向角的定义可求点B的方向.【解答】解:测量可得,图中A,B两点之间的距离是2厘米(精确到厘米),点B在点A的南偏西58°(精确到度).故答案为:2,58.【点评】考查了两点间的距离,关键是熟练掌握长度和角的测量方法.13.【分析】根据多项式的次数定义进行填写,答案不唯一,可以是2x3,3x3等.【解答】解:可以写成:2x3+xy﹣5,故答案为:2x3.【点评】本题考查了多项式的定义和次数,明确如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.14.【分析】利用矩形的性质得到剩余白色长方形的长为b,宽为(b﹣a),然后计算它的周长.【解答】解:剩余白色长方形的长为b,宽为(b﹣a),所以剩余白色长方形的周长=2b+2(b﹣a)=4b﹣2a.故答案为4b﹣2a.【点评】本题考查了矩形的周长.15.【分析】根据角平分线定义可得∠COD=∠1;根据同角的余角相等可得∠EOF=∠1.【解答】解:∵射线OD平分∠COA,∴∠COD=∠1.∵∠DOF=∠AOE=90°,∴∠DOE+∠EOF=90°,∠DOE+∠1=90°,∴∠EOF=∠1.∴图中与∠1相等的角有∠COD,∠EOF.故答案为∠COD,∠EOF.【点评】本题考查了余角和补角,角平分线定义,掌握余角的性质是解题的关键.16.【分析】设珐琅书签的销售了x件,则文创笔记本销售了(2x﹣700)件,根据文创笔记本和珐琅书签共销售5900件,即可得出关于x的一元一次方程,此题得解.【解答】解:设珐琅书签的销售了x件,则文创笔记本销售了(2x﹣700)件,根据题意得:(2x﹣700)+x=5900.故答案为:(2x﹣700)+x=5900.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.【分析】根据AO=10,得到点A表示的数为±10,由AB=8,且点A表示的数比点B表示的数小,得到点B 表示的数在点A表示的数的右边,于是得到结论.【解答】解:∵AO=10,∴点A表示的数为±10,∵AB=8,且点A表示的数比点B表示的数小,∴点B表示的数是﹣2或18,故答案为:﹣2或18【点评】本题考查了数轴,正确的理解题意是解题的关键.18.【分析】(1)根据题意得到y=2x﹣1+3+ax=(2+a)x+2,由y的值与x的值无关,可知x的系数为0,即2+a=0,由此求得a的值;(2)结合(1)的a的值,可知当y=﹣1时,此时只有两个球相撞,分两种情况,从而可以求得x的值.【解答】解:(1)(2x﹣1)+3+ax=2x﹣1+3+ax=(2+a)x+2,∵当三个滚珠同时相撞时,不论输入x的值为多大,输出y的值总不变,∴2+a=0,得a=﹣2,故答案为:﹣2;(2)当y=2x﹣1+3=2x+2时,令y=﹣1,则﹣1=2x+2,得x=﹣1.5(舍去),当y=3+(﹣2x)=﹣2x+3时,令y=﹣1,则﹣1=﹣2x+3,得x=2,故答案为:2.【点评】本题考查有理数的混合运算、代数式求值,解答本题的关键是明确题意,求出a的值和相应的x的值.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【分析】(1)先根据乘方的意义计算乘方运算,然后利用除法法则把除法运算化为乘法运算,根据负因式的个数判断得到结果的符号,最后利用加法法则即可得出结果;(2)根据乘法分配律进行计算即可.【解答】解:(1)原式=5﹣9÷(﹣3),=5+3,=8;(2)原式=,=﹣4﹣8+10,=﹣2.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解本题的关键.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:5x+2x=1﹣8,合并得:7x=﹣7,解得:x=﹣1;(2)去分母得:3(x+1)=2(2﹣3x),去括号得:3x+3=4﹣6x,移项合并得:9x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a﹣b的值,即可求得所求式子的值,本题得以解决.【解答】解:3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵2a﹣b=﹣2,∴原式=﹣8a+4b=﹣4(2a﹣b)=﹣4×(﹣2)=8.【点评】本题考查整式的加减﹣化简求值,解答本题的关键是明确整式化简求值的方法.22.【分析】(1)、(2)根据几何语言画出对应的几何图形;(3)连接CF交OE于P;(4)利用两点之间线段最短求解.【解答】解:(1)如图,OD、OE为所作;(2)如图,点F为所作;(3)如图,点P为所作;(4)连接FC交OE于P,则根据两点之间,线段最短可判断此时PC+PF最小.答案为:两点之间,线段最短.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共11分,23题6分,24题5分)23.【分析】(1)方法一:根据线段的和差关系可求AB,再根据中点的定义可求BM,再根据CM=BM﹣CB或方法二:CM=AC﹣AM即可求解;(2)方法一:由(1)可知,DM=DB﹣MB,可得DM=MC,从而求解;方法二:根据等量关系可得AD=CB,根据中点的定义可得AM=MB,再根据等量关系可得DM=MC,从而求解.【解答】解:(1)方法一:∵AC=8,CB=2,∴AB=AC+CB=10,∵点M为线段AB的中点,∴,∴CM=BM﹣CB=5﹣2=3.或方法二:∴CM=AC﹣AM=8﹣5=3.(2)点M是线段CD的中点,理由如下:方法一:∵BD=AC=8,∴由(1)可知,DM=DB﹣MB=8﹣5=3.∴DM=MC=3,∴由图可知,点M是线段CD的中点.方法二:∵AC=BD,∴AC﹣DC=BD﹣DC,∴AD=CB.∵点M为线段AB的中点,∴AM=MB,∴AM﹣AD=MB﹣CB,∴DM=MC∴由图可知,点M是线段CD的中点.【点评】本题考查了两点间的距离,利用了线段的和差,线段中点的性质.24.【分析】(1)根据每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S 的值;(2)设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系列出方程,解方程即可.【解答】解:(1)S=(1+2+3+…+9)÷3=45÷3=15.故答案为15;(2)由计算知:1+2+3+…+9=45.设中间数为x,依题意可列方程:4×15﹣3x=45,解得:x=5.故中间数x的值为5.【点评】本题考查了一元一次方程的应用,理解洛书对应的九宫格的要求是解题的关键.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【分析】(1)代入后解方程即可;(2)只需满足b=3k即可;(3)介绍两种解法:方法一:将x=4代入方程◇:得,整体代入即可;方法二:将将x=4代入方程◇:得b=﹣4k,整体代入即可;【解答】解:(1)当k=2,b=﹣4时,方程◇为:2x﹣4=0,x=2.故答案为:x=2;(2)答案不唯一,如:k=1,b=3.(只需满足b=3k即可)故答案为:1,3;(3)方法一:依题意:4k+b=0,∵k≠0,∴.解关于y的方程:,∴3y+2=﹣4.解得:y=﹣2.方法二:依题意:4k+b=0,∴b=﹣4k.解关于y的方程:k(3y+2)﹣(﹣4k)=0,3ky+6k=0,∵k≠0,∴3y+6=0.解得:y=﹣2.【点评】本题考查了一元一次方程的解,熟练掌握解一元一次方程是关键.26.【分析】(1)根据余角的定义即可求解;(2)①先根据余角、平角的定义求出∠BOC,再根据角平分线的定义求出∠COD,再根据角的和差关系即可求解;②分点D在∠BOC内,点D在∠BOC外两种情况即可求解.【解答】解:(1)∵∠AOC:∠BOD=4:5,∠BOD与∠AOC互余,∴∠BOD=90°×=50°;(2)①补全图形如下:∵∠BOD与∠AOC互余,∴∠BOD+∠AOC=90°,∴∠COD=90°,∵ON平分∠COD,∴∠CON=45°,∴∠AON=α+45°;②情形一:点D在∠BOC内.此时,∠AON=α+45°,∠COD=90°,依题意可得:α+45°+90°=180°,解得:α=45°.情形二:点D在∠BOC外.在0°<α≤45°的条件下,补全图形如下:此时∠AON=45°,∠COD=90°+2α,依题意可得:45°+90°+2α=180°,解得:α=22.5°.综上,α的取值为45°或22.5°.故答案为:50°.【点评】本题考查了余角和补角、角度的计算,正确理解角平分线的定义,理解角度之间的和差关系是关键.27.【分析】(1)根据定义a*b为数阵中第a行第b列的数即可求解;(2)①根据“有趣的”定义即可求解;②根据a*a=a;(a*b)*c=a*c,将2*1变形得到2*1=(1*2)*1即可求解;③若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.进一步得到1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.【解答】解:(1)对于数阵A,2*3的值为2;若2*3=2*x,则x的值为1,2,3;(2)①由数阵图可知,数阵A是“有趣的”.②∵1*2=2,∴2*1=(1*2)*1,∵(a*b)*c=a*c,∴(1*2)*1=1*1,∵a*a=a,∴1*1=1,∴2*1=1.(3)不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.∵1*1=1,2*2=2,3*3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.方法二:由条件二可知,a*b只能取1,2或3,由此可以考虑a*b取值的不同情形.例如考虑1*2:情形一:1*2=1.若满足交换律,则2*1=1,再次计算1*2可知:1*2=(2*1)*2=2*2=2,矛盾;情形二:1*2=2由(2)可知,2*1=1,1*2≠2*1,不满足交换律,矛盾;情形三:1*2=3若满足交换律,即2*1=3,再次计算2*2可知:2*2=(2*1)*2=3*2=(1*2)*2=1*2=3,与2*2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.故答案为:2;1,2,3;是.【点评】考查了规律型:数字的变化类,探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.。
人教版2019-2020年度七年级(上)期末数学试卷 含答案解析
人教版2019-2020年度七年级(上)期末数学试卷含答案解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作()A.259 B.﹣960 C.﹣259 D.4422.若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.63.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查4.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.5.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.6.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣22xab2的次数是6D.﹣的系数是7.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=38.钟表上的时间指示为两点半,这时时针和分针之间形成的角(小于平角)的度数为()A.120°B.90°C.100°D.105°9.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)11.如图,数轴上的A、B、C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A与点B之间B.点B与点C之间C.点B与点C之间(靠近点C)D.点B与点C之间(靠近点C)或点C的右边12.将正偶数按表1排成5列:根据上面的排列规律,2018应在()A.第252行,第1列B.第252行,第4列C.第253行,第2列D.第253行,第5列二、填空题(本大题共6小题,每小题4分,共24分)13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.方程﹣2x﹣1=1的解为x=15.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.16.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.18.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示从上到下第m排,从左到右第n个数,如(4,2)表示整数8.则(62,55)表示的数是.三、解答题(本大题共9小题,共78分。
金考卷:冀教版河北省2019-2020学年七年级数学上学期期末原创卷二(含解析版答案)
河北省2019-2020学年上学期期末原创卷(二)七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版七上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在-12,0,-2,15,1这五个数中,最小的数为A .0B .-12C .-2D .152.据报道,人类首张黑洞照片于北京时间2019年4月10日子全球六地同步发布,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.其中5500万用科学记数法表示为 A .55×106B .5.5×106C .0.55×108D .5.5×1073.解方程11322xx x-=---去分母得 A .()1132x x =--- B .()1132x x =--- C .()1132x x =--- D .()1132x x -=---4.下列合并同类项正确的是 A .3x +22x =53x B .22a b -2a b =1 C .-ab -ab =0D .-22xy +22xy =05.下列运算中,“去括号”正确的是 A .a +(b -c )=a -b -c B .a -(b +c )=a -b -c C .m -2(p -q )=m -2p +q D .x 2-(-x +y )=x 2+x +y6.下列判断正确的是 A .23a b 与2ba 不是同类项B .单项式32x y -的系数是–1 C .25m n 不是整式D .2235x y xy -+是二次三项式7.已知3a x a +=是关于x 的一元一次方程,则该方程的解为 A .x =1B .x =2C .x =3D .x =48.如果代数式2y 2-y +5的值为7,那么代数式4y 2-2y +1的值为 A .5B .4C .3D .29.如果单项式1b xy +-与2312a x y +是同类项,那么关于x 的方程0axb +=的解为 A .1x =B .1x =-C .2x =D .2x =-10.某工厂原计划用a 天生产b 件产品,由于技术革新实际比原计划少用x 天完成,则实际每天要比原计划多生产件. A .b b a a x -- B .a a xb b -- C .b b a x a-- D .a x ab b-- 11.下列说法:①经过三点中的两点画直线一定可以画三条直线;②两点之间,线段最短;③若点M 是AB 的中点,则MA =MB ;④同角的余角相等; 其中正确的说法有 A .4个B .3个C .2个D .1个12.如图,点C 在线段AB 上,点D 是AC 的中点,如果CD =4,AB =14,那么BC 长度为A .4B .5C .6D .6.513.一个角的补角比这个角的余角的3倍还多10°,则这个角的度数为A .140°B .130°C .50°D .40° 14.如图,△OAB 绕点O 逆时针旋转85°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是A .35°B .45°C .55°D .65°15.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是 A .0.7(1+0.6)x =x -36 B .0.7(1+0.6)x =x +36 C .0.7(1+0.6x )=x -36D .0.7(1+0.6x )=x +3616.观察下列各算式21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,根据上述算式的规律,你认为22019的末位数字应该是 A .8B . 6C .4D .2第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分) 17.一个长方形的宽为 cm x ,长比宽的2倍多1cm ,这个长方形的周长为__________cm . 18.有理数a 、b 、c 在数轴上的位置如图所示,化简|a +b |–|a –c |+|b –c |的结果是__________.19.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x 的式子表示m =__________;(2)当y =-2时,n 的值为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)解方程:(1)3x +7=32-2x ;(2)2157123y y ---=. 21.(本小题满分9分)已知x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,求202020192()()2x y ab c+--+的值.22.(本小题满分9分)化简或求值:(1)若A =–2a 2+ab –b 3,B =a 2–2ab +b3,求A –2B 的值.(2)先化简,再求值:5x 2y –3xy 2–7(x 2y –xy 2),其中x =2,y =–1.23.(本小题满分9分)如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,∠FOD =90°.(1)若∠AOF =50°,求∠BOE 的度数; (2)若∠BOD ∶∠BOE =1∶4,求∠AOF 的度数.24.(本小题满分10分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,(1)当2m =时,求线段AB 的长; (2)若C 为线段AB 的三等分点,求m 的值.25.(本小题满分10分)周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度;(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50米?26.(本小题满分11分)已知,A 、B 在数轴上对应的数分别用a 、b 表示,且2(5)|15|0a b ++-=.(1)数轴上点A 表示的数是__________,点B 表示的数是__________.(2)若一动点P 从点A 出发,以3个单位长度/秒速度由A 向B 运动;动点Q 从原点O 出发,以1个单位长度/秒速度向B 运动,点P 、Q 同时出发,点Q 运动到B 点时两点同时停止.设点Q 运动时间为t 秒.①若P 从A 到B 运动,则P 点表示的数为,Q 点表示的数为__________.(用含t 的式子表示) ②当t 为何值时,点P 与点Q 之间的距离为2个单位长度.2019-2020学年上学期期末原创卷七年级数学·全解全析1.【答案】C【解析】∵-2<12-<0<15<1,∴最小的数是-2,故选C .2.【答案】D【解析】5500万用科学记数法表示为5.5×107.故选D . 3.【答案】C【解析】方程两边都乘(x –2),得1=x –1–3(x –2).故选C . 4.【答案】D【解析】A 、原式不能合并,故错误;B 、原式=2a b ,故错误; C 、原式=–2ab ,故错误;D 、原式=0,故正确,故选D . 5.【答案】B【解析】A 、a +(b -c )=a +b –c ,错误;B 、a -(b +c )=a –b –c ,正确; C 、m -2(p -q )=m –2p +2q ,错误;D 、x 2-(-x +y )=x 2+x –y ,错误,故选B . 6.【答案】B【解析】A .23a b 与2ba 是同类项,故错误;B .单项式32x y -的系数是–1,故正确;C .25m n 是整式,故错误;D .2235x y xy -+是三次三项式,故错误.故选B .7.【答案】B【解析】∵x a+a =3是关于x 的一元一次方程,∴a =1,即方程为x +1=3, 解得:x =2.故选B . 8.【答案】A【解析】∵2y 2-y +5的值为7,∴2y 2-y =2, 则4y 2-2y +1=2(2y 2-y )+1=4+1=5. 故选A . 9.【答案】C【解析】根据题意得:a +2=1,解得:a =–1,b +1=3,解得:b =2,把a =–1,b =2代入方程ax +b =0得:–x +2=0,解得:x =2,故选C . 10.【答案】C【解析】根据题意知,原计划每天生产b a 件,而实际每天生产b a x-件, 则实际每天要比原计划多生产b ba x a--(件),故选C . 11.【答案】B【解析】①过同一平面上不共线的三点中的任意两点画直线,可以画三条直线,当这三点在同一条直线上时,只能作一条直线,故①错误;②两点之间,线段最短,是线段公理,故②正确; ③若点M 是AB 的中点,则MA =MB ,故③正确; ④同角的余角相等,故④正确.故选B .12.【答案】C【解析】∵点D 是AC 的中点,如果CD =4,∴AC =2CD =8, ∵AB =14,∴BC =AB -AC =6,故选C . 13.【答案】C【解析】设这个角为α,则它的余角为90°–α,补角为180°–α, 根据题意得,180°–α=3(90°–α)+10°, 180°–α=270°–3α+10°,解得α=50°.故选C . 14.【答案】C【解析】由题意可知:∠DOB =85°,∵△DCO ≌△BAO ,∴∠D =∠B =40°,∴∠AOB =180°–40°–110°=30°,∴∠α=85°–30°=55°,故选C . 15.【答案】B【解析】设这件夹克衫的成本价是x 元, 依题意,得:0.7(1+0.6)x =x +36.故选B . 16.【答案】A【解析】∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, ∴这些数字的末尾数字依次以2,4,8,6出现, ∵20194=5043÷……,∴22019的末位数字是8,故选A . 17.【答案】(62)x +【解析】一个长方形的长比宽的2倍多1 cm ,若宽为x cm ,则长为:(2x +1)cm ,周长为:2(21)2(31)(62)(cm)x x x x ++=+=+,故答案为:(62)x +.18.【答案】–2a【解析】∵b <0,a >0,||||b a >,∴a +b <0. ∵c <0,a >0,∴a –c >0. ∵b >c ,∴b –c >0.∴||||||a b a c b c +--+-=–(a +b )–(a –c )+(b –c )=–a –b –a +c +b –c =–2a .故答案为:–2a . 19.【答案】3x ;1【解析】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,则m =x +2x =3x .(2)由题知m =3x ,n =2x +3,y =m +n ,则y =3x +2x +3=5x +3,把y =–2代入,–2=5x +3,解得x =–1,则n =2×(–1)+3=1.故答案为:3x ;1.20.【解析】(1)3x +7=32-2x ,移项得:3x +2x =32-7, 合并得:5x =25, 解得:x =5.(4分)(2)2157123y y ---=. 去分母得:3(2y -1)-6=2(5y -7), 去括号得:6y -3-6=10y -14, 移项:6y -10y =-14+6+3, 合并得:-4y =-5, 解得:y =54.(8分) 21.【解析】根据题意得:x +y =0,ab =1,c =2或-2,(4分)∵当c =2或–2时,2=4c , 则原式=0+1+4=5.(9分)22.【解析】(1)∵A =–2a 2+ab –b 3,B =a 2–2ab +b 3,∴A –2B =–2a 2+ab –b 3–2(a 2–2ab +b 3)=–2a 2+ab –b 3–2a 2+4ab –2b 3=–4a 2+5ab –3b 3.(4分) (2)原式=5x 2y -3xy 2-7x 2y +7xy 2=-2x 2y +4xy 2,(7分)当x =2,y =-1时,原式=-2×22×(-1)+4×2×(-1)2=8+8=16.(9分) 23.【解析】(1)∵COF ∠与DOF ∠是邻补角,∴18090COF DOF ∠=︒-∠=︒. ∵AOC ∠与AOF ∠互为余角,∴90905040AOC AOF ∠=︒-∠=︒-︒=︒.(2分) ∵AOC ∠与BOC ∠是邻补角,∴180********COB AOC ∠=︒-∠=︒-︒=︒. ∵OE 平分BOC ,∠ ∴1702BOE BOC ∠=∠=︒.(4分) (2)14BOD BOE ∠∠=∶∶, 设4BOD AOC x BOE COE x ∠=∠=∠=∠=,, ∵AOC ∠与BOC ∠是邻补角, ∴180AOC BOC ∠+∠=︒,(6分) 即44180x x x ++=︒, 解得20x =︒,∵AOC ∠与AOF ∠互为余角,∴90902070AOF AOC ∠=︒-∠=︒-︒=︒.(9分) 24.【解析】(1)当2m =时,有()1122x +=,()2223x +=, 由方程()1122x +=,解得3x =,即3AC =. 由方程()2223x +=,解得1x =,即1BC =.因为C 为线段AB 上一点,所以4AB AC BC =+=.(4分) (2)解方程()112x m +=,得21x m =-, 即21AC m =-.解方程()23x m m +=,得2m x =, 即2mBC =.(6分)①当C 为线段AB 靠近点A 的三等分点时,则2BC AC =,即()2212m m =-,解得47m =. ②当C 为线段AB 靠近点B 的三等分点时, 则2AC BC =,即2122mm -=⋅,解得1m =. 综上可得,47m =或1.(9分) 25.【解析】(1)设小明的骑行速度为x 米/分钟,则爸爸的骑行速度为2x 米/分钟,根据题意得:2(2x –x )=400,(2分) 解得:x =200, ∴2x =400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(5分)(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y 分钟,小明和爸爸跑道上相距50米, ①爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了50米, 根据题意得:400y –200y =50, 解得:y =14;(7分) ②爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了350米, 根据题意得:400y –200y =350, 解得:y =74. 答:第二次相遇前,再经过14或74分钟,小明和爸爸跑道上相距50米.(10分) 26.【解析】(1)−5;15.(4分)∵2(5)|15|0a b ++-=, ∴a +5=0,b −15=0, 解得a =−5,b =15,∴A 表示的数是−5,B 表示的数是15. 故答案为:−5;15. (2)①t .(7分)若P 从A 到B 运动,则P 点表示的数为−5+3t ,Q 点表示的数为t . ②若点P 在Q 点左侧,则−5+3t +2=t ,得:32t =,(9分) 若点P 在Q 点右侧,则−5+3t −2=t , 得:72t =, 综上所述,32t =或72.(11分)。
2019年上海市华育中学初一上学期期末数学试卷(附答案)
201 9年上海市华育中学 初一上 学期期末考试数 学考试时量#!"分钟 满分 #!" 分 一 选择题(每小题 3分 1.下列各式中,是代数式的是 ()A. s = vtB. (a + 1)2C. x − xD. x = 52 2.下列各式中,计算正确的是 ()A. a+ a = a 3 B. a · a = aC. (3a )3 = 9a 6D. (a − b)2 = a − b 22 63 9 2 2 3.下列等式中,从左往右属于分解因式的是 ( A. (a + b)2 = a + 2ab + b )B. 36 = 2 × 2 × 3 × 32 2C. a − 3a + 1 = a (a − 3) + 1D. x − 4y = (x + 2y) (x − 2y)2 2 2 4.下列各式中,是最简分式的是 ( )x + y x − yx 2 − y 26a 9b(a − b)2 2a − 2bA.B.C.D.x − y5.下列图形中,既是轴对称图形也是中心对称图形的是 ( )A. 等腰三角形B. 圆C. 平行四边形D. 等腰梯形D. 不变x + y 2 2 6.如果 x ,y 同时扩大 3 倍,那么分式的值 ( )x + y13A. 扩大 3 倍B. 扩大 9 倍C. 变为原来的 二 填空题每小题3分7.用代数式表示“a 与 b 的立方和”是.8.单项式 −6a b的次数是 .3 1 9.分式有意义,x 的取值范围是 .3x − 2a−2 10.把代数式化成不含负整数指数幂的形式: =.2b −311.一个多项式减去 3x − 5x 的差是 2x + 6x − 1,这个多项式是.3 2 12.分解因式:4a b − 10ab = .2 2 13.用科学记数法表示 −0.00035 = 14.正方形绕旋转中心至少旋转.可与原图形重合.◦ 15.若 2x y 和3 y 是同类项,则 − x=.m − n m+n 2 3 2m 16.计算 (x + 2y) (x − 2y) = .17.多项式 4x + m x + 9 是完全平方式,那么 m =.218.如图,已知矩形 A B C D 中,A B = 4,B C = 5,⊙O 是矩形 A B C D 中能剪出的最大圆,矩形 A B C D 固定 不动,⊙O 从如图位置开始沿射线 B C 方向平移,当 ⊙O 与矩形 A B C D 重叠部分面积为 ⊙O 面积一半时, 平移距离为 .三 解答题19.计算:−12018 + (2018 + π)0 − ( ) 2 52 .20.计算:(6a b − 4ab ) ÷ 2a − (3a − 5b)2 .2 2 21.分解因式:x + 5x − 36 .4 2 1 3 2 2 22.解方程:=.− 1 − 3x 3x − 123.分解因式:4 − b + 12c + 9c .2 224.计算:(x + y ) ÷ (x − y )(结果不含负整数指数幂的形式). −1 −1 −2 −2 ( ) 5 x − 3 x − 225.先化简,再求值 x + 2 −÷,其中 x = −2. x − 2 26.学生从学校出发去距离 10 千米的博物馆参观,一部分学生骑自行车先走, 20 分钟后,其余同学乘车出发, 结果同时到达,已知汽车速度是骑自行车的 2 倍,求骑自行车的速度.27.如图,已知:点 D 是线段 B C 上一点,A B = A C ,A D = A E ,∠BA C = ∠D A E = 90 .◦ (1)线段 A B 绕点 逆时针旋转可与线段 A C 重合.◦ (2)若 ∠B A D = 70◦,则 ∠C A E =◦.(3)若 E C = 4,B D = 2D C ,则 B C =.28.如图,将△A B C 进行折叠,使得点A 与点 C 重合,折痕分别与边A C ,B C 交于点 D ,E ,点 B 关于直线 D E 的对称点为点 F . (1)画出直线 D E 和点 F ;B E EC 1 3(2)连接 D F ,E F ,若 S △D E F = 1, = ,则 S =△A B C ; B E E C n m(3)若 S △D E F = a ,= ,则 S = △A B C .初一第一学期期 末考试数学参考答案6CBDABA7.a + b 3 3 8.423 9.x =b 310. 2a 211.3x + 2x + x − 1 3 2 12.2ab (2a − 5b) 13.−3.5 × 10−4 14.90 15.−1 16.x − 4y 2 2 17.12 或 −12 18.2 或 7( ) 2 5−2 19. 0 − 12018 + (2018 + ) − π 254= − 1 + 1 −25 4 = − . ( ) 6a b − 4ab ÷ 2a −(3a − 5b)2 20. 2 2 ( )=3ab − 2b − 9a − 30ab + 25b 2 2 2 =3ab − 2b − 9a + 30ab − 25b 2 2 2 = − 9a + 33ab − 27b .2 2 21. x + 5x − 36 4 2 ( )( ) = x + 9 x − 4 2 2 ( ) = x + 9 (x + 2) (x −2) . 2 1 3 2 222.− =. 1 − 3x 3x − 1两边同乘 2 (3x − 1) 得−2 − 3 (3x − 1) = 4.−9x = 3. 1x = − .31 经检验,x = − 是原方程的解,31 3∴原方程的解为 x = − .23. 4 − b+ 12c + 9c 2 2 ( ) = 4 + 12c + 9c −b 2 2 = (2 + 3c)2 − b 2= (2 + 3c + b) (2 + 3c − b) .(( ) ( ) ) 24. x −1 + y −1 ÷ x −2 − y −2 ) ( 1 1 1 1 = +÷ − x y x 2 y 2y + x y − x 2 2 == ÷ xy xyx 2y 2 . y − x( ) 5 x − 3 x − 225.x + 2 − ÷ x − 2 x − 29 x − 3 x − 2 = ÷ x − 2 =x + 3.将 x = −2 代入,原式 = 1. 26.设自行车速度为 x 千米/时. 由题意可得10 10 2x 13= + . x 解得x = 15.经检验 x = 15 是原方程的解且符合题意.答:自行车速度为 15 千米/时. 27.(1) A ;90 (2) 70 (3) 6 28.(1)∴直线 D E 、点 F 是所求. (2) 82an + 2a m (3)n初一第一学期期 末考试数学参考答案6CBDABA7.a + b 3 3 8.423 9.x =b 310. 2a 211.3x + 2x + x − 1 3 2 12.2ab (2a − 5b) 13.−3.5 × 10−4 14.90 15.−1 16.x − 4y 2 2 17.12 或 −12 18.2 或 7( ) 2 5−2 19. 0 − 12018 + (2018 + ) − π 254= − 1 + 1 −25 4 = − . ( ) 6a b − 4ab ÷ 2a −(3a − 5b)2 20. 2 2 ( )=3ab − 2b − 9a − 30ab + 25b 2 2 2 =3ab − 2b − 9a + 30ab − 25b 2 2 2 = − 9a + 33ab − 27b .2 2 21. x + 5x − 36 4 2 ( )( ) = x + 9 x − 4 2 2 ( ) = x + 9 (x + 2) (x −2) . 2 1 3 2 222.− =. 1 − 3x 3x − 1两边同乘 2 (3x − 1) 得−2 − 3 (3x − 1) = 4.−9x = 3. 1x = − .31 经检验,x = − 是原方程的解,31 3∴原方程的解为 x = − .23. 4 − b+ 12c + 9c 2 2 ( ) = 4 + 12c + 9c −b 2 2 = (2 + 3c)2 − b 2= (2 + 3c + b) (2 + 3c − b) .(( ) ( ) ) 24. x −1 + y −1 ÷ x −2 − y −2 ) ( 1 1 1 1 = +÷ − x y x 2 y 2y + x y − x 2 2 == ÷ xy xyx 2y 2 . y − x( ) 5 x − 3 x − 225.x + 2 − ÷ x − 2 x − 29 x − 3 x − 2 = ÷ x − 2 =x + 3.将 x = −2 代入,原式 = 1. 26.设自行车速度为 x 千米/时. 由题意可得10 10 2x 13= + . x 解得x = 15.经检验 x = 15 是原方程的解且符合题意.答:自行车速度为 15 千米/时. 27.(1) A ;90 (2) 70 (3) 6 28.(1)∴直线 D E 、点 F 是所求. (2) 82an + 2a m (3)n。
2019年初一数学上期末一模试卷(及答案) (2)
2019年初一数学上期末一模试卷(及答案) (2)一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.下列关于多项式5ab 2-2a 2bc-1的说法中,正确的是( ) A .它是三次三项式 B .它是四次两项式 C .它的最高次项是22a bc - D .它的常数项是13.下列运算结果正确的是( ) A .5x ﹣x=5B .2x 2+2x 3=4x 5C .﹣4b+b=﹣3bD .a 2b ﹣ab 2=04.点C 是线段AB 上的三等分点,D 是线段AC 的中点,E 是线段BC 的中点,若6CE =,则AB 的长为( ) A .18 B .36C .16或24D .18或365.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a ,b (a >b ),则a -b 等于( )A .9B .10C .11D .126.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .B .C .D .7.下列去括号正确的是( ) A .()2525x x -+=-+ B .()142222x x --=-+ C .()122333m n m n -=+ D .222233m x m x ⎛⎫--=-+⎪⎝⎭8.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C9.-4的绝对值是( ) A .4B .C .-4D .10.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元11.用一个平面去截一个正方体,截面不可能是( ) A .梯形B .五边形C .六边形D .七边形12.已知x =y ,则下面变形错误的是( ) A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 二、填空题13.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.14.已知一个长方形的周长为(86a b +)厘米(0,0a b >>),长为(32a b +)厘米,则它的宽为____________厘米. 15.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________16.若312x a +与2415x a +-的和是单项式,则x 的值为____________. 17.在时刻10:10时,时钟上的时针与分针间的夹角是 .18.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的_______(从①、②、③、④中选填所有可能)位置,所组成的图形能够围成正方体.19.若关于x 的方程(a ﹣3)x |a |﹣2+8=0是一元一次方程,则a =_____20.如图,正方形ODBC 中,OB=2,OA=OB ,则数轴上点A 表示的数是__________.三、解答题21.已知a b 、满足2|1|(2)0a a b -+++=,求代数式()221128422a ab ab a ab ⎡⎤-+--⎢⎥⎣⎦的值.22.如图,平面上有射线AP 和点B ,C ,请用尺规按下列要求作图:(1)连接AB ,并在射线AP 上截取AD =AB ; (2)连接BC 、BD ,并延长BC 到E ,使BE =BD .(3)在(2)的基础上,取BE 中点F ,若BD =6,BC =4,求CF 的值.23.某校组织七年级师生旅游,如果单独租用45座客车若干辆,则好坐满;如果单独租用60座客车,可少租1辆,且余15个座位. (1)求参加旅游的人数.(2)已知租用45座的客车日租金为每辆250元,60座的客车日租金为每辆300元,在只租用一种客车的前提下,问:怎样租用客车更合算?24.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表. 若某户居民1月份用水8m 3,则应收水费:元 2×6+4×(8-6)=20(1)若该户居民2月份用水12.5m 3,则应收水费 元;(2)若该户居民3、4月份共用水20m 3(4月份用水量超过3月份),共交水费64元,则该户居民3,4月份各用水多少立方米?25.先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示. 【详解】A 、因为顶点B 处有2个角,所以这2个角均不能用∠B 表示,故本选项错误;B 、因为顶点B 处只有1个角,所以这个角能用∠ABC ,∠B ,α∠表示,故本选项正确; C 、因为顶点B 处有3个角,所以这3个角均不能用∠B 表示,故本选项错误;D 、因为顶点B 处有4个角,所以这4个角均不能用∠B 表示,故本选项错误. 故选:B . 【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.C解析:C 【解析】根据多项式的次数和项数,可知这个多项式是四次的,含有三项,因此它是四次三项式,最高次项为22a bc -,常数项为-1. 故选C.3.C【解析】A.5x﹣x=4x,错误;B.2x2与2x3不是同类项,不能合并,错误;C.﹣4b+b=﹣3b,正确;D.a2b﹣ab2,不是同类项,不能合并,错误;故选C.4.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=36.综合上述可得AB=18或AB=36.故选:D.【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之间的关系.5.C【解析】 【分析】设白色的部分面积为x ,由题意可知a=36-x ,b=25-x ,根据整式的运算即可求出答案. 【详解】设白色部分的面积为x , ∴a+x=36,b+x=25, ∴a=36-x ,b=25-x , ∴a-b=36-x-(25-x ) =11, 故选:C . 【点睛】本题考查整式的运算,解题的关键是熟练设白色的部分面积为x ,从而列出式子,本题属于基础题型.6.D解析:D 【解析】 【分析】由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的,乙每天做整个工程的,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1. 【详解】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:++=1.故答案选:D. 【点睛】本题考查了一元一次方程,解题的关键是根据实际问题抽象出一元一次方程.7.D解析:D 【解析】试题分析:去括号时括号前是正号,括号里的每一项都不变号;括号前是负号,括号里的每一项都变号.A 项()2525,x x -+=--故不正确;B 项()14221,2x x --=-+故不正确;C 项()1223,33m n m n -=-故不正确;D 项222233m x m x ⎛⎫--=-+ ⎪⎝⎭,故正确.故选D .考点:去括号法则.8.C解析:C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.9.A解析:A【解析】【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆. 10.B解析:B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.11.D解析:D【解析】【分析】正方体总共六个面,截面最多为六边形。
2018-2019学年七年级上学期期末考试数学试题(含两套)
2018-2019学年七年级(上)期末数学试卷一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.﹣5的绝对值是()A.﹣5B.5C.D.﹣2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1B.﹣2C.﹣3D.04.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个5.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=66.已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余7.已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2B.4C.8D.8或48.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(每题2分,共16分,把答案写在题中横线上)9.|﹣|的相反数是.10.请写出一个单项式,同时满足下列条件:①含有字母m、n;②系数是负整数;③次数是3,你写的单项式为.11.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE 的度数为°.12.已知|x+1|+(3﹣y)2=0,则x y的值是.13.已知a+b=2,则多项式2﹣3a﹣3b的值是.14.若一个角比它的补角大36°48′,则这个角为°′.15.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,求变化后乙组有人.16.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x n=.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.(8分)计算:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019(2)﹣×[﹣32×(﹣)2﹣2]18.(4分)解方程:x﹣=1﹣19.(5分)先化简,再求值:3x2y﹣[2x2y﹣x(xy+3)],其中x=﹣,y=2.20.(5分)已知多项式A、B,其中A=x2+2x﹣1,某同学在计算A+B时,由于粗心把A+B 看成了A﹣B求得结果为﹣3x2+2x﹣1,请你算出A+B的正确结果.四、解答题(每题8分,共16分)21.(8分)如图,N为线段AC中点,点M、点B分别为线段AN、NC上的点,且满足AM:MB:BC=1:4:3.(1)若AN=6,求AM的长.(2)若NB=2,求AC的长.22.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.五、解答题(23题10分,24题10分,25题10分,共30分)23.(10分)上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24.(10分)某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?25.(10分)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度.(2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.2018-2019学年辽宁省鞍山市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.【分析】根据负数的绝对值等于它的相反数计算即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由同类项的定义可先求得m和n的值,从而求出代数式的值.【解答】解:∵代数式﹣3a m﹣1b6和ab2n是同类项,∴m﹣1=1,2n=6,∴m=2,n=3,∴m﹣n=2﹣3=﹣1,故选:A.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【分析】根据有理数的分类可得A的正误;根据射线的表示方法可得B的正误;根据相反数的定义可得C的正误;根据线段的性质可得D的正误.【解答】解:①一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;②射线AB与射线BA是同一条射线,说法错误,端点不同;③0的相反数是它本身,说法正确;④两点之间,线段最短,说法正确.故选:B.【点评】此题主要考查了相反数、有理数、线段的性质、射线的表示方法,关键是牢固掌握基础知识.5.【分析】设每本书的进价是x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,此题得解.【解答】解:设每本书的进价是x元,根据题意得:(1+60%)x•﹣x=6.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.【分析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【解答】解:∵∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°;故选:C.【点评】本题考查了余角和补角;根据题意得出各个角的度数是关键.7.【分析】由于在直线AB上画线段BC,那么CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC;②当C在线段AB的延长线上,此时AC=AB﹣BC.然后代入已知数据即可求出线段AC的长度.【解答】解:∵在直线AB上画线段BC,∴CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC=6﹣2=4cm;②当C在线段AB的延长线上,此时AC=AB+BC=6+2=8cm.故选:D.【点评】此题主要考查了线段的和差的计算.在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c﹣a>0,a+b<0,根据绝对值的性质化简计算.【解答】解:由数轴可知,b<a<0<c,∴c﹣a>0,a+b<0,则|c﹣a|﹣|a+b|=c﹣a+a+b=c+b,故选:A.【点评】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.9.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:,的相反数是﹣,故答案为:﹣.【点评】本题考查了相反数,先求绝对值,再求相反数.10.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据题意,得﹣2m2n(答案不唯一),故答案为:﹣2m2n(答案不唯一).【点评】本题考查了单项式的定义,解答本题的关键是理解单项式的定义中的单项式的次数的正确含义.11.【分析】观察图形可知,∠BOC=135°,∠COD=45°,根据角平分线的定义可得∠EOC,再根据角的和差关系即可求解.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故答案为:22.5【点评】此题考查了角的计算,角平分线的定义,关键是观察图形可得∠BOC=135°,∠COD=45°.12.【分析】直接利用非负数的性质以及偶次方的性质得出x,y的值进而得出答案.【解答】解:∵|x+1|+(3﹣y)2=0,∴x+1=0,3﹣y=0,解得:x=﹣1,y=3,则x y的值是:(﹣1)3=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.【分析】观察题中的两个代数式a+b和2﹣3a﹣3b,可以发现,2﹣3a﹣3b=2﹣3(a+b),因此可整体代入a+b=2,求出结果.【解答】解:2﹣3a﹣3b=2﹣3(a+b)因为a+b=2,所以原式=2﹣3×2=2﹣6=﹣4故答案为:﹣4.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,应考虑a+b为一个整体,然后利用“整体代入法”求代数式的值.14.【分析】设这个角为x°,则这个角的补角为(180﹣x)°,根据题意可得方程x﹣(180﹣x)=36.8,再解即可.【解答】解:36°48′=36.8°,设这个角为x°,则这个角的补角为(180﹣x)°,x﹣(180﹣x)=36.8,解得:x=108.4,108.4°=108°24′,故答案为:108;24.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.【分析】根据从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,可以列出相应的方程,从而可以解答本题.【解答】解:设变化后乙组有x人,33+(27﹣x)=3x,解得,x=15,即变化后乙组有15人,故答案为:15.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.16.【分析】根据题意分别计算出x3,x4,x5…,据此可得后面每个数均比前一个数大3,据此求解可得.【解答】解:由题意知=7,解得x3=10,=10,解得x4=13,=13,解得x5=16,……∴第n个数x n为3n+1,故答案为:3n+1.【点评】本题主要考查数字的变化规律,解题的关键是根据题意得出后面每个数均比前一个数大3的规律.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.【分析】(1)先算乘方,再算乘除法,最后加减法即可解答本题;(2)先算中括号里的,再根据有理数的乘法即可解答本题.【解答】解:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019=﹣4+8×(﹣)×﹣(﹣1)=﹣4﹣1+1=﹣4;(2)﹣×[﹣32×(﹣)2﹣2]====9.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4x﹣(x﹣1)=4﹣2(3﹣x),去括号得:4x﹣x+1=4﹣6+2x,移项合并得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=3x2y﹣(2x2y﹣x2y﹣3x)=3x2y﹣(x2y﹣3x)=3x2y﹣x2y+3x=2x2y+3x当x=,y=2时,原式=2××2+3×()=1=.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:∵A=x2+2x﹣1,A﹣B=﹣3x2+2x﹣1,∴A+B=2A﹣(A﹣B)=2x2+4x﹣2﹣(﹣3x2+2x﹣1)=2x2+4x﹣2+3x2﹣2x+1=5x2+2x﹣1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.四、解答题(每题8分,共16分)21.【分析】(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=×AC=×12=;(2)根据线段中点的定义得到AN=AC,得到AB=AC=AC,列方程即可得到结论.【解答】解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=×AC=×12=;(2)∵N为线段AC中点,∴AN=AC,∵AM:MB:BC=1:4:3,∴AB=AC=AC,∴BN=AB﹣AN=AC﹣AC=AC=2,∴AC=16.【点评】本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.22.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.【点评】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足,垂线的性质过一点有且只有一条直线与已知直线垂直.五、解答题(23题10分,24题10分,25题10分,共30分)23.【分析】设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据相遇时,两车行驶的路程和等于1180公里列出方程,求解即可.【解答】解:设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据题意,得200(x+)+280x=1180,解得x=2.25,2.25时=2时15分,7时+2时15分=9时15分.答:两车于9点15分相遇.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【分析】(1)设衬衫的单价为x元,则西装的单价为5x元,由两种产品共39000元为等量关系建立方程求出其解即可;(2)设单价为21元的A种产品为y件,单价为25元的B种产品为(105﹣y)件,根据支出总额为2447元为等量关系建立方程求出其解就可以判断结论.【解答】解:(1)设衬衫的单价为x元,则西装的单价为5x元,根据题意,得30×5x+45x=39000解得:x=200 则:5x=1000答:衬衫的单价为200元,则西装的单价为1000元;(2)设购买衬衫的数量为y件,则购买西装的数量为(55﹣y)件,根据题意,得200y+1000(55﹣y)=32000,解得:y=28.75(不符合题意),所以,帐肯定算错了.【点评】本题考查了列一元一次方程的运用,解答时找准题目的等量关系是解答本题的关键.25.【分析】(1)根据OM的初始位置和旋转后在图2的位置进行分析;(2)依据已知先计算出∠BOC=135°,则∠MOB=135°﹣MOC,根据∠BON与∠MOB互补,则可用∠MOC表示出∠BON,从而发现二者之间的等量关系.【解答】解:(1)OM由初始位置旋转到图2位置时,在一条直线上,所以旋转了180°.故答案为180;(2)∵∠AOC:∠BOC=1:3,∴∠BOC=180°×=135°.∵∠MOC+∠MOB=135°,∴∠MOB=135°﹣∠MOC.∴∠BON=90°﹣∠MOB=90°﹣(135°﹣∠MOC)=∠MOC﹣45°.即∠COM﹣∠BON=45°.【点评】本题主要考查了角之间的和差关系,解题时一定要结合图形分析题目.2018—2019 学年度第一学期期末初一年级学业水平测试数学试卷(考试时间120分钟,全卷满分120分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。
2018-2019学年天津市部分区七年级(上)期末数学试卷(解析版)
2018-2019学年天津市部分区七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果把得到10元钱记作+10元,那么花去6元钱记作()A. 元B. 元C. 元D. 元2.下列说法中正确的是()A. 的相反数是B. 的倒数2C.D.3.地球赤道周长约为40076000米,用科学记数法表示40076000的结果是()A. B. C. D.4.由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是()A.B.C.D.5.下列说法不正确的是()A. 两点之间的连线中,线段最短B. 若点B为线段AC的中点,则C. 若,则点P为线段为AB的中点D. 直线与射线不能比较大小6.下面说法:①-a一定是负数;②若|a|=|b|,则a=b;③一个有理数中不是整数就是分数;④一个有理数不是正数就是负数.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个7.已知a、b两数在数轴上的位置如图所示,将0、-a、-b用“<”连接,其中正确的是()A. B. C. D.8.下列说法正确的是()A. 多项式是二次三项式B. 5不是单项式C. 多项式的次数是3D. 单项式的系数是,次数是69.已知代数式与的值相等,则x的值为()A. B. 7 C. D.10.张磊比小海大10岁,5年前张磊的年龄是小海的年龄的2倍,小海现在的年龄为()A. 10B. 15C. 20D. 2511.小刚从家跑步到学校,每小时跑12km,会迟到5分钟;若骑自行车,每小时骑15km,则可早到10分钟.设他家到学校的路程是xkm,则根据题意列出方程是()A. B. C. D.12.已知线段MN=10cm,现有一点P满足PM+PN=20cm,有下列说法:①点P必在线段MN上;②点P必在直线MN上;③点P必在直线MN外;④点P可能在直线MN外,也可能在直线MN上.其中正确的说法是()A. ①②B. ②③C. ③④D. ④二、填空题(本大题共6小题,共18.0分)13.延长线段AB到C,使BC=4,若AB=8,则线段AC的长为______.14.将3.6457用四舍五入法精确到十分位的近似数是______.15.“7减x差的比x的3倍大1”用方程表示为______.16.如图,已知∠AOC=90°,∠COB=α,OD平分∠AOB,则∠AOD的大小为______(度)17.如图,已知点D在点O的北偏西35°方向,如果∠DOE=80°,那么点E在点O的______方向.18.如图,已知OM,ON分别是∠BOC和∠AOC的角平分线,∠AOB=86°,(1)∠MON=______(度);(2)当OC在∠AOB内绕点O转动时,∠MON的值______改变(填“会”或“不会”).三、计算题(本大题共3小题,共20.0分)19.计算:(1)-14-(2-1)××[5+(-2)3];(2)[1-(-+)×16]÷5.20.(1)化简:(3x2+1)+2(x2-2x+3)-(3x2+4x);(2)先化简,再求值:m-(n2-m)+2(m-n2)+5,其中m=2,n=-3.21.国庆节期间,甲、乙两商场以同样价格出售相同的商品,并且各自推出不同的优惠方案:在甲商场累计购物超过250元后,超出部分打八五折;在乙商场累计购物超过100元后,超出部分打九五折.问:(1)购买多少元商品时(大于250元),两个商场的实际花费相同?(2)张华要购买500元的商品,李刚要购买300元的商品,他们分别选哪个商场购物实际花费会少些?说明理由.四、解答题(本大题共4小题,共26.0分)22.解方程:(1)2(x+3)-7=x-5(2x-1);(2)-=-1.23.用方程解答下列问题(1)一个角的补角比它的余角的3倍少25°,求这个角的余角的度数.(2)甲乙两个工程队要开钻一条长560米的山洞.两工程队分别从山洞两头同时施工,甲队每天钻20米,16天后两队会合.求乙工程队每天钻山洞多少米?24.如图,已知点C、D在线段AB上,且AC:CB=2:3,点E是线段AC的中点,D是AB的中点,若ED=9cm,求AB的长度.25.如图,已知O为直线AB上的点,OC在∠BOD内,∠DOC:∠COB=2:3,OE平分∠AOD,∠EOC=78°,求∠BOD的度数.答案和解析1.【答案】B【解析】解:根据题意,花去6元钱记作-6元,故选:B.如果把得到记作“+”,那么花去记作“-”,据此可得.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.【答案】A【解析】解:A、的相反数是-,正确;B、-2的倒数是-,错误;C、-24=-16,错误;D、23=8,错误;故选:A.根据有理数的乘方、倒数和相反数解答即可.此题考查有理数的乘方,关键是根据有理数的乘方、倒数和相反数解答.3.【答案】B【解析】解:40076000=4.0076×107.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:该几何体的主视图是故选:C.找到从正面看所得到的图形即可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.【答案】C【解析】解:A.线段公理,此项正确;B.中点的性质,中点将线段分成长度相等的两条线段,此项正确;C.A、B、P三点不一定在同一条直线上,因此点P不一定是线段AB的中点,此项错误;D.直线具有两边无限延伸性,射线具有一边无限延伸性,故直线与射线不能比较大小,此项正确;故选:C.分别根据直线、射线以及线段的定义和性质判断即可得出.此题主要考查了直线、射线以及线段的定义及相关性质,正确区分它们的定义和性质是解题关键.6.【答案】A【解析】解:①-a一定是负数,说法错误,如果a=-1,则-a=1;②若|a|=|b|,则a=b,说法错误,例如|3|=|-3|,但是3≠-3;③一个有理数中不是整数就是分数,说法正确;④一个有理数不是正数就是负数,说法错误,还有0,0既不是正数也不是负数;正确的个数有1个,故选:A.根据负数的定义和绝对值的定义可得①②错误;根据有理数的分类可得③正确,④错误.此题主要考查了绝对值、有理数的分类,关键是掌握0既不是正数也不是负数.7.【答案】A【解析】解:令b=-0.6,a=1.3,则-b=0.6,-a=-1.3,则可得:-a<b<0<-b<a.故选:A.根据a、b在数轴上的位置,可对a、b赋值,然后即可用“<”连接.本题考查了有理数的大小比较及数轴的知识,同学们注意赋值法的运用,这可以给我们解题带来很大的方便.8.【答案】D【解析】解:A、多项式ab+c是二次二项式,故此选项错误;B、5是单项式,故此选项错误;C、多项式2x2+3y的次数是2,故此选项错误;D、单项式-x3y2z的系数是-1,次数是6,正确.故选:D.直接利用多项式的次数与项数确定方法和单项式得出与系数确定方法分别判断即可.此题主要考查了多项式的次数与项数和单项式得出与系数,正确把握相关定义是解题关键.9.【答案】A【解析】解:根据题意得:=,去分母得:2x-2=9x-3,移项合并得:7x=1,解得:x=,故选:A.根据题意列出方程,求出方程的解即可得到x的值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.【答案】B【解析】解:设小海现在的年龄为x岁,根据题意可得:2(x-5)=x+10-5,解得:x=15,答:小海现在的年龄为15岁.故选:B.直接利用张磊比小海大10岁,分别表示出5年前两人的年龄,进而得出答案.此题主要考查了一元一次方程的应用,正确得出等式是解题关键.11.【答案】D【解析】解:设他家到学校的路程是xkm,依题意,得:+=-.故选:D.设他家到学校的路程是xkm,根据时间=路程÷速度结合上课时间不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.12.【答案】D【解析】解:∵MN=10cm,点P满足PM+PN=20cm,∴点P不可能在线段MN上,点P可能在直线MN外,也可能在直线MN上.故只有④说法正确.故选:D.根据线段的MN长度,及PM+PN的长度即可判断出P的位置.本题考查比较线段长度的知识,比较简单,这类题目一般不能具体确定P的位置,只是可能不能说必然.13.【答案】12【解析】解:如图,∵BC=4,AB=8,∴AC=AB+BC=12.故答案为:12.由已知条件可知,AC=AB+BC,代入求值即可.考查了两点间的距离,借助图形来计算,这样才直观形象,便于思维.灵活运用线段的和、倍转化线段之间的数量关系.14.【答案】3.6【解析】解:将3.6457用四舍五入法精确到十分位的近似数是3.6;故答案为:3.6.把3.6457精确到十分位就是对这个数的十分位后面的数进行四舍五入即可.此题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度.15.【答案】(7-x)=3x+1【解析】解:依题意,得:(7-x)=3x+1.故答案为:(7-x)=3x+1.由7减x 差的比x的3倍大1,可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.16.【答案】45°+【解析】解:∵∠AOC=90°,∠COB=α,∴∠AOB=∠AOC+∠COB=90°+α.∵OD平分∠AOB,∴∠AOD=∠AOB=(90°+α)=45°+.故答案为45°+.先用90°和α表示出∠AOB度数,再根据角平分线的定义求解∠AOD度数.本题主要考查了角平分线的定义,正确表示出角之间的关系是解题的关键.17.【答案】北偏东45°(或东北)【解析】解:∵D在点O的北偏西35°方向,∠DOE=80°,∴∠EOF=80°-35°=45°,即点E在点O的北偏东45°(或东北)方向上.故答案为:北偏东45°(或东北).利用方向角的定义求解即可.本题主要考查了方向角,解答此类题需要从运动的角度,正确画出方位角,再结合角与角间的和差关系进行解答.18.【答案】43 不会【解析】解:(1)∵OM,ON分别是∠BOC和∠AOC的角平分线,∴∠MOC=∠OBC,∠NOC=∠AOC.∴∠MON=∠MOC+∠NOC=∠OBC+∠AOC=(∠OBC+∠AOC)=∠AOB=×86°=43°.故答案为43;(2)有(1)可知∠MON=∠AOB,即∠MON的度数始终等于∠AOB度数的一半,所以当OC在∠AOB内绕点O转动时,∠MON的值不会改变.故答案为不会.(1)根据角平分线的定义,及角的和差找到∠MON与∠AOB之间的关系即可求解;(2)求出∠MON与∠AOB的倍数关系即可说明问题.本题主要考查角平分线的定义,会运用整体思想找到∠MON与∠AOB的倍分关系是解题的关键.19.【答案】解:(1)原式=-1-××(5-8)=-1-×(-3)=-1+=-;(2)原式=(1-6+5-4)÷5=(-)×=-.【解析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算中括号中的乘法运算,再计算减法运算,最后算除法运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)原式=3x2+1+2x2-4x+6-3x2-4x=2x2-8x+7;(2)原式=m+m+3m+5=4m-n2+5,当m=2,n=-3时,原式=4×2-9+5=4;【解析】(1)根据整式的运算法则即可求出答案.(2)先根据整式的运算法则将原式化简,然后将m与n的值代入即可求出答案.本题考查整式的运算,解题的关键是熟练熟练运用整式的运算法则,本题属于基础题型.21.【答案】解:(1)设购买x元商品时,两个商场的实际花费相同.由题意,得250+(x-250)×85%=(x-100)×95%+100 解得:x=325答:当购买325元商品时,两个商场的实际花费相同.(2):当张华购买500元的商品时,在甲商场实际花费为:(500-250)×85%+250=462.5元在乙商场实际花费为:(500-100)×95%+100=480元∵462.5<480∴张华选甲商场的实际花费较少当李刚购买300元的商品时,在甲商场实际花费为:(300-250)×85%+250=292.5元在乙商场实际花费为:(300-100)×95%+100=290元∵290<292.5∴李刚选乙商场的实际花费较少.【解析】(1):设购买x元商品时,满足题意,根据甲,乙两个商场的优惠方式列方程.(2):分别讨论张华和李刚在两种商场优惠下的实际消费,最后比较哪一种更实惠.本题主要是应用题中的销售类,此题考查了关于优惠下的实际消费问题.22.【答案】解:(1)去括号得:2x+6-7=x-10x+5,移项得:2x-x+10x=5-6+7,合并同类项得:11x=6,系数化为1得:x=,(2)去分母得:4(2x-1)-3(x+1)=6(3x+1)-12,去括号得:8x-4-3x-3=18x+6-12,移项得:8x-3x-18x=6-12+4+3,合并同类项得:-13x=1,系数化为1得:x=-.【解析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.23.【答案】解:(1)设这个角的余角的度数为x,则这个角为90°-x,它的补角为90°+x.根据题意,得90°+x=3x-25°,解得x=57.5°.答:这个角的余角的度数是57.5°;(2)设乙工程队每天钻山洞x米.根据题意,得16(20+x)=560,解得x=15.答:乙工程队每天钻山洞15米.【解析】(1)设这个角的余角的度数为x,则这个角为90°-x,它的补角为90°+x,根据一个角的补角比它的余角的3倍少25°列出方程,解方程即可;(2)设乙工程队每天钻山洞x米.根据等量关系:(甲的工作效率+乙的工作效率)×工作时间=工作总量列出方程,解方程即可.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.也考查了余角和补角.24.【答案】解:∵D是AB的中点,∴AD=AB,∵AC:CB=2:3,点E是线段AC的中点,∴DE=AD-AE=AB-×AB=9cm,∴AB=30cm.【解析】根据AC:CB=2:3,线段中点的性质,可得DE=AD-AE=AB-×AB=9cm,依此即可求解.本题考查两点间距离,线段的中点、线段的和差倍分定义等知识,熟知各线段之间的和差和倍分关系是解答此题的关键.25.【答案】解:∵∠DOC:∠COB=2:3,∴设∠DOC=2x,∠COB=3x,则∠BOD=5x,∵∠EOC=78°,∠EOC=∠EOD+DOC,∴∠EOD=78°-2x,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(78°-2x),∵∠AOD+∠DOB=180°,∴2×(78°-2x)+5x=180°,解得:x=24°,∴∠BOD=120°.【解析】设∠DOC=2x,∠COB=3x,则∠BOD=5x,求得∠EOD=78°-2x,根据角平分线的定义得到∠AOD=2∠EOD=2(78°-2x),列方程即可得到结论.本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.。
最新2018-2019年七年级上期末数学试卷含答案解析
七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。
深圳市南山区2019-2020学年七年级上期末数学试卷及解析
2019-2020学年广东省深圳市南山区七年级(上)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)下列调查中,最适合采用普查方式进行的是()A.对深圳市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对央视“新闻60分”栏目收视率的调查D.对某中学教师的身体健康状况的调查2.(3分)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐3.(3分)2017年11月19日上午8:00,“2017华润•深圳南山半程马拉松赛”在华润深圳湾体育中心(“春茧”)前正式开跑,共有约16000名选手参加了比赛.16000用科学记数法可表示为()A.0.16×104B.0.16×105C.1.6×104D.1.6×105 4.(3分)下列计算正确的是()A.3x2y﹣2x2y=x2y B.5y﹣3y=2C.3a+2b=5ab D.7a+a=7a25.(3分)如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm6.(3分)下列结论中,正确的是()A.单项式3xy27的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式7.(3分)若x2+3x﹣5的值为7,则3x2+9x﹣2的值为()A.44B.34C.24D.148.(3分)有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()A.|a|﹣1B.|a|C.﹣a D.a+19.(3分)如图是小刚一天中的作息时间分配的扇形统计图,如果小刚希望把自己每天的阅读时间调整为2小时,那么他的阅读时间需增加()A.105分钟B.60分钟C.48分钟D.15分钟10.(3分)如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.4B.6C.12D.811.(3分)某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元12.(3分)如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥AD+BD>AB.A.2个B.3个C.4个D.5个二、填空题:(本题共有4题,每小题3分,共12分.把答案填在答题卡上)13.(3分)如图所示,截去正方体一角变成一个新的多面体,这个多面体有个面.14.(3分)a的相反数是−32,则a的倒数是.15.(3分)x,y表示两个数,规定新运算“※”及“△”如下:x※y=6x+5y,x△y=3xy,那么(﹣2※3)△(﹣4)=.16.(3分)如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有1499个黑棋子,则n=.三、解答题(本大题有7题,其中17题9分,18题8分,19题7分,20题7分,21题7分,22题7分,23题7分,共52分,把答案填在答题卷上)17.(9分)计算:(1)(﹣4)×3+(﹣18)÷(﹣2)(2)−22+(23−34)×12(3)先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.18.(8分)解答下列方程的问题(1)已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是多少?(2)解方程:5x−76+1=3x−14.19.(7分)如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加个小正方体.20.(7分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生?(2)将图1补充完整;(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.21.(7分)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=54°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠CBE的度数.22.(7分)阅读理解:高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程. 解:设s=1+2+3+…+100,①则s=100+99+98+…+1,②①+②,得2s=101+101+101+ (101)(两式左右两端分别相加,左端等于2S ,右端等于100个101的和)所以2s=100×101,s=12×100×101=5050③ 所以1+2+3+…+100=5050.后来人们将小高斯的这种解答方法概括为“倒序相加法”.请解答下面的问题:(1)请你运用高斯的“倒序相加法”计算:1+2+3+ (200)(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:1+2+3+…+n= .(3)计算:101+102+103+ (2018)23.(7分)以下是两张不同类型火车的车票(“D ××××次”表示动车,“G ××××次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是 向而行(填“相”或“同”).(2)已知该弄动车和高铁的平均速度分别为200km/h 、300km/h ,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到lh ,求A 、B 两地之间的距离.②在①中测算的数据基础上,已知A 、B 两地途中依次设有5个站点P 1、P 2、P 3、P 4、P 5,且AP 1=P 1P 2=P 2P 3=P 3P 4=P 4P 5=P 5B ,动车每个站点都停靠,高铁只停靠P 2、P 4两个站点,两列火车在每个停靠站点都停留5min .求该列高铁追上动车的时刻.2019-2020学年广东省深圳市南山区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)下列调查中,最适合采用普查方式进行的是()A.对深圳市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对央视“新闻60分”栏目收视率的调查D.对某中学教师的身体健康状况的调查【考点】全面调查与抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进而得出答案.【解答】解:A、对深圳市居民日平均用水量的调查,适合抽样调查,故此选项错误;B、对一批LED节能灯使用寿命的调查,适合抽样调查,故此选项错误;C、对央视“新闻60分”栏目收视率的调查,适合抽样调查,故此选项错误;D、对某中学教师的身体健康状况的调查,适合全面调查,故此选项正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(3分)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐【考点】线段的性质:两点之间线段最短【分析】根据实际、线段的性质判断即可.【解答】解:A、用两颗钉子固定一根木条体现基本事实“两点确定一条直线”;B、把弯路改直可以缩短路程体现基本事实“两点之间,线段最短”;C、用两根木桩拉一直线把树栽成一排体现基本事实“两点确定一条直线”;D、沿桌子的一边看,可将桌子排整齐体现基本事实“线段的延长线”;故选:B.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.3.(3分)2017年11月19日上午8:00,“2017华润•深圳南山半程马拉松赛”在华润深圳湾体育中心(“春茧”)前正式开跑,共有约16000名选手参加了比赛.16000用科学记数法可表示为()A.0.16×104B.0.16×105C.1.6×104D.1.6×105【考点】科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:16000用科学记数法可表示为1.6×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.3x2y﹣2x2y=x2y B.5y﹣3y=2C.3a+2b=5ab D.7a+a=7a2【考点】合并同类项【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.【解答】解:A、3x2y﹣2x2y=x2y,故原题计算正确;B、5y﹣3y=2y,故原题计算错误;C、3a和2b不是同类项,不能合并,故原题计算错误;D、7a+a=8a,故原题计算错误;故选:A.【点评】此题主要考查了合并同类项,关键是掌握合并同类项的法则.5.(3分)如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【考点】两点间的距离【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10cm,M是AB中点,∴BM=12AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.【点评】本题考查了线段的长短比较,根据点M是AB中点先求出BM的长度是解本题的关键.6.(3分)下列结论中,正确的是()A.单项式3xy27的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式【考点】单项式;多项式【分析】根据单项式的次数与系数定义分别判断得出即可.【解答】解:A、单项式3xy27的系数是37,次数是3,故此选项错误;B、单项式m的次数是1,系数是1,故此选项错误;C、单项式﹣xy2z的系数是﹣1,次数是4,故此选项正确;D、多项式2x2+xy+3是三次二项式,故此选项错误.故选:C.【点评】此题主要考查了单项式的次数与系数的定义,熟练掌握相关的定义是解题关键.7.(3分)若x2+3x﹣5的值为7,则3x2+9x﹣2的值为()A.44B.34C.24D.14【考点】代数式求值【分析】先由x2+3x﹣5=7得x2+3x=12,再整体代入到原式=3(x2+3x)﹣2,计算可得.【解答】解:∵x2+3x﹣5=7,∴x2+3x=12,则原式=3(x2+3x)﹣2=3×12﹣2=36﹣2=34,故选:B.【点评】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.8.(3分)有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()A.|a|﹣1B.|a|C.﹣a D.a+1【考点】数轴;绝对值;有理数大小比较【分析】根据数轴得出﹣2<a<﹣1,再逐个判断即可.【解答】解:A、∵从数轴可知:﹣2<a<﹣1,∴|a|﹣1大约0<|a|﹣1<1,故本选项符合题意;B、∵从数轴可知:﹣2<a<﹣1,∴|a|>1,故本选项不符合题意;C、∵从数轴可知:﹣2<a<﹣1,∴﹣a>1,故本选项不符合题意;D、∵从数轴可知:﹣2<a<﹣1,∴a+<0,故本选项不符合题意;故选:A.【点评】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出﹣2<a<﹣1是解此题的关键.9.(3分)如图是小刚一天中的作息时间分配的扇形统计图,如果小刚希望把自己每天的阅读时间调整为2小时,那么他的阅读时间需增加()A.105分钟B.60分钟C.48分钟D.15分钟【考点】扇形统计图【分析】扇形统计图中扇形的圆心角与百分比成正比,从图中可以求出原用于阅读的时间,则他的阅读需增加时间可求.【解答】解:原用于阅读的时间为24×(360﹣135﹣120﹣30﹣60)÷360=1(小时),∴把自己每天的阅读时间调整为2时,那么他的阅读时间需增加1小时.故选:B.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.10.(3分)如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.4B.6C.12D.8【考点】几何体的展开图【分析】根据观察、计算,可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【解答】解:长方体的高是1,宽是3﹣1=2,长是6﹣2=4,长方体的容积是4×2×1=8,故选:D.【点评】本题考查了几何体的展开图,展开图折叠成几何体,得出长方体的长、宽、高是解题关键.11.(3分)某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元【考点】一元一次方程的应用【分析】设这件商品的原价为x元,则他购买这件商品花了0.8x元,根据原价﹣现价=差额,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件商品的原价为x元,则他购买这件商品花了0.8x元,根据题意得:x﹣0.8x=50,解得:x=250,∴0.8x=0.8×250=200.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(3分)如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥AD+BD>AB.A.2个B.3个C.4个D.5个【考点】点到直线的距离【分析】根据点到直线的距离,垂直的定义,三角形三边的关系,可得答案.【解答】解:由∠BAC=90°,AD⊥BC,得AB⊥AC,故①正确;AD与AC不垂直,故②错误;点C到AB的垂线段是线段AC的长,故③错误;点A到BC的距离是线段AD的长度,故④正确;线段AB的长度是点B到AC的距离,故⑤正确;AD+BD>AB,故⑥正确;故选:C.【点评】本题考查了点到直线的距离,利用点到直线的距离,垂直的定义,三角形三边的关系是解题关键.二、填空题:(本题共有4题,每小题3分,共12分.把答案填在答题卡上)13.(3分)如图所示,截去正方体一角变成一个新的多面体,这个多面体有7个面.【考点】截一个几何体【分析】截去正方体一角变成一个多面体,这个多面体多了一个面、棱不变,少了一个顶点.【解答】解:仔细观察图形,正确地数出多面体的面数是7.故答案为:7.【点评】本题考查了正方体的截面.关键是明确正方体的面数,顶点数,棱的条数,形数结合,求出截去一个角后得到的几何体的面数,顶点数,棱的条数.14.(3分)a的相反数是−32,则a的倒数是23.【考点】相反数;倒数【分析】直接利用相反数的定义得出a 的值,再利用倒数的定义得出答案.【解答】解:∵a 的相反数是−32,∴a=32, 则a 的倒数是:23. 故答案为:23. 【点评】此题主要考查了倒数与相反数,正确把握相关定义是解题关键.15.(3分)x ,y 表示两个数,规定新运算“※”及“△”如下:x ※y=6x +5y ,x △y=3xy ,那么(﹣2※3)△(﹣4)= ﹣36 .【考点】有理数的混合运算【分析】根据x ※y=6x +5y ,x △y=3xy ,可以计算出题目中所求式子的值.【解答】解:∵x ※y=6x +5y ,x △y=3xy ,∴(﹣2※3)△(﹣4)=[6×(﹣2)+5×3]△(﹣4)=3△(﹣4)=3×3×(﹣4)=﹣36,故答案为:﹣36.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.(3分)如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有1499个黑棋子,则n= 300 .【考点】规律型:图形的变化类【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【解答】解:观察图1有5×1﹣1=4个黑棋子;图2有5×2﹣1=9个黑棋子;图3有5×3﹣1=14个黑棋子;图4有5×4﹣1=19个黑棋子;…图n有5n﹣1个黑棋子,当5n﹣1=1499,解得:n=300,故答案:300【点评】本题考查了图形的变化类问题,解题的关键是能够仔细观察并发现图形的变化规律,难度不大.三、解答题(本大题有7题,其中17题9分,18题8分,19题7分,20题7分,21题7分,22题7分,23题7分,共52分,把答案填在答题卷上)17.(9分)计算:(1)(﹣4)×3+(﹣18)÷(﹣2)(2)−22+(23−34)×12(3)先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.【考点】有理数的混合运算;整式的加减—化简求值【分析】(1)先计算乘除法,再计算加减即可得;(2)先计算乘方、利用乘法分配律去掉括号,再计算乘法,最后计算加减可得;(3)先根据整式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:(1)(﹣4)×3+(﹣18)÷(﹣2)=﹣12+9=﹣3;(2)原式=−4+23×12−34×12=﹣4+8﹣9=﹣5;(3)原式=x2﹣5x2+4y+3x2﹣3y=x2﹣5x2+3x2+4y﹣3y=﹣x2+y,当x=﹣1,y=2时,原式=﹣(﹣1)2+2=﹣1+2=1.【点评】本题主要考查有理数的混合运算和整式的化简求值,解题的关键是熟练掌握有理数和整式的混合运算顺序和运算法则.18.(8分)解答下列方程的问题(1)已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是多少?(2)解方程:5x−76+1=3x−14.【考点】解一元一次方程【分析】(1)直接把x的值代入,进而求出答案;(2)首先去分母进而去括号,再移项合并同类项得出答案.【解答】解:(1)∵x=3是的方程:4x﹣a=3+ax的解,∴12﹣a=3+3a,∴﹣a﹣3a=3﹣12,∴﹣4a=﹣9,∴a=9 4;(2)去分母得:2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣3,10x﹣9x=﹣3+14﹣12,解得:x=﹣1.【点评】此题主要考查了一元一次方程的解法,正确掌握解题方法是解题关键.19.(7分)如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有10个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加4个小正方体.【考点】作图﹣三视图【分析】(1)最前面1排1个小正方体,中间1排有3个正方体,最后面一排共6个小正方体,再计算总和即可.(2)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;据此可画出图形.(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加第一排的右边2列的2个,第2排的右边第3列的2个,然后可得答案.【解答】解:(1)正方体的个数:1+3+6=10,(2)如图所示:;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加第一排的右边2列的2个,第2排的右边第3列的2个,2+2=4.答:最多还能在图1中添加4个小正方体.故答案为:10;4.【点评】此题主要考查了三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.20.(7分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生?(2)将图1补充完整;(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.【考点】用样本估计总体;扇形统计图;条形统计图【分析】(1)根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;(2)根据(1)中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.【解答】解:(1)130÷65%=200,答:此次抽样调查中,共调查了200名学生;(2)反对的人数为:200﹣130﹣50=20,补全的条形统计图如右图所示;(3)扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:20 200×360°=36°;(4)1500×50200=375,答:该校1500名学生中有375名学生持“无所谓”意见.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(7分)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=54°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠CBE的度数.【考点】角平分线的定义;角的计算【分析】(1)由折叠的性质可得∠A′BC=∠ABC=54°,由平角的定义可得∠A′BD=180°﹣∠ABC ﹣∠A′BC ,可得结果;(2)由(1)的结论可得∠DBD′=72°,由折叠的性质可得∠2=12∠DBD′=12×72°=36°,由角平分线的性质可得∠1=54°,再相加即可求解.【解答】解:(1)∵∠ABC=54°,∴∠A′BC=∠ABC=54°,∴∠A′BD=180°﹣∠ABC ﹣∠A′BC=180°﹣54°﹣54°=72°;(2)由(1)的结论可得∠DBD′=72°,∴∠2=12∠DBD′=12×72°=36°,∠ABD′=108°, ∴∠1=12∠ABD′=12×108°=54°, ∴∠CBE=∠1+∠2=90°.【点评】本题主要考查了角平分线的定义,根据角平分线的定义得出角的度数是解答此题的关键.22.(7分)阅读理解:高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程. 解:设s=1+2+3+…+100,①则s=100+99+98+…+1,②①+②,得2s=101+101+101+ (101)(两式左右两端分别相加,左端等于2S ,右端等于100个101的和)所以2s=100×101,s=12×100×101=5050③ 所以1+2+3+…+100=5050.后来人们将小高斯的这种解答方法概括为“倒序相加法”.请解答下面的问题:(1)请你运用高斯的“倒序相加法”计算:1+2+3+ (200)(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:1+2+3+…+n= 12n (n +1) . (3)计算:101+102+103+ (2018)【考点】有理数的混合运算;规律型:数字的变化类【分析】(1)原式利用高斯的“倒序相加法”计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用高斯的“倒序相加法”计算即可求出值.【解答】解:设s=1+2+3+…+100①,则s=100+99+98+…+1②,①+②,得2s=101+101+101+…+101,(两式左右两端分别相加,左端等于2s ,右端等于100个101的和)所以2s=100×101,s=12×100×101=5050③, 所以1+2+3+…+100=5050,后来人们将小高斯的这种解答方法概括为“倒序相加法”.请解答下面的问题:(1)1+2+3+…+200,s=1+2+3+…+200①,则s=200+199+198+…+1②,①+②,得2s=201+201+201+ (201)所以2s=200×201,s=12×200×201=20100, 所以1+2+3+…+200=20100;(2)猜想:1+2+3+…+n=12n (n +1); 故答案为:12n (n +1); (3)s=101+102+103+…+2018①,则s=2018+2017+2016+…+1②,①+②,得2s=2119+2119+2119+ (2119)所以2s=(2018﹣100)×2119,s=12×1918×2119=2032121, 所以101+102+103+…+2018=2032121.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(7分)以下是两张不同类型火车的车票(“D××××次”表示动车,“G××××次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是同向而行(填“相”或“同”).(2)已知该弄动车和高铁的平均速度分别为200km/h、300km/h,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到lh,求A、B两地之间的距离.②在①中测算的数据基础上,已知A、B两地途中依次设有5个站点P1、P2、P3、P4、P5,且AP1=P1P2=P2P3=P3P4=P4P5=P5B,动车每个站点都停靠,高铁只停靠P2、P4两个站点,两列火车在每个停靠站点都停留5min.求该列高铁追上动车的时刻.【考点】一元一次方程的应用【分析】(1)根据两车的出发地及目的地,即可得出两车方向相同;(2)①设A、B两地之间的距离为xkm,根据时间=路程÷速度结合高铁比动车少用2小时,即可得出关于x的一元一次方程,解之即可得出结论;②根据AP1=P1P2=P2P3=P3P4=P4P5=P5B可求出每个相邻站点距离,利用时间=路程÷速度可求出两车经过每个相邻站点的时间,结合两车出发的时间及停靠站点休息的时间可得出高铁在P2站、P3站之间追上动车,设高铁经过t小时之后追上动车,根据路程=时间×速度,即可得出关于t的一元一次方程,解之即可得出t值,再加上出发时间即可求出结论.【解答】解:(1)∵动车和高铁均从A地到B地,∴两车方向相同.故答案为:同.(2)①设A、B两地之间的距离为xkm,根据题意得:x 200﹣x 300=2, 解得:x=1200.答:A 、B 两地之间的距离是1200km .②每个相邻站点距离为1200÷6=200km ,动车到每一站所花时间为200÷200×60=60(分钟),高铁到每一站所花时间为200÷300×60=40(分钟).∵60÷(60﹣40)=3,∴高铁在P 2站、P 3站之间追上动车.设高铁经过t 小时之后追上动车,根据题意得:(t ﹣560)×300=(t +1﹣560×2)×200, 解得:t=2312, ∴7:00+2312=8:55. 答:该列高铁在8:55追上动车.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据车票上起始站找出结论;(2)①找准等量关系,正确列出一元一次方程;②通过分析两车的行驶过程,找出高铁追上动车的大致位置.数学期末考注意事项期末考试眼瞅着就要到了,同学们正紧张地进行复习,其实,考试也有考试的学问和技巧。
福建省宁德市2019-2020学年七年级上学期期末数学试题(含答案)
初一数学试题 第 1 页 共 8 页宁德市2019-2020学年度第一学期期末七年级质量检测数 学 试 题(满分:100分;考试时间:90分钟)友情提示:所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效. 一、选择题(本大题共10小题,每小题3分,满分30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.下列四个数中比2-小的数是A .3-B .1-C .0D .12.单项式313a b -的系数是A .1-B .13-C .13D .43.为庆祝新中国成立70周年,天安门广场举行盛大国庆阅兵仪式,参加这次阅兵的有59个方队和联合军乐团,总规模约15 000人.将15 000用科学记数法表示为 A .0.15 ×105 B .1.5×104 C .15×103 D .1.5×1054.要清楚地反映近几日气温的变化情况,最适合制作的是A .折线统计图B .扇形统计图C .频数直方图D .频数分布表错误!未找到引用源。
5.如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是 A .长方体 B .球 C .圆柱D .圆锥6.下列运算正确的是A .33a b ab +=B .22232a a a -=C .3(1)31a a -=-D .(1)1a a --=--7.下列调查中,适宜采用抽样调查的是A .对飞机零部件质量的调查B .对全班45位同学身高的调查C .对动车站客流量的调查D .对全运会运动员使用兴奋剂的调查 8.关于53的意义,描述正确的是A .表示5个3相加B .表示3个5相加C .表示5个3相乘D .表示3个5相乘9.对有理数运算的描述,下列说法错误的是A .同号两数相加,取相同的符号,并把绝对值相加B .减去一个数,等于加上这个数的相反数C .两数相乘,同号得正,异号得负,并把绝对值相乘第5题图初一数学试题 第 2 页 共 8 页D .除以一个数等于乘这个数的绝对值10.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD 是正方形; 乙:如图2,盒子底面的四边形ABCD 是正方形;丙:如图3,盒子底面的四边形ABCD 是长方形,AB =2AD .将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是 A .甲>乙>丙 B .甲>丙>乙 C .丙>甲>乙D .丙>乙>甲二、填空题(本大题共6小题,每小题3分,满分18分) 11.12的相反数是 . 12.由321x x =-得321x x -=-,在此变形中,方程两边同时 .13.某班学生参加学校组织的“垃圾分类”知识竞赛,将学生成绩制成如图所示的频数分布直方图(每组数据包括左端值不包括右端值),其中成绩为“优良”(80分及80分以上)的学生有 人.14.比较两个角的大小关系:小明用度量法测得∠AOB =45°,∠COD =50°;小丽用叠合法比较,将两个角的顶点重合,边OB 与OD 重合,边OA 和OC 置于重合边的同侧,则边OA .(填序号:①“在∠COD 的内部”;②“在∠COD 的外部”;③“与边OC 重合” ) 15.如图,是一个数值转换机,若输入的数为5,则输出的数是 .16.若线段A 1A 2=1,在线段A 1A 2的延长线上取一点A 3,使A 2是A 1A 3的中点;在线段A 1A 3的延长线上取一点A 4,使A 3是A 1A 4的中点;在线段A 1A 4的延长线上取一点A 5,使A 4是A 1A 5的中点……,按这样操作下去,线段A 1A 2020= .图2 图3第13题图第15题图图1D C12初一数学试题 第 3 页 共 8 页三、解答题(本大题共7题,满分52分) 17.(本题满分12分)计算:(1)2113(2)4--÷--; (2)5218263-⨯-+1(); (3)22313()222a b ab a b ab ---.18.(本题满分5分)解方程:5122x x -+=.19.(本题满分5分)如图,∠COD =45°,∠BOD =13∠COD ,OC 是∠AOB 的平分线,求∠AOD 的度数.20.(本题满分6分)春节前,由35名同学组成的志愿者小分队,共制作了180个纸灯笼送给敬老院.平均每名男生制作4个,每名女生制作6个.求男生、女生各多少名.21.(本题满分6分)如图,用10个大小相同的小立方块搭成一个组合体. (1)请在指定位置画出该组合体从左面、上面看到的形状图; (2)在不改变该组合体中小立方块个数的前提下,从中移动一个小立方块,使所得新组合体与原组合体相比,从左面、上面看到的形状图保持不变,但从正面看到的形状图改变了,请画出新组合体从正面看到的所有可能的形状图.(所给的方格图不一定全用,不够可添)从左面看从上面看(原组合体)从正面看 (新组合体)O AB CD初一数学试题 第 4 页 共 8 页 22.(本题满分9分)在精准扶贫政策的扶持下,贫困户老李今年试种的百香果获得大丰收,共收获2 000千克.扶贫小组帮助他将百香果按照品质从高到低分成A ,B ,C ,D ,E 五个等级,并根据数据绘制了如下的扇形统计图和频数分布表:请根据图表信息解答下列问题:(1)m =__________;n =__________;a =__________; (2)求扇形统计图中“E ”所对应的圆心角的度数;(3)为了帮助贫困户老李销售百香果,扶贫小组联系了甲、乙两位经销商.他们分别给出如下收购方案:甲:全部按5元/千克收购;乙:按等级收购:C 等级单价为6.5元/千克,每提高一个等级单价提高1元/千克,剩下的D ,E 两个等级单价均为2元/千克.请你通过计算,判断哪个经销商的方案使老李盈利更多.23.(本题满分9分)如图,在数轴上点A 所表示的数是5-,点B 在点A 的右侧,AB =6;点C 在AB 之间, AC =2BC .(1)在数轴上描出点B ;(2)求点C 所表示的数,并在数轴上描出点C ;(3)已知在数轴上存在点P ,使P A +PC =PB ,求点P 所表示的数.A初一数学试题 第 5 页 共 8 页宁德市2019-2020学年度第一学期期末七年级质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分. ⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分.一、选择题:(本大题有10小题,每小题3分,满分30分)1.A 2.B 3.B 4.A 5.D 6.B 7.C 8.C 9.D 10.C 二、填空题:(本大题有6小题,每小题3分,满分18分)11.12-; 12.减去2x (加上(2x -)或2x -); 13.26; 14.①; 15.23; 16.20182.三、解答题(本大题共7题,满分52分) 17.(本题满分12分)解:(1)原式=1342--⨯+ ·································································· 2分=1122--+ ······································································ 3分 =11-; ······································································· 4分(2)原式=152181818263⨯-⨯+⨯ ······················································· 2分=91512-+ ······································································· 3分 =6; ················································································ 4分或原式=35418()666⨯-+ ································································ 2分=2186⨯ ············································································ 3分=6; ················································································ 4分 (3)原式=2231332222a b ab a b ab --+ ···················································· 2分=ab . ·············································································· 4分18.(本题满分5分)解: 4+512x x -=. ·············································································· 2分5241x x -=-+. ·········································································· 3分 33x =-. ············································································· 4分 1x =-. ············································································· 5分 19.(本题满分5分)解:因为∠COD =45°,∠BOD =错误!未找到引用源。
2018-2019学年七年级(上)期末数学试卷含答案解析
2018-2019学年七年级(上)期末数学试卷一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×1063.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣15.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=138.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°二、填空题(每小题3分,共计30分)9.﹣3的绝对值是.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是℃.11.多项式2x2+xy+3是次三项式.12.已知∠A=70°,则∠A的补角是度.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.20.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为,分针1分钟转过的角度为;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?2018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:A.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1390000用科学记数法表示为1.39×106.故选B.3.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b【考点】合并同类项.【分析】根据合并同类项的法则,合并同类项是把同类项系数相加减而字母和字母的指数不变,即可解答.【解答】解:A、2a﹣a=a,故错误;B、2a与b不是同类项,故错误;C、3a2+2a2=5a2,故错误;D、正确;故选:D.4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣1【考点】解一元一次方程.【分析】先移项,再合并同类项,最后化系数为1,从而得到方程的解.【解答】解:移项得:﹣3x+2x=4﹣2,合并得:﹣x=2,系数化为1得:x=﹣2.故选B.5.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.【考点】几何体的展开图.【分析】由棱锥的侧面展开图的特征可知答案.【解答】解:棱锥的侧面是三角形.故选:C.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=13【考点】由实际问题抽象出一元一次方程.【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数13元,明确了等量关系再列方程就不那么难了.【解答】解:设B种饮料单价为x元/瓶,则A种饮料单价为(x﹣1)元,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,可得方程为:2(x﹣1)+3x=13.故选A.8.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°【考点】角平分线的定义.【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.二、填空题(每小题3分,共计30分)9.﹣3的绝对值是3.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是11℃.【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为5﹣(﹣6)=11℃.故答案为:11.11.多项式2x2+xy+3是二次三项式.【考点】多项式.【分析】直接利用多项式的次数即单项式最高次数,进而得出答案.【解答】解:多项式2x2+xy+3是二次三项式.故答案为:二.12.已知∠A=70°,则∠A的补角是110度.【考点】余角和补角.【分析】根据补角的定义,两个角的和是180°即可求解.【解答】解:∠A的补角是:180°﹣∠A=180°﹣70°=110°.故答案是:110.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为﹣4.【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得m=2,n﹣3=3,解得n=6,m﹣n=2﹣6=﹣4,故答案为:﹣4.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为7.【考点】一元一次方程的解.【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x=﹣2代入方程2x+m=1﹣x就得到关于m的方程,从而求出m的值.【解答】解:把x=﹣2代入方程2x+m=1﹣x,得:﹣4+m=1+2,解得:m=7.故答案为:7.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为14.【考点】两点间的距离.【分析】根据点P是线段MN的中点,可得MN=2PN,再根据PN=7,求出线段MN的长为多少即可.【解答】解:∵点P是线段MN的中点,∴MN=2PN=2×7=14.故答案为:14.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.【考点】解一元一次方程.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:3a++3(a﹣)=0,去括号得:3a++3a﹣=0,移项合并得:6a=1,解得:a=,故答案为:17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为120°.【考点】角的计算;角平分线的定义.【分析】根据角平分线的性质得出∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,进而求出x的值,即可得出答案.【解答】解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【考点】平行线;认识立体图形;对顶角、邻补角;垂线段最短.【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)﹣5+(﹣2)﹣(﹣3)=﹣7+3=﹣4(2)﹣22×3﹣(﹣3)+6﹣|﹣5|=﹣12+3+6﹣5=﹣8(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3=64﹣3[﹣9+6]+3+=64+9+3+=7620.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y,当x=﹣2,y=时,原式=51.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=2,解得:x=1;(2)去括号得:3x﹣4x+4=2x+10,移项合并得:﹣3x=6,解得:x=﹣2;(3)去分母得:3x+3﹣6=4﹣6x,移项合并得:9x=7,解得:x=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).【考点】作图-三视图.【分析】由已知条件可知,主视图有2行,每行小正方数形数目为4;左视图有2行,每行小正方形数目为3;俯视图有3行,每行小正方数形数目为4.据此即可画出图形.【解答】解:画出这个长方体的三视图如图所示.23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于m的方程,解方程求得m的值,然后代入所求的解析式即可求解.【解答】解:把x=2代入方程得:2﹣(m﹣2)=4,解得:m=﹣4,则m2﹣(6m+2)=16﹣(﹣24+2)=38.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是垂直.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)【考点】作图—复杂作图;点到直线的距离;平行线的性质.【分析】(1)分别根据垂线与平行线的性质与即可画出图形;(2)根据平行线的性质即可得出结论;(3)用刻度尺量出C点到直线AB的距离即可.【解答】解:(1)如图,线段CD与直线EF即为所求;(2)∵EF∥AB,CH⊥AB,∴EF⊥CH.(3)C点到直线AB的距离约为2.5cm.故答案为:垂直.25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?【考点】一元一次方程的应用.【分析】(1)设出发x小时后两车相遇,根据题意列出方程解答即可.(2)设出发x小时后两车相距80km,分两种情况列出方程解答.【解答】解:(1)设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;(2)设出发x小时后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.【考点】对顶角、邻补角.【分析】(1)由邻补角定义即可得出结果;(2)由对顶角相等得出∠BOD=∠AOC=74°,由角平分线定义即可得出结果;(3)求出∠BOF=∠DOF﹣∠BOD=16°,即可得出∠EOF的度数.【解答】解:(1)∵∠AOC=74°,∴∠BOC=180°﹣74°=106°;(2)∵∠BOD=∠AOC=74°,OE平分∠BOD,∴∠BOE=∠BOD=37°;(3)∵∠BOF=∠DOF﹣∠BOD=90°﹣74°=16°,∴∠EOF=∠BOE+∠BOF=37°+16°=53°.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?【考点】一元一次方程的应用;钟面角.【分析】(1)钟表表盘共360°,被分成12大格,每一个大格是360°÷12=30°.(2)分①当分针在时针上方时②当分针在时针下方时两种情况列出方程解答即可.【解答】解:(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°,故答案为:30°,6°(2)设在下午3点至4点之间,从下午3点开始,经过x分钟,时针与分针成60°角.①当分针在时针上方时,由题意得:﹣6x=60解得:②当分针在时针下方时,由题意得:解得:.答:在下午3点至4点之间,从下午3点开始,经过或分钟,时针与分针成60°角.。
江苏省淮安市淮安区2019-2020学年七年级上学期期末数学试题
江苏省淮安市淮安区2019-2020 学年七年级上学期期末数学试题考试范围: xxx;考试时间:100 分钟;命题人:xxx题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题 )请点击修改第I 卷的文字说明评卷人得分一、单选题1. -3 的相反数为()A .-3B .3C. 0 D .不能确定2.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300 人次,数字48300 用科学计数法表示为()A .4.83 104B .4.83105C.48.3103 D .0.483105 3.如图,数轴的单位长度为 1,如果点 ??表示的数为 -2 ,那么点 ??表示的数是().A .-1B .0C. 3 D . 44.下列各题中,运算结果正确的是()A .3a 2b 5abB .4x2y2xy22xyC.5 y23y2 2 y 2D. 7 a a 7a25.在同一平面内,下列说法中不正确的是()A.两点之间线段最短B.过直线外一点有且只有一条直线与这条直线平行C.过直线外一点有且只有一条直线与这条直线垂直D .若AC BC ,则点 C 是线段 AB 的中点.试卷第 1页,总 5页6.如图是一个正方体的展开图,折好以后与“学 ”相对面上的字是( )A .祝B .同C .快D .乐7.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利30 元,则商品进价为( )元 .A .90B .100C . 110D .1208.如图,用一副特制的三角板可以画出一些特殊角 .在下列选项中,不能画出的角度是()A . 81oB . 63oC . 54oD . 55o第 II 卷(非选择题 )请点击修改第 II 卷的文字说明评卷人得分二、填空题9.已知 x1 是方程 2ax a 3的解,则 a __________ .10 22 __________3 ..比较大小:711 .若 ∠132o,则1的余角为 __________ o. 12 .如图, 直线 AB ,CD 相交于点 O ,若∠ AOC +∠ BOD = 100 °,则∠ AOD 等于 __________度.试卷第 2页,总 5页13.小红在某月的日历中任意框出如图所示的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,则b=______.(用含字母 a 的代数式表示)14 .若线段 AB=8cm , BC=3cm ,且 A 、 B 、 C 三点在同一条直线上,则AC=______ cm . 15 .已知 a ﹣ 2b = 3,则 7﹣ 3a+6 b = _____.16 .若规定这样一种运算法则 a ※b=a 2+2ab ,例如 3※ (-2) = 3 2+ 2 ×3 ×(-2) =-3 , 则 (-2) ※ 3的值为 _______________.评卷人 得分三、解答题17.计算:( 1)1 3 6 ( 1)33(2)( 2)3 4 [5 ( 3)2]18 .解方程:( 1) 2( x 2) 6( 2)x1 1 1 x2 319 .( 1)化简:a(5a 3b) 2(a 2b)( 2)先化简,再求值:2( x 2 2xy)2( x 2 2 xy) ,其中 x1 , y1220 .按要求画图:如图,在同一平面内有三点A 、B 、C .( 1)画直线 AB 和射线 BC ;( 2)连接线段 AC ,取线段 AC 的中点 D ;( 3)画出点 D 到直线 AB 的垂线段 DE .21.如图:已知直线 AB 、 CD 相交于点 O , ∠ COE=90°试卷第 3页,总 5页(1)若∠ AOC=36°,求∠ BOE 的度数;(2)若∠ BOD :∠ BOC=1 : 5,求∠ AOE 的度数.22.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午 7点开出,速度是每小时 24 千米.汽车上午 10 点开出,速度为每小时40 千米,结果同时到达乙地.求甲、乙两地的海路和公路长.23.( 1)根据如图( 1)所示的主视图、左视图、俯视图,这个几何体的名称是.(2)画出如图( 2)所示几何体的主视图、左视图、俯视图.24.已知关于m 的方程115的解也是关于x 的方程2 x 3n 3 的解.2m 6( 1)求m, n的值;( 2)已知线段AB m,在直线 AB 上取一点P,恰好使APm ,点Q为PB的中PB点,求线段AQ 的长.25.(探索新知)如图 1,点C在线段AB上,图中共有 3 条线段:AB 、 AC 和 BC ,若其中有一条线段的长度是另一条线段长度的两倍,则称点 C 是线段 AB 的“二倍点”.( 1)①一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)②若线段 AB 20 , C 是线段 AB 的“二倍点”,则BC(写出所有结果)(深入研究)如图 2,若线段AB20cm ,点 M 从点B的位置开始,以每秒 2 cm的速度向点 A 运试卷第 4页,总 5页动,当点 M 到达点 A 时停止运动,运动的时间为t 秒.(2)问t为何值时,点M是线段AB的“二倍点”;(3)同时点N从点A的位置开始,以每秒 1 cm的速度向点B运动,并与点M同时停止 .请直接写出点M是线段AN的“二倍点”时t的值 .试卷第 5页,总 5页参考答案1. B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解: -3的相反数为 3 ;故选: B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.2. A【解析】【分析】科学记数法的表示形式为 a × 10 n的形式,其中 1 ≤ |a| < 10 , n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 10时,n是正数;当原数的绝对值< 1 时, n 是负数.【详解】解:48300 4.83104;故选: A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为 a × 10 n的形式,其中 1 ≤|a|< 10 , n 为整数,表示时关键要正确确定 a 的值以及 n 的值.3. C【解析】【分析】观察数轴根据点 B 与点 A 之间的距离即可求得答案.答案第 1 页,总 14 页【详解】观察数轴可知点 A 与点 B 之间的距离是 5 个单位长度,点 B 在点 A 的右侧,因为点 A 表示的数是 -2, -2+5=3,所以点 B 表示的数是3,故选 C.【点睛】本题考查了数轴上两点间的距离,有理数的加法,准确识图是解题的关键.4. C【解析】【分析】根据合并同类项的运算法则进行计算,即可得到答案.【详解】解: A 、3a2b 无法计算,故 A 错误;B 、4 x2y2xy2无法计算,故 B 错误;C 、5 y23y2 2 y2,故C正确;D 、7a a 8a ,故D错误;故选: C.【点睛】本题考查了合并同类项的运算法则,解题的关键是熟练掌握合并同类项的运算法则. 5. D【解析】【分析】根据线段的概念,以及所学的基本事实,对选项一一分析,选择正确答案.【详解】解: A 、两点之间线段最短,正确;B、过直线外一点有且只有一条直线与这条直线平行,正确;答案第 2 页,总 14 页C、过直线外一点有且只有一条直线与这条直线垂直,正确;D 、若AC BC ,则点C是线段AB的中点,错误;故选: D.【点睛】本题考查线段的概念以及所学的基本事实.解题的关键是熟练运用这些概念.6. D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“快”是相对面,“们”与“同”是相对面,“乐”与“学”是相对面.故选: D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7. A【解析】【分析】设该商品进价为x 元,则售价为(x+70 )× 75% ,进一步利用售价- 进价 =利润列出方程解答即可.【详解】解:设该商品进价为x 元,由题意得(x+70 )× 75% -x=30解得: x=90 ,答案第 3 页,总 14 页答:该商品进价为90元.故选: A.【点睛】此题考查一元一次方程的实际运用,掌握销售问题中基本数量关系是解决问题的关键.8. D【解析】【分析】一副三角板中的度数,用三角板画出角,无非是用角度加减,逐一分析即可.【详解】解: A、814536,则 81 角能画出;B、63367245,则63o角能画出;C、549036 ,则54o 可以画出;D 、 55 °不能写成 36 °、 72 °、 45 °、 90 °的和或差的形式,不能画出;故选: D.【点睛】此题考查的知识点是角的计算,关键是用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.9. 1【解析】【分析】直接把 x1代入 2ax a3,即可求出 a 的值 .【详解】解:把 x1代入 2ax a 3 ,则2a ( 1)a 3 ,解得: a 1 ;答案第 4 页,总 14 页故答案为: 1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程. 10.【解析】【分析】比较两个负数的大小,则绝对值大的反而小,即可得到答案.【详解】解:∵223,722∴ 3 ;7故答案为:.【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则. 11.58o【解析】【分析】根据余角的定义,即可得到答案.【详解】解:∵∠132o,∴ 1的余角为:901=90 32 =58 ;故答案为: 58o.【点睛】本题考查了余角的定义,解题的关键是熟练掌握余角的定义进行解题.12. 130【解析】【分析】根据对顶角相等和邻补角的定义求解.【详解】解:∵∠ AOC=∠BOD,且∠ AOC+∠BOD=100°,∴∠ AOC=50°,∴∠ AOD=180° - ∠AOC=130°.故答案为130.【点睛】本题考查对顶角和邻补角的定义及性质.13. a-5【解析】【分析】设阴影部分上面的数字为x,下面为 x+7 ,根据日历中数字特征确定出 a 与 b 的关系式即可.【详解】设阴影部分上面的数字为x,下面为x+7,根据题意得:x=b-1 ,x+7=a+1 ,即 b-1=a-6,整理得: b=a-5,故答案为: a-5【点睛】此题考查了一元一次方程的应用,以及列代数式,弄清题意是解本题的关键.14. 5 或 11.【解析】试题分析:分为两种情况:①如图 1 ,AC=AB+BC= 8+3 =11 ;②如图 2 ,AC=AB﹣BC= 8﹣3 =5 ;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意分两种情况画出图形是解决此题的关键.15. -2【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵ a﹣2b= 3,∴7﹣ 3a+6b= 7﹣ 3( a﹣ 2b)= 7﹣ 3×3=﹣ 2.故答案为:﹣ 2.【点睛】本题考查的知识点是根据已知条件求代数式的值,此类题目往往先利用整体思想将原式变形,再代入已知条件求值 .16. -8【解析】【分析】将 a=-2, b=3 代入 a※ b=a2+2ab 计算可得结果 .【详解】(-2)※ 3=(-2)2+2×( -2)×3=4-12=-8 ,故答案为: -8【点睛】本题主要考查有理数的混合运算,解题的关键是掌握新定义规定的运算法则,有理数的混合运算顺序与运算法则.17.( 1) -3 ;( 2) 8【解析】【分析】( 1 )先计算乘法,再计算加法,即可得到答案;( 2 )先计算乘方和括号内的运算,然后再计算乘除法即可.【详解】解:(1)13 6 (1)3 3=1 2=3 ;(2)( 2)3 4 [5 ( 3)2]=84(4)=8. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算的运算法则.181 ) x 5 2.( ;( ) x 1【解析】【分析】( 1 )先去括号,然后移项合并,即可得到答案;( 2 )先去分母,然后去括号,移项合并,即可得到答案.【详解】解:( 1 ) 2( x 2)6 ,∴ 2x 4 6 ,∴ 2x10 ,∴ x 5 ;( 2)x1 1 1 x ,2 3∴ 3(x 1) 6 2(1 x) ,∴ 3x 3 6 22x ,∴ 5x5 ,∴ x 1 .【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法进行解题. 19.( 1)2a b ;(2)8xy ,4【解析】【分析】( 1 )先去括号,然后合并同类项,即可得到答案;( 2 )先把代数式进行化简,然后把x、 y 的值代入计算,即可得到答案.【详解】解:( 1 )a(5a 3b) 2(a 2b)= a5a 3b 2a 4b=2a b ;( 2 )2( x22xy)2( x22xy)= 2x24xy 2x24xy=8xy ;当 x 11时,, y2原式 =1(1) 4. 82【点睛】本题考查了整式的化简求值,整式的混合运算,解题的关键是熟练掌握整式混合运算的运算法则进行解题.20.( 1 )见详解;( 2 )见详解;( 3 )见详解 .【解析】【分析】(1 )根据直线和射线的概念作图可得;(2 )根据线段的概念和中点的定义作图可得;(3 )过点 D 作 DE ⊥ AB 于点 E,连接 DE 即可.【详解】解:( 1 )如图所示,直线AB和射线BC即为所求;(2 )如图线段 AC 和点 D 即为所求;(3 )线段 DE 为所求垂线段 .【点睛】本题主要考查作图——复杂作图,解题的关键是掌握直线、射线、线段及点到直线的距离的概念是解题的关键.21.( 1)54°;( 2)120 °【解析】试题分析:( 1)根据平角的定义求解即可;( 2)根据平角的定义可求∠ BOD,根据对顶角的定义可求∠ AOC,根据角的和差关系可求∠ AOE 的度数.试题解析:解:( 1)∵∠ AOC=36°,∠ COE=90°,∴∠ BOE=180°﹣∠ AOC﹣∠ COE=54°;1( 2)∵∠ BOD :∠ BOC=1: 5,∴∠ BOD =180°×15=30 °,∴∠ AOC=30 °,∴∠ AOE=30 °+90 °=120 °.22.海路长240千米,公路长280千米.【解析】【分析】根据题意列方程求解即可.【详解】设:汽车行驶x 小时,则轮船行驶(x-3 )小时,根据题意可列方程,24x=40(x-3)-40,解方程得, x=10,∴公路长40 ( x-3 ) =280千米,海路长为24x=240千米.【点睛】本题考查一元一次方程的应用,解题的关键是根据题意找出等量关系.23.( 1)球(体);(2)见解析【解析】【分析】(1 )根据三视图都是圆,可得几何体为球体;(2 )分别画出从正面、左面、上面看所得到的图形即可.【详解】解:(1 )球体的三视图都是圆,则这个几何体为球体;故答案为:球;(2 )如图所示:【点睛】此题主要考查了作图——三视图,关键是掌握从正面、左面、上面看所得到的图形,注意所看到的棱都要表示到图中.24. (1) m 6, n 3;(2) AQ21154或2【解析】【分析】( 1)解出关于m 的方程的解,即m 的值,再将m 值代入关于x 的方程求 n 值;( 2)分两种情况讨论,即P 点在 B 点的左边和右边,根据线段之间的关系求线段长即可.【详解】解 :11m 15,26 m 1610,Q关于 m 的方程1m15的解也是关于x 的方程2 x 3n 3 的解,26x m 6 ,将 x6,代入方程2x 3n 3 得;2 63n3 ,解得 : n 3 ,故 m6, n3;2由1知:AB6,AP 3 ,PB①点 P 在线段AB上时,如图所示:Q AB AP3,6,PBAP 93 , BP,22Q点Q为PB的中点,PQ BQ 1BP3 24AQ AP9321 PQ442②点 P 在线段AB的延长线上时,如图所示:QAB 6,AP3,PBPB 3,Q点Q为PB的中点,PQ BQ 3,2AQ AB315 BQ 6,2122故 AQ15或. 42【点睛】本题考查了同解方程的概念,一元一次方程的解法以及线段的度量,数形结合思想和分类讨论思想是解答此题的关键.25.( 1)①是;② 10 或20或 40;(2)5 或10或20;(3)8或 60或 15333372【解析】【分析】( 1)①可直接根据“二倍点”的定义进行判断;②可分为三种情况进行讨论,分别求出BC 的长度即可;(2)用含 t 的代数式分别表示出线段 AM 、BM 、AB ,然后根据“二倍点”的意义,分类讨论得结果;(3)用含 t 的代数式分别表示出线段 AN 、 NM 、 AM ,然后根据“二倍点”的意义,分类讨论.【详解】解:(1)①因为线段的中点把该线段分成相等的两部分,该线段等于 2 倍的中点一侧的线段长.∴一条线段的中点是这条线段的“二倍点”故答案为:是 .②∵ AB20 , C 是线段 AB 的“二倍点”,当 AB2BC 时, BC 120 10;2当 AC 2BC 当 BC 2AC 时,时,BC1202033BC2204033;;故答案为: 10 或20或40;33(2)当 AM=2BM 时, 20-2t=2 × 2t,解得: t= 10;3当 AB=2AM 时, 20=2×( 20-2t),解得: t=5 ;当 BM=2AM 时, 2t=2 ×( 20-2t),解得: t= 20;3答: t 为10或 5 或20时,点 M 是线段 AB 的“二倍点”;33(3)当 AN=2MN 时, t=2[t- ( 20-2t) ] ,解得: t=8 ;当 AM=2NM时,20-2t=2[t-(20-2t)],解得:t=15;2当 MN=2AM时,t-(20-2t)=2(20-2t),解得:t=60;7答: t 为15或 8 或60时,点 M 是线段 AN 的“二倍点”.27【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“二倍点”的定义分类讨论,理解“二倍点”是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年初一数学上期末模拟试题(含答案) (2)一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 3.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<04.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个5.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .152°C .28°D .62°6.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是07.整式23x x -的值是4,则2398x x -+的值是( ) A .20B .4C .16D .-48.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy += 9.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5±10.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( ) A .﹣1007B .﹣1008C .﹣1009D .﹣201811.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm ,宽为6cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .16cmB .24cmC .28cmD .32cm 12.一副三角板不能拼出的角的度数是( )(拼接要求:既不重叠又不留空隙)A .75︒B .105︒C .120︒D .125︒二、填空题13.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______.14.已知﹣5a 2m b 和3a 4b 3﹣n 是同类项,则12m ﹣n 的值是_____. 15.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.16.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了:_______.17.某商品的价格标签已丢失,售货员只知道“它的进价为90元,打七折出售后,仍可获利5%,你认为售货员应标在标签上的价格为________元. 18.在时刻10:10时,时钟上的时针与分针间的夹角是 . 19.一个角的补角比它的余角的3倍少20°,这个角的度数是________20.已知2a﹣b=﹣2,则6+(4b﹣8a)的值是_____.三、解答题21.已知:如图,平面上有A、B、C、D、F五个点,根据下列语句画出图形:(Ⅰ)直线BC与射线AD相交于点M;(Ⅱ)连接AB,并反向延长线段AB至点E,使AE=12 BE;(Ⅲ)①在直线BC上求作一点P,使点P到A、F两点的距离之和最小;②作图的依据是.22.张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:购物总金额(原价)折扣不超过5000元的部分九折超过5000元且不超过10000元的部分八折超过10000元且不超过20000元的部分七折…………例如:若购买的商品原价为15000元,实际付款金额为:5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700元.①求该品牌电脑的原价是多少元/台?②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?23.先化简,再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=﹣1,y=1.24.计算题(1)(3)(5)-+-(2)111 12+436⎛⎫⨯-⎪⎝⎭25.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;∠表示,故本选项正确;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,αC、因为顶点B处有3个角,所以这3个角均不能用∠B表示,故本选项错误;D、因为顶点B处有4个角,所以这4个角均不能用∠B表示,故本选项错误.故选:B.【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.C解析:C【解析】【分析】先根据数轴确定a .b ,c 的取值范围,再逐一对各选项判定,即可解答. 【详解】由数轴可得:a<b<0<c , ∴a+b+c<0,故A 错误; |a+b|>c ,故B 错误; |a−c|=|a|+c ,故C 正确; ab >0 ,故D 错误; 故答案选:C. 【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.4.C解析:C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】120亿个用科学记数法可表示为:101.210⨯个. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 5.B解析:B 【解析】 【分析】从图形中可看出∠AOC 和∠DOB 相加,再减去∠DOC 即为所求. 【详解】∵∠AOC =∠DOB =90°,∠DOC =28°,∴∠AOB =∠AOC +∠DOB ﹣∠DOC =90°+90°﹣28°=152°. 故选:B . 【点睛】此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.6.D解析:D 【解析】试题分析:﹣2的相反数是2,A 正确;3的倒数是13,B 正确; (﹣3)﹣(﹣5)=﹣3+5=2,C 正确;﹣11,0,4这三个数中最小的数是﹣11,D 错误, 故选D .考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.7.A解析:A 【解析】 【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案. 【详解】解:因为x 2-3x =4, 所以3x 2-9x =12, 所以3x 2-9x +8=12+8=20. 故选A . 【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.8.C解析:C 【解析】 【分析】根据合并同类项法则逐一进行计算即可得答案. 【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误 故选:C 【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.9.A解析:A 【解析】 【分析】通过ab <0可得a 、b 异号,再由|a |=1,|b |=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a +b 的值解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.10.C解析:C【解析】【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.【点睛】本题考查规律型:数字的变化类,根据前几个数字找出最后数值与顺序数之间的规律是解决本题的关键.11.B解析:B【解析】【分析】根据题意,结合图形列出关系式,去括号合并即可得到结果.设小长方形的长为xcm ,宽为ycm , 根据题意得:7-x=3y ,即7=x+3y , 则图②中两块阴影部分周长和是: 2×7+2(6-3y )+2(6-x ) =14+12-6y+12-2x =14+12+12-2(x+3y ) =38-2×7 =24(cm ). 故选B . 【点睛】此题考查了整式的加减,正确列出代数式是解本题的关键.12.D解析:D 【解析】 【分析】 【详解】解:一副三角板的度数分别为:30°、60°、45°、45°、90°,因此可以拼出75°、105°和120°,不能拼出125°的角. 故选D . 【点睛】本题考查角的计算.二、填空题13.【解析】【分析】按照定义式发现规律首尾两两组合相加剩下中间的最后再求和即可【详解】====故答案为:【点睛】本题考查了定义新运算在有理数的混合运算中的应用读懂定义发现规律是解题的关键解析:120182【解析】 【分析】 按照定义式()1f x x x=+,发现规律,首尾两两组合相加,剩下中间的12,最后再求和即可. 【详解】11111(1)(2)(2019)20192018201732f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋯⋯+++++⋯⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=1111112201720182019 2020201920184323201820192020 +++⋯+++++⋯+++=12019120181201713121 20202020201920192018201844332⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++⋯+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=1 20182+=1 20182故答案为:1 20182【点睛】本题考查了定义新运算在有理数的混合运算中的应用,读懂定义,发现规律,是解题的关键.14.﹣1;【解析】【分析】根据同类项的定义:所含字母相同并且相同字母的指数也相同列出关于mn的方程求出mn的值继而可求解【详解】解:∵﹣5a2mb 和3a4b3﹣n是同类项∴解得:m=2n=2∴m﹣n=1解析:﹣1;【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,列出关于m,n的方程,求出m,n的值,继而可求解.【详解】解:∵﹣5a2m b和3a4b3﹣n是同类项∴24 13mn ⎧⎨-⎩==,解得:m=2、n=2,∴12m﹣n =1-2=-1,故答案为-1.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒据此可得答案【详解】∵图①中火柴数量为5=1+4×1图②中火柴数量为9=1+4×2图③中火柴数量为13=1+4×3……∴摆第n解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.16.两点确定一条直线【解析】【分析】根据直线的公理确定求解【详解】解:答案为:两点确定一条直线【点睛】本题考查直线的确定:两点确定一条直线熟练掌握数学公理是解题的关键解析:两点确定一条直线【解析】【分析】根据直线的公理确定求解.【详解】解:答案为:两点确定一条直线.【点睛】本题考查直线的确定:两点确定一条直线,熟练掌握数学公理是解题的关键.17.元【解析】【分析】依据题意建立方程求解即可【详解】解:设售货员应标在标签上的价格为x元依据题意70x=90×(1+5)可求得:x=135故价格应为135元考点:一元一次方程的应用解析:元【解析】【分析】依据题意建立方程求解即可.【详解】解:设售货员应标在标签上的价格为x元,依据题意70%x=90×(1+5%)可求得:x=135,故价格应为135元.考点:一元一次方程的应用.18.115°【解析】试题分析:因为钟表上的刻度是把一个圆平均分成了12等份每一份是30°借助图形找出时针和分针之间相差的大格数用大格数乘30°即可解:∵10至2的夹角为30°×4=120°时针偏离10的解析:115°.【解析】试题分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.解:∵“10”至“2”的夹角为30°×4=120°,时针偏离“10”的度数为30°×=5°,∴时针与分针的夹角应为120°﹣5°=115°;故答案为115°.考点:钟面角.19.35°【解析】【分析】设这个角为x度根据一个角的补角比它的余角的3倍少20°构建方程即可解决问题【详解】解:设这个角为x度则180°-x=3(90°-x)-20°解得:x=35°答:这个角的度数是3解析:35°【解析】【分析】设这个角为x度.根据一个角的补角比它的余角的3倍少20°,构建方程即可解决问题.【详解】解:设这个角为x度.则180°-x=3(90°-x)-20°,解得:x=35°.答:这个角的度数是35°.故答案为35°.【点睛】本题考查余角、补角的定义,一元一次方程等知识,解题的关键是学会与方程分思想思考问题,属于中考常考题型.20.【解析】【分析】根据去括号和添括号法则把原式变形整体代入计算得到答案【详解】解:6+(4b﹣8a)=﹣8a+4b+6=﹣4(2a﹣b)+6当2a﹣b=﹣2原式=﹣4×(﹣2)+6=14故答案为:14解析:【解析】【分析】根据去括号和添括号法则把原式变形,整体代入计算,得到答案.【详解】解:6+(4b﹣8a)=﹣8a+4b+6=﹣4(2a﹣b)+6,当2a﹣b=﹣2,原式=﹣4×(﹣2)+6=14,故答案为:14.【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则和整体代入是解题的关键.三、解答题21.①见解析;②两点之间线段最短【解析】【分析】分别根据直线、射线、相交直线和线段的延长线进行作图即可.【详解】解:如图所示:作图的依据是:两点之间,线段最短.故答案为两点之间,线段最短.【点睛】本题主要考查直线、射线和线段的画法,掌握作图的基本方法是解题的关键.22.(1)张老师实际付款6900元.(2)①该品牌电脑的原价是6500元/台.②这种品牌电脑的进价为5000元/台.【解析】【分析】(1)用不超过5000元的乘以九折加上超过5000元不到10000元的部分乘以八折,计算即可;(2)①设该品牌电脑的原价为x元/台,由实际付费可知,商品的原价应在5000元-10000元之间,根据题意列出方程解答即可;②设该电器的进价为m元/台,根据“进价 (1+利润率)=售价”列出方程,求解即可.【详解】(1)5000×910+(8000﹣5000)×810=6900(元)答:张老师实际付款6900元.(2)①设该品牌电脑的原价为x元/台.∵实际付费为5700元,超过5000元,少于8500元∴5000<x<10000依题意有:5000×910+(x﹣5000)×810=57004500+0.8x﹣4000=570023.﹣5x2y+5xy,﹣10.【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=﹣1,y=1时,原式=﹣5﹣5=﹣10.【点睛】此题考查有理数的加减混合运算,解题关键在于掌握运算法则.24.(1)-8;(2)5【解析】【分析】(1)根据有理数的加法法则进行计算即可;(2)去括号,再计算加减即可.【详解】(1)(3)(5)8-+-=-;(2)11112+3425 436⎛⎫⨯-=+-=⎪⎝⎭.【点睛】本题考查有理数的运算,解题时需注意,若先去括号比较简单,则应先去括号,再计算加减.25.(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b)元装卸费.【解析】【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b,∴这7天要付(58a+115b)元装卸费.【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.。