虹吸雨水管径流量计算公式表

合集下载

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)雨水流量是研究城市排水系统设计和防洪工程中的重要参数。

目前常用的雨水流量计算方法是基于雨水流量公式进行。

本文将详细介绍雨水流量公式的计算过程与结果。

一、理论背景雨水流量公式是通过对降雨特点的分析,以及流域面积、地形、土壤类型等因素的考虑,推导出的一种计算雨水流量的方法。

雨水流量公式的应用可以帮助工程师有效地评估和设计城市排水系统,确保其具有良好的抗洪能力和排水效果。

二、常见的雨水流量公式1. 曼宁公式曼宁公式是计算河流或渠道中雨水流量的一种经验公式,常用于城市排水系统的设计与规划。

该公式的基本形式为:Q = C × A × R^2/3 ×S^1/2,其中Q代表雨水流量,C为曼宁系数,A为截面面积,R为湿周(即水流与湿周长的比值),S为水流的比降。

2. 多项式公式多项式公式是通过对实测雨水流量数据进行分析和拟合得到的一种较为精确的计算方法。

多项式公式的形式为:Q = a × A^b × C^c × R^d × S^e,其中a、b、c、d、e是经验系数,A、C、R、S分别为截面面积、湿周、湿周与截面面积的比值、水流的比降。

3. 水动力学模型水动力学模型是基于流体动力学原理建立的一种计算雨水流量的方法。

通过对流速、水位、涌浪等水力要素的观测,运用数值解法求解流体动力学方程,得到雨水流量的准确计算结果。

三、计算过程以曼宁公式为例,现将具体的计算过程进行说明。

步骤一:确定曼宁系数根据河流或渠道的特征,选择合适的曼宁系数。

曼宁系数的选择需考虑流域的地貌、土壤类型、河床或渠道的形状等因素。

步骤二:测量截面面积和湿周在河流或渠道选取一截面进行测量,测量得到截面的面积A和湿周R。

步骤三:查阅水流比降表根据所在地区的地形特征,查询水流比降表,得到水流的比降S。

步骤四:代入公式进行计算将步骤一至步骤三所得数据代入曼宁公式,即可计算出雨水流量Q 的数值。

虹吸管水力计算书

虹吸管水力计算书

1虹吸管水力计算
(1) 计算基本参数:
管道直径(内径) D 出= 187 mm
管道全部长度 L 出= 76.00 m
入口至最高点长度 L 控= 25.20 m
上游水位 H 上= 1610.60 m
下游水位 H 下= 1607.20 m
水位高差 H 差= 3.40 m
局部损失系数见下表:
(2) 过流能力计算
a) 计算沿程水头损失系数
根据曼宁公式11
R n C =可计算得C ,在此取钢管(旧管)的糙率n=0.014:
则有:312288R gn C g
==λ
根据计算可得λ=0.043
b) 计算流量系数
ζλμ+=
d l c 1
其中:ζ——整个管道中的局部损失系数
根据计算可得c μ=0.224
c) 输水能力计算
差2gh A Q c μ=
经计算可得Q=0.05m ³/s
(3) 安装高程计算
虹吸管中最大真空一般发生在管子的最高位置。

所以本计算则将管子的最高点作为计算断面。

上游断面和最高点断面根据贝努力方程有:
g
d l g P z g a g P s 2)(202算算算201a ϑζλρϑρ⨯+++=++ 则有:
g
d l h z v s 2)1(2控控ϑζλ++-≤
其中:算P ——计算断面管内压力,单位:Pa ;
算l ——从上游起至计算断面的管长,单位:m ;
算ζ——从上游入口到计算断面的局部水头损失系数;
s z ——上游水面到计算断面的高差即安装高程,单位:m ;
v h ——允许真空值,单位:m ,再此选m h v 7=; 根据计算虹吸管最高点与上游水位高差应满足m z s 63.6≤。

虹吸雨水计算

虹吸雨水计算

虹吸雨水计算【篇一:虹吸雨水系统管径粗算表】【篇二:虹吸雨水计算书】虹吸雨水计算书计算原理参考《建筑与小区雨水利用工程技术规范》(gb50400-2006)一、基本参数:管材:hdpe 温度:10℃二、基本计算公式:1、暴雨强度公式:q=167a(1+clgp)n(t+b)2、雨水设计流量公式:f -- 汇水面积(hm2)1 hm2 = 10000平方米 3、管道沿程阻力公式: lv2d2gg -- 重力加速度(m/s2)取 9.81 4、阻力系数:式中:△ -- 管壁绝对粗糙度(mm),由管材生产厂提供 re -- 雷诺数5、局部阻力损失:2hj=∑t5vx式中:hj--局部阻力损失(mbar)1mbar=100pa=0.1kpa t -- 局部阻力系数 vx -- 管道某一x断面处流速(m/s)6、总阻力损失h总=hf+hj7、管道某一x断面处的压力:2px?98.1?hx?5vx??zx?2式中: px -- 管道某一x断面处的压力(mbar)1mbar=100pa=0.1kpa hx -- 雨水斗顶面至计算断面的高度差(m)vx -- 管道某一x断面处流速(m/s)∑zx-2 -- 断面处对应最远雨水斗至计算断面的总阻力损失之和(mbar)8、压力余量计算公式:pr98.1h5v12z式中:△pr -- 压力余量(mbar)1mbar=100pa=0.1kpa h--雨水斗顶面与排水管出口的几何高差(m) v1 -- 排水管出口的管道流速(m/s)∑z -- 最远雨水斗至排水口处的总阻力损失之和(mbar) 9、流速 v=4q2式中:v -- 流速(m/s)q -- 管段流量(l/s)d -- 管道的计算内径(m)三、计算结果:管道最大负压值: -81.37 kpa 压力余量:20.3 kpa四、虹吸雨水水力计算表:【篇三:虹吸排水材料量计算公式】1. 方钢(m):(6m/根)横长/62. 方钢连接件(个):=方钢根数-13. 骑卡(个):每2m一个 =方钢长度/24. m10内膨胀(个):=骑卡数量(可适当上调)5. m10螺纹杆:(3m/根):骑卡数量*1.5m(与墙壁间长度)/36. 管卡(个):间距为管道直径的10倍。

虹吸压力计算公式

虹吸压力计算公式

虹吸压力计算公式
虹吸流速公式:V =[(2gH)/(1+ζ+λL/d)]
V:虹吸管断面平均流速。

g:重力加速度。

H:虹吸管的作用水头。

(虹吸管进口端水面与出口端水面的高差)
ζ :虹吸管的局部阻力系数。

λ:虹吸管的沿程阻力系数。

d:虹吸管的内径。

扩展资料:
虹吸应用
工程应用
上个世纪60年代,瑞典的几位科学家把虹吸的原理应用到现代建筑上去,最初解决了建筑屋面的雨水排水系统,当时在研究的初期,采用的是一种满管压力流的系统,从而在管道式屋面雨水排放系统方面取得了重大突破。

虹吸原理在建筑排水,市政排水,水利工程等各方面均有应用。

金融应用
虹吸金融理论认为技术面分析可以解决基本面对于利用内幕消息进行盈利群体,导致的基本面分析失效的局面,比如一个国家利
用制造紧张关系影响商品价格进行风险投资盈利,这在金融信息化高度发达的现代社会是完全可能的,国际经济一体化已经形成了可以容纳国家财富的规模市场。

流量和管径、压力、流速之间关系计算公式

流量和管径、压力、流速之间关系计算公式
(1)当量粗糙度 Δ 当量粗糙度是自然(也有称工业)管道,根据水力试验 的成果,运用达西公式和尼古拉兹公式计算出的理论值。每 种管材都有一个确定的当量粗糙度,且不因流态不同而改变, 在判别水流流态和选择其他计算公式参数时,经常用到当量 粗糙度。 (2)摩阻系数 λ 摩阻系数 λ 可应用在不同的阻力特征区,不同区间 λ 的 数值不一样。在紊流的光滑区,λ 数值仅与雷诺数(Re)有 关,且随雷诺数(Re)的增大而减小;在紊流过渡区,λ 与 雷诺数(Re)和相对粗糙度(Δ/d)两个因素有关;在紊流粗 糙区仅和相对粗糙度(Δ/d)有关,只要管材与管径确定(即 相对粗糙度 Δ/d 确定),在该区 λ 数值应为定值。 (3)粗糙系数 n
海曾—威廉公式适用紊流过渡区,其中水头损失与流速 的 1.852 次方成比例(过渡区水头损失 h∝V1.75~2.0)。该式 计算方法简捷,在美国做为给水系统配水管道水力计算的标 准式,在欧洲与日本广泛应用,近几年我国也普遍用做配水 管网的水力计算。
谢才公式也应是管道沿程水头损失通式,且在我国应用 时间久、范围广,积累了较多的工程资料。但由于谢才系数 C 采用巴甫洛夫公式或曼宁公式计算确定,而这两个公式只
输配水管道沿程水头计算时,先采用判别水流的阻力特 征用,再选择相应的公式计算,科学合理,但操作麻烦,特 别在流速是待求的未知数时,需要采用试算的方法确定雷诺 数(Re)很不方便。为了使输配水管道水力计算能满足工程 设计的需要,又可以方便的选择计算公式和进行简捷的计算, 根据多年来管道水力计算的经验,《室外给水设计规范》 GBJ13-86 修编报批稿,依据管材的不同和流速的常用范围, 确定输配水管道沿程水头损失计算公式如下:
-
-
.
流量与管径、压力、流速的一般关系

管道流量计算公式是这样的

管道流量计算公式是这样的

管道流量计算公式是这样的管道流量计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s 管道流量计算公式2:一般取水的流速1--3米/秒,按1.5米/秒算时: DN=SQRT(4000q/u/3.14)流量q,流速u,管径DN。

开平方SQRT。

其实两个公式是一样的,只是表述不同而已。

另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了备注:1.DN为Nomial Diameter 公称直径(nominal diameter),又称平均外径(mean outside diameter)。

这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。

因为单位有公制(mm)及英制(inch)的区分,所以有下列的称呼方法。

1. 以公制(mm)为基准,称 DN (metric unit)2. 以英制(inch)为基准,称NB(inch unit)3. DN (nominal diameter)NB (nominal bore)OD (outside diameter)4. 【例】镀锌钢管DN50,sch 20镀锌钢管NB2”,sch 205. 管道流量计算公式外径与DN,NB的关系如下:------DN(mm)--------NB(inch)-------OD(mm) 15-------------- 1/2--------------21.3 20--------------3/4 --------------26.7 25-------------- 1 ----------------33.4 32-------------- 1 1/4 -----------42.2 40-------------- 1 1/2 -----------48.3 50-------------- 2 -----------60.3 65-------------- 2 1/2 -----------73.0 80-------------- 3 -----------88.9 100-------------- 4 ------------114.3 125-------------- 5 ------------139.8。

管道流量计算公式是这样的

管道流量计算公式是这样的

管道流量计算公式是这样的管道流量计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s 管道流量计算公式2:一般取水的流速1--3米/秒,按1.5米/秒算时: DN=SQRT(4000q/u/3.14)流量q,流速u,管径DN。

开平方SQRT。

其实两个公式是一样的,只是表述不同而已。

另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了备注:1.DN为Nomial Diameter 公称直径(nominal diameter),又称平均外径(mean outside diameter)。

这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。

因为单位有公制(mm)及英制(inch)的区分,所以有下列的称呼方法。

1. 以公制(mm)为基准,称 DN (metric unit)2. 以英制(inch)为基准,称NB(inch unit)3. DN (nominal diameter)NB (nominal bore)OD (outside diameter)4. 【例】镀锌钢管DN50,sch 20镀锌钢管NB2”,sch 205. 管道流量计算公式外径与DN,NB的关系如下:------DN(mm)--------NB(inch)-------OD(mm) 15-------------- 1/2--------------21.3 20--------------3/4 --------------26.7 25-------------- 1 ----------------33.4 32-------------- 1 1/4 -----------42.2 40-------------- 1 1/2 -----------48.3 50-------------- 2 -----------60.3 65-------------- 2 1/2 -----------73.0 80-------------- 3 -----------88.9 100-------------- 4 ------------114.3 125-------------- 5 ------------139.8。

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)-CAL-FENGHAI.-(YICAI)-Company One1雨水设计流量公式式中———雨水设计流量(L /s)q———设计暴雨强度,(L /sha)Ψ———径流系数F———汇水面积(ha公顷)其中一、暴雨强度公式为:式中t———降雨历时(min)P———设计重现期(年)(一)设计降雨历时,式中t——设计降雨历时(min)——地面集水时间(min)——雨水在管渠内流行的时间(min)m——折减系数的确定:地面集水时间受水区面积大小、地形陡缓、屋顶及地面的排水方式、土壤的干湿程度及地表覆盖情况等因素的影响。

在实际应用中,要准确地计算值是比较困难的,所以通常取经验数值,=5~15min。

在设计工作中,按经验在地形较陡、建筑密度较大或铺装场地较多及雨水口分布较密的地区,=5~8min;而在地势平坦、建筑稀疏、汇水区面积较大,雨水口分布较疏的地区,值可取10~15min。

m的确定:暗管m=2,明渠m=,在陡坡地区,暗管折减系数m=~2,经济条件较好、安全性要求较高地区的排水管渠m可取1。

的确定:式中——雨水在管渠内流行时间(min)L——各管段的长度(m)v——各管段满流时的水流强度(m/s)v的确定:式中v——流速(m/s)R——水力半径(m)I——水利坡度n——粗糙系数R确定:A——输水断面的过流面积(X——接触的输水管道边长(即湿周)(m)n的确定:(二)设计重现期(P)P的确定:《室外排水设计规范》(GB50014-2006)第条原规定:雨水管渠设计重现期,应根据汇水地区性质、地形特点和气候特征等因素确定。

同一排水系统可采用同一重现期或不同重现期。

重现期一般采用~3年,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般采用3~5年,并应与道路设计协调。

特别重要地区和次要地区可酌情增减。

二、汇水系数的确定(Ψ)汇水面积通常是由各种性质的地面覆盖组成的,随着它们占有的面积比例变化,Ψ的值也各异。

倒虹吸水力计算

倒虹吸水力计算
0.000
0.100
2.540
0.606
0.090
0.100 1.093 0.376 0.784
Hale Waihona Puke 3.9981.300倒虹吸水力计算 1、初拟管道直径
设计流量Q 最小流量Qmin 倒虹吸总长度L 材料糙率n 初选流速v' 初选过水断面面积w' 初选管道直径D' 确定出管道直径D 设计流速v 相应过水断面面积w 2、水头损失 (1)沿程水头损失 R=D/4 C=R1/6/n λ =8g/c2 hf=λ L*v2/(4R*2g)
Q=w(2gz)0.5/(λ L/D+∑ζ j) vmin=Q小/w(vmin>1.2m/s)
4.000 2.000 66.260 0.015 2.500 1.600 1.805 1.400 2.598 1.539
0.350 55.965 0.025 0.408 0.250
0.400 0.030 0.100 90.000 0.760 0.153
(2)局部水头损失 ζ j进口
ζ 门槽(单个为0.2)共两个
拦污栅栅条厚度s 拦污栅间距b 拦污栅与水平面夹角a 栅条形状系数β ζ 拦污栅=β (s/b)4/3sina
弯道损失ζ 弯道(查表3-7)
ζ 旁通管(单个为0.1)共两个
w渠
w管/w渠
ζ 出口(查表3-4)
3、校核流量 校核最小流量
ζ 通气孔(《水力计算手册表1-3-4》) 总局部水头损失系数∑ζ j 总局部水头损失hj=∑ζ jv2/2g 总水头损失z=hj+hf

管径与流量的计算公式?

管径与流量的计算公式?

管径与流量的计算公式?
一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。

流量=管截面积X流速=0.002827X管径^2X流速(立方米/小时)^2:平方。

管径单位:mm 管径=sqrt(353.68X流量/流速) sqrt:开平方饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。

如果需要精确计算就要先假定流速,再根据水的粘度、密度及管径先计算出雷诺准数,再由雷诺准数计算出沿程阻力系数,并将管路中的管件(如三通、弯头、阀门、变径等)都查表查出等效管长度,最后由沿程阻力系数与管路总长(包括等效管长度)计算出总管路压力损失,并根据伯努利计算出实际流速,再次用实际流速按以上过程计算,直至两者接近(叠代试算法)。

因此实际中很少友人这么算,基本上都是根据压差的大小选不同的流速,按最前面的方法计算。

倒虹吸计算公式

倒虹吸计算公式

倒虹吸计算公式
实际上虹吸流动时有水流阻力,有能量损失,需知道虹吸管的长度及布置情况。

做为初学,可假定为理想情况,不考虑能量损失。

设水源水面到虹吸管出口的高差为H,列水源水面到虹吸管出口的伯努利方程得:
H1=V^2/(2g) , 得虹吸流速:V=(2gH1)^(1/2)
虹吸流量:Q=(3.14D^2/4)(2gH1)^(1/2) D为虹吸管内径。

设最高点压强为P,虹吸管最高点到出口的高差为H2,列最高点到出口的伯努利方程得:
H2+P/(pg)+V^2/(2g)=V^2/(2g)
得:P = -pgH2 (相对压强,即不包括大气压,相对压强为负值,即绝对压强小于大气压,就是处于一定的真空状态,理论上最大真空值不能超过10米水柱,即H2<10米水柱)
也可列容器液面到最高点的伯努利方程:
0=H3+P/(pg)+V^2/(2g)
P=-pg[H3+V^2/(2g)]=-pg[H3+H1] = -pgH2 (答案与上面相同)
当然虹吸管的工作条件之一是虹吸管必须先充满水,而且管道不进气(容易进气的部位是在虹吸管的顶部,因为此处压强小于大气压,而虹吸管两端进出口处都大于大气压,倒不容易进气。

)因此虹吸管壁不能有孔眼和裂缝。

因实际的水流有阻力,有能量损失,虹吸管顶点的允许安装高度远小于10米!
说明:本例在不考虑水流能量损失,而且虹吸管截面是均匀的情况下,得出与截面积、管长、流速无关。

但实际有水流的能量损失,计算要远比以上复杂。

流量与管径、压力、流速之间关系计算公式

流量与管径、压力、流速之间关系计算公式

流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。

流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。

其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。

水头损失计算Chezy 公式这里:Q ——断面水流量(m3/s)C ——Chezy糙率系数(m1/2/s)A ——断面面积(m2)R ——水力半径(m)S ——水力坡度(m/m)根据需要也可以变换为其它表示方法:Darcy-Weisbach公式由于这里:h f——沿程水头损失(mm3/s)f ——Darcy-Weisbach水头损失系数(无量纲)l ——管道长度(m)d ——管道内径(mm)v ——管道流速(m/s)g ——重力加速度(m/s2)水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。

输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。

1.1 管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。

输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。

紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。

管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。

水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。

沿程水头损失水力计算公式和摩阻系数表1达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。

雨水流量计算公式

雨水流量计算公式

雨水流量计算公式在城市规划和水资源管理中,了解雨水的流量是非常重要的。

通过准确计算雨水的流量,我们可以预测洪水的风险,设计合适的排水系统,以及保护环境和基础设施免受雨水的破坏。

本文将介绍雨水流量计算的公式和方法。

雨水流量的计算涉及到降雨强度、径流系数和流域面积等因素。

以下是常用的雨水流量计算公式:Q = CiA其中,Q表示雨水流量(单位为立方米/秒),C是径流系数,i表示降雨强度(单位为毫米/小时),A表示流域面积(单位为平方千米)。

径流系数是表征降雨中被流进河道或溪流的雨水比例的一个参数。

该系数的数值取决于流域的土地利用类型和地形状况等因素。

一般来说,城市区域的径流系数较高,而农田和森林等自然地区的径流系数较低。

根据不同的情况,可采用经验值或实测数据来确定径流系数。

降雨强度指的是单位时间内降下的雨水量。

通常以毫米/小时来表示。

为了计算降雨强度,我们需要知道降水量和时间的关系。

从气象部门或其他可靠来源获得的降水数据可以帮助我们计算降雨强度。

流域面积是指搜集降雨水分的区域的总面积。

流域可以是一个整个城市的范围,也可以是一个小河流的流域。

通常,流域面积以平方千米为单位。

在计算流域面积时,应确保所有涉及到的地理特征都被包括进去,例如小溪、湖泊和流入流出的地下水等。

通过上述公式,我们可以计算出特定时间内雨水的流量。

然而,需要注意的是,以上计算方法假设雨水流量均匀分布在整个流域面积上。

实际情况中,流域的地形、土地利用和排水系统等因素都会对雨水的流量产生影响,因此应谨慎使用这些公式。

在应用这些公式时,我们需要先将降雨数据转化为适当的单位。

通常,从气象部门获取的降雨数据以小时为单位,并以毫米为单位。

我们可以将其转化为毫米/小时,以与公式中的单位相匹配。

另外,流域面积也要根据实际情况进行调整,确保遵循所选公式的单位要求。

当我们计算雨水流量时,还可以利用地理信息系统(GIS)来处理流域的空间数据。

通过使用GIS软件,我们可以创建流域边界、计算流域面积,并在计算过程中进行空间分析。

l-雨水管渠相关设计流量计算公式

l-雨水管渠相关设计流量计算公式

(min)
式中: t——设计降雨历时(排水面积的集水时间),min;
t1——地面积水时间,min; t2——在沟道中流行的时间,min;
m---- 折减系数
l——集中点上游各沟段的长度,m;
v——相应各沟段的设计流速,m/s。
折减系数m
雨水在管道内的实际流行时间与计算得出的 流行时间不符,需要采用一个系数进行修正, 此系数叫折减系数.
设计流速:最小流速0.75m/s,最大流速10m/s(金 属管),5m/s(非金属管).
最小管径和最小设计坡度:雨水管最小管径为 300mm,相应的最小坡度为0.003;雨水口连接管 最小管径为200mm,最小坡度为0.01
管段衔接:一般用管顶平接,当条件不利时也可 用管底平接。 最小覆土厚度:一般不小于0.7m。
第三节 雨水管网设计流量计算
雨水管渠设计流量计算公式
Q qA 167Ai
式中:Q—— 雨水设计流量,L/s; Ψ—— 径流系数,其数值小于1; A —— 汇水面积,公顷; q —— 设计暴雨强度,L/s.公顷。
一、设计暴雨强度的确定
1.地面积水时间: 指从汇水面积上最远点到第一个雨水口所需的
引入折减系数的原因有二:一是雨水管道内
不总是满流,按满流计算的流行时间小于雨水实际的 流行时间;二是雨水管道的最大流量不大可能在同一 时间发生,上游管道存在调蓄容积.
m变化范围1.8~2.2,我国《室外排水设计规 范》建议:暗管m=2,明渠m=1.2。
二 雨水管段设计流量的计算
雨水管道设计的极限强度理论包括两部分内容: 1.当汇水面积最大,最远点的雨水流到设计断面时,雨水管道
的设计流量最大。 2.当降雨历时等于集水时间,雨水管道需要排除的水量是最

水力学常用计算公式

水力学常用计算公式

1、明渠均匀流计算公式: Q=Aν=AC RiC=n 1R y (一般计算公式)C=n1R 61(称曼宁公式) 2、渡槽进口尺寸(明渠均匀流)gZ 2bh Q =z:渡槽进口的水位降(进出口水位差)ε:渡槽进口侧向收缩系数,一般ε=0、8~0、9 b:渡槽的宽度(米) h:渡槽的过水深度(米) φ:流速系数φ=0、8~0、95 3、倒虹吸计算公式:Q=mA z g 2(m 3/秒)4、跌水计算公式:跌水水力计算公式:Q =εmB 2/30g 2H ,式中:ε—侧收缩系数,矩形进口ε=0.85~0.95;,B —进口宽度(米);m —流量系数5、流量计算公式:Q=Aν式中Q ——通过某一断面的流量,m 3/s;ν——通过该断面的流速,m /h A ——过水断面的面积,m 2。

6、溢洪道计算1)进口不设闸门的正流式开敞溢洪道 (1)淹没出流:Q =εσMBH 23=侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深23 (2)实用堰出流:Q=εMBH23=侧向收缩系数×流量系数×溢洪道堰顶泄流长度×溢洪水深23 2)进口装有闸门控制的溢洪道 (1)开敞式溢洪道。

Q =εσMBH 23=侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深23 (2)孔口自由出流计算公式为Q=MωH=堰顶闸门自由式孔流的流量系数×闸孔过水断面面积×H 其中:ω=be7、放水涵管(洞)出流计算 1)、无压管流Q=μA 02gH=流量系数×放水孔口断面面积×02gH 2)、有压管流Q =μA 02gH=流量系数×放水孔口断面面积×02gH8、测流堰的流量计算——薄壁堰测流的计算 1)三角形薄壁测流堰,其中θ=90°,即自由出流:Q =1、4H 25或Q =1、343H 2、47(2-15) 淹没出流:Q =(1、4H 25)σ(2-16) 淹没系数:σ=2)13.0(756.0--Hh n+0、145(2-17) 2)梯形薄壁测流堰,其中θ应满足tanθ=41,以及b >3H,即自由出流:Q =0、42b g 2H 23=1、86bH 23(2-18)淹没出流:Q =(1、86bH 23)σ(2-19) 淹没系数:σ=2(23.1)Hh n --0、127(2-20) 9、水力发电出力计算N=9、81HQη式中N ——发电机出力,kW;H ——发电毛水头,m,为水库上游水位与发电尾水位之差,即H=Z 上-Z 下; Q ——发电流量,m 3/s;η——发电的综合效率系数(包括发电输水管的水头损失因素与发电机组效率系数),小型水库发电一般为0、6—0、7。

虹吸雨水计算书

虹吸雨水计算书

虹吸雨水计算书计算原理参考《建筑与小区雨水利用工程技术规范》(GB50400-2006)一、基本参数:管材:HDPE 温度:10℃二、基本计算公式:1、 暴雨强度公式: nb t P C A q )()lg 1(167++=式中:q -- 降雨强度,(L/s ·ha 、L/s ·hm 2、L/s ·104m 2) t -- 降雨历时(min ) P -- 设计重现期(年) A 、b 、C 、n -- 当地降雨参数2、 雨水设计流量公式:qF k Q l ψ=式中:Q -- 雨水设计流量(L/s ) q -- 降雨强度,(L/s ·ha 、L/s ·hm 2、L/s ·104m 2) ψ-- 径流系数。

F -- 汇水面积(hm 2)1 hm 2 = 10000平方米 gv d l h f2λ2=式中:h f -- 管道沿程阻力损失(m );1米=10kPa λ-- 管道沿程阻力损失系数,按下式计算 l -- 管道长度(m) d -- 管道计算内径(m ) v -- 管内流速(m/s )g -- 重力加速度(m/s 2) 取 9.81⎪⎭⎫ ⎝⎛+=λΔλRe 51.27.3lg 21d 式中:△ -- 管壁绝对粗糙度(mm ),由管材生产厂提供Re -- 雷诺数5、 局部阻力损失:∑25xj v T h =式中:h j --局部阻力损失(mbar )1mbar=100pa=0.1kPaT -- 局部阻力系数V x -- 管道某一x 断面处流速(m/s )6、 总阻力损失j f h h h +=总7、管道某一x 断面处的压力:∑---⨯=2251.98x x x x Zv h P式中: P x -- 管道某一x 断面处的压力(mbar )1mbar=100pa=0.1kPa h x -- 雨水斗顶面至计算断面的高度差(m ) v x -- 管道某一x 断面处流速(m/s ) ∑Z x-2 -- 断面处对应最远雨水斗至计算断面的总阻力损失之和(mbar )8、压力余量计算公式:∑--=∆Z v H P r 2151.98式中:△P r -- 压力余量(mbar )1mbar=100pa=0.1kPa H--雨水斗顶面与排水管出口的几何高差(m ) V 1 -- 排水管出口的管道流速(m/s )∑Z -- 最远雨水斗至排水口处的总阻力损失之和(mbar )3、 流速2π4dQv =式中:V -- 流速(m/s)Q -- 管段流量(L/s )d -- 管道的计算内径(m )4、 沿程阻力损失:四、计算结果:管道最大负压值: -81.37 kPa 压力余量:20.3 kPa。

虹吸流速公式

虹吸流速公式

虹吸流速公式虹吸流速公式是描述虹吸现象的数学公式,用来计算流体在虹吸管中的流速。

虹吸现象是一种自然界中常见的现象,例如我们经常可以在吸管中观察到虹吸现象。

虹吸流速公式的推导和应用可以帮助我们更好地理解虹吸现象的原理。

虹吸流速公式的推导过程较为复杂,涉及到一些流体力学的知识。

这里我们不展开具体的数学推导,而是简要介绍虹吸流速公式的应用。

在虹吸现象中,液体通过一根管道从高处流向低处,这种流动被称为虹吸流动。

虹吸流速公式可以描述虹吸流动中液体的流速。

根据虹吸流速公式,虹吸流速与液体的密度、管道直径、液体高度差等因素有关。

虹吸流速与液体的密度有关。

密度较大的液体在虹吸过程中流速较慢,而密度较小的液体流速较快。

这是因为密度较大的液体受到的重力较大,流速受到的阻力也较大。

虹吸流速与管道直径有关。

管道直径较小的情况下,虹吸流速较快。

这是因为管道直径较小时,液体流动的截面积减小,从而增加了液体流速。

虹吸流速与液体的高度差有关。

液体高度差越大,虹吸流速越快。

这是因为液体高度差越大,液体受到的重力也越大,从而加速了液体的流动。

虹吸流速公式的具体表达式可以通过实验测量得到,也可以通过理论分析推导得到。

在实际应用中,我们可以利用虹吸流速公式来计算虹吸现象中液体的流速,从而更好地理解和应用虹吸现象。

虹吸流速公式是描述虹吸现象的重要数学工具,通过虹吸流速公式可以计算虹吸流动中液体的流速。

虹吸流速公式的应用可以帮助我们更好地理解和应用虹吸现象,提高我们对流体力学的认识和理解。

希望本文对读者对虹吸流速公式有所帮助,增加对虹吸现象的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档