2020中考数学压轴题图形的平移、翻折与旋转
2020中考复习第32课时平移与旋转
横相反,纵相反
(-a,-b)
2.常见的中心对称图形:平行四边形、菱形、矩形、正方形、圆.
考点聚焦
题组一
必会题
1. [2019·无锡] 下列图案中,是中心对称图形但不是轴对称图形的是( C )
图32-1
考点聚焦
2. [2019·安徽] 如图32-2,在边长为1个单位长度的小正方形组成的12×12的网
中心对称是指两个全对称中心
中心对称图形是指具有特殊形状的
一个图形
考点聚焦
(续表)
分类
中心对称
中心对称图形
(1)如果把成中心对称的两个图形看成一个整体(一个图形),那么这个整体
联系
是中心对称图形;(2)如果把一个中心对称图形中对称的两部分看成是两
个图形,那么它们成中心对称
B(-2,1),C(-1,3).
(3)将△ABC绕点O按顺时针方向旋转90°得
到△A3B3C3,写出△A3B3C3各顶点的坐标.
解: (3)图略,A3(5,3),B3(1,2),C3(3,1).
图32-17
考点聚焦
2. [2019·淮安] 如图32-18,方格纸上每个小正方形的边长均为1个单位长度,点
A.(-4,1)
B.(-1,2)
C.(4,-1)
D.(1,-2)
图32-6
考点聚焦
考向一 图形的平移
例 1[2011·徐州 9 题] 如图 32-7,将边长为 2的正方形 ABCD 沿对角线 AC 平移,使
点 A 移至线段 AC 的中点 A'处,得新正方形 A'B'C'D',新正方形与原正方形重叠部分
到△A'B'C'的位置,则点B运动的最短路径长为
中考数学高频考点之平移、对称、旋转类型压轴题的破解策略 学案
中考数学高频考点之平移、对称、旋转类型压轴题的破解策略我们先把图形平移、对称和旋转的性质复习一下:1.轴对称的定义:2.轴对称的性质:如图1、图2、图3中,△ABC和△CDE都是等边三角形,那么直线AD和直线BE 的夹角都是60°.这是为什么呢?图形在变,不变的是旋转的性质,△BCE绕着点C顺时针旋转60°可以与△ACD重合,所以旋转角为60°.根据性质2,旋转角等于对应线段所在直线的夹角,可知对应线段AD与BE所在直线的夹角为60°.图1 图2 图3例1. 平面内,如图1,在平行四边形ABCD中,AB=10, AD=15, tan∠A=.点P为AD边上任意一点,连结PB,将PB绕点P逆时针旋转90°得到线段PQ.(1) 当∠DPQ=10°时,求∠APB的大小;(2) 当tan∠ABP∶tan∠A=3∶2时,求点Q与点B间的距离(结果保留根号);(3) 若点Q恰好落在平行四边形ABCD的边所在的直线上,直接写出PB旋转到PQ 所扫过的面积(结果保留π).图1 备用图思路解析:1.第(1)题看似很简单,其实不简单.要分类讨论,备用图已经暗示了.2.第(2)题:在△PAB中,已知两角及夹边,作高设高就可以解决问题了.3.第(3)题就是求扇形的面积,圆心角是90°.4.第(3)题:分三种情况讨论,其中点Q落在直线AD和BC上,示意图可以准确画出来.点Q落在直线DC上,示意图不能准确画出来.例2.折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对着矩形纸片ABCD(AB>BC)(如图1),使AB与DC重合,得到折痕EF,把纸片展平(如图2).第二步,如图3,再一次折叠纸片,使点C落在EF上的点P处,并使折痕经过点B,得到折痕BG,折出PB、 PC,得到△PBC.图1 图2 图3(1) 说明△PBC是等边三角形.【数学思考】(2) 如图4,小明画出了图3的矩形ABCD和△PBC.他发现,在矩形ABCD中把△PBC经过变化,可以得到图5中更大的等边三角形.请描述图形变换过程.图4 图5(3) 已知矩形一边长为3cm,另一边长为acm.对于每一个确定的a值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a的取值范围;【问题解决】(4) 用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需要正方形的边长的最小值为cm.思路解析:1. 如果题目太长,读不懂问题间的关系,不影响做题,可以把每个题目独立起来.2. 第(2)题的变换方式不一,可以先旋转再放大,也可以在CD边上取点C',以BC'为边构造新的等边三角形.3. 第(3)题的分类临界点怎么找?画水平放置的线段BC=3cm,过B、 C分别画BC 的垂线,在BC上方寻找临界位置的A、 D两点.第一个临界图形:画等边三角形MBC,过点M画BC的平行线得到A、 D两点.第二个临界图形:画等边三角形ABM,使得点M落在右侧直线上.4. 第(4)题就是一道无图几何计算题,正方形内有一个内接的直角三角形,直角边长为1和4,求正方形的边长.例3.(2018•新疆)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()【分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【解答】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,真题反馈:1.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D、 E分别在边AB、 AC上,AD=AE,连结DC,点M、 P、 N分别为DE、 DC、 BC的中点.(1) 观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2) 探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连结MN、 BD、 CE,判断△PMN的形状,并说明理由;(3) 拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4, AB=10,请直接写出△PMN面积的最大值.图1 图2思路解析:1. 图形在旋转的过程中,对应线段相等,对应线段所在直线的夹角等于旋转角.2. 已知三个中点,不由得要想到三角形的中位线.3. 要探求△PMN面积的最大值,首先这个三角形的形状是等腰直角三角形,只要探求斜边最大或者直角边最大就可以了.2.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连结B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1) 在图2、图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC 的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;②如图3,当∠BAC=90°, BC=8时,则AD长为.图1 图2图3 图4猜想论证(2) 在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3) 如图4,在四边形ABCD中,∠C=90°,∠D=150°, BC=12,CD=2, DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.3.如图1,已知平行四边形ABCD, AB∥x轴,AB=6,点A的坐标为(1, -4),点D的坐标为(-3, 4),点B在第四象限,点P是平行四边形ABCD边上的一个动点.(1) 若点P在边BC上,PD=CD,求点P的坐标;(2) 若点P在边AB、 AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标;(3) 若点P在边AB、 AD、 CD上,点G是AD与y轴的交点,如图2,过点P作y 轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG 翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).图1 图2思路解析:1. 第(2)题:要进行两次分类.题目不难,容易搞乱,慢慢来.先设点P的坐标,再写对称点Q的坐标,然后把点Q代入直线y=x-1的解析式.重复4次.2. 第(3)题:如果点M'落在y轴上,那么四边形GMPM'是正方形,但是这样的正方形只存在点P在AB上的情况.3. 第(3)题:如果点M'落在x轴上,设点P的横坐标为m,设M'(n, 0),列关于m、n的方程组.4.四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连结CE,以CE为边,作正方形CEFG(点D、 F在直线CE同侧),连结BF.(1) 如图1,当点E与点A重合时,请直接写出BF的长;(2) 如图2,当点E在线段AD上时,且AE=1.①求点F到AD的距离;②求BF的长;(3) 若BF=3,请直接写出此时AE的长.图1 图2思路解析:1.第(2)题:由EC和EF的关系入手,比较容易找到解题思路.将线段EC绕着点E 逆时针旋转90°可以得到EF,如果将直角三角形EDC绕点E逆时针旋转90°,点F到AD的距离就一目了然.2. 第(3)题:容易想到分两种情况,但是点E在AD的延长线上时,线段EC需要顺时针旋转90°得到EF,这样才符合题意中点D、 F在直线CE同侧.5.将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(, 0),点B(0, 1),点O(0, 0).P是边AB上的一点(点P不与点A、 B重合),沿着OP折叠该纸片,得点A的对应点A'.(1) 如图1,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;(2) 如图2,当P是AB的中点时,求A'B的长;(3) 当∠BPA'=30°时,求点P的坐标(直接写出结果即可).图1 图2思路解析:1. 第(3)题主要有两大障碍,一是无图,二是存在两种情况,其中点A'落在直线AB下方的情况容易忽视.2. 第(3)题可以这样画示意图:如图3,画∠MAN=30°,在AM上取一点P,以P为圆心、PA为半径画圆.在PM的两侧画∠MPA'=30°与圆交于点A'.这样就得到了两个点A'.如图4、图5,画∠APA'的平分线,所在直线与x轴的交点就是原点O.然后补全图形.图3 图4 图56.(2018•滨州)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值多少?思路解析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.7.(2018•荆门)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.思路解析:(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.。
2020中考数学压轴题旋转问题带答案
旋转问题(中考高分必备)考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。
旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。
注意旋转过程中三角形与整个图形的特殊位置。
一、直线的旋转1、(2009年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,4=MN,1=MA,1>MB.以A为中心顺时针旋转点M,以B为中心逆时针旋转点,构成△ABC,设xAB=.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?2、(2009年河南)如图,在Rt△ABC中,∠ACB=90°, ∠B =60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°,根据三角形的外角性质,得α=∠EDB-∠A=30,此时,AD=1;②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5.(2)当∠α=90°时,四边形EDBC是菱形.∵∠α=∠ACB=90°,∴BC‖ED,∵CE‖AB,∴四边形EDBC是平行四边形.在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠A=30度,∴AB=4,AC=2 ,∴AO= = .在Rt△AOD中,∠A=30°,∴AD=2,∴BD=2,∴BD=BC.(第1题)又∵四边形EDBC 是平行四边形, ∴四边形EDBC 是菱形.3、(2009年北京市)在ABCD Y 中,过点C 作CE ⊥CD 交AD 于点E ,将线段EC 绕点E 逆时针旋转90o 得到线段EF (如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转90o 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转90o 得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.(2)若AD =6,tanB =43,AE =1,在①的条件下,设CP 1=x ,S 11P FC V =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围. 提示:(1)运用三角形全等,(2)按CP=CE=4将x 取值分为两段分类讨论;发现并利用好EC 、EF 相等且垂直。
2020初中数学中考一轮复习能力达标训练题:平移、旋转、对称2(附答案)
2020初中数学中考一轮复习能力达标训练题:平移、旋转、对称2(附答案)1.点A (-3,2)关于x 轴的对称点A ′的坐标为( )A .(-3,-2)B .(3,2)C .(3,-2)D .(2,-3)2.如图,在Rt △ABC 中,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF 的长为( )A .3B .4C .5D .3.在探究“尺规三等分角”这个数学名题中,利用了如图,该图中,四边形ABCD 是矩形,线段AC 绕点A 逆时针旋转得到线段AF ,CF 、BA 的延长线交于点E ,若∠E =∠F AE ,∠ACB =21°,则∠ECD 的度数是( )A .7°B .21°C .23°D .34°4.通过平移得到的新图形中的每一点与原图形中的对应点的连线( )A .平行B .相等C .共线D .平行(或共线)且相等5.平移前后两个图形是图形,对应点连线( )A .平行但不相等B .不平行也不相等C .平行且相等D .不相等6.如图,在菱形纸片ABCD 中,AB=2,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则EF 的长为A .74B .95C .1910 D是( )A .将原图形向x 轴的正方向平移了1个单位;B .将原图形向x 轴的负方向平移了1个单位C .将原图形向y 轴的正方向平移了1个单位D .将原图形向y 轴的负方向平移了1个单位8.如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为 ( )A .30°或50°B .30°或60°C .40°或50°D .40°或60° 9.下列各图中,是中心对称图案的是( )A .B .C .D .10.将一个等边三角形绕着它的中心旋转一个角度后与原来的图形完全重合,那么这个角度至少应为( )度.A .60B .90C .120D .15011.如图所示,把△ABC 沿直线DE 翻折后得到△'A DE ,如果∠A =45°,∠'A EC =25°,那么∠'A DB 的度数为_______.12.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (3,﹣2),点B (5,﹣8)平移到点D ,则点D 的坐标是_____.13.已知一个点的坐标是()3,2-,则这个点关于坐标原点对称的点的坐标是________. 14.如图,将一张等腰直角三角形沿中位线剪成一个三角形与一个梯形后,则这两个图形可能拼成的平面四边形是_____.(不许重合、折叠)A向左平移一个单位得到点A',则点A'的坐标为15.在平面直角坐标系中,把点(2,3)__________.16.(2017四川省广元市)在平面直角坐标系中,将P(﹣3,2)向右平移2个单位,再向下平移2个单位得点P′,则P′的坐标为______.17.如图的组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆进行图形的“运动”变换而组成的,这个半圆的变换方式是________.18.如图,在△ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且∠MAN=60°.若BM=2,CN=4,则MN的长为_____.19.在26个大写英文字母中,有许多字母是轴对称图形,请你把其中是轴对称图形的字母写出来________________(不少于5个).20.如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.21.如图,△ABC,∠C=90°,将△ABC绕点B逆时针旋转90°,点A、C旋转后的对应点为A′、C′.(1)画出旋转后的△A′BC′;(2)若AC=3,BC=4,求C′C的长;(3)求出在△ABC旋转的过程中,点A经过的路径长.(结果保留π)22.如图,E与F分别在正方形ABCD边BC与CD上,∠EAF=45°.(1)以A为旋转中心,将△ABE按顺时针方向旋转90°,画出旋转后得到的图形. (2)已知BE=2cm,DF=3cm,求EF的长.23.如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,已知△ABC,(1)△ABC与△A1B1C1关于原点O对称,写出△A1B1C1各顶点的坐标,画出△A1B1C1;(2)以O为旋转中心将△ABC顺时针旋转90°得△A2B2C2,画出△A2B2C2并写出△A2B2C2各顶点的坐标.24.玩过“俄罗斯方块”游戏吗?(出现的图案可进行顺时针、逆时针旋转;向左、向右平移).已拼好的图案如图所示.(1)若落下①—④中的一枚方块能将原图形拼成轴对称图形,请在图中画出可能摆放位置(一种即可).(2)若先后落下①—④中的两枚方块(不重复出现)能将原图形拼成矩形,求形成矩形的概率(要求树状图或者列表).25.综合与实践问题情境在综合实践课上,老师让同学们“以三角形的旋转”为主题进行数学活动,如图(1),在三角形纸片ABC中,AB=AC,∠B=∠C=α.操作发现(1)创新小组将图(1)中的△ABC以点B为旋转中心,逆时针旋转角度α,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转角度α,得到△AFG,连接DF,得到图(2),则四边形AFDE的形状是.(2)实践小组将图(1)中的△ABC以点B为旋转中心,逆时针逆转90°,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转90°,得到△AFG,连接DF、DG、AE,得到图(3),发现四边形AFDB为正方形,请你证明这个结论.拓展探索(3)请你在实践小组操作的基础上,再写出图(3)中的一个特殊四边形,并证明你的结论.26.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A,B两点的坐标;(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1.27.现有如图1所示的两种瓷砖.请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,使拼铺的图案成轴对称图形或中心对称图形(如示例图2).(要求:分别在图3、图4中各设计一种与示例图不同的拼法,这两种拼法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形),它28.如图,在方格纸中,每个小正方形的边长均为1个单位长度,有一个ABC的三个顶点均与小正方形的顶点重合.(1)将△ABC向左平移4个单位长度,得到△DEF(A与D,B与E,C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和AF,请计算△AEF的面积S.参考答案1.A【解析】【分析】根据关于x轴对称点的性质“横坐标不变,纵坐标互为相反数”,即可得出答案.【详解】解:∵点A(﹣3,2)关于x轴的对称点为A′,∴A′点的坐标为:(﹣3,﹣2).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.2.C【解析】试题解析:如图所示:过点F作FG⊥AC.∵由旋转的性质可知:CE=BC=4,CD=AC=6,∠ECD=∠BCA=90°.∴AE=AC-CE=2.∵FG⊥AC,CD⊥AC,∴FG∥CD.又∵F是ED的中点,∴G是CE的中点,∴EG=2,FG=12CD=3.∴AG=AE+EG=4.∴.故选C.3.C【解析】【分析】由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.【详解】解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°;故选C.【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形,三角形的角的相关知识是解决问题的关键.4.D【解析】试题解析:平移,是指在平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移.平移不改变图形的形状和大小. 平移后的图形与原图形上对应点连接的线段平行(或在同一条直线上)且相等.故选D.5.C【解析】试题解析:平移前后两个图形是全等图形,对应点连线平行且相等.故选C.6.A【解析】分析: 连接BE ,BD ,如图,利用菱形的性质得△BDC 为等边三角形,在Rt △BCE 中计算出BE 接着证明BE ⊥AB , 利用折叠的性质得到EF =AF .,设EF =AF =x , FG 垂直平分AE ,所以在Rt △BEF 中利用勾股定理列方程求解即可.详解: 连接BE ,BD ,如图,∵四边形ABCD 为菱形,∠A =60°,∴△BDC 为等边三角形, ∠C =∠A =60°,∴∠CBE =90°-60°=30°.∵E 点为CD 的中点,∴CE =DE =1,BE ⊥CD .在Rt △BCE 中,BC =2CE =2,BE =.∵AB ∥CD ,∴BE ⊥AB .∵菱形纸片翻折,使点A 落在CD 的中点E 处,∴EF =AF .设EF =AF =x ,则BF =2-x ,在Rt △BEF 中, ()2222x x -+=, 解得7x x=. 故选A.点睛:本题考查了菱形的性质,等边三角形的判定与性质,含30°的直角三角形的性质,折叠的性质,勾股定理,求出BE 的长并能利用Rt △BEF 的三条边列方程是解答本题的关键. 7.B【解析】∵将△ABC的三个顶点的横坐标都加上−1,纵坐标不变,∴所得图形与原图形的位置关系是△ABC向x轴的负方向平移1个单位。
图形的旋转、翻折与平移-三年中考数学真题分项汇编(解析版)
图形的旋转、翻折与平移一、单选题1.(2022·浙江湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A.2cm B.3cm C.4cm D.5cm【答案】C【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵∵ABC沿BC方向平移1cm得到△A′B′C′,∵BB′=CC′=1cm,∵B′C=2cm,∵BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.2.(2022·浙江嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心'''',形成一个“方吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A B C D胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.2-1)cm D.21)cm【答案】D【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=22cm,由平移性质得BB'=1cm,∵点D,B′之间的距离为DB'=BD BB-′=(221-)cm,【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.3.(2021·浙江丽水)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是(−1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位【答案】C【分析】直接利用利用关于y轴对称点的性质得出答案.【详解】解:∵点A (−1,b) 关于y轴对称点为B (1,b),C (2,b)关于y轴对称点为(-2,b),需要将点D (3.5,b) 向左平移3.5+2=5.5个单位,故选:C.【点睛】本题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.(2021·浙江绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形【分析】根据平移和大菱形的位置得出菱形的个数进行判定即可【详解】如图所示,用2个相同的菱形放置,最多能得到3个菱形;用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到29个菱形,用6个相同的菱形放置,最多能得到47个菱形.故选:B.【点睛】本题考查了生活中的平移现象,菱形的判定,正确的识别图形是解题的关键.5.(2020·浙江台州)如图,把∵ABC 先向右平移3个单位,再向上平移2个单位得到∵DEF ,则顶点C (0,-1)对应点的坐标为( )A .(0,0)B .(1,2)C .(1,3)D .(3,1) 【答案】D 【分析】先找到顶点C 的对应点为F ,再根据直角坐标系的特点即可得到坐标.【详解】∵顶点C 的对应点为F ,由图可得F 的坐标为(3,1),故选D .【点睛】此题主要考查坐标与图形,解题的关键是熟知直角坐标系的特点.6.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -【答案】B 【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∵飞机D 的坐标为(-40,a ),【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.7.(2020·浙江台州)把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A .732+B .742+C .832+D .842+【答案】D 【分析】如图,过点M 作MH∵A'R 于H ,过点N 作NJ∵A'W 于J .想办法求出AR ,RM ,MN ,NW ,WD 即可解决问题.【详解】解:如图,过点M 作MH∵A'R 于H ,过点N 作NJ∵A'W 于J .由题意∵EMN 是等腰直角三角形,EM=EN=2,MN=22∵四边形EMHK 是矩形,∵EK= A'K=MH=1,KH=EM=2,∵∵RMH 是等腰直角三角形,∵RH=MH=1,RM=2,同法可证NW=2,题意AR=R A'= A'W=WD=4,∵AD=AR+RM+MN+NW+DW=4+2+22+2+4=842+.故答案为:D.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.8.(2022·浙江衢州)下列图形是中心对称图形的是( )A .B .C .D .【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.【详解】解:A、不是中心对称图形,此项不符合题意;B、是中心对称图形,此项符合题意;C、不是中心对称图形,此项不符合题意;D、不是中心对称图形,此项不符合题意;故选:B.【点睛】本题考查了中心对称图形,熟记中心对称图形的定义是解题关键.9.(2020·浙江绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【答案】B【分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况.【详解】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.【点睛】考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的性质,根据EF与AC的位置关系即可求解.二、填空题10.(2022·浙江台州)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′∵BC,则阴影部分的面积为______2cm.【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∵B ′C ′,∵四边形B ′C ′CB 为平行四边形,∵BB ′∵BC ,∵四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:∵平移不改变图形的形状和大小;∵经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.(2022·浙江金华)如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】823+【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∵AB =2BC =4,∵AC =2216423AB BC -=-=,∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∵1CC '=,=4+1=5AB ', =2B C BC ''=,∵四边形的周长为:23152823+++=+,故答案为:823+.【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键. 12.(2022·浙江嘉兴)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为_______;折痕CD 的长为_______.【答案】 60°##60度 46【分析】根据对称性作O 关于CD 的对称点M ,则点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O 关于CD 的对称点M ,则ON =MN连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将CD 沿弦CD 折叠∵点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .∵ME ∵OA ,MF ∵OB∵90MEO MFO ∠=∠=︒∵120AOB ∠=︒∵四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF =∵MEO MFO ≅(HL )∵1302EMO FMO FME ∠=∠=∠=︒ ∵643cos cos30ME OM EMO ===∠︒∵23MN =∵MO ∵DC∵222216(23)262DN DM MN CD =-=-== ∵46CD =故答案为:60°;46【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.13.(2020·浙江金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A与点B 重合),点O 是夹子转轴位置,O E ∵AC 于点E ,OF ∵BD 于点F ,OE=OF=1cm ,AC =BD =6cm , CE =DF , CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大值时,以点A ,B ,C ,D 为顶点的四边形的周长是_____ cm .(2)当夹子的开口最大(点C 与点D 重合)时,A ,B 两点的距离为_____cm .【答案】1660 13【分析】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,可得AB=CD=EF=2cm,根据矩形的性质求出周长即可.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,可得CH AB⊥,AH=BH,利用已知先求出125CE cm=,在Rt△OEF中利用勾股定理求出CO的长,由sinOE AHECOCO AAC∠==,求出AH,从而求出AB=2AH的长.【详解】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,∵AB=CD=EF=2cm,∵以点A,B,C,D为顶点的四边形的周长为2+6+2+6=16cm.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,∵CH AB⊥,AH=BH,∵AC=BD=6cm,CE∵AE=2∵3,∵125CE cm=,在Rt△OEF中,2213 5CO OE CE=+=,∵sinOE AHECOCO AAC∠==,3013AH=,∴AB=2AH=60 13.故答案为16,60 13.【点睛】本题主要考查了勾股定理与旋转的结合,做题时准确理解题意利用已知的直角三角形进行求解是解题的关键.三、解答题14.(2022·浙江温州)如图,在26⨯的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180︒后的图形.【答案】(1)见解析(2)见解析【分析】(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;(2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可.(1)画法不唯一,如图1或图2等.(2)画法不唯一,如图3或图4等.【点睛】本题考查作图—旋转变换、作图—平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形.15.(2022·浙江丽水)如图,在66的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与ABC相似的三角形,相似比不等于1.【答案】(1)画图见解析(2)画图见解析(3)画图见解析【分析】(1)分别确定A,B平移后的对应点C,D,从而可得答案;(2)确定线段AB,AC关于直线BC对称的线段即可;(3)分别计算ABC的三边长度,再利用相似三角形的对应边成比例确定DEF的三边长度,再画出DEF 即可.(1)解:如图,线段CD即为所求作的线段,(2)如图,四边形ABDC是所求作的轴对称图形,(3)如图,如图,DEF 即为所求作的三角形,由勾股定理可得:221310,2,AB AC而2,BC = 同理:2226210,22,DFDE 而4,EF1,2AB AC BC DF DE EF.ABC DFE ∽【点睛】本题考查的是平移的作图,轴对称的作图,相似三角形的作图,掌握平移轴对称的性质,相似三角形的判定方法是解本题的关键.16.(2021·浙江温州)如图44⨯与66⨯的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P 为它的一个顶点,并画出将它向右平移3个单位后所得的图形. (253中. 【答案】(1)见解析;(2)见解析【分析】(1)七巧板中有两个四边形,分别是正方形和平行四边形,根据题意可画出4种图形任意选一种即可,(2)七巧板中有五个等腰直角三角形,有直角边长2的两个,直角边长22的两个,直角边长2 的一个,根据题意利用数形结合的思想解决问题即可.【详解】解:(1)画法不唯一,当选四边形为正方形时可以是如图1或图2;当四边形式平行四边形时可以是图3或图4.(2)画法不唯一,当直角边长为2时,扩大5即直角边长为10利用勾股定理画出直角边长为10直角三角形可以是如图5或图6当直角边长为22时,扩大5即直角边长为210利用勾股定理画出直角边长为210直角三角形可以是如图7或图8等.【点睛】本题考查基本作图,平移,二次根式的乘法,以及勾股定理的应用,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.17.(2022·浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【答案】(1)见解析(2)见解析【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;(1)答案不唯一.(2)【点睛】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形.18.(2020·浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析;(2)见解析【分析】(1)根据轴对称图形的定义画出图形构成一个大的等边三角形即可(答案不唯一).(2)根据中心对称图形的定义画出图形构成一个平行四边形即可(答案不唯一).【详解】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【点睛】本题考查利用中心对称设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.19.(2020·浙江金华)如图,在∵ABC 中,AB =42∵B =45°,∵C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将∵AEF 折叠得到∵PEF . ∵如图2,当点P 落在BC 上时,求∵AEP 的度数. ∵如图3,连结AP ,当PF ∵AC 时,求AP 的长.【答案】(1)4;(2)∵90°;∵26【分析】(1)如图1中,过点A 作AD∵BC 于D .解直角三角形求出AD 即可. (2)∵证明BE=EP ,可得∵EPB=∵B=45°解决问题. ∵如图3中,由(1)可知:AC=83sin 603AD =︒,证明∵AEF∵∵ACB ,推出AF AE AB AC =,由此求出AF 即可解决问题.【详解】解:(1)如图1,过点A 作AD ∵BC 于点D , 在Rt∵ABD 中,sin 45AD AB =⋅︒=2422⨯=4.(2)∵如图2,∵∵AEF ∵∵PEF , ∵AE =EP . 又∵AE =BE , ∵BE =EP , ∵∵EPB =∵B =45°, ∵∵AEP =90°.∵如图3,由(1)可知:在Rt∵ADC 中,83sin 603AD AC ==︒. ∵PF ∵AC , ∵∵PF A =90°. ∵∵AEF ∵∵PEF ,∵∵AFE =∵PFE =45°,则∵AFE =∵B . 又∵∵EAF =∵CAB , ∵∵EAF ∵∵CAB ,∵AF AB=AE AC ,即42AF =22833, ∵AF =23,在Rt∵AFP 中,AF =PF ,则AP =2AF =26.【点睛】本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.20.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.【答案】[探究1]152BC +=;[探究2]'D M DM =,证明见解析;[探究3]2MN PN DN =⋅,证明见解析 【分析】[探究1] 设BC x =,根据旋转和矩形的性质得出''//D C DA ,从而得出''D C B ADB ∆∆∽,得出比例式'''D C D BAD AB=,列出方程解方程即可; [探究2] 先利用SAS 得出''AC D DBA ∆∆≌,得出'DAC ADB ∠=∠,'ADB AD M ∠=∠,再结合已知条件得出''MDD MD D ∠=∠,即可得出'D M DM =;[探究3] 连结AM ,先利用SSS 得出ADM ADM ∆∆≌,从而证得MN AN =,再利用两角对应相等得出NPA NAD ∆∆∽,得出PN ANAN DN=即可得出结论. 【详解】[探究1]如图1,设BC x =.∵矩形ABCD 绕点A 顺时针旋转90︒得到矩形'''AB C D , ∵点A ,B ,'D 在同一直线上.∵'AD AD BC x ===,'1DC AB AB ===, ∵''1D B AD AB x =-=-. ∵'90BAD D ∠=∠=︒, ∵//D C DA ''.又∵点'C 在DB 延长线上, ∵''D C B ADB ∆∆∽, ∵'''D C D BAD AB =,∵111x x -=. 解得1152x +=,2152x -=(不合题意,舍去)∵152BC +=. [探究2] 'D M DM =. 证明:如图2,连结'DD .∵'//'D M AC , ∵'''AD M D AC ∠=∠.∵'AD AD =,''90AD C DAB ∠=∠=︒,''D C AB =,∵()''AC D DBA SAS ∆∆≌.∵'D AC ADB '∠=∠,'ADB AD M ∠=∠,∵AD AD =,''ADD AD D ∠=∠,∵''MDD MD D ∠=∠,∵'D M DM =.[探究3]关系式为2MN PN DN =⋅.证明:如图3,连结AM .∵'D M DM =,'AD AD =,AM AM =,∵()ADM AD M SSS '∆∆≌.∵'MAD MAD ∠=∠,∵AMN MAD NDA ∠=∠+∠,'NAM MAD NAP ∠=∠+∠,∵AMN NAM ∠=∠,∵MN AN =.在NAP ∆与NDA ∆中,ANP DNA ∠=∠,NAP NDA ∠=∠,∵NPA NAD ∆∆∽,∵PN AN AN DN=, ∵2AN PN DN =⋅.∵2MN PN DN =⋅.【点睛】本题考查了矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,解一元二次方程等,解题的关键是灵活运用这些知识解决问题.21.(2020·浙江绍兴)如图1,矩形DEFG中,DG=2,DE=3,Rt∵ABC中,∵ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG∵BC,OG=2,OC=4.将∵ABC绕点O逆时针旋转α(0°≤α<180°)得到∵A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.∵当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.∵当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.【答案】(1)点C′到直线OF的距离为23;(2)∵点C′到直线DE的距离为22±2;∵2≤d<4417或d=3.【分析】(1)过点C′作C′H∵OF于H.根据直角三角形的边角关系,解直角三角形求出CH即可.(2)∵分两种情形:当C′P∵OF时,过点C′作C′M∵OF于M;当C′P∵DG时,过点C′作C′N∵FG于N.通过解直角三角形,分别求出C′M,C′N即可.∵设d为所求的距离.第一种情形:当点A′落在DE上时,连接OA′,延长ED交OC于M.当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.结合图象可得结论.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25﹣2,即d=25﹣2;当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.求出QG可得结论.第三种情形:当A′P经过点F时,此时显然d=3.综上所述即可得结论.【详解】解:(1)如图,过点C′作C′H∵OF于H.∵∵A′B′C′是由∵ABC绕点O逆时针旋转得到,∵C′O=CO=4,在Rt∵HC′中,∵∵HC′O=α=30°,∵C′H=C′O•cos30°=23,∵点C′到直线OF的距离为23.(2)∵如图,当C′P∵OF时,过点C′作C′M∵OF于M.∵∵A′B′C′为等腰直角三角形,P为A′B′的中点,∵∵A′C′P=45°,∵∵A′C′O=90°,∵∵OC′P=135°.∵C′P∵OF,∵∵O=180°﹣∵OC′P=45°,∵∵OC′M是等腰直角三角形,∵C′M =C′O•cos45°=4×22=22, ∵点C′到直线DE 的距离为222-.如图,当C′P∵DG 时,过点C′作C′N∵FG 于N .同法可证∵OC′N 是等腰直角三角形,∵C′N =22,∵GD=2,∵点C′到直线DE 的距离为222+.∵设d 为所求的距离.第一种情形:如图,当点A′落在DE 上时,连接OA′,延长ED 交OC 于M .∵OC=4,AC=2,∵ACO=90°,2216425OA CO AC =+∴+==∵OM =2,∵OMA′=90°,∵A′M =22A O OM '-=()22252-=4,∵DM=2,∵A′D=A′M-DM=4-2=2,即d=2,如图,当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.∵P为A′B′的中点,∵A′C′B′=90°,∵PQ∵A′C′,∵'12 B P C Q PQB A BC A C'''''''===∵B′C′=2∵PQ=1,C'Q=1,∵Q点为B′C′的中点,也是旋转前BC的中点,∵OQ=OC'+C'Q=5∵OP=2251+=26,∵PM=2226422OP OM-=-=,∵PD=222PM DM-=-,∵d=22﹣2,∵2≤d≤22﹣2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25﹣2,即d=25﹣2,如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.由上可知OP=26,OF=5,∵FP=22OP OF-=2625-=1,∵OF=OT,PF=PT,∵F=∵PTO=90°,∵Rt∵OPF∵Rt∵OPT(HL),∵∵FOP=∵TOP,∵PR∵OQ,∵∵OPR=∵POF,∵∵OPR=∵POR,∵OR=PR,∵PT2+TR2=PR2,22215PR PR∴+(﹣)=∵PR=2.6,RT=2.4,∵∵B′PR∵∵B′QO,∵B ROB''=PRQO,∵3.46=2.6OQ,∵OQ=78 17,∵QG=OQ﹣OG=4417,即d=4417∵25﹣2≤d<44 17,第三种情形:当A′P经过点F时,如图,此时FG=3,即d=3.综上所述,2≤d<4417或d=3.【点睛】(1)本题考查了通过解直角三角形求线段长,解决本题的关键是构建直角三角形,熟练掌握直角三角形中边角关系.(2)∵本题综合性较强,考查了平行线的性质,解直角三角形,解决本题的关键是正确理解题意,能够根据题目条件进行分类讨论,然后通过解直角三角形求出相应的线段长即可.∵本题综合性较强,考查了辅助线的作法,平行线的性质以及解直角三角形,解决本题的关键是正确理解题意,能够根据情况对题目进行分类讨论,通过不同情形,能够作出辅助线,在解决本题的过程中要求熟练掌握直角三角形中的边角关系. 22.(2020·浙江嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∵ACB=∵DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE (如图4).【探究】当EF平分∵AEO时,探究OF与BD的数量关系,并说明理由.【答案】【思考】是,理由见解析;【发现】94;【探究】BD =2OF ,理由见解析; 【分析】【思考】由全等三角形的性质得出AB =DE ,∵BAC =∵EDF ,则AB ∵DE ,可得出结论;【发现】连接BE 交AD 于点O ,设AF =x (cm ),则OA =OE =12(x +4),得出OF =OA ﹣AF =2﹣12x ,由勾股定理可得()2221123424x x ⎛⎫-+=+ ⎪⎝⎭,解方程求出x ,则AF 可求出; 【探究】如图2,延长OF 交AE 于点H ,证明∵EFO ∵∵EFH (ASA ),得出EO =EH ,FO =FH ,则∵EHO =∵EOH =∵OBD =∵ODB ,可证得∵EOH ∵∵OBD (AAS ),得出BD =OH ,则结论得证.【详解】解:【思考】四边形ABDE 是平行四边形.证明:如图,∵∵ABC ∵∵DEF ,∵AB =DE ,∵BAC =∵EDF ,∵AB ∵DE ,∵四边形ABDE 是平行四边形;【发现】如图1,连接BE 交AD 于点O ,∵四边形ABDE 为矩形,∵OA =OD =OB =OE ,设AF =x (cm ),则OA =OE =12(x +4),∵OF =OA ﹣AF =2﹣12x ,在Rt∵OFE 中,∵OF 2+EF 2=OE 2,∵()2221123424x x ⎛⎫-+=+ ⎪⎝⎭, 解得:x =94, ∵AF =94cm . 【探究】BD =2OF ,证明:如图2,延长OF 交AE 于点H ,∵四边形ABDE 为矩形,∵∵OAB =∵OBA =∵ODE =∵OED ,OA =OB =OE =OD ,∵∵OBD =∵ODB ,∵OAE =∵OEA ,∵∵ABD +∵BDE +∵DEA +∵EAB =360°,∵∵ABD +∵BAE =180°,∵AE ∵BD ,∵∵OHE =∵ODB ,∵EF 平分∵OEH ,∵∵OEF =∵HEF ,∵∵EFO =∵EFH =90°,EF =EF ,∵∵EFO ∵∵EFH (ASA ),∵EO =EH ,FO =FH ,∵∵EHO =∵EOH =∵OBD =∵ODB ,∵∵EOH ∵∵OBD (AAS ),∵BD =OH =2OF .【点睛】本题考查了图形的综合变换,涉及了三角形全等的判定与性质、平行四边形的判定与性质等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.。
2020年中考数学压轴题专题9 动态几何定值问题学案(原版+解析)
专题九动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。
在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F .①写出旋转角α的度数;②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB =2,求线段PA +PF 的最小值.(结果保留根号)【举一反三】如图(1),已知∠=90MON o ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PACABOP S S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,AB y BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。
上海中考初三数学压轴题方法整理汇总(18题24题25题压轴题解题方法)
第18题:图形的运动1平移:平移的方向和距离2旋转:三不变找旋转(图形的形状大小旋转角不变)3翻折:两点一线找勾股(对称点,垂直平分线上海中考初三数学压轴题方法整理汇总)第23题几何证明(书写规范)证明边角相等:全等,相似,等腰证明平行线:角,比例线段,中位线,平行四边形证明等积式:三点定形找相似(等线段代换,等比代换,等积代换)(添平行线构造A 形,八形)证明四边形:常用辅助线:联结对角线第24题代数型综合题求坐标的方法1一作二设法②两点公式法③代入解析法④平移法二次函数与相似三角形1先找死角:由边出发,死角的两边对应成比例求边长;2先找死角:由角出发,利用三角比求边长二次函数与直角三角形1一线三等角②勾股定理二次函数与等腰三角形:两点间距离公式二次函数与角相等:1找相似三角形②找三角比二次函数与45度角1先找45度角转化为角相等,然后找相似或三角比2加高,转换为等腰直角三角形二次函数与四边形1由四边形的性质求边或角(等腰梯形加双高,两腰相等,加顶)2由边或角转化为相似或三角比第25题几何型综合题读题圈划五寻找(边,角,辅助线,基本图形,解题工具)解题工具:三角比,相似,勾股,面积法基本图形:一线三等角,母子三角形,角平分线+平行=等腰三角形,A形八形,特殊三角形……常用辅助线:中位线,三线合一,斜中,平行线,四边形对角线,,圆的半径与弦心距……等腰三角形:①相似转化;②分论讨论;③三线合一三角比:转角;加高(面积法);设K面积:①直接求;②相似;③等底等高求定义域:①极端位置;②解析式本身;③三边关系。
2020九年级数学总复习课题图形的平移与旋转中考真题归类同步练习试题解析课后作业
九年级数学总复习中考真题归类解析课题图形的平移与旋转试题解析一.试题(共15小题)1.(2019春•迁安市期末)如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A.5B.6C.10D.4 2.(2019•吉林)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°3.(2019•荆门)如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是()A.(,﹣1)B.(1,﹣)C.(2,0)D.(,0)4.(2019•毕节市)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方B.右方C.下方D.左方5.(2019•枣庄)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4B.2C.6D.2 6.(2019•天津)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 7.(2017•宜宾)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD的度数是.8.(2019春•九龙坡区期中)某酒店准备进行装修,把楼梯铺上地毯.已知楼梯的宽度是2米,楼梯的总长度为8米,总高度为6米,其侧面如图所示.已知这种地毯每平方米的售价是50元.请你帮老板算下,购买地毯至少需要花费元.9.(2019•包头)如图,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕A点逆时针旋转70°得到△ADE,连接EC,则tan∠DEC的值是.10.(2016•临沂一模)如图,在平面直角坐标系中,已知点A(2,0),B(0,3),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是()A.(﹣3,2)B.(﹣3,1)C.(2,1)D.(﹣2,1)11.(2019•梧州)如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是.12.(2019•宁夏)已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.13.(2019•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(﹣4,3);(3)在(2)的条件下,直接写出点A1的坐标.14.(2019•荆州)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=;(用含α的式子表示)(2)在图②中猜想AF与DE的数量关系,并证明你的结论.15.(2019•东营)如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.通城一典60-61页同学的平移与旋转试题解析参考答案与试题解析一.试题(共15小题)1.(2019春•迁安市期末)如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A.5B.6C.10D.4【解答】解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE,∴S△ABC=S△BCD=S△ACD=×10=5,∵DE∥BC,∴S△BCE=S△BCD=5.故选:A.2.(2019•吉林)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选:C.3.(2019•荆门)如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是()A.(,﹣1)B.(1,﹣)C.(2,0)D.(,0)【解答】解:如图,在Rt△OCB中,∵∠BOC=30°,∴BC=OC=×=1,∵Rt△OCB绕原点顺时针旋转120°后得到△OC′B',∴OC′=OC=,B′C′=BC=1,∠B′C′O=∠BCO=90°,∴点B′的坐标为(,﹣1).故选:A.4.(2019•毕节市)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方B.右方C.下方D.左方【解答】解:如图所示:每次旋转4个图形为一个周期,2019÷4=504…3,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.故选:C.5.(2019•枣庄)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4B.2C.6D.2【解答】解:∵△ADE绕点A顺时针旋转90°到△ABF的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴AD=DC=2,∵DE=2,∴Rt△ADE中,AE==2故选:D.6.(2019•天津)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 【解答】解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故A错误,C错误;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故D正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故B错误故选:D.7.(2017•宜宾)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD的度数是60°.【解答】解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=15°,∴∠AOD=45°+15°=60°,故答案为:60°.8.(2019春•九龙坡区期中)某酒店准备进行装修,把楼梯铺上地毯.已知楼梯的宽度是2米,楼梯的总长度为8米,总高度为6米,其侧面如图所示.已知这种地毯每平方米的售价是50元.请你帮老板算下,购买地毯至少需要花费1400元.【解答】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为8米,6米,即可得地毯的长度为6+8=14(米),地毯的面积为14×2=28(平方米),故买地毯至少需要28×50=1400(元).购买地毯至少需要1400元.故答案为:1400.9.(2019•包头)如图,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕A点逆时针旋转70°得到△ADE,连接EC,则tan∠DEC的值是1.【解答】解:由旋转的性质可知:AE=AC,∠CAE=70°,∴∠ACE=∠AEC=55°,又∵∠AED=∠ACB,∠CAB=55°,∠ABC=25°,∴∠ACB=∠AED=100°,∴∠DEC=100°﹣55°=45°,∴tan∠DEC=tan45°=1,故答案为:110.(2016•临沂一模)如图,在平面直角坐标系中,已知点A(2,0),B(0,3),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是()A.(﹣3,2)B.(﹣3,1)C.(2,1)D.(﹣2,1)【解答】解:作CD⊥y轴于点D,如图,∵A(2,0),B(0,3),∴OA=2,OB=3,∵线段AB绕点B顺时针旋转90°至CB,∴∠ABC=90°,BC=BA,∵∠ABO+∠A=90°,∠ABO+∠CBD=90°,∴∠CBD=∠A,在△ABO和△BCD中,∴△ABO≌△BCD,∴BD=OA=2,CD=OB=3,∴OD=OB﹣BD=3﹣2=1,∴C点坐标为(﹣3,1).故选:B.11.(2019•梧州)如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是﹣1.【解答】解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=∠BAD=30°,OA=OC,AC⊥BD,∴OB=AB=1,∴OA=OB=,∴AC=2,由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,∴CE=AC﹣AE=2﹣2,∵四边形AEFG是菱形,∴EF∥AG,∴∠CEP=∠EAG=60°,∴∠CEP+∠ACD=90°,∴∠CPE=90°,∴PE=CE=﹣1,PC=PE=3﹣,∴DP=CD﹣PC=2﹣(3﹣)=﹣1;故答案为:﹣1.12.(2019•宁夏)已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.【解答】解:(1)如图所示,△A1B1C1即为所求,其中点C1的坐标为(﹣2,﹣1).(2)如图所示,△A2B2C1即为所求.13.(2019•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(﹣4,3);(3)在(2)的条件下,直接写出点A1的坐标.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,(3)点A1的坐标为(2,6).14.(2019•荆州)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=90°﹣α;(用含α的式子表示)(2)在图②中猜想AF与DE的数量关系,并证明你的结论.【解答】解:(1)如图①,∵△OEF绕点O逆时针旋转α角,∴∠DOF=∠COE=α,∵四边形ABCD为正方形,∴∠AOD=90°,∴∠AOF=90°﹣α;故答案为90°﹣α;(2)AF=DE.理由如下:如图②,∵四边形ABCD为正方形,∴∠AOD=∠COD=90°,OA=OD,∵∠DOF=∠COE=α,∴∠AOF=∠DOE,∵△OEF为等腰直角三角形,∴OF=OE,在△AOF和△DOE中,∴△AOF≌△DOE(SAS),∴AF=DE.15.(2019•东营)如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.【解答】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC===2,∵点D、E分别是边BC、AC的中点,∴AE=AC=,BD=BC=1,∴=.②如图1﹣1中,当α=180°时,可得AB∥DE,∵=,∴==.故答案为:①,②.(2)如图2,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵==,∴△ECA∽△DCB,∴==..(3)①如图3﹣1中,当点E在AB的延长线上时,在Rt△BCE中,CE=,BC=2,∴BE===1,∴AE=AB+BE=5,∵=,∴BD==.②如图3﹣2中,当点E在线段AB上时,易知BE=1,AE=4﹣1=3,∵=,∴BD=,综上所述,满足条件的BD的长为或.。
2020中考数学 几何专题:平移和旋转(含答案)
2020中考数学几何专题:平移和旋转(含答案)例题1. 如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.例题2. 如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.例题3. 如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为.例题4. 如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=.巩固练习-旋转1.如图,在△ABC 中, 70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋 转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ( )A. 30B. 35C. 40D. 502.如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为 .3.如图,在Rt △ABC 中,∠ACB =90º,∠BAC=60º,AB =6.Rt △AB ´C ´可以看作是由Rt △ABC 绕A 点逆时针方向旋转60º得到的,则线段B ´C 的长为____________.4.如图,,可以看作是由绕点顺时针旋转角度得到的.若点在上,则旋转角的大小可以是( ) A 、 B 、 C 、 D 、9030AOB B ∠=∠=°,°A OB ''△AOB △O αA 'AB α30°45°60°90°A OBA 'B '5.如图,若将△ABC 绕点C, 顺时针旋转90°后得到,则A 点的对应点的坐标是 .6.下列图形中,中心对称图形有( ).7.下列几何图形中,即是中心对称图形又是轴对称图形的是( ) A .正三角形 B .等腰直角三角形 C .等腰梯形D .正方形8.如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1).若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为 .C B A ''∆A'9.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3)。
上海中考18题 图形的平移、翻折、旋转及点的运动(解析版)
专题38 图形的平移、翻折、旋转及点的运动图形的平移、翻折、旋转及点的运动是初中数学图形的几种基本运动形式,是初中数学的重要内容之一.这类问题常常要运用“动”的思路去观察、分析、推理、猜想、探究相关图形的位置变化情况或图形的有关性质,对提高数学思维能力与发展空间观念有重要作用,也是近年的中考试题的一个热点.图形的平移、翻折、旋转有一个重要性质:任何图形经过平移、翻折、旋转后,除图形的位置发生变化外,图形的形状、大小保持不变.这个性质在解决图形运动的有关问题中常用.【例1】(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB=ABAE=2.【解答】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=12∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=12AD=12AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=12∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB=ABAE=2.故答案为:2.【例2】(2020•静安区一模)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为.【分析】如图,连接BD.设BC=2a.在Rt△BEF中,求出EF,BF即可解决问题.【解答】解:如图,连接BD.设BC=2a.∵四边形ABC都是菱形,∴AB=BC=CD=AD=2a,∠A=∠C=60°,∴△BDC是等边三角形,∵DE=EC=a,∴BE⊥CD,∴BE=√BC2−EC2=√3a,∵AB∥CD,BE⊥CD,∴BE⊥AB,∴∠EBF=90°,设AF=EF=x,在Rt△EFB中,则有x2=(2a﹣x)2+(√3a)2,∴x =7a 4, ∴AF =EF =7a 4,BF =AB ﹣AF =a 4, ∴cos ∠EFB =BF EF =a 47a 4=17, 故答案为17. 【例3】(2020•闵行区一模)如图,在等腰△ABC 中,AB =AC =4,BC =6,点D 在底边BC 上,且∠DAC =∠ACD ,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 .【分析】只要证明△ABD ∽△MBE ,得AB BM =BD BE ,只要求出BM 、BD 即可解决问题. 【解答】解:∵AB =AC ,∴∠ABC =∠C ,∵∠DAC =∠ACD ,∴∠DAC =∠ABC ,∵∠C =∠C ,∴△CAD ∽△CBA ,∴CA CB=CD AC , ∴46=CD 4, ∴CD =83,BD =BC ﹣CD =103,∵∠DAM =∠DAC =∠DBA ,∠ADM =∠ADB ,∴△ADM ∽△BDA ,∴AD BD =DM DA ,即83103=DM 83,∴DM =3215,MB =BD ﹣DM =65,∵∠ABM =∠C =∠MED ,∴A 、B 、E 、D 四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴ABBM =BDBE,∴BE=BM⋅DBAB=1.故答案为:1.1.(2020•青浦区一模)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是cm.【分析】根据已知条件得到AE=DF=BE=CF,求得四边形AEFD是矩形,得到EF=AD,∠AEN=∠BEN=90°,根据折叠的性质得到BN=AB,根据直角三角形的性质得到∠BNE=30°,于是得到EN=√32BN=5√32,即可得到结论.【解答】解:如图,∵在矩形纸片ABCD中,点E、F分别是边AB、CD的中点,∴AE=DF=BE=CF,∴四边形AEFD是矩形,∴EF=AD,∠AEN=∠BEN=90°,∵折叠矩形纸片ABCD,折痕BM交AD边于点M,∴BN=AB,∵BE=12AB,∴BE=12BN,∴∠BNE=30°,∵AB=5cm,∴EN =√32BN =5√32, ∴EF ≥EN 时,点A 恰好落在线段EF 上,即AD ≥5√32, ∴边AD 的长至少是5√32, 故答案为:5√32.2.(2020•杨浦区一模)在Rt △ABC 中,∠A =90°,AC =4,AB =a ,将△ABC 沿着斜边BC 翻折,点A 落在点A 1处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交A 1B 所在直线于点F ,联结A 1E ,如果△A 1EF 为直角三角形时,那么a = .【分析】当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,根据对称的性质和平行线可得:A 1C =A 1E =4,根据直角三角形斜边中线的性质得:BC =2A 1B =8,最后利用勾股定理可得AB 的长;②当∠A 1FE =90°时,如图2,证明△ABC 是等腰直角三角形,可得AB =AC =4.【解答】解:当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,∵△A 1BC 与△ABC 关于BC 所在直线对称,∴A 1C =AC =4,∠ACB =∠A 1CB ,∵点D ,E 分别为AC ,BC 的中点,∴D 、E 是△ABC 的中位线,∴DE ∥AB ,∴∠CDE =∠MAN =90°,∴∠CDE =∠A 1EF ,∴AC ∥A 1E ,∴∠ACB =∠A 1EC ,∴∠A 1CB =∠A 1EC ,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB=√82−42=4√3;②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4√3或4;故答案为:4√3或4;3.(2020•崇明区一模)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=.【分析】分两种情形分别求解,作DF ⊥AB 于F ,连接AA ′.想办法求出AE ,利用等腰直角三角形的性质求出AA ′即可.【解答】解:如图,作DF ⊥AB 于F ,连接AA ′.在Rt △ACB 中,BC =√AB 2−AC 2=6,∵∠DAF =∠BAC ,∠AFD =∠C =90°,∴△AFD ∽△ACB ,∴DF BC =AD AB =AF AC , ∴DF 6=410=AF 8,∴DF =125,AF =165,∵A ′E ⊥AB ,∴∠AEA ′=90°,由翻折不变性可知:∠AED =45°,∴EF =DF =125, ∴AE =A ′E =125+165=285,∴AA ′=28√25, 如图,作DF ⊥AB 于F ,当 EA ′⊥AB 时,同法可得AE =165−125=45,AA ′=√2AE =4√25.故答案为28√25或4√25. 4.(2020•闵行区一模)已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,那么tan ∠BAE = .【分析】由正方形ABCD 中四个内角为直角,四条边相等,求出BC 与DC 的长,利用勾股定理求出BD 的长,由旋转的性质可求BE 的长,即可求解.【解答】解;如图,∵正方形ABCD ,∴∠ABC =∠C =90°,在Rt △BCD 中,DC =BC =2,根据勾股定理得:BD =√AD 2+AB 2=√4+4=2√2,∵将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,∴BE =BD =2√2,∴tan ∠BAE =BE AB =2√22=√2, 故答案为:√2.5.(2020•徐汇区一模)如图,在矩形ABCD 中,AB =3,AD =4,将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',点A 的对应点A '在对角线AC 上,点C 、D 分别与点C '、D '对应,A ′D '与边BC 交于点E ,那么BE 的长是 .【分析】如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,由勾股定理可求AC =5,由面积法可求BF =125,由勾股定理可求AF =95,由旋转的性质可得AB =BA ',∠BAD =∠BA 'D '=90°,可求AA '=75,由等腰三角形的性质可求HC 的长,通过证明△EHC ∽△ABC ,可得BC AC =HC EC ,可求EC 的长,即可求解.【解答】解:如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,∵AB =3,AD =4,∠ABC =90°,∴AC =√AB2+BC 2=√9+16=5, ∵S △ABC =12AB ×BC =12AC ×BF ,∴3×4=5BF ,∴BF =125∴AF =√AB 2−BF 2=√9−14425=95, ∵将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',∴AB =BA ',∠BAD =∠BA 'D '=90°,且BF ⊥AC ,∴∠BAC =∠BA 'A ,AF =A 'F =95,∠BA 'A +∠EA 'C =90°,∴A 'C =AC ﹣AA '=75,∵∠BA 'A +∠EA 'C =90°,∠BAA '+∠ACB =90°,∴∠ACB =∠EA 'C ,∴A 'E =EC ,且EH ⊥AC ,∴A 'H =HC =12A 'C =710, ∵∠ACB =∠ECH ,∠ABC =∠EHC =90°,∴△EHC ∽△ABC ,∴BC AC=HC EC ∴45=710EC∴EC =78,∴BE =BC ﹣EC =4−78=258, 故答案为:258.6.(2020•普陀区一模)如图,在Rt △ABC 中,∠C =90°,AC =5,sin B =513,点P 为边BC 上一点,PC=3,将△ABC 绕点P 旋转得到△A 'B 'C '(点A 、B 、C 分别与点A '、B '、C '对应),使B 'C '∥AB ,边A 'C '与边AB 交于点G ,那么A 'G 的长等于 .【分析】如图,作PH ⊥AB 于H .利用相似三角形的性质求出PH ,再证明四边形PHGC ′是矩形即可解决问题.【解答】解:如图,作PH ⊥AB 于H .在Rt △ABC 中,∠C =90°,AC =5,sin B =513,∴AC AB =513,∴AB =13,BC =√AB 2−AC 2=√132−52=12,∵PC =3,∴PB =9,∵∠BPH ∽△BAC ,∴PH AC =PB AB , ∴PH 5=913,∴PH =4513, ∵AB ∥B ′C ′,∴∠HGC ′=∠C ′=∠PHG =90°,∴四边形PHGC ′是矩形,∴CG ′=PH =4513, ∴A ′G =5−4513=2013, 故答案为2013.7.(2020•奉贤区一模)如图,已知矩形ABCD (AB >BC ),将矩形ABCD 绕点B 顺时针旋转90°,点A 、D 分别落在点E 、F 处,连接DF ,如果点G 是DF 的中点,那么∠BEG 的正切值是 .【分析】连接BD ,BF ,EG .利用四点共圆证明∠BEG =∠BFD =45°即可.【解答】解:连接BD ,BF ,EG .由题意:BD =BF ,∠DBF =90°,∵DG =GF ,∴BG ⊥DF ,∴∠BGF =∠BEF =90°,∴∴B ,G ,E ,F 四点共圆,∠BEG=∠BFD=45°,∴∠BEG的正切值是1.故答案为1.8.(2020•嘉定区一模)在△ABC中,∠ACB=90°,AB=10,cos A=35(如图),把△ABC绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点A'、B'.如果A'B'恰好经过点A,那么点A与点A'的距离为.【分析】如图,过点C作CE⊥A'B',由锐角三角函数可求AC=6,由旋转的性质可得AC=A'C=6,∠A'=∠BAC,即可求A'E的长,由等腰三角形的性质可求AA'的长.【解答】解:如图,过点C作CE⊥A'B',∵在△ABC中,∠ACB=90°,AB=10,cos∠BAC=3 5,∴AC=6,∵把△ABC绕着点C按照顺时针的方向旋转,∴AC=A'C=6,∠A'=∠BAC,∵cos∠A'=cos∠BAC=A′EA′C=35,∴A'E=18 5,∵AC=A'C,CE⊥A'B',∴AA '=2A 'E =365, 故答案我:365.9.(2020•金山区一模)如图,在Rt △ABC 中,∠ABC =90°,AB =2,BC =4,点P 在边BC 上,联结AP ,将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,点B 的对应点是点B ′,则BB ′的长等于 .【分析】如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,由勾股定理可求AC 的长,由旋转的性质可求AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,通过证明△ABP ∽△CBA ,可得∠P AB =∠C ,可得CE =AE ,由勾股定理可求CE ,BE 的长,由相似三角形的性质可求B 'D ,BD 的长,即可求解.【解答】解:如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,∵∠ABC =90°,AB =2,BC =4,∴AC =√AB 2+BC 2=√16+4=2√5,∵点M 是AC 中点,∴AM =√5,∵将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,∴AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,∵AP 2=AB 2+PB 2,∴PB =1,∵BA PB =2=BC AB ,且∠ABP =∠ABC =90°, ∴△ABP ∽△CBA ,∴∠C =∠CAE ,∴CE =AE ,∵AE 2=AB 2+BE 2,∴CE 2=4+(4﹣CE )2,∴CE =AE =52,∴BE =32,∵B 'D ∥BC ,∴△AB 'D ∽△AEB ,∴AB′AE =AD AB =B′D BE, ∴252=AD 2=B′D32, ∴AD =85,B 'D =65, ∴BD =25,∴BB '=√B′D2+BD 2=√3625+425=2√105, 故答案为:2√105. 10.(2020•松江区一模)如图,矩形ABCD 中,AD =1,AB =k ,将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,联结AD ′,分别交边CD ,A ′B 于E 、F ,如果AE =√2D ′F ,那么k = .【分析】由矩形的性质和旋转的性质可求AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,通过证明△ADE ∽△F A 'D ',可得AD A′F =DE A′D′=AE D′F ,可求DE ,A 'F 的长,通过证明△A 'D 'F ∽△CEF ,由相似三角形的性质可求解.【解答】解:∵将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,∴AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,∴∠A 'D 'F =∠FEC =∠DEA ,且∠D =∠A '=90°,∴△ADE ∽△F A 'D ',∴AD A′F =DE A′D′=AE D′F ,且AE =√2D ′F ,∴DE =√2A 'D '=√2,A 'F =1√2AD =√22, ∵∠A '=∠DCF =90°,∠A 'FD '=∠EFC ,∴△A 'D 'F ∽△CEF ,∴EC A′D′=FCA′F , ∴k−√21=k−1−√22√22∴k =√2+1,故答案为:√2+1.11.(2019•浦东新区二模)如图,已知在△ABC 中,AB =3,AC =2,∠A =45o ,将这个三角形绕点B 旋转,使点A 落在射线AC 上的点A 1处,点C 落在点C 1处,那么AC 1= .【分析】连接AC 1,由旋转的性质先证△ABA 1为等腰直角三角形,再证△AA 1C 1为直角三角形,利用勾股定理可求AC 1的长度.【解答】解:如图,连接AC 1,由旋转知,△ABC ≌△A 1BC 1,∴AB =A 1B =3,AC =A 1C 1=2,∠CAB =∠C 1A 1B =45°,∴∠CAB =∠CA 1B =45°,∴△ABA 1为等腰直角三角形,∠AA 1C 1=∠CA 1B +∠C 1A 1B =90°,在等腰直角三角形ABA 1中,AA 1=√2AB =3√2,在Rt △AA 1C 1中,AC1=√AA12+A1C12=√(3√2)2+22=√22,故答案为:√22.12.(2019•松江区二模)如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上.直线AC交DE于点F,那么CF的长为.【分析】由题意,可得BD=AB=10,tan D=tan∠A=BCAC=34,所以CD=4,在Rt△FCD中,∠DCF=90°,tan D=CFCD=34,即CF4=34,可得CF=3.【解答】解:∵如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.∴AB=√62+82=10,tan∠A=BCAC=34,∵将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上,直线AC交DE于点F,∴BD=AB=10,∠D=∠A,∴CD=BD﹣BC=10﹣6=4,在Rt△FCD中,∠DCF=90°,∴tan D=CFCD=34,即CF4=34,∴CF=3.故答案为:3.13.(2019•长宁区二模)如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点C旋转,点A、B的对应点分别是点A'、B',若点B'恰好在线段AA'的延长线上,则AA'的长等于.【分析】由旋转的性质可得AC=A'C=5,AB=A'B'=5,BC=B'C=8,由等腰三角形的性质可得AF=A'F,由勾股定理列出方程组,可求AF的长,即可求AA'的长.【解答】解:如图,过点C作CF⊥AA'于点F,∵旋转∴AC=A'C=5,AB=A'B'=5,BC=B'C=8∵CF⊥AA',∴AF=A'F在Rt△AFC中,AC2=AF2+CF2,在Rt△CFB'中,B'C2=B'F2+CF2,∴B'C2﹣AC2=B'F2﹣AF2,∴64﹣25=(5+AF)2﹣AF2,∴AF =75∴AA '=145故答案为:14514.(2019•奉贤区二模)如图,矩形ABCD ,AD =a ,将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,顶点A 、D 、C 分别与点E 、F 、G 对应(点D 与点F 不重合).如果点D 、E 、F 在同一条直线上,那么线段DF 的长是 .(用含a 的代数式表示)【分析】连接BD ,证明Rt △EDB ≌Rt △CBD ,可得DE =BC =AD =a ,因为EF =AD =a ,根据DF =DE +EF 即可得出DF 的长.【解答】解:如图,连接BD ,∵将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,且D 、E 、F 在同一条直线上,∴∠DEB =∠C =90°,BE =AB =CD ,∵DB =BD ,∴Rt △EDB ≌Rt △CBD (HL ),∴DE =BC =AD =a ,∵EF =AD =a ,∴DF =DE +EF =a +a =2a .故答案为:2a .15.(2019•青浦区二模)如图,在矩形ABCD 中,AB =3,E 为AD 的中点,F 为CD 上一点,且DF =2CF ,沿BE 将△ABE 翻折,如果点A 恰好落在BF 上,则AD = .【分析】连接EF,则可证明△EA′F≌△EDF,从而根据BF=BA′+A′F,得出BF的长,在Rt△BCF 中,利用勾股定理可求出BC,即得AD的长度.【解答】解:连接EF,∵点E、点F是AD、DC的中点,∴AE=ED,DF=2CF=2,由折叠的性质可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,{EA′=ED,EF=EF∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=2,∴BF=BA′+A′F=AB+DF=3+2=5,在Rt△BCF中,BC=√BF2−CF2=√52−12=2√6.∴AD=BC=2√6.故答案为2√616.(2019•虹口区二模)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【分析】由DG =3,CD =6可知△CDG 的三角函数关系,由△CDG 分别与△A 'EG ,△B 'FC 相似,可求得CG ,CB ',由勾股定理△CFB '可求得BF 长度.【解答】解:∵△CDG ∽△A 'EG ,A 'E =4∴A 'G =2∴B 'G =4由勾股定理可知CG '=3√5则CB '=3√5−4由△CDG ∽△CFB '设BF =xCB′B′F =GD CD∴3√5−4x =36解得x =6√5−8故答案为6√5−817.(2019•杨浦区二模)如图,点M 、N 分别在∠AOB 的边OA 、OB 上,将∠AOB 沿直线MN 翻折,设点O 落在点P 处,如果当OM =4,ON =3时,点O 、P 的距离为4,那么折痕MN 的长为 .【分析】由折叠的性质可得MN ⊥OP ,EO =EP =2,由勾股定理可求ME ,NE 的长,即可求MN 的长.【解答】解:设MN 与OP 交于点E ,∵点O、P的距离为4,∴OP=4∵折叠∴MN⊥OP,EO=EP=2,在Rt△OME中,ME=√OM2−OE2=2√3在Rt△ONE中,NE=√ON2−OE2=√5∴MN=ME﹣NE=2√3−√5故答案为:2√3−√5。
2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转(含答案)
2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转一.填空题(共10小题)1.(2021秋•鼓楼区校级期末)如图,在△ABC中,AB=AC,BC=6,tan∠ACB=2,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,CD,则CD长的最小值为.2.(2021秋•历城区期末)如图,在矩形ABCD中,AB=3,AD=9,点E,F分别在边AD,BC上,且AE=2,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,分别在线段EF,A′B′上取点M,N,沿直线MN二次翻折,使点F与点E重合,则线段MN的长为.3.(2021•綦江区校级三模)如图,在矩形ABCD中,E为AB边上的一点,将△ADE沿DE 翻折,得到△DEF,且F在BC边上,G为AD边上的一点,过点G作AD的垂线交DF 于点H,连接AH交DE于点P,连接AF,若AB=7,BF=3,HA平分∠GHF,则AG 的长度为.4.(2021•马鞍山模拟)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q连接PQ,则△GPQ的周长最小值是.5.(2020•海安市模拟)如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为.6.(2021春•东阳市期末)在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图1所示.然后固定纸片△ABC,把纸片△ADC沿AC的方向平移得到△A′D′C′,连A′B,D′B,D′C,在平移过程中:(1)四边形A′BCD′的形状始终是;(2)A′B+D′B的最小值为.7.(2021•路北区一模)如图,边长为1的正方形ABCD在等边长的正六边形外部做顺时针滚动,滚动一周回到初始位置时停止.第一次滚动时正方形旋转了°,点A在滚动过程中到出发点的最大距离是.8.(2021•河北区模拟)如图,四边形ABCD是边长为2的正方形,E是BC边的中点,F 是直线DE上的动点.连接CF,将线段CF逆时针旋转90°得到CG,连接EG,则EG 的最小值是.9.在正方形ABCD中,点P是对角线AC上一点,连接DP,将DP绕点D逆时针旋转90°后得到线段DE,连接PE,点C关于直线PE的对称点是C′,连接C′E、C′P、C′A.若四边形AC′ED是平行四边形,PC=2,则平行四边形AC′ED的面积是.10.(2020•衢州二模)如图,在矩形ABCD中,AD=8,AB=6,点E是CD的中点,过点E作EF∥BC,交对角线BD于点F.将△DEF绕点D逆时针方向旋转得到△DE1F1,连接CE1,BF1,设旋转角度为α(0°<α<180°),则=;连接CF1,当△DF1B 为直角三角形时,CF1=.2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转(10题)参考答案与试题解析一.填空题(共10小题)1.(2021秋•鼓楼区校级期末)如图,在△ABC中,AB=AC,BC=6,tan∠ACB=2,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,CD,则CD长的最小值为.【考点】轴对称﹣最短路线问题;旋转的性质;解直角三角形;等腰三角形的性质.【专题】图形的相似;推理能力.【分析】以BC为边构建出和△BPD相似的三角形,通过将CD边转化为其他边来求值.【解答】解:如图所示,以BC为底边向上作三等腰△BQC,连接BP.由题意可得△BQC和△BPQ均为顶角为120°的等腰三角形,可得,∠QBC=∠PBD=30°,∴∠QBC﹣∠QBD=∠PBD﹣∠QBD,∴∠PBQ=∠DBC,∴△PBQ∽△DBC,∴,∴当PQ⊥AC时,有PQ最小,即此时CD最小,如图所示,设OP′⊥AC,延长AQ与BC交K,此时QP'为QP的最小值,可得AK⊥BC,∵△BQC中,∠BQC=120°,BC=6,∴BK=3,∠QBK=30°,∴QK==,∵tan∠ACB==,KC=3,∴AK==,∴AQ=AK﹣QK=,AC==,∵∠AP'Q=∠AKC=90°,∠QAP'=∠CAK,∴△AQP'∽△ACK,∴,∴,∴QP'=,∴CD==.【点评】本题考查的是瓜豆原理的知识点,重难点在于构造相似三角形的手拉手模型,属于难题.2.(2021秋•历城区期末)如图,在矩形ABCD中,AB=3,AD=9,点E,F分别在边AD,BC上,且AE=2,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,分别在线段EF,A′B′上取点M,N,沿直线MN二次翻折,使点F与点E重合,则线段MN的长为.【考点】翻折变换(折叠问题);相似三角形的判定与性质;矩形的性质.【专题】几何综合题;压轴题;推理能力.【分析】如图,过点F作FT⊥AD于T,则四边形ABFT是矩形,连接FN,EN,设AC 交EF于J.证明△FTE∽△ADC,求出ET=1,EF=,设A′N=x,根据NF=NE,可得12+(3﹣x)2=22+x2,解方程求出x,可得结论.【解答】解:如图,过点F作FT⊥AD于T,则四边形ABFT是矩形,连接FN,EN,设AC交EF于J.∵四边形ABFT是矩形,∴AB=FT=3,BF=AT,∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=9,∠B=∠D=90°∴AC===3,∵∠TFE+∠AEJ=90°,∠DAC+∠AEJ=90°,∴∠TFE=∠DAC,∵∠FTE=∠D=90°,∴△FTE∽△ADC,∴==,∴==,∴TE=1,EF=,∴BF=AT=AE﹣ET=2﹣1=1,设A′N=x,∵NM垂直平分线段EF,∴NF=NE,∴12+(3﹣x)2=22+x2,∴x=1,∴FN===,∴MN===,故答案为:.【点评】本题属于几何综合题,考查矩形的性质,翻折变换,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.3.(2021•綦江区校级三模)如图,在矩形ABCD中,E为AB边上的一点,将△ADE沿DE 翻折,得到△DEF,且F在BC边上,G为AD边上的一点,过点G作AD的垂线交DF 于点H,连接AH交DE于点P,连接AF,若AB=7,BF=3,HA平分∠GHF,则AG 的长度为7.【考点】翻折变换(折叠问题);相似三角形的判定与性质;角平分线的性质;矩形的性质.【专题】推理填空题;矩形菱形正方形;推理能力.【分析】过点A作AN⊥DF于点N,延长AB,DF交于点M,设AE=x,AD=y,由翻折可知:EF=AE=x,DF=AD=BC=y,则BE=AB﹣AE=7﹣x,CF=BC﹣BF=y﹣3,在Rt△BEF和Rt△DFC中,根据勾股定理得x=,y=,证明△BFM∽△ADM,可得BM=,证明△EFM∽△ANM,可得AN=7,然后根据角平分线的性质可以解决问题.【解答】解:如图,过点A作AN⊥DF于点N,延长AB,DF交于点M,设AE=x,AD=y,由翻折可知:EF=AE=x,DF=AD=BC=y,则BE=AB﹣AE=7﹣x,CF=BC﹣BF=y﹣3,在Rt△BEF和Rt△DFC中,根据勾股定理,得:BE2+BF2=EF2,DC2+CF2=DF2,∴(7﹣x)2+32=x2,72+(y﹣3)2=y2,解得x=,y=,∴EF=,AD=,∴BE=7﹣x=,CF=y﹣3=,∵BF∥AD,∴△BFM∽△ADM,∴=,∴=,∴BM=,∴EM=BM+BE=+=,∴AM=AB+BM=7+=,由翻折可知:∠EFD=∠EAD=90°,∵AN⊥DF,∴∠EFM=∠ANM=90°,∴EF∥AN,∴△EFM∽△ANM,∴=,∴=,∴AN=7,∵HA平分∠GHF,AN⊥DF,HG⊥AD,∴AG=AN=7.故答案为:7.【点评】本题考查了矩形的相关证明与计算,相似三角形的判定与性质,熟练掌握矩形的性质与相似三角形的性质与判定是解题的关键.4.(2021•马鞍山模拟)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB 边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q连接PQ,则△GPQ的周长最小值是2+2.【考点】翻折变换(折叠问题);正方形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称.【分析】如图,取CD的中点N,连接PN,PB,BN.首先证明PQ=PN,PB=PG,推出PQ+PG=PN+PB≥BN,求出BN即可解决问题.【解答】解:如图,取CD的中点N,连接PN,PB,BN.由翻折的性质以及对称性可知;PQ=PN,PG=PC,HG=CD=4,∵QH=QG,∴QG=2,在Rt△BCN中,BN==2,∵∠CBG=90°,PC=PG,∴PB=PG=PC,∴PQ+PG=PN+PB≥BN=2,∴PQ+PG的最小值为2,∴△GPQ的周长的最小值为2+2,故答案为2+2.【点评】本题考查翻折变换,正方形的性质,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考填空题中的压轴题.5.(2020•海安市模拟)如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为.【考点】翻折变换(折叠问题);三角形的面积;矩形的性质.【专题】推理填空题;平移、旋转与对称;几何直观;运算能力;推理能力.【分析】根据矩形ABCD中,AB=3,BC=4,可得AC=5,由AE=可得点F是边BC上的任意位置时,点C始终在AC的下方,设点G到AC的距离为h,要使四边形AGCD 的面积的最小,即h最小.所以点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD 的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.根据锐角三角函数先求得h 的值,再分别求得三角形ACD和三角形ACG的面积即可得结论.【解答】解:如图,在矩形ABCD中,AB=3,BC=4,∠B=∠D=90°,连接AC,∴AC=5,∵AB=3,AE=,∴点F是边BC上的任意位置时,点G始终在AC的下方,设点G到AC的距离为h,S四边形AGCD=S△ACD+S△ACG=3×4+×5h,=6+h.要使四边形AGCD的面积最小,即h最小.∵点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=,sin∠BAC==,解得EH=AE=,EG=BE=AB﹣AE=3﹣,∴h=EH﹣EG=﹣(3﹣)=﹣3.∴S四边形AGCD=6+×(﹣3)=﹣=.故答案为:.【点评】本题考查了翻折变换,解决本题的关键是确定满足条件的点G的位置,运用相似、锐角三角函数等知识解决问题.6.(2021春•东阳市期末)在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图1所示.然后固定纸片△ABC,把纸片△ADC沿AC的方向平移得到△A′D′C′,连A′B,D′B,D′C,在平移过程中:(1)四边形A′BCD′的形状始终是平行四边形;(2)A′B+D′B的最小值为2.【考点】作图﹣平移变换;正方形的性质;轴对称﹣最短路线问题.【专题】作图题;推理能力.【分析】(1)利用平移的性质证明即可.(2)如图2中,作直线DD′,作点C关于直线DD′的对称点C″,连接D′C″,BC″,过点B作BH⊥CC″于H.求出BC″,证明A′B+BD′=BD′+CD′=BD′+D′C″≥BC″,可得结论.【解答】解:(1)如图2中,∵A′D′=BC,A′D′∥BC,∴四边形A′BCD′是平行四边形,故答案为:平行四边形.(2)如图2中,作直线DD′,作点C关于直线DD′的对称点C″,连接D′C″,BC″,过点B作BH⊥CC″于H.∵四边形ABCD是正方形,∴AB=BC=2,∠ABC=90°,∴AC=AB=2,∵BJ⊥AC,∴AJ=JC,∴BJ=AC=,∵∠BJC=∠JCH=∠H=90°,∴四边形BHCJ是矩形,∵BJ=CJ,∴四边形BHCJ是正方形,∴BH=CH=,在Rt△BHC″中,BH=,HC″=3,∴BC″===2,∵四边形A′BCD′是平行四边形,∴A′B=CD′,∴A′B+BD′=BD′+CD′=BD′+D′C″≥BC″,∴A′B+BD′≥2,∴A′B+D′B的最小值为2,故答案为:2【点评】本题考查作图﹣平移变换,轴对称最短问题,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.7.(2021•路北区一模)如图,边长为1的正方形ABCD在等边长的正六边形外部做顺时针滚动,滚动一周回到初始位置时停止.第一次滚动时正方形旋转了150°,点A在滚动过程中到出发点的最大距离是+.【考点】旋转的性质;正多边形和圆;轨迹.【专题】平移、旋转与对称;解直角三角形及其应用.【分析】如图,点A的运动轨迹是图中红线.延长AE交红线于H,线段AH的长,即为点A在滚动过程中到出发点的最大距离.【解答】解:第一次滚动正方形旋转了240°﹣90°=150°.如图,点A的运动轨迹是图中红线.延长AE交红线于H,线段AH的长,即为点A在滚动过程中到出发点的最大距离.易知EH=EA2==,在△AEF中,∵AF=EF=1,∠AFE=120°,∴AE=,∴AH=AE+EH=+.∴点A在滚动过程中到出发点的最大距离为+.故答案为:150,+【点评】本题考查旋转变换,正方形的性质,正六边形的性质,解直角三角形等知识,解题的关键是理解题意,学会正确寻找点A的运动轨迹,属于中考填空题中的压轴题.8.(2021•河北区模拟)如图,四边形ABCD是边长为2的正方形,E是BC边的中点,F 是直线DE上的动点.连接CF,将线段CF逆时针旋转90°得到CG,连接EG,则EG的最小值是.【考点】旋转的性质;正方形的性质.【专题】矩形菱形正方形.【分析】如图,作直线BG.由△CBG≌△CDF,推出∠CBG=∠CDF,因为∠CDF是定值,推出点G在直线BG上运动,且tan∠CBG=tan∠CDF==,根据垂线段最短可知,当EG⊥BG时,EG的长最短.【解答】解:如图,作直线BG.∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,∵∠FCG=∠DCB=90°,∴∠BCG=∠DCF,∵CG=CF,∴△CBG≌△CDF,∴∠CBG=∠CDF,∵∠CDF是定值,∴点G在直线BG上运动,且tan∠CBG=tan∠CDF==,根据垂线段最短可知,当EG⊥BG时,EG的长最短,此时tan∠EBG==,设EG=m,则BG=2m,在Rt△BEG中,∵BE2=BG2+EG2,∴1=m2+4m2,∴m=(负根已经舍弃),∴EG的最小值为,故答案为.【点评】本题考查旋转变换、正方形的性质、全等三角形的判定和性质、垂线段最短、解直角三角形等知识,解题的关键是准确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考填空题中的压轴题.9.在正方形ABCD中,点P是对角线AC上一点,连接DP,将DP绕点D逆时针旋转90°后得到线段DE,连接PE,点C关于直线PE的对称点是C′,连接C′E、C′P、C′A.若四边形AC′ED是平行四边形,PC=2,则平行四边形AC′ED的面积是2+4.【考点】旋转的性质;平行四边形的性质;正方形的性质;轴对称的性质.【专题】矩形菱形正方形.【分析】如图,连接DC′,作PH⊥CD于H,设CD交EC′于K.只要证明△ADC′≌△CDP,△DKC′,△PCH是等腰直角三角形即可解决问题;【解答】解:如图,连接DC′,作PH⊥CD于H,设CD交EC′于K.∵四边形ABCD是正方形,∴AD=CD,∵四边形ADEC′是平行四边形,∴DE=AC′=DP,∠DAC′=∠DEK,∵AD⊥CD,AD∥EC′,∴CD⊥EC′,∵∠PDE=90°,∴∠PDC+∠CDE=90°,∠CDE+∠DEK=90°,∴∠CDP=∠DAC′,∴△ADC′≌△CDP,∴DC′=PC=2,∠ADC′=∠DCP=45°,∵∠ADC=∠PHC=90°,∴∠KDC′=45°,∴△DKC′,△PCH是等腰直角三角形,∴DK=KC′=CH=PH=,∴C′K=PH,CK′∥PH,∴四边形PHKC′是平行四边形,∵∠PHK=90°,∴四边形PHKC′是矩形,∴PH=PC′=PC=2,∴AD=CD=2+2,∴四边形AC′ED的面积=(2+2)=2+4.故答案为2+4.【点评】本题考查旋转变换、正方形的性质、平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.10.(2020•衢州二模)如图,在矩形ABCD中,AD=8,AB=6,点E是CD的中点,过点E作EF∥BC,交对角线BD于点F.将△DEF绕点D逆时针方向旋转得到△DE1F1,连接CE1,BF1,设旋转角度为α(0°<α<180°),则=;连接CF1,当△DF1B 为直角三角形时,CF1=或.【考点】旋转的性质;勾股定理;矩形的性质.【专题】平移、旋转与对称;图形的相似;解直角三角形及其应用;运算能力;推理能力.【分析】由△BDF1∽△CDE1可得=;分为∠BDF1=90°,∠DF1B=90°两种情形,分别解斜△CDF1即可得.【解答】解:如图1,∵△DEF绕点D逆时针方向旋转得到△DE1F1,∴∠EDF=∠E1DF1,∴∠EDF﹣∠EDF1=∠E1DF1﹣∠EDF1,∴∠F1DB=∠E1DC,∵==,==,∴=,∴△BDF1∽△CDE1,∴===,故答案是;如图2,当∠BDF1=90°时,在△CDF1中,CD=6,DF1=5,∠CDF1=90°﹣∠BDC,作F1G⊥CD于G,在Rt△AGF1中,DF1=5,∠AF1G=∠BDC,∴F1G=DF1•cos∠AF1G=5•cos∠BDC=5•=5×=3,DG=5•sin∠BDC=4,∴CG=CD﹣DG=2,∴CF==,如图3,当∠DF1B=90°时(图中F1′),∵,∴∠DCF1′=∠DBF1′=30°,作F1′H⊥CD于H,∴设F1′H=a,则CH=a,∴DH=6﹣,在Rt△DHF1′中,由勾股定理得,(6﹣)2+a2=52,∴,(舍去),\∴CF1′=2a=3﹣4,故答案是或3﹣4.【点评】本题以旋转为背景,考查了三角形相似和解直角三角形,解决问题的关键是正确分类和数量熟练掌握基本图形.考点卡片1.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.2.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE3.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.4.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.5.平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.6.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.7.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.8.正多边形和圆(1)正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.(2)正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.9.轨迹10.轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.11.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.13.作图-平移变换(1)确定平移后图形的基本要素有两个:平移方向、平移距离.(2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.14.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.15.相似三角形的判定与性质(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.16.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)。
中考数学专卷2020届中考数学总复习(27)图形的旋转-精练精析(1)及答案解析
图形的变化——图形的旋转1一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C.D.π4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.35.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A. B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.18如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=_________ .11如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是_________ .12.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为_________ .13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于_________ .14.如图,在△A BC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为_________ .15如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是_________ .16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为_________ .17如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=_________ .三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.19.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为_________ cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是_________ ,∠AFB=∠_________(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.图形的变化——图形的旋转1参考答案与试题解析一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)考点:坐标与图形变化-旋转.专题:压轴题.分析:先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.解答:解:由图可知,△ABC与△A′B′C′关于点(﹣1,0)成中心对称,设点P′的坐标为(x,y),所以,=﹣1,=0,解得x=﹣a﹣2,y=﹣b,所以,P′(﹣a﹣2,﹣b).故选C.点评:本题考查了坐标与图形变化﹣旋转,准确识图,观察出两三角形成中心对称,对称中心是(﹣1,0)是解题的关键.2如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.专题:几何图形问题.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B C.D.π考点:旋转的性质;弧长的计算.专题:几何图形问题.分析:利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.解答:解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,∴∠BCB′=60°,∴点B转过的路径长为:=π.故选:B.点评:此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键.4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A. 6 B4C3D.3考点:旋转的性质.专题:几何图形问题.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.5.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B C D.考点:旋转的性质;正方形的性质.专题:几何图形问题.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.解答:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:C.点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B60°C.90°D.150°考点:旋转的性质.专题:几何图形问题.分析:根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.解答:解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.点评:本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.8.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB6πC.3πD.1.5π考点:旋转的性质;弧长的计算.专题:计算题.分析:根据弧长公式列式计算即可得解.解答:解:的长==1.5π.故选:D.点评:本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:计算题.分析:先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解答:解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.考点:旋转的性质.分析:根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.解答:解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.点评:此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.12如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.考点:旋转的性质;菱形的性质.分析:根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S△ADF即可得出答案.解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1 .考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 6 .考点:旋转的性质;相似三角形的判定与性质.专题:几何图形问题.分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是2π.考点:旋转的性质.分析:首先计算出圆的面积,根据图示可得阴影部分面积为半圆的面积,进而可得答案.解答:解:∵AB=4,∴BO=2,∴圆的面积为:π×22=4π,∴阴影部分的面积是:×4π=2π,故答案为:2π.点评:此题主要考查了旋转的性质,关键是掌握圆的面积公式.16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为2﹣.考点:旋转的性质.专题:几何图形问题.分析:利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.解答:解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.点评:此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.17.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣671)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣671)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.考点:旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.专题:几何图形问题.分析:(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.解答:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.点评:此题主要考查了菱形的判定以及旋转的性质和直角三角形斜边上的中线等于斜边的一半等知识,得出△DFC是等边三角形是解题关键.19如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.考点:旋转的性质;正方形的判定;平移的性质.专题:几何图形问题.分析:(1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.解答:(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点对称的点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为4cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.考点:几何变换综合题.专题:几何综合题.分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案;(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,此时DP+EP值为最小,进而得出答案;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.解答:解:(1)∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm,∵∠ACD=30°,∠DAC=90°,AC=12cm,∴CD=AC÷cos30°=12÷=12×=8(cm),∵点E为CD边上的中点,∴AE=DC=4cm.故答案为:4;(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE,∴△ADE为等边三角形,∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°,∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′,∴点E,D′关于直线AC对称,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′,∵△ADE是等边三角形,AD=AE=4,∴DD′=2×AD×=2×6=12,即DP+EP最小值为12cm;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=4,在△ABD′和△CBD′中,,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(6﹣x)cm,在Rt△GD′C中x2+(6﹣x)2=(4)2,解得:x1=3﹣,x2=3+(不合题意舍去),∴点D′到BC边的距离为(3﹣)cm.点评:此题主要考查了全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是BF ,∠AFB=∠AED(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.分析:(1)直接根据旋转的性质得到DE=BF,∠AFB=∠AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,根据旋转的性质得∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,而∠PAQ=45°,则∠PAE=45°,再根据全等三角形的判定方法得到△APE≌△APQ,则PE=PQ,于是PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;(3)根据正方形的性质有∠ABD=∠ADB=45°,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,根据旋转的性质得∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,由于∠MBA+∠KBA=45°+45°=90°,得到△BMK为直角三角形,根据勾股定理得BK2+BM2=MK2,然后利用等相等代换即可得到BM2+DN2=MN2.解答:解:(1)∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,∵DE=BF,∠AFB=∠AED.故答案为BF,AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,∵∠PAQ=45°,∴∠PAE=45°,∴∠PAQ=∠PAE,在△APE和△AP Q中∵,∴△APE≌△APQ,∴PE=PQ,而PE=PB+BE=PB+DQ,∴DQ+BP=PQ;(3)∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,则∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,∵∠MBA+∠KBA=45°+45°=90°,∴△BMK为直角三角形,∴BK2+BM2=MK2,∴BM2+DN2=MN2.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了三角形全等的判定与性质、正方形的性质以及勾股定理.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质.分析:(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.解答:解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.点评:此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;菱形的判定.分析:(1)利用全等三角形的判定结合ASA得出答案;(2)利用全等三角形的性质对边相等得出答案;(3)首先得出四边形ABC1D是平行四边形,进而利用菱形的判定得出即可.解答:(1)证明:∵等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,∴AB=BC1=A1B=BC,∠ABE=∠C1BF,∠A=∠C1=∠A1=∠C,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA);(2)证明:∵△ABE≌△C1BF,∴EB=BF.又∵A1B=CB,∴A1B﹣EB=CB﹣BF,∴EA1=FC;(3)答:四边形ABC1D是菱形.证明:∵∠A1=∠C=30°,∠ABA1=∠CBC1=30°,∠A1=∠C=∠ABA1=∠CBC1.∴AB∥C1D,AD∥BC1,∴四边形ABC1D是平行四边形∵AB=BC1,∴四边形ABC1D是菱形.点评:此题主要考查了旋转的性质、全等三角形的判定与性质以及菱形的判定等知识,利用旋转的性质得出对应边关系是解题关键.。
专题11 几何图形中的平移、翻折、旋转-2023年中考数学毕业班二轮热点题型归纳与变式演练(解析版)
专题11 几何图形中的平移、翻折、旋转目录最新模考题热点题型归纳【题型一】 平移运动【典例分析】(2022春·上海长宁·九年级校考期中)如图,在梯形ABCD 中,AB CD ∥,3AB =,8CD =,点E 是边CD 的中点,联结AE 交BD 于点F ,将ACD V 沿着射线DC 方向平移,如果点F 的对应点恰好落在ABC V 内,那么平移的距离m 的取值范围是________.【答案】122477m <<##241277m >>【分析】过点F 作CD 或AB 的平行线交AC 于点P ,交BC 于点Q ,此时由平移的性质可得FP FQ 、都为平移距离m ,如图所示,分别求得平移距离m FP =和m FQ =即可求得点F 的对应点恰好落在ABC V 内时,平移的距离m 的取值范围.【详解】解:过点F 作CD 或AB 的平行线交AC 于点P ,交BC 于点Q ,此时由平移的性质可得FP FQ 、都为平移距离m ,如图所示,【提分秘籍】图形的平移规律找特殊点1.图形的平移即是图形中各个点的平移,解题时只需选取线段端点或三角形顶点等这样的特殊点即可.2.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数b,相应的新图形就是把原图形向上(或向下)平移b 个单位长度。
(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.【变式演练】1.(2020·上海浦东新·统考一模)如图,将ABC D 沿射线BC 方向平移得到DEF D ,边DE与AC 相交于点G ,如果6BC cm =,ABC D 的面积等于29cm ,GEC D 的面积等于24cm ,那么CF =____________cm .【答案】2【分析】根据平移性质得AC DF ∥,易证△EGC EDF ∽△,根据相似三角形的面积的比等于相似比的平方,求得EC 的长,即可求CF 的长.2.(2021·上海浦东新·模拟预测)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为16,阴影部分三角形的面积为9.如果AA'=1,那么A'D的长为_____.【题型二】 翻折运动【典例分析】(2022·上海·二模)已知在平行四边形ABCD 中,AB BC ¹,将ABC V 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B Ð=°,AB ==BC OAC V 的面积;(3)如果30B Ð=°,AB =AED △是直角三角形时,求BC 的长.②如图4,当90AEDÐ=°时AD BC=Q,BC EC=,AD EC\=,由折叠的性质得:AE AB=,AE CD\=,在ACED和CADD中,AE CDCE ADAC CA=ìï=íï=î,()ACE CAD SSS\D@D,ECA DAC\Ð=Ð,OA OC\=,OE OD\=,OED ODE\Ð=Ð,AED CDE\Ð=Ð,90AEDÐ=°Q,90CDE\Ð=°,//AE CD\,又//AB CDQ,【提分秘籍】解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
中考一轮复习 数学专题15 图形的旋转、翻折(对称)与平移(学生版)
专题15 图形的旋转、翻折(对称)与平移一、单选题1.(2022·广东)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A .()3,1 B .()1,1- C .()1,3 D .()1,1-2.(2022·广西)如图,在△ABC 中,点A (3,1),B (1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B 的对应点B ′的坐标为( )A .(3,-3)B .(3,3)C .(-1,1)D .(-1,3)3.(2020·山东菏泽)在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .()0,2-B .()0,2C .()6,2-D .()6,2--4.(2020·四川自贡)在平面直角坐标系中,将点()2,1向下平移3个单位长度,所得点的坐标是( ) A .(),-11 B .(),51 C .(),24 D .(),-225.(2021·四川雅安)如图,将ABC 沿BC 边向右平移得到DEF ,DE 交AC 于点G .若:3:1BC EC =.16ADG S =△.则CEG S △的值为( )A .2B .4C .6D .86.(2021·浙江丽水)四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是 (−1,b ),(1,b ),(2,b ),(3.5,b ),平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A .将B 向左平移4.5个单位B .将C 向左平移4个单位 C .将D 向左平移5.5个单位 D .将C 向左平移3.5个单位7.(2022·四川南充)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A .90︒B .60︒C .45︒D .308.(2022·山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--9.(2022·内蒙古呼和浩特)如图,ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α 10.(2022·四川内江)如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,点C 的坐标为(0,1),AC =2,Rt△ODE 是Rt△ABC 经过某些变换得到的,则正确的变换是( )* 本号资料皆来源于微信:数学A .△ABC 绕点C 逆时针旋转90°,再向下平移1个单位B .△ABC 绕点C 顺时针旋转90°,再向下平移1个单位C .△ABC 绕点C 逆时针旋转90°,再向下平移3个单位D .△ABC 绕点C 顺时针旋转90°,再向下平移3个单位11.(2022·黑龙江绥化)如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2-12.(2021·四川广安)如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒13.(2020·湖北黄石)在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为( )A .()2,1-B .()2,1C .()1,2-D .()2,1--14.(2020·四川攀枝花)如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π15.(2022·天津)如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN = B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥16.(2022·江苏扬州)如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:△AFE DFC △△;△DA 平分BDE ∠;△CDF BAD ∠=∠,其中所有正确结论的序号是( )A .△△B .△△C .△△D .△△△17.(2021·黑龙江牡丹江)如图,△AOB 中,OA =4,OB =6,AB =,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(﹣4,2)B .(4)或(﹣4) C .(﹣2)或(2) D .(2,﹣2,18.(2021·广东广州)如图,在Rt ABC 中,90C ∠=︒,6AC =,8BC =,将ABC 绕点A 逆时针旋转得到A B C ''',使点C '落在AB 边上,连结BB ',则sin BB C ''∠的值为( )A .35B .45CD 19.(2021·河南)如图,OABC 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D 落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .0)B .C .1,0)D .1,0)20.(2020·海南)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .21.(2020·山东菏泽)如图,将ABC 绕点A 顺时针旋转角α,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠等于( )A .2α B .23α C .α D .180α︒-22.(2020·山东聊城)如图,在Rt ABC △中,2AB =,30C ∠=︒,将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上,在B C ''上取点D ,使2B D '=,那么点D 到BC 的距离等于( ).A .21⎫+⎪⎪⎝⎭B 1C 1D 123.(2020·山东枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB 绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A .(1,2-+B .()C .(2+D .(- 二、填空题 24.(2022·山东临沂)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''',若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.25.(2021·辽宁鞍山)如图,△ABC 沿BC 所在直线向右平移得到△DEF ,若EC =2,BF =8,则BE =___.26.(2021·湖南湘潭)在平面直角坐标系中,把点()2,1A -向右平移5个单位得到点A ',则点A '的坐标为____. 27.(2021·吉林长春)如图,在平面直角坐标系中,等腰直角三角形AOB 的斜边OA 在y 轴上,2OA =,点B 在第一象限.标记点B 的位置后,将AOB 沿x 轴正方向平移至111AO B 的位置,使11A O 经过点B ,再标记点1B 的位置,继续平移至222A O B △的位置,使22A O 经过点1B ,此时点2B 的坐标为__________.28.(2021·湖南怀化)如图,在平面直角坐标系中,已知(2,1)A -,(1,4)B -,(1,1)C -,将ABC 先向右平移3个单位长度得到111A B C △,再绕1C 顺时针方向旋转90︒得到221A B C △,则2A 的坐标是____________.29.(2022·山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.30.(2020·江苏镇江)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于_____.31.(2020·广东广州)如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.32.(2020·湖南湘西)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO重叠部分的面积为CODE 向右平移的距离为___________.33.(2022·湖南永州)如图,图中网格由边长为1的小正方形组成,点A 为网格线的交点.若线段OA 绕原点O 顺时针旋转90°后,端点A 的坐标变为______.34.(2021·湖北随州)如图,在Rt ABC 中,90C ∠=︒,30ABC ∠=︒,BC =ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到AB C ''△,并使点C '落在AB 边上,则点B 所经过的路径长为______.(结果保留π)35.(2020·广西)以原点为中心,把()3,4M 逆时针旋转90°得到点N ,则点N 的坐标为______. 36.(2022·广西贺州)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B 到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.37.(2022·湖北随州)如图1,在矩形ABCD 中,8AB =,6AD =,E ,F 分别为AB ,AD 的中点,连接EF .如图2,将△AEF 绕点A 逆时针旋转角()090θθ<<︒,使EF AD ⊥,连接BE 并延长交DF 于点H ,则△BHD 的度数为______,DH 的长为______. 本@号资料皆来源于微信*:数学38.(2021·四川巴中)如图,把边长为3的正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,DE 与BC 交于点P ,ED 的延长线交AB 于点Q ,交OA 的延长线于点M .若BQ :AQ =3:1,则AM =__________.9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB '△的面积之比等于_______.40.(2020·四川眉山)如图,在Rt ABC 中,90BAC ∠=︒,2AB =.将ABC 绕点A 按顺时针方向旋转至11AB C △的位置,点1B 恰好落在边BC 的中点处,则1CC 的长为________.41.(2020·山东烟台)如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB 绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为_____.42.(2020·甘肃天水)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.三、解答题43.(2022·安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点均为格点(网格线的交点).(1)将△ABC 向上平移6个单位,再向右平移2个单位,得到111A B C △,请画出111A B C △﹔(2)以边AC 的中点O 为旋转中心,将△ABC 按逆时针方向旋转180°,得到222A B C △,请画出222A B C △.44.(2022·黑龙江牡丹江)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DEF 关于点O 成中心对称,△ABC 与△DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置;(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1; (3)在网格中画出格点M ,使A 1M 平分△B 1A 1C 145.(2021·黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1个单位长度,ABC ∆的顶点和线段DE 的端点均在小正方形的顶点上.(1)在方格纸中将ABC ∆向上平移1个单位长度,再向右平移2个单位长度后得到MNP ∆;(点A 的对应点是点M ,点B 的对应点是点N ,点C 的对应点是点P ),请画出MNP ∆;(2)在方格纸中画出以DE 为斜边的等腰直角三角形DEF (点F 在小正方形的顶点上).连接FP ,请直接写出线段FP 的长.46.(2021·安徽)图,在每个小正方形的边长为1个单位的网格中,ABC 的顶点均在格点(网格线的交点)上.(1)将ABC 向右平移5个单位得到111A B C △,画出111A B C △;(2)将(1)中的111A B C △绕点C 1逆时针旋转90︒得到221A B C △,画出221A B C △.47.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中,AOB ∆的顶点坐标分别为(3,0)A ,(0,0)O ,(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位,画出平移后的△111AO B (不写作法,但要标出顶点字母); (2)将AOB ∆绕点O 顺时针旋转90︒,画出旋转后的△222A O B (不写作法,但要标出顶点字母); (3)在(2)的条件下,求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.48.(2022·黑龙江)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标; (3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).49.(2020·四川巴中)如图所示,ABC 在边长为1cm 的小正方形组成的网格中.(1)将ABC 沿y 轴正方向向上平移5个单位长度后,得到111A B C △,请作出111A B C △,并求出11A B 的长度; (2)再将111A B C △绕坐标原点O 顺时针旋转180°,得到222A B C △,请作出222A B C △,并直接写出点2B 的坐标; (3)在(1)(2)的条件下,求线段AB 在变换过程中扫过图形的面积和.50.(2022·江苏常州)如图,点A 在射线OX 上,OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA ',那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法,若3a =,37n =,则点A '的位置可以表示为______;(2)在(1)的条件下,已知点B 的位置用()3,74︒表示,连接A A '、A B '.求证:A A A B ''=.51.(2021·黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO 的三个顶点坐标分别为()()()1,3,4,3,00,0A B --.(1)画出ABO 关于x 轴对称的11A B O ,并写出点1A 的坐标;(2)画出ABO 绕点O 顺时针旋转90︒后得到的22A B O ,并写出点2A 的坐标; (3)在(2)的条件下,求点A 旋转到点2A 所经过的路径长(结果保留π).52.(2021·青海西宁)如图,正比例函数12y x =与反比例函数(0)ky x x =>的图象交于点A ,AB x ⊥轴于点B ,延长AB 至点C ,连接OC .若2cos 3BOC ∠=,3OC =.(1)求OB的长和反比例函数的解析式;(2)将AOB绕点О旋转90°,请直接写出旋转后点A的对应点A'的坐标.53.(2021·江苏淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;*本号资料皆来源于微信:数学第*六感(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的15.54.(2021·辽宁阜新)下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于 y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .55.(2021·贵州毕节)如图1,在Rt ABC 中,90BAC ∠=︒,AB AC =,D 为ABC 内一点,将线段AD 绕点A 逆时针旋转90°得到AE ,连接CE ,BD 的延长线与CE 交于点F . (1)求证:BD CE =,BD CE ⊥;(2)如图2.连接AF ,DC ,已知135BDC ∠=︒,判断AF 与DC 的位置关系,并说明理由.56.(2021·内蒙古通辽)已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =; (2)将MON △绕点O 顺时针旋转.△如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;△当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.57.(2021·湖南衡阳)如图,点E 为正方形ABCD 外一点,90AEB =︒∠,将Rt ABE △绕A 点逆时针方向旋转90︒得到,ADF DF 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由; (2)已知7,13BH BC ==,求DH 的长.58.(2021·北京)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明; (2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.59.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.60.(2021·四川阿坝)如图,Rt ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,点D 落在线段AB 上,连接BE .(1)求证:DC 平分ADE ∠;(2)试判断BE 与AB 的位置关系,并说明理由:(3)若BE BD =,求tan ABC ∠的值.61.(2020·湖南邵阳)已知:如图△,将一块45°角的直角三角板DEF 与正方形ABCD 的一角重合,连接,AF CE ,点M 是CE 的中点,连接DM .(1)请你猜想AF 与DM 的数量关系是__________.(2)如图△,把正方形ABCD 绕着点D 顺时针旋转α角(090a ︒<<︒).△AF 与DM 的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM 到点N ,使MN DM =,连接CN )△求证:AF DM ⊥;△若旋转角45α=︒,且2EDM MDC ∠=∠,求AD ED 的值.(可不写过程,直接写出结果)62.(2020·江苏常州)如图1,点B 在线段CE 上,Rt△ABC △Rt△CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. △请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;△如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.63.(2020·福建)如图,ADE ∆由ABC ∆绕点A 按逆时针方向旋转90︒得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且∠=∠CDF DAC .△判断DF 和PF 的数量关系,并证明;△求证:=EP PC PF CF.64.(2020·甘肃金昌)如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且45MAN ∠=︒,把ADN △绕点A 顺时针旋转90︒得到ABE △.(1)求证:AEM △△ANM .(2)若3BM =,2DN =,求正方形ABCD 的边长.。
2020届中考数学总复习(26)图形的平移-精练精析(1)及答案解析
图形的变化——图形的平移1一.选择题(共8小题)1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.18cm C.20cm D.22cm2.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直 B.相等 C.平分 D.平分且垂直3.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)4如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD 的周长为()A.12 B.16 C.20 D.245如图,已知∠EFD=∠BCA,BC=EF,AF=DC.若将△ABC沿AD向右平移,使点C与点D重合,则所得到的图形形状是()A.梯形 B.平行四边形C.矩形 D.等边三角形6.如图将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=()A.1 B.C.D.27.如图,EF是△ABC的中位线,AD是中线,将△AEF沿AD方向平移到△A1E1F1的位置,使E1、F1落在BC边上,此时点A1恰好落在EF上,已知△AEF的面积是7,则阴影部分的面积是()A.7 B.14 C.21 D.288如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若四边形ABED 的面积等于8,则平移距离等于()A.2 B.4 C.8 D.16二.填空题(共8小题)9.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于_________ .10.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为_________ .11.如图,在直角坐标系中,已知点A(﹣3,﹣1),点B(﹣2,1),平移线段AB,使点A 落在A1(0,﹣1),点B落在点B1,则点B1的坐标为_________ .12.如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为_________ .13在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x 轴的对称点C的坐标是_________ .14如图,矩形ABCD中,AB=3cm,BC=4cm.沿对角线AC剪开,将△ABC向右平移至△A1BC1位置,成图(2)的形状,若重叠部分的面积为3cm2,则平移的距离AA1= _________ cm.15.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_________ .16.如图,已知A(﹣3,1),B(﹣1,﹣1),C(﹣2,0),曲线ACB是以C为对称中心的中心对称图形,把此曲线沿x轴正方向平移,当点C运动到C′(2,0)时,曲线ACB描过的面积为_________ .三.解答题(共7小题)17.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为_________ ;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为_________ .18.如图,△ABC中,AB=BC,将△ABC沿直线BC平移到△DCE(使B与C重合),连接BD,求∠BDE的度数.19.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.20.如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a个单位到△DEF 的位置.(1)当a=4时,求△ABC所扫过的面积;(2)连接AE、AD,设AB=5,当△ADE是以DE为一腰的等腰三角形时,求a的值.21.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.(1)证明△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.22.如图,在三角形ABC中,AC=BC,若将△ABC沿BC方向向右平移BC长的距离,得到△CEF,连接AE.(1)试猜想,AE与CF有何位置上的关系?并对你的猜想给予证明;(2)若BC=10,tan∠ACB=时,求AB的长.23如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求四边形CEFB的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.图形的变化——图形的平移1参考答案与试题解析一.选择题(共8小题)1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.18cm C.20cm D.22cm考点:平移的性质.专题:几何图形问题.分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC 即可得出答案.解答:解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选:C.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.2.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直考点:平移的性质;勾股定理.专题:网格型.分析:先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.解答:解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.∵A′O=OB=,AO=OC=2,∴线段A′B与线段AC互相平分,又∵∠AOA′=45°+45°=90°,∴A′B⊥AC,∴线段A′B与线段AC互相垂直平分.故选:D.点评:本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.3.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B(2,9)C(5,3)D.(﹣9,﹣4)考点:坐标与图形变化-平移.专题:常规题型.分析:根据点A、C的坐标确定出平移规律,再求出点D的坐标即可.解答:解:∵点A(﹣1,4)的对应点为C(4,7),∴平移规律为向右5个单位,向上3个单位,∵点B(﹣4,﹣1),∴点D的坐标为(1,2).故选:A.点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD 的周长为()A.12 B.16 C.20 D.24考点:平移的性质;等边三角形的性质.专题:数形结合.分析:根据平移的性质易得AD=BE=2,那么四边形ABFD的周长即可求得.解答:解:∵将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,∴AD=BE=2,各等边三角形的边长均为4.∴四边形ABFD的周长=AD+AB+BE+FE+DF=16.故选B.点评:本题考查平移的性质,用到的知识点为:平移前后对应线段相等;关键是找到所求四边形的各边长.5.如图,已知∠EFD=∠BCA,BC=EF,AF=DC.若将△ABC沿AD向右平移,使点C与点D重合,则所得到的图形形状是()A.梯形B.平行四边形C矩形D.等边三角形考点:平移的性质;平行四边形的判定.分析:首先根据平移后点C与点D重合,AF=DC,得到点A和点F重合,然后根据∠EFD=∠BCA,得到BC∥EF,从而判定所得到的图形形状是平行四边形.解答:解:∵平移后点C与点D重合,AF=DC,∴点A和点F重合,∵∠EFD=∠BCA,∴BC∥EF,∵BC=EF,∴所得到的图形形状是平行四边形,故选B.点评:本题考查了平移的性质及平行四边形的判定,解题的关键是了解平行四边形的判定定理,难度不大.6.如图将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=()A. 1 B.C.D.2考点:平移的性质;等腰直角三角形.分析:重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1.解答:解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴×x×2x=2,解得x=(舍去负值),∴B1C=2,∴BB1=BC﹣B1C=.故选:B.点评:本题考查了等腰直角三角形的性质,平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质求斜边长.7.如图,EF是△ABC的中位线,AD是中线,将△AEF沿AD方向平移到△A1E1F1的位置,使E1、F1落在BC边上,此时点A1恰好落在EF上,已知△AEF的面积是7,则阴影部分的面积是()A.7 B14 C.21 D.28考点:平移的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可知S△ABC=4S△AEF,再根据平移变换只改变图形的位置不改变图形的形状可知S△A1E1F1=S△AEF,然后列式计算即可得解.解答:解:∵EF是△ABC的中位线,∴S△ABC=4S△AEF=4×7=28,∵△AEF沿AD方向平移到△A1E1F1,∴S△A1E1F1=S△AEF=7,∴阴影部分的面积=28﹣7﹣7=14.故选B.点评:本题考查了平移的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键,难点在于理解三角形的中位线把三角形分成的小三角形的面积等于原三角形的面积的.8如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若四边形ABED 的面积等于8,则平移距离等于()A. 2 B 4 C.8 D.16考点:平移的性质.分析:根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.解答:解:∵将△ABC沿CB向右平移得到△DEF,四边形ABED的面积等于8,AC=4,∴平移距离=8÷4=2.故选A.点评:本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.二.填空题(共8小题)9.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于4或8 .考点:平移的性质;解一元二次方程-因式分解法;平行四边形的判定与性质;正方形的性质.专题:几何动点问题.分析:根据平移的性质,结合阴影部分是平行四边形,△AA′H与△HCB′都是等腰直角三角形,则若设AA′=x,则阴影部分的底长为x,高A′D=2﹣x,根据平行四边形的面积公式即可列出方程求解.解答:解:设AC交A′B′于H,∵∠A=45°,∠D=90°∴△A′HA是等腰直角三角形设AA′=x,则阴影部分的底长为x,高A′D=12﹣x∴x•(12﹣x)=32∴x=4或8,即AA′=4或8cm.故答案为:4或8.点评:考查了平移的性质及一元二次方程的解法等知识,解决本题关键是抓住平移后图形的特点,利用方程方法解题.10.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12 .考点:平移的性质.分析:根据平移性质,判定△A′B′C为等边三角形,然后求解.解答:解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=12.故答案为:12.点评:本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.11.如图,在直角坐标系中,已知点A(﹣3,﹣1),点B(﹣2,1),平移线段AB,使点A 落在A1(0,﹣1),点B落在点B1,则点B1的坐标为(1,1).考点:坐标与图形变化-平移.分析:根据网格结构找出点A1、B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.解答:解:通过平移线段AB,点A(﹣3,﹣1)落在(0,﹣1),即线段AB沿x轴向右移动了3格.如图,点B1的坐标为(1,1).故答案为:(1,1).点评:本题考查了坐标与图形变化﹣平移,熟练掌握网格结构准确找出点的位置是解题的关键.12如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为(﹣1,3).考点:坐标与图形变化-平移.专题:几何图形问题.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y)进行计算即可.解答:解:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1﹣2,3),即(﹣1,3),故答案为:(﹣1,3).点评:此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x 轴的对称点C的坐标是(2,﹣2).考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.专题:几何图形问题.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故答案为:(2,﹣2).点评:此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.14如图,矩形ABCD中,AB=3cm,BC=4cm.沿对角线AC剪开,将△ABC向右平移至△A1BC1位置,成图(2)的形状,若重叠部分的面积为3cm2,则平移的距离AA1= 2 cm.考点:平移的性质.专题:压轴题.分析:首先假设AA1=x,DA1=4﹣x,再利用平移的性质以及相似三角形的性质得出,求出x的值即可.解答:解:∵矩形ABCD中,AB=3cm,BC=4cm.沿对角线AC剪开,将△ABC向右平移至△A1BC1位置,成图(2)的形状,重叠部分的面积为3cm2,设AA1=x,∴DA1=4﹣x,∴NA1×DA1=3,∴NA1=,∵NA1∥CD,∴,∴,解得:x=2则平移的距离AA1=2,故答案为:2.点评:此题主要考查了平移的性质以及相似三角形的性质,根据题意得出是解决问题的关键.15如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为10 .考点:平移的性质.分析:根据平移的基本性质解答即可.解答:解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.16.如图,已知A(﹣3,1),B(﹣1,﹣1),C(﹣2,0),曲线ACB是以C为对称中心的中心对称图形,把此曲线沿x轴正方向平移,当点C运动到C′(2,0)时,曲线ACB描过的面积为8 .考点:平移的性质;坐标与图形性质.专题:计算题.分析:连接AB和A′B′,根据平移的性质可知,平行四边形ABB′A′的面积即是曲线ACB描过的面积,然后利用平行四边形的面积公式求解即可.解答:解:连接AB和A′B′,过点B作BD⊥AA′,如下图所示:根据平移的性质可知,平行四边形ABB′A′的面积即是曲线ACB描过的面积,∵S▱ABB′A′=AA′×BD=CC′×BD=4×2=8.∴曲线ACB描过的面积为8.故答案为:8.点评:本题考查平移的性质及坐标与图形的性质,难度适中,解题关键是将曲线ACB描过的面积转化为求平行四边形ABB′A′的面积.三.解答题(共7小题)17.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).考点:作图-平移变换;关于x轴、y轴对称的点的坐标.专题:作图题.分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.解答:解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).点评:本题考查了利用平移变换作图,关于y轴对称点的坐标,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.如图,△ABC中,AB=BC,将△ABC沿直线BC平移到△DCE(使B与C重合),连接BD,求∠BDE的度数.考点:平移的性质.专题:计算题.分析:先根据平移的性质得AB=DC,AB∥CD,AC∥DE,利用AB=BC可判断四边形ABCD 为菱形,根据菱形的性质得AC⊥BD,而AC∥DE,所以BD⊥DE,则∠BDE=90°.解答:解:∵△ABC沿直线BC平移到△DCE(使B与C重合),∴AB=DC,AB∥CD,AC∥DE,∴四边形ABCD为平行四边形,∵AB=BC,∴四边形ABCD为菱形,∴AC⊥BD,而AC∥DE,∴BD⊥DE,∴∠BDE=90°.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了菱形的判定与性质.19如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2)观图形可得△ABC扫过的面积为四边形AA′B′B的面积与△ABC的面积的和,然后列式进行计算即可得解.解答:解:(1)平移后的△A′B′C′如图所示;点A′、B′、C′的坐标分别为(﹣1,5)、(﹣4,0)、(﹣1,0);(2)由平移的性质可知,四边形AA′B′B是平行四边形,∴△ABC扫过的面积=S四边形AA'B'B+S△ABC=B′B•AC+BC•AC=5×5+×3×5=25+=.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20.如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a个单位到△DEF 的位置.(1)当a=4时,求△ABC所扫过的面积;(2)连接AE、AD,设AB=5,当△ADE是以DE为一腰的等腰三角形时,求a的值.考点:平移的性质.专题:计算题.分析:(1)要求△ABC所扫过的面积,即求梯形ABFD的面积,根据题意,可得AD=4,BF=2×8﹣4=12,所以重点是求该梯形的高,根据直角三角形的面积公式即可求解;(2)此题注意分两种情况进行讨论:①当AD=DE时,根据平移的性质,则AD=DE=AB=5;②当AE=DE时,根据等腰三角形的性质以及勾股定理进行计算.解答:解:(1)△ABC所扫过面积即梯形ABFD的面积,作AH⊥BC于H,∴S△ABC=16,BC•AH=16,AH===4,∴S梯形ABFD=×(AD+BF)×AH=(4+12)×4=32;(2)①当AD=DE时,a=5;②当AE=DE时,取BE中点M,则AM⊥BC,∵S△ABC=16,∴BC•AM=16,∴×8×AM=16,∴AM=4;在Rt△AMB中,BM===3,此时,a=BE=6.综上,a=5,6.点评:熟悉平移的性质以及等腰三角形的性质和直角三角形的性质.考查了学生综合运用数学的能力.21.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.(1)证明△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.考点:平移的性质;全等三角形的判定;菱形的判定.专题:几何综合题.分析:(1)根据已知利用SAS判定△A′AD′≌△CC′B;(2)由已知可推出四边形ABC′D′是平行四边形,只要再证明一组邻边相等即可确定四边形ABC′D′是菱形,由已知可得到BC′=AC,AB=AC,从而得到AB=BC′,所以四边形ABC′D′是菱形.解答:(1)证明:∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC.∴∠D′A′C′=∠BCA.∴△A′AD′≌△CC′B.(2)解:当点C′是线段AC的中点时,四边形ABC′D′是菱形.理由如下:∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,∴C′D′=CD=AB.由(1)知AD′=C′B.∴四边形ABC′D′是平行四边形.在Rt△ABC中,点C′是线段AC的中点,∴BC′=AC.而∠ACB=30°,∴AB=AC.∴AB=BC′.∴四边形ABC′D′是菱形.点评:本题即考查了全等的判定及菱形的判定,注意对这两个判定定理的准确掌握.考查了学生综合运用数学的能力.22.如图,在三角形ABC中,AC=BC,若将△ABC沿BC方向向右平移BC长的距离,得到△CEF,连接AE.(1)试猜想,AE与CF有何位置上的关系?并对你的猜想给予证明;(2)若BC=10,tan∠ACB=时,求AB的长.考点:平移的性质;勾股定理;菱形的判定.专题:探究型.分析:(1)由平移可得,∠ACB=∠FEC,AC=CE=EF=AF,那么四边形ACEF是菱形,由邻边相等可得到是菱形,所以对角线互相垂直;(2)作出BC边上高AD,利用AC,及tan∠ACB的值,求得AD,CD长,进而得到BD长,利用勾股定理求解即可.解答:解:(1)AE⊥CF证明:如图,连接AF,∵AC=BC,又∵△ABC沿BC方向向右平移BC长的距离,∴AC=CE=EF=AF.∴四边形ACEF是菱形.∴AE⊥CF.(2)如图,作AD⊥BC于D.∵tan∠ACB=,设AD=3KDC=4K,在Rt△ADC中,AC=10,∵AD2+DC2=AC2∴K=2.∴AD=6cm,DC=8cm.∴BD=2cm.在Rt△ADB中,根据勾股定理:AB=2cm.点评:平移前后对应线段,对应角相等,作高构造已给三角函数所在的直角三角形是常用的辅助线作法.23.如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求四边形CEFB的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.考点:平移的性质;全等三角形的判定;菱形的判定.专题:综合题.分析:(1)根据平移的性质及平行四边形的性质可得到S△EFA=S△BAF=S△ABC,从而便可得到四边形CEFB的面积;(2)由已知可证得平行四边形EFBA为菱形,根据菱形的对角线互相垂直平分可得到AF与BE的位置关系为垂直;(3)作BD⊥AC于D,结合三角形的面积求解.解答:解:(1)由平移的性质得AF∥BC,且AF=BC,△EFA≌△ABC∴四边形AFBC为平行四边形S△EFA=S△BAF=S△ABC=3∴四边形EFBC的面积为9;(2)BE⊥AF证明:由(1)知四边形AFBC为平行四边形∴BF∥AC,且BF=AC又∵AE=CA∴四边形EFBA为平行四边形又已知AB=AC∴AB=AE∴平行四边形EFBA为菱形∴BE⊥AF;(3)如上图,作BD⊥AC于D∵∠BEC=15°,AE=AB∴∠EBA=∠BEC=15°∴∠BAC=2∠BEC=30°∴在Rt△BAD中,AB=2BD设BD=x,则AC=AB=2x∵S△ABC=3,且S△A BC=AC•BD=•2x•x=x2∴x2=3∵x为正数∴x=∴AC=2.点评:此题主要考查了全等三角形的判定,平移的性质,菱形的性质等知识点的综合运用及推理计算能力.。
2020中考数学压轴题专题14 几何变换
专题14 几何变换问题【考点1】平移变换问题【例1】(2019·山东中考真题)在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)【答案】A【解析】试题分析:已知将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A ′的坐标为(﹣1,1).故选A .考点:坐标与图形变化-平移.【变式1-1】(2019·甘肃中考真题)如图,在平面直角坐标系xOy 中,将四边形ABCD 向下平移,再向右平移得到四边形1111A B C D ,已知1(3,5),(4,3),(3,3)A B A --,则点1B 坐标为( )A .(1,2)B .(2,1)C .(1,4)D .(4,1)【答案】B【解析】【分析】 根据A 和A 1的坐标得出四边形ABCD 先向下平移2个单位,再向右平移6个单位得到四边形1111A B C D ,则B 的平移方法与A 点相同,即可得到答案.【详解】图形向下平移,纵坐标发生变化,图形向右平移,横坐标发生变化. A (-3,5)到A 1(3,3)得向右平移3-(-3)=6个单位,向下平移5-3=2个单位.所以B (-4,3)平移后B 1(2,1).故选B.【点睛】此题考查图形的平移.,掌握平移的性质是解题关键【变式1-2】(2019·广西中考真题)如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是2,1,1,()()2,3,3()A B C ---(1)将ABC ∆向上平移4个单位长度得到111A B C ∆,请画出111A B C ∆;(2)请画出与ABC ∆关于y 轴对称的222A B C ∆;(3)请写出12A A 、的坐标.【答案】(1)如图所示:111A B C ∆,即为所求;见解析;(2)如图所示:222A B C ∆,即为所求;见解析;(3)122,3,),1(()2A A --.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【详解】(1)如图所示:111A B C ∆,即为所求;(2)如图所示:222A B C ∆,即为所求;(3)122,3,),1(()2A A --.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.【考点2】轴对称变换问题(含折叠变换)【例2】(2019·四川中考真题)如图,在菱形ABCD 中,4sin 5B =,点,E F 分别在边,AD BC 上,将四边形AEFB 沿EF 翻折,使AB 的对应线段MN 经过顶点C ,当MN BC ⊥时,AE AD 的值是_____.【答案】29. 【解析】【分析】延长CM 交AD 于点G ,进而利用翻折变换的性质得出AE ME =,A EMC ∠=∠,BF FN =,B N ∠=∠,AB MN =,再利用菱形的性质得出AB BC CD AD ===,B D ∠=∠,180A B ︒∠+∠=,设4CF x =,5FN x =,利用勾股定理得出9BC x AB CD AD ====,再根据三角函数进行计算即可解答【详解】延长CM 交AD 于点G ,∵将四边形AEFB 沿EF 翻折,∴AE ME =,A EMC ∠=∠,BF FN =,B N ∠=∠,AB MN =∵四边形ABCD 是菱形∴AB BC CD AD ===,B D ∠=∠,180A B ︒∠+∠=∵4sin sin 5CF B N FN===, ∴设4CF x =,5FN x =,∴223CN FN CF x =-=, ∴9BC x AB CD AD ====,∵4sin sin 5GC B D CD=== ∴365x GC = ∴()36x 6655GM GC MN CN x x =--=-= ∵180A B ︒∠+∠=,180EMC EMG ︒∠+∠=∴B EMG ∠=∠∴4sin sin 5EG B EMG EM=∠== ∴3cos 5GM EMG EM ∠== ∴=2EM x ,∴2AE x =,∴2299AE x AD x == 故答案为:29. 【点睛】此题考查翻折变换,菱形的性质,三角函数,解题关键在于利用折叠的性质进行解答【变式2-1】(2019·江苏中考真题)如图,将平行四边形纸片ABCD 沿一条直线折叠,使点A 与点C 重合,点D 落在点G 处,折痕为EF .求证:(1)ECB FCG ∠=∠;(2)EBC FGC ∆≅∆.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)依据平行四边形的性质,即可得到A BCD ∠=∠,由折叠可得,A ECG ∠=∠,即可得到ECB FCG ∠=∠;(2)依据平行四边形的性质,即可得出D B ∠=∠,AD BC =,由折叠可得,D G ∠=∠,AD CG =,即可得到B G ∠=∠,BC CG =,进而得出EBC FGC ∆≅∆.【详解】(1)Q 四边形ABCD 是平行四边形,A BCD ∴=∠,由折叠可得, A ECG ∠=∠,BCD ECG ∴∠=∠,BCD ECF ECG ECF ∴∠-∠=∠-∠,ECB FCG ∴∠=∠;(2)Q 四边形ABCD 是平行四边形,D B ∴∠=∠,AD BC =,由折叠可得,D G ∠=∠,AD CG =,B G ∴∠=∠,BC CG =,又ECB FCG ∠=∠Q ,()EBC FGC ASA ∴∆≅∆.【点睛】本题考查了平行四边形的性质,折叠的性质,全等三角形的判定,熟练掌握平行四边形的性质以及折叠的性质是解题的关键.【变式2-2】(2019·江苏中考真题)如图,已知等边△ABC 的边长为8,点P 是AB 边上的一个动点(与点A 、B 不重合),直线l 是经过点P 的一条直线,把△ABC 沿直线l 折叠,点B 的对应点是点B’. (1)如图1,当PB=4时,若点B’恰好在AC 边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l //AC ,则BB’的长度为 ;(3)如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l 变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)53;(3)面积不变,S△ACB’=163;(4)24+43【解析】【分析】(1)证明△APB′是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;(3)如图3中,结论:面积不变,证明B B′//AC即可;(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题. 【详解】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=PA=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°=53,∴BB′=53,故答案为53;(3)如图3,结论:面积不变.过点B作BE⊥AC于E,则有BE=AB·sin60°=3843=∴S△ABC=1184322AC BE=⨯⨯g3,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,PA=2,∠PAE=60°,∴PE=PA·sin60°3,∴3∴S△ACB最大值=12×3)×3【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.【考点3】旋转变换问题【例3】(2019·山东中考真题)(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由. (3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE ,AD ⊥BE .(2) AD=BE ,AD ⊥BE .(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE ,AD ⊥BE .理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.【变式3-1】(2019·辽宁中考真题)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(-4,4),B(-1,1),C(-1,4).(1)画出与△ABC关于y轴对称的△A1B1C1.(2)将△ABC绕点B逆时针旋转90°,得到△A2BC2,画两出△A2BC2.(3)求线段AB在旋转过程中扫过的图形面积.(结果保留π)【答案】(1)作图见解析;(2)作图见解析;(3)9 2π.【解析】【分析】(1)根据关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、C的对应点A2、C2即可;(3)线段AB在旋转过程中扫过的图形为扇形,然后根据扇形面积公式计算即可.【详解】解:(1)如图,△A l B1C1为所作.(2)如图,△A2BC2为所作;(3)AB=2233+=32,所以线段AB在旋转过程中扫过的图形面积=290π(32)360⋅⋅=92π.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积公式.【变式3-2】(2019·江苏中考真题)如图①,在ABC∆中,3AB AC==,100BAC︒∠=,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80︒,点B的对应点是点E,连接BE,得到BPE∆.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E 在直线AD 上时,如图②所示.①BEP ∠= ;②连接CE ,直线CE 与直线AB 的位置关系是 .(2)请在图③中画出BPE ∆,使点E 在直线AD 的右侧,连接CE .试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【答案】(1)①50︒;②EC AB ∥;(2)AB EC ∥;(3)AE 的最小值3.【解析】【分析】(1)①利用等腰三角形的性质即可解决问题.②证明40ABC ︒∠=,40ECB ︒∠=,推出ABC ECB ∠=∠即可.(2)如图③中,以P 为圆心,PB 为半径作⊙P .利用圆周角定理证明1402BCE BPE ︒∠=∠=即可解决问题.(3)因为点E 在射线CE 上运动,点P 在线段AD 上运动,所以当点P 运动到与点A 重合时,AE 的值最小,此时AE 的最小值3AB ==.【详解】(1)①如图②中,∵80BPE ︒∠=,PB PE =,∴50PEB PBE ︒∠=∠=,②结论:AB EC ∥.理由:∵AB AC =,BD DC =,∴AD BC ⊥,∴90BDE ︒∠=,∴905040EBD ︒︒︒∠=-=,∵AE 垂直平分线段BC ,∴EB EC =,∴40ECB EBC ︒∠=∠=,∵AB AC =,100BAC ︒∠=,∴40ABC ACB ︒∠=∠=,∴ABC ECB ∠=∠,∴AB EC ∥.故答案为50,AB EC ∥.(2)如图③中,以P 为圆心,PB 为半径作⊙P .∵AD 垂直平分线段BC ,∴PB PC =, ∴1402BCE BPE ︒∠=∠=, ∵40ABC ︒∠=,∴ AB EC ∥.(3)如图④中,作AH CE ⊥于H ,∵点E 在射线CE 上运动,点P 在线段AD 上运动,∴当点P 运动到与点A 重合时,AE 的值最小,此时AE 的最小值3AB ==.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.【考点4】位似变换问题【例4】(2019·广西中考真题)如图,ABC ∆与'''A B C ∆是以坐标原点O 为位似中心的位似图形,若点()()2,2,3,4A B ,()6,1C ,()'6,8B 则'''A B C ∆的面积为__.【答案】18.【解析】【分析】根据()3,4B ,()'6,8B 的坐标得到位似比,继而得到A 、C 对应点的坐标,再用'''A B C ∆所在的矩形的面积减去顶点处的三角形面积即可求得答案.【详解】∵ABC ∆与'''A B C ∆是以坐标原点O 为位似中心的位似图形,若点()3,4B ,()'6,8B ,∴位似比为:31=62, ∵()2,2A ,()6,1C ,∴()()'4,4,'12,2A C ,∴'''A B C ∆的面积为:1116824662818222⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:18.【点睛】本题考查了位似变换以及三角形面积求法,正确得出对应点位置是解题关键. 【变式4-1】(2019·山东中考真题)在平面直角坐标系中,ABO V 三个顶点的坐标分别为()()()2,4,4,0,0,0A B O --.以原点O 为位似中心,把这个三角形缩小为原来的12,得到CDO V ,则点A 的对应点C 的坐标是__________.【答案】()1,2-或()1,2-【解析】【分析】根据位似图形的中心和位似比例即可得到点A 的对应点C.【详解】解:以原点O 为位似中心,把这个三角形缩小为原来的12,点A 的坐标为()2,4-, ∴点C 的坐标为112,22(4)-⨯⨯或112,22(4)⨯-⨯,即()1,2-或()1,2-,故答案为:()1,2-或()1,2-.【点睛】本题主要考查位似图形的对应点,关键在于原点的位似图形,要注意方向. 【变式4-2】(2018·四川中考真题)如图,ABC ∆在方格纸中.(1)请在方格纸上建立平面直角坐标系,使(2,3)A ,(6,2)C ,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC ∆放大,画出放大后的图形'''A B C ∆; (3)计算'''A B C ∆的面积S .【答案】(1)作图见解析;(2,1)B .(2)作图见解析;(3)16.【解析】分析:(1)直接利用A ,C 点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出△A'B'C';(3)直接利用(2)中图形求出三角形面积即可.详解:(1)如图所示,即为所求的直角坐标系;B (2,1);(2)如图:△A'B'C'即为所求;(3)S △A'B'C '=12×4×8=16. 点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.一、单选题1.(2019·浙江中考真题)在平面直角坐标系中,点(),2A m 与点()3,b n 关于y 轴对称,则( ) A .3m =,2n =B .3m =-,2n =C .2m =,3n =D .2m =-,3n = 【答案】B【解析】【分析】根据点关于y 轴对称,其横坐标互为相反数,纵坐标相同即可得到答案.【详解】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同,故选B【点睛】本题考查点坐标的轴对称,解题的关键熟练掌握点坐标的轴对称.2.(2019·辽宁中考真题)如图,点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A ′B ′C ′,点P 在A ′C ′上的对应点P ′的的坐标为( )A .(4,3)B .(3,4)C .(5,3)D .(4,4)【答案】A【解析】【分析】 直接利用在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k ,进而结合已知得出答案.【详解】∵点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A′B′C′,∴点P 在A′C′上的对应点P′的的坐标为:(4,3).故选:A .【点睛】此题主要考查了位似变换,正确得出位似比是解题关键.3.(2019·湖南中考真题)如图,将OAB ∆绕点O 逆时针旋转70°到OCD ∆的位置,若40AOB ∠=o ,则AOD ∠=( )A .45°B .40°C .35°D .30°【答案】D【解析】【分析】 首先根据旋转角定义可以知道70BOD ∠=o ,而40AOB ∠=o ,然后根据图形即可求出AOD ∠.【详解】解:∵OAB ∆绕点O 逆时针旋转70°到OCD ∆的位置,∴70BOD ︒∠=,而40AOB ︒∠=,∴704030AOD ∠=-=o o o故选:D .【点睛】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识. 4.(2019·广东中考真题)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( ) A . B . C . D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.【详解】A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,不是中心对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、是轴对称图形,不是中心对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.5.(2019·浙江中考真题)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC 关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1)【答案】A【解析】【分析】先找出对应点,再用线段顺次连接作出图形,根据图形解答即可.【详解】如图,()''21C -,.故选A.【点睛】本题考查了轴对称作图及中心对称作图,熟练掌握轴对称作图及中心对称的性质是解答本题的关键,中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.6.(2019·四川中考真题)在平面直角坐标系中,将点()2,3-向右平移4个单位长度后得到的点的坐标为( )A .()2,3B .()6,3-C .()2,7-D .()2,1--【答案】A【解析】【分析】根据直角坐标系的坐标平移即可求解.【详解】一个点向右平移之后的点的坐标,纵坐标不变,横坐标加4,故选A【点睛】此题主要考查坐标的平移,解题的关键是熟知直角坐标系的特点.7.(2019·湖南中考真题)点(1,2)-关于原点的对称点坐标是( )A .(1,2)--B .(1,2)-C .(1,2)D .(2,1)- 【答案】B【解析】【分析】坐标系中任意一点(),P x y ,关于原点的对称点是(),x y --,即关于原点的对称点,横纵坐标都变成相反数.【详解】根据中心对称的性质,得点()1,2-关于原点的对称点的坐标为()1,2-.故选B .【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.8.(2019·湖南中考真题)如图,以点O 为位似中心,把ABC V 放大为原图形的2倍得到A'B'C'V ,以下说法中错误的是( )A .ABC A'B'C'V V ∽B .点C 、点O 、点C′三点在同一直线上 C .AO:AA'1:2=D .AB A'B'P【答案】C【解析】【分析】 直接利用位似图形的性质进而分别分析得出答案.【详解】∵以点O 为位似中心,把ABC V 放大为原图形的2倍得到A'B'C'V ,∴ABC A'B'C'V V ∽,点C 、点O 、点C′三点在同一直线上,AB A'B'P ,AO:AA'1:3=,∴C 选项错误,符合题意.故选C .【点睛】此题主要考查了位似变换,正确把握位似图形的性质是解题关键.9.(2018·湖南中考真题)如图所示,在平面直角坐标系中,已知点A (2,4),过点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是( )A .2B .1C .4D .25【答案】A【解析】 【分析】直接利用位似图形的性质结合A 点坐标可直接得出点C 的坐标,即可得出答案.【详解】∵点A (2,4),过点A 作AB ⊥x 轴于点B ,将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD , ∴C (1,2),则CD 的长度是2,故选A .【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.10.(2019·山东中考真题)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到A B C '''∆.若反比例函数k y x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .18【答案】C【解析】【分析】 作'A H y ⊥轴于.H 证明AOB V ≌()'BHA AAS V ,推出OA BH =,'OB A H =,求出点'A 坐标,再利用中点坐标公式求出点D 坐标即可解决问题.【详解】解:作A H y '⊥轴于H .∵90AOB A HB ABA ∠=∠'=∠'=︒,∴90ABO A BH ∠+∠'=︒,90ABO BAO ∠+∠=︒,∴BAO A BH ∠=∠',∵BA BA =',∴()AOB BHA AAS 'V V ≌,∴OA BH =,OB A H =',∵点A 的坐标是()2,0-,点B 的坐标是()0,6,∴2OA =,6OB =,∴2BH OA ==,6A H OB '==,∴4OH =,∴()6,4A ',∵BD A D =',∴()3,5D ,∵反比例函数k y x=的图象经过点D , ∴15k =.故选:C .【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化-旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.(2019·浙江中考真题)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( )A .22B .5C .35D .10【答案】D【解析】【分析】 根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN ,利用勾股定理即可求得.【详解】如图,EF 为剪痕,过点F 作FG EM ⊥于G .∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点,∴,AF CN BF DN ==.易证PME PDN ∆∆≌,∴EM DN =,而AF MG =,∴1EG EM MG DN AF DN CN DC =+=+=+==.在Rt FGE ∆中, 22223110FG EG EF +=+=故选:D.【点睛】本题考查了图形的剪拼,中心对称的性质,勾股定理的应用,熟练掌握中心对称的性质是解题的关键. 12.(2019·湖北中考真题)如图,矩形ABCD 中,AC 与BD 相交于点E ,:3AD AB =,将ABD △沿BD 折叠,点A 的对应点为F ,连接AF 交BC 于点G ,且2BG =,在AD 边上有一点H ,使得BH EH +的值最小,此时BH CF=( )A 3B .233C .62D .32【答案】B【解析】【分析】设BD 与AF 交于点M .设AB=a ,3a ,根据矩形的性质可得△ABE 、△CDE 都是等边三角形,利用折叠的性质得到BM 垂直平分AF ,BF=AB=a ,3a .解直角△BGM ,求出BM ,再表示DM ,由△ADM ∽△GBM ,求出33B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小.建立平面直角坐标系,得出B (3,3,B′(3,3,E (03,利用待定系数法求出直线B′E 的解析式,得到H (1,0),然后利用两点间的距离公式求出BH=4,进而求出23BH CF =23. 【详解】 如图,设BD 与AF 交于点M .设AB=a ,3a ,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD=31 ADAB=,∴22AB AD+,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a,∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,3a,在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=12BG=1,33∴3∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴AD DMBG BM=,即3323a=,∴3,∴3AD=BC=6,3,易证∠BAF=∠FAC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC 垂直平分DF ,∴CF=CD=23,作B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小. 如图,建立平面直角坐标系,则A (3,0),B (3,3,B′(3,3,E (03,易求直线B′E 的解析式为33∴H (1,0),∴22(31)(230)-+-,∴23BH CF ==233. 故选:B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称-最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH 、CF 的长是解题的关键.13.(2019·湖南中考真题)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .22⎝⎭B .(1,0)C .22⎛ ⎝⎭D .(0,1)- 【答案】A【解析】【分析】 根据旋转的性质分别求出点A 1、A 2、A 3、…的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案.【详解】Q 四边形OABC 是正方形,且OA 1=,()A 0,1∴,Q 将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,∴点A 1的横坐标为12sin 452⨯︒=,点A 1的纵坐标为12cos 452⨯︒=, 122A ∴⎝⎭,继续旋转则()2A 1,0,322A 22⎛⎫- ⎪ ⎪⎝⎭,A 4(0,-1),A 52222⎛⎫-- ⎪ ⎪⎝⎭,A 6(-1,0),A 722,22⎛⎫- ⎪ ⎪⎝⎭,A 8(0,1),A 922⎝⎭,……,发现是8次一循环,所以20198252÷= (3)∴点2019A 的坐标为22,22⎛- ⎝⎭,故选A .【点睛】本题考查了旋转的性质,规律题——点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.14.(2019·江苏中考真题)如图,△ABC 中,AB=AC=2,∠B=30°,△ABC 绕点A 逆时针旋转α(0<α<120°)得到AB C ''∆,''B C 与BC ,AC 分别交于点D ,E.设CD DE x +=,AEC ∆'的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .【答案】B【解析】【分析】连接B′C ,作AH ⊥B′C′,垂足为H ,由已知以及旋转的性质可得AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°,继而可求出AH 长,B′C′的长,由等腰三角形的性质可得∠AB′C=∠ACB′,再根据∠AB′D=∠ACD=30°,可得∠DB′C=∠DCB′,从而可得B′D=CD ,进而可得 B′E=x ,由此可得3,再根据三角形面积公式即可求得y 与x 的关系式,由此即可得到答案.【详解】连接B′C ,作AH ⊥B′C′,垂足为H ,∵AB=AC,∠B=30°,∴∠C=∠B=30°,∵△ABC绕点A逆时针旋转α(0<α<120°)得到AB C''∆,∴AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°,∴AH=12AC′=1,∴C′H=223AC AH'-=,∴B′C′=2C′H=23,∵AB′=AC,∴∠AB′C=∠ACB′,∵∠A B′D=∠ACD=30°,∴∠AB′C-∠AB′D=∠ACB′-∠ACD,即∠DB′C=∠DCB′,∴B′D=CD,∵CD+DE=x,∴B′D+DE=x,即B′E=x,∴C′E=B′C′-B′E=23-x,∴y=12C E AH'g=12×(23-x)×1=132x-+,观察只有B选项的图象符合题意,故选B.【点睛】本题考查的是几何综合题,涉及了旋转的性质,等腰三角形的判定与性质,勾股定理,一次函数的应用等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.15.(2019·辽宁中考真题)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为( )A.121200,5⎛⎫⎪⎝⎭B.()600,0C.12600,5⎛⎫⎪⎝⎭D.()1200,0【答案】B【解析】【分析】根据三角形的滚动,可得出:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x轴上,由点A,B的坐标利用勾股定理可求出AB的长,进而可得出点C2的横坐标,同理可得出点C4,C6的横坐标,根据点的横坐标的变化可找出变化规律“点C2n的横坐标为2n×6(n为正整数)”,再代入2n=100即可求出结论.【详解】解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,...在第一象限,点C2,C4,C6, (x)上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴22OA OB+,∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.【点睛】本题考查了规律型:点的坐标,根据点的坐标的变化找出变化规律是解题的关键.二、填空题16.(2019·湖南中考真题)在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC 绕点O 按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是____________..【答案】90°【解析】【分析】根据旋转角的概念找到∠BOB′是旋转角,从图形中可求出其度数即可.【详解】根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故答案为:90°.【点睛】本题主要考查了旋转角的概念,解题的关键是根据旋转角的概念找到旋转角.17.(2019·山东中考真题)如图,在正方形网格中,格点ABC ∆绕某点顺时针旋转角()0180αα<<︒得到格点111A B C ∆,点A 与点1A ,点B 与点1B ,点C 与点1C 是对应点,则α=_____度.【答案】90【解析】【分析】先连接1CC ,1AA ,作1CC ,1AA 的垂直平分线交于点E ,连接AE ,1A E ,再由题意得到旋转中心,由旋转的性质即可得到答案.【详解】如图,连接1CC ,1AA ,作1CC ,1AA 的垂直平分线交于点E ,连接AE ,1A E ,∵1CC ,1AA 的垂直平分线交于点E ,∴点E 是旋转中心,∵190AEA ∠=︒,∴旋转角90α=︒.故答案为:90.【点睛】本题考查旋转,解题的关键是掌握旋转的性质.18.(2019·海南中考真题)如图,将Rt ABC ∆的斜边AB 绕点A 顺时针旋转()090αα︒︒<<得到AE ,直角边AC 绕点A 逆时针旋转()090ββ︒︒<<得到AF ,连结EF .若=3AB ,=2AC ,且B αβ+=∠,则=EF _____.13【解析】【分析】由旋转的性质可得3AE AB ==,2AC AF ==,由勾股定理可求EF 的长.【详解】解:由旋转的性质可得3AE AB ==,2AC AF ==,90B BAC ︒∠+∠=Q ,且B αβ+=∠,90BAC αβ︒∴∠++=90EAF ︒∴∠=2213EF AE AF ∴=+=故答案为:13【点睛】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.19.(2019·山东中考真题)在平面直角坐标系中,点()4,2P 关于直线1x =的对称点的坐标是_____.【答案】()2,2-【解析】【分析】先求出点P 到直线1x =的距离,再根据对称性求出对称点P'到直线1x =的距离,从而得到点P'的横坐标,即可得解.【详解】∵点()4,2P ,∴点P 到直线1x =的距离为413-=,∴点P 关于直线1x =的对称点P'到直线1x =的距离为3, ∴点P'的横坐标为132-=-,∴对称点P'的坐标为()2,2-.故答案为:()2,2-.【点睛】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线1x =的距离,从而得到横坐标是解题的关键,作出图形更形象直观.20.(2019·山东中考真题)如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,ABO V 与A B O '''V 是以点P 为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P 的坐标为_____。
中考数学压轴题 第四部分 图形的平移翻折与旋转
4.1 图形的平移、翻折与旋转1.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2, 0),点A在第一象限内,将△OAB沿直线OA 的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为().A.(4,B.(3,C.(4,D.(3,2.如图,在平面直角坐标系中,点A的坐标为(0, 6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线34y x=-上,则点B与其对应点B′间的距离为______.3.已知直线y=2x+(3-a)与x轴的交点在A(2, 0),B(3, 0)之间(包括A、B两点)则a的取值范围是_____________.4.如图,在矩形ABCD中,AD=15,点E在边DC上,连结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.如果AD=3GD,那么DE=_____.5.如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为____________.6.如图,在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处,若AE=2AM,那么EN的长等于.7.如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,连结AC′.直线AC′与CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=______________.8.如图,已知Rt△ABC中,D是斜边AB的中点,AC=4,BC=2,将△ACD沿直线CD折叠,点A落在点E处,连结AE,那么线段AE的长度等于__________.9.如图,在矩形纸片ABCD中,AB<BC,点M、N分别在AD、BC上,沿直线MN将四边形DMNC翻折,点C恰好与点A重合.如果此时在原图中△CDM与△MNC的面积比是1∶3,那么MNDM的值等于___________.10.如图,△ABC中,AB=AC=5cm,BC=6cm,BD平分∠ABC,BD交AC于点D.如果将△ABD沿BD翻折,点A 落在点A′处,那么△DA′C的面积为_______.11.如图,在Rt△ABC中,∠ACB=90°.将△ABC沿BD折叠,点C恰好落在AB边上的点C′处,折痕为BD.再将其沿DE折叠,使点A落在DC′的延长线上的点A′处,若△BED与△ABC相似,则相似比BDAC=___________.12.如图,已知扇形OAB的半径为6,圆心角为90°,E是半径OA上一点,F是AB上一点.将扇形AOB沿着EF 对折,使得折叠后的'A F恰好与半径OB相切于点G,若OE=5,则O到折痕EF的距离为__________.13.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.14.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为().A B.C.D15.如图,将正方形ABCD沿MN折叠,使点D落在AB边上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为_________.16.如图,矩形ABCD中,AB=8,BC=6,点P为AD边上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为_______.17.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________.18.如图,正方形ABCD的边长为3,点E在AB边上且BE=1,点P、Q分别是边BC、CD上的动点(均不与顶点重合),当四边形AEPQ的周长取得最小值时,四边形AEPQ的面积是____________.19.如图,已知钝角三角形ABC,∠A=35°,OC为AB边的中线.将△AOC绕着点O顺时针旋转,点C落在BC 边上的点C′处,点A落在点A′处,连结BA′,如果A、C、A′在同一条直线上,那么∠BA′C′的度数为__________.20.如图,在Rt△ABC中,∠C=90°,AC=BC ABC绕着点A顺时针旋转60°得到△AB′C′,连结C′B,则C′B的长为___________.21.如图,△ABC中,∠ABC>90°,tan∠BAC=34,BC=4,将三角形绕着点A旋转,点C落在直线AB上的点C′处,点B落在点B′处,若C、B、B′恰好在一直线上,则AB的长为______________.22.如图,在正方形ABCD中,E、F分别在BC、AB边上,如果AF=BE,那么∠AOD的度数是__________.23.如图,△ABC、△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2B1C D124.如图,已知Rt△ACB中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连结AF,则AF= .25.如图,在△ABC中,∠ABC=90°,AB=BC ABC绕点C逆时针旋转60°,得到△MNC,则BM的长是___________.26.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′//AB,则旋转角的度数为().A.35°B.40°C.50°D.65°27.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处.延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于.28.如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6.△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=_________.29.如图,在四边形ABCD中,∠A=90°,AB=AD=3,点M、N分别是线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别是DM、MN的中点,则EF长度的最大值为.30.如图,正方形ABCD的边长为16,点E在边AB上,AE=3,点F是边BC上不与B、C重合的一个动点,把△EBF 沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为_______________.31.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.32.在平面直角坐标系中,点A,B,动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为().A.2B.3C.4D.533.在平行四边形ABCD中,AB<BC,已知∠B=30°,AB=ABC沿AC翻折至△AB′C,使点B′落在平行四边形ABCD所在的平面内,连结B′D.若△AB′D是直角三角形,则BC的长为_____________.34.如图,AC是矩形ABCD的对角线,AB=2,BC=E、F分别是线段AB、AD上的点,连结CE、CF,当∠BCE=∠ACF且CE=CF时,AE+AF=______.35.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是().A.B.C.5 D.636.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的平行四边形AEMG 的面积S 1与平行四边形HCFM 的面积S 2的大小关系是( ).A .S 1>S 2B .S 1<S 2C .S 1=S 2D .2S 1=S 237.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋...拉直固定,然后向右扭动框架,观察所得四边形的变化.下面判断错误..的是( ). A .四边形ABCD 由矩形变为平行四边形; B .BD 的长度增大;C .四边形ABCD 的面积不变; D .四边形ABCD 的周长不变.38.如图,C 是以AB 为直径的半圆O 上一点,连结AC 、BC ,分别以AC 、BC 为边向外作正方形ACDE 和正方形BCFG ,DE 、FG 、AC 、BC 的中点分别是M 、N 、P 、Q .若MP +NQ =14,AC +BC =18,则AB 的长是( ). A. 29 B. 790 C. 13 D. 16 39.如图1,点P 是以r 为半径的⊙O 外一点,点P ′在线段OP 上,若满足OP ·OP ′=r 2,则称点P ′是点P 关于⊙O的反演点.如图2,在Rt △ABO 中,∠B =90°,AB =2,BO =4,⊙O 的半径为2,如果点A ′、B ′分别是点A 、B 关于⊙O 的反演点,那么A ′B ′的长是____.40.如图,已知⊙O 1的半径为1,⊙O 2的半径为2,O 1O 2=5,⊙O 分别与⊙O 1外切,与⊙O 2内切,那么⊙O 半径r 的取值范围是__________.41.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 为半径画弧,再以AB 边的中点为圆心,AB 的一半为半径画弧,则两弧之间的阴影部分的面积是_________(结果保留π).42.如图,半圆O 的直径AE =4,点B 、C 、D 均在半圆上,若AB =BC ,CD =DE ,连结OB 、OD ,则图中阴影部分的面积为_________.43.如图1,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD ,DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为( ).A 2πB πC 2πD .2π+44.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.45.如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为_________. A. 4π B. 2π C. 6π D. 3π 46.如图,在平面直角坐标系中,已知点A (0, 1),点P 在线段OA 上,以AP 为半径的⊙P 的周长为1.点M 从点A 开始沿⊙P 按照逆时针方向转动,射线AM 交x 轴于点N (n , 0) ,设点M 转过的路程为m (0<m <1).随着点M 的转动,当m 从13变化到23时,点N 相应移动的路程长为____________.47.已知⊙P 的半径为2,圆心在函数y=8x的图象上运动,当⊙P 与坐标轴相切于点D 时,则符合条件的点D 的个数为( ).A .0B .1C .2D .448.如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若M 、N 分别是AB 、BC 的中点,那么MN 长的最大值是__________.49.如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为 . 50.如图,正比例函数11y k x =的图象与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( ). A .x <-2或x >2 B . x <-2或0<x <2 C .-2<x <0或0<x <2 D .-2<x <0或x >251.正比例函数y 1=mx (m >0)的图象与反比例函数2k y x=(k ≠0)的图象交于A (n , 4)、B 两点,AM ⊥y 轴,垂足为M ,若△AMB 的面积为8,则满足y 1>y 2的实数x 的取值范围是___________.52.如图,在平面直角坐标系中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C 在边DE 上,反比例函数k y x=(k ≠0,x >0)的图象过点B 、E .若AB =2,则k 的值为________.53.如图,点A 1、A 2依次在y =(x >0)的图象上,点B 1、B 2依次在x 轴的正半轴上,若△A 1OB 1、△A 2B 1B 2均为等边三角形,则点B 2的坐标为________.54.如图,在平面直角坐标系中,直线y =k 1x +2与x 轴交于点A ,与y 轴交于点C ,与反比例函数2k y x =在第一象限内的图象交于点B ,连结BO ,若S △OBC =1,tan ∠BOC =13,则k 2的值是( ).A .-3B .1C .2D .3 55.如图,在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,点A 的坐标为(a , a ).若曲线3y x=(x >0)与此正方形的边有交点,则a 的取值范围是_____________. 56.如图,已知点A 在反比例函数k y x =(x <0)上,作Rt △ABC ,点D 为斜边AC 的中点,连结DB 并延长交y 轴于点E ,若△BCE 的面积为8,则k = .57.如图,已知∠AOB =90°,在∠AOB 的平分线ON 上依次取点C 、F 、M ,过点C 作DE ⊥OC ,分别交OA 、OB 于点D 、E ,以FM 为对角线作菱形FGMH ,已知∠DFE =∠GFH =120°,FG =FE .设OC =x ,图中阴影部分的面积为y ,则y 与x 之间的函数关系式是( ). A. 223x y = B. 23x y = C. 232x y = D. 233x y = 58.如图1,正方形ABCD 的边长为3,动点P 从点B 出发以每秒3个单位长度的速度沿着BC -CD -DA 运动,到达点A 停止运动;另一动点Q 同时从点B 出发以每秒1个单位长度的速度沿着BA 边向点A 运动,到达点A 停止运动.设点P 运动时间为x 秒,△BPQ 的面积为y ,则y 关于x 的函数图象是( ).A .B .C .D .59.如图1,在平面直角坐标系中,点A 的坐标为(2, 2),点P (m , n )在直线y =-x +2上运动.设△APO 的面积为S ,则下面能够反映S 与m 的函数关系的图象是( ).60.如图1,在Rt△ABC中,∠C=90°,∠BAC=30°,AB=8.以DEFG的一边在直线AB上,且点D与点A重合.现将正方形DEFG沿A→B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是().61.如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是().图1 A.B.C.D.62.如图1,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图像中,能表示y 与x的函数关系的图象大致是().63.函数x xx y2 2+=的图象为().A.B.C.D.。
2020挑战压轴题中考数学强化训练第二部分_一、图形的平移
第二部分填空题、选择题中的动态图形训练题一、图形的平移1、在平面直角坐标系中,点A向右平移4个单位得到点B,点B向下平移3个单位得到点C·那么△ABC 的面积为2、直线y=2x-1向上平移3个单位后得到的直线不经过第象限3、抛物线y=-x2+2x+1向下平移4个单位后得到的抛物线的解析式是4、将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到新抛物线的表达式为5、平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n)、B(2,-1)、C(-m,-n),则点D的坐标是()6、如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A'B‘C'的位置时,A'B恰好经过AC的中点O,则△ABC平移的距离为7、如图,把三角板的斜边紧靠直尺平移,如果一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC’=8、如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为9、如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4m,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△BF的周长为10、如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为11、小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A、3个(B)4个(C)5个(D)无数12、如图,在平面直角坐标系中,点A、C在x轴上,点C的坐标为(-1,0),AC=2.将Rt△ABC先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点的坐标是()(A)(2,2)(B)(1,2)(C)(-1,2)(D)(2,-1)13、在平面直角坐标系中,将点A(-1,-2)向右平移3个单位得到点B,则点B关于x轴的对称点B的坐标为()(A)(-3,-2)(B)(2,2)C(-2,2)D(2,-2)14、已知抛物线y=x2+2x-3与x轴交于A、B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C、D两点(点C在点D的左侧),若B、C是线段AD的三等分点,则m的值为15、将直线y=2x-3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为16、如图所示,在平面直角坐标系中,已知点A2),B(1,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的平移、翻折与旋转图形的平移图形的翻折图形的旋转三角形四边形圆函数的图象及性质图形的平移例1 泰安市中考第15题如图1,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2, 0),点A 在第一象限内,将△OAB沿直线OA的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为().A.(4,23)B.(3,33)C.(4,33)D.(3,23)答案A.思路如下:如图2,当点B的坐标为(2, 0),点A的横坐标为1.当点A'的横坐标为3时,等边三角形A′OC的边长为6.在Rt△B′CD中,B′C=4,所以DC=2,B′D=23.此时B′(4,23).图1 图2例 2 咸宁市中考第14题如图1,在平面直角坐标系中,点A 的坐标为(0, 6),将△OAB 沿x 轴向左平移得到△O ′A ′B ′,点A 的对应点A ′落在直线34y x =-上,则点B 与其对应点B ′间的距离为______.图1 图2 图 1图2答案 8.思路如下:当y =6时,解方程364x -=,得x =-8.所以AA ′=8.图形在平移的过程中,对应点的连线平行且相等,所以BB ′=AA ′=8. 例 3 株洲市中考第14题已知直线y =2x +(3-a )与x 轴的交点在A (2, 0),B (3, 0)之间(包括A 、B 两点)则a 的取值范围是_____________.答案 7≤a ≤9.思路如下:如图1,将点A (2, 0)代入y =2x +(3-a ),得4+(3-a )=0.解得a =7.如图2,将点B (3, 0)代入y =2x +(3-a ),得6+(3-a )=0.解得a =9.例 4 2016年上海市虹口区中考模拟第18题如图1,已知△ABC 中,AB =AC =5,BC =6,将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,顶点A 、B 、C 分别与D 、E 、F 对应,若以点A 、D 、E为顶点的三角形是等腰三角形,且AE为腰,则m的值是__________.图1图 2 图 3 图4.思路如下:如图2,四边形ABED保持平行四边形,AM=EN 答案6或256=4,BM=DN=3,AD=BE=m.①如图3,当EA=ED时,点E在AD的垂直平分线上,此时AD=2ND=6.②如图4,当AE=AD时,根据AE2=AD2,得m2=42+(m-3)2.解得25m=.6图形的翻折例5 上海市奉贤区中考模拟第18题如图1,在△ABC中,∠B=45°,∠C=30°,AC=2,点D在BC上,将△ACD沿直线AD翻折后,点C落在点E处,边AE交边BC于点F,如果DE//AB,那么CFBF的值是______.答案31+.思路如下:如图2,作AH⊥BC于H.在Rt△ACH中,∠C=30°,AC=2,所以AH=1,CH=3.在Rt△ABH中,∠B=45°,所以BH=AH=1.所以BC=31+.如图3,当DE//AB时,∠BAE=∠AED=∠C=30°.此时∠AFC=∠B+∠BAE=75°.在△ACF中,∠C=30°,∠AFC=75°,所以∠FAC=75°.所以CF=CA=2.所以BF =BC -CF =312+-=31-.所以23131CF BF ==+-.另解:也可以根据△BAF ∽△BCA 先求得BF 的长.由BA 2=BF ·BA ,得2(2)(31)BF =⋅+.所以31BF =-.图1图2 图3例6图1例 6 2016年上海市静安区青浦区中考模拟第18题如图1,在△ABC 中,AB =AC =4,cos C =14,BD 是中线,将△CBD 沿直线BD 翻折,点C 落在点E ,那么AE 的长为_______.答案 6.思路如下:如图2,作AM 作BC 于M ,DN ⊥BC 于N .在Rt △ACM 中,AC =4,cos C =14,所以CM =1.所以BC =2CM =2已知D 是AC 的中点,所以BC =DC =2.如图3,由BE =BC ,BC =DC ,DC =DA ,得BE =DA .由∠1=∠2,∠1=∠3,得∠2=∠3.所以EB //AC .所以四边形AEBD 是平行四边形.所以AE =BD .如图2,在Rt △DCN 中,DC =2,CN =12,所以DN =15.在Rt △DBN 中,BN =32,所以BD =6.所以AE =6.图2 图3图1图2例 7 2016年上海市闵行区中考模拟第18题如图1,已知在△ABC 中,AB =AC ,tan ∠B =13,将△ABC 翻折,使点C 与点A 重合,折痕DE 交边BC 于点D ,交边AC 于点E ,那么BDDC的值为_________.答案135.思路如下:如图2,作AH ⊥BC 于H ,那么BH =CH .已知tan ∠B =AH BH =13,设AH =1,BH =3.设DC =DA =m .在Rt △ADH 中,由勾股定理,得m 2=12+(3-m )2.解得53m =.所以BD =BC -DC =563-=133.所以135BD DC =. 例 8 2016年上海市浦东新区中考模拟第18题Rt △ABC 中,∠ACB =90°,BC =15,AC =20,点D 在边AC 上,DE ⊥AB ,垂足为E ,将△ADE 沿直线DE 翻折,翻折后点A 的对应点为点P ,当∠CPD 为直角时,AD 的长是_________.答案358.思路如下:如图1,作CH ⊥AB 于H .在Rt △ABC 中,BC =15,AC =20,所以AB =25,cos B =35,cos A =45.在Rt△BCH 中,BH =BC ·cos B =3155⨯=9.当∠CPD =90°时,∠CPH 与∠DPE 互余.又因为∠B 与∠A 互余,∠DPE =∠A ,所以∠CPH =∠B .于是可得PH =BH =9.所以AP =25-18=7.所以AE =72.所以AD =54AE =358.图1 图1 图2例9 2016年上海市普陀区中考模拟第18题如图1,在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和边BC分别交于点E、F.然后再展开铺平,以B、E、F为顶点的△BEF 称为矩形ABCD的“折痕三角形”.如图2,在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”的面积最大时,点E的坐标是___________.答案3(,2)2.思路如下:设菱形BFGE的边长为m.如图4,当G、D重合时,在Rt△ABE中,AB=2,BE=m,AE=4-m.由勾股定理,得m2=22+(4-m)2.解得m=52.此时AE=4-m=32,点E的坐标为3(,2)2.图3 图4图1图2例10 2016年张家界市中考第14题如图1,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的点E处,EQ与BC相交于F,若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是cm.答案8.思路如下:设HE=HD=m,那么AH=8-m.在Rt△AHE中,由HE2=AE2+AH2,得m2=42+(8-m)2.解得m=5.所以△AHE的周长为3+4+5=12.因为△AHE∽△BEF,AH∶BE=3∶2,根据相似三角形的周长比等于对应边的比,可得△BEF的周长为8.例11 2016年常德市中考第15题如图1,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=_________.图1图2 图3答案55°.思路如下:如图2,连结FC、DD1.因为四边形AECF是菱形,根据中心对称性,∠DCA=∠BAE.如图3,因为A与C、D与D1关于直线EF对称,所以四边形ACDD1是等腰梯形,所以对角线AD与CD1交于对称轴上的点F,根据对称性,∠D1AD=∠DCA.例12 2016年淮安市中考第18题如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF =3,点E为边BC上的动点,将△CEF沿直线EF折叠,点C落在点P处,则点P到边AB的距离的最小值是________.答案6.思路如下:如图2,作PG⊥5AB 于G ,作FH ⊥AB 于H .在Rt △AFH 中,FH =AF ·sin ∠A =445⨯=165.在△PFG 中,PF =2为定值,PF +PG >FG .而FG 的最小值是FH ,所以PG 的最小值是FH -PF =1625-=65(如图3). 图1图形的旋转 例 15 2016年上海三模联考第18题如图1,已知AD 是等腰三角形ABC 底边BC 上的高,AD ∶DC =1∶3,将△ADC 绕着点D 旋转,得△DEF ,点A 、C 分别与点E 、F 对应,且EF 与直线AB 重合,设AC 与DF 相交于点O ,那么S △AOF ∶S △DOC =__________.图1图2答案 32∶45.思路如下:如图2,设AD =m ,DB =DC =3m ,那么AC =EF 10,cos ∠BAD 10DH ⊥AB 于H ,那么AH =AD ·cos ∠BAD =10.所以AE 10. 于是AF =EF -AE 410m .由△AOF ∽△DOC ,得S △AOF ∶S △DOC =AF 2∶DC 2=22410()(3)m m ÷=32∶45. 例 16 2016年上海市崇明县中考模拟第18题如图1,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,联结BM ,那么BM 的长是___________.图1图2 例17图1图2答案 262,在等腰Rt △ABC 中,AB =BC =2,高BH 2.在等边三角形AMC 中,AC =2MH 6. 例 17 2016年上海市黄浦区中考模拟第18题如图1,在Rt △ABC 中,∠BAC =90°,将△ABC 绕点C 逆时针旋转,旋转后的图形是△A ′B ′C ,点A 的对应点A ′落在中线AD 上,且点A ′是△ABC 的重心,A ′B ′与BC 相交于点E ,那么BE ∶CE =___________.答案 4∶3.思路如下:根据旋转前后的对应边相等,对应角相等,可知∠ACB =∠A ′CB ′,CA =CA ′.所以∠CAA ′=∠CA ′A .又因为直角三角形斜边上的中线等于斜边的一半,所以DA =DC .所以∠CAA ′=∠ACB .所以∠A ′CB ′=∠CA ′A .所以AD // B ′C .根据重心的性质,可得1'3DA DA =.又因为12DA CB =,所以1'6DA CB =.所以'1'6DE DA CE CB ==.所以71847163BE CE +===-.例 18 2016年上海市嘉定区宝山区中考模拟第18题如图1,点D 在边长为6的等边三角形ABC 的边AC 上,且AD =2,将△ABC 绕点C 顺时针方向旋转60°,若此时点A 和点D 的对应点分别记为点E 和点F ,联结BF 交边AC 于点G ,那么tan ∠AEG =__________.图1 图2 图3答案33.思路如下:如图2,将△ABC 绕点C 顺时针方向旋转60°,得到菱形ABCE .延长AE 交BF 的延长线于M .因为12ME EF BC CF ==,所以32AG MA CG BC ==.设菱形的边长为10m ,那么AG =6m .如图3,作GH ⊥AE 于H .在Rt △AGH 中,∠GAH =60°,所以AH =12AG =3m ,GH =33m .在Rt △EGH 中,EH =AE -AH =7m ,所以tan ∠AEG =333377GH m EH m ==. 例 19 2016年上海市闸北区中考模拟第18题如图1,底角为α的等腰三角形ABC 绕着点B 顺时针旋转,使得点A 与BC 边上的点D 重合,点C 与点E 重合,联结AD 、CE ,已知tan α=34,AB =5,则CE =_________.·第 11 页 共 11 页 图1图2 图3答案 8105.思路如下:如图2,作AH ⊥BC 于H ,那么BH =CH .在Rt △ABH 中,tan ∠B =34,AB =5,由此可得AH =3,BH =4.所以BC =8.在Rt △ADH 中,DH =BD -BH =5-4=1,所以AD =223110+=.如图3,由△BAD ∽△BCE ,得AD BA CE BC =,即1058=.所以8105CE =.例 20 2016年邵阳市中考第13题如图1,将等边三角形CBA 绕点C 顺时针旋转∠α得到三角形CB ′A ′,使得B 、C 、A ′三点在同一条直线上,则∠α的大小是_________.图1图2答案 120°.思路如下:。