电磁场导论资料重点

合集下载

电磁场复习纲要

电磁场复习纲要

《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。

二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。

在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。

3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。

6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。

第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。

三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。

2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。

3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。

求任意点的电场强度及电位。

电磁场理论知识点总结

电磁场理论知识点总结

电磁场理论知识点总结一、电磁场的基本概念电磁场是物理学中的一个重要概念,它是由电场和磁场相互作用而形成的统一体。

电场是由电荷产生的,它对处在其中的电荷有力的作用。

电荷分为正电荷和负电荷,同种电荷相互排斥,异种电荷相互吸引。

电场强度是描述电场强弱和方向的物理量,用 E 表示。

电场强度的定义是单位正电荷在电场中所受到的力。

磁场是由电流或者运动电荷产生的,它对处在其中的运动电荷或者电流有力的作用。

磁场强度用 H 表示,磁感应强度用 B 表示。

磁感应强度是描述磁场强弱和方向的物理量,它等于垂直通过单位面积的磁力线的数量。

二、库仑定律与高斯定理库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们的电荷量以及距离之间的关系。

其表达式为:F = k q1 q2 / r²,其中 k 是库仑常量,q1 和 q2 是两个点电荷的电荷量,r 是它们之间的距离。

高斯定理是电场中的一个重要定理,它表明通过一个闭合曲面的电通量等于这个闭合曲面所包围的电荷的代数和除以真空中的介电常数。

简单来说,如果一个闭合曲面内没有电荷,那么通过这个曲面的电通量为零;如果有电荷,电通量就与电荷量成正比。

三、安培定律与毕奥萨伐尔定律安培定律描述了电流元在磁场中所受到的安培力。

安培力的大小与电流元的大小、电流元所在位置的磁感应强度、电流元与磁感应强度之间的夹角有关。

毕奥萨伐尔定律用于计算电流元在空间某点产生的磁感应强度。

它表明电流元在空间某点产生的磁感应强度与电流元的大小、电流元到该点的距离以及电流元与该点连线和电流方向之间的夹角有关。

四、法拉第电磁感应定律法拉第电磁感应定律指出,当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电动势。

感应电动势的大小与磁通量的变化率成正比。

这一定律揭示了电磁感应现象的本质,是发电机等电磁设备的工作原理基础。

五、麦克斯韦方程组麦克斯韦方程组是电磁场理论的核心,它由四个方程组成,分别描述了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培麦克斯韦定律。

物理学中的电磁场理论知识点

物理学中的电磁场理论知识点

物理学中的电磁场理论知识点电磁场理论是物理学中重要的一部分,它描述了电荷体系所产生的电磁场以及电磁场与电荷之间的相互作用。

本文将介绍电磁场的概念、电场和磁场的性质以及麦克斯韦方程组等电磁场的基本知识点。

一、电磁场的概念电磁场是指由电荷或电流体系所产生的电场和磁场的总和。

电场是由电荷引起的一种力场,可使带电粒子受力;磁场则是由电流引起的一种力场,可对磁性物质施加力。

二、电场的性质1. 电场的强度:电场强度定义为单位正电荷所受的电场力,通常用E 表示,其大小与电荷量和距离有关。

2. 电场线:电场线是用来表示电场分布的曲线,其方向与电场强度方向相同。

电场线的密度反映了电场强度的大小。

3. 高斯定律:高斯定律描述了电场与电荷之间的关系,它指出电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。

三、磁场的性质1. 磁感应强度:磁感应强度是磁场的基本物理量,用 B 表示,其大小与电荷量和距离无关。

它描述了磁场对磁性物质产生的作用力。

2. 磁场线:磁场线是用来表示磁场分布的曲线,其方向与磁感应强度的方向相同。

磁场线呈环状,从北极经南极形成闭合曲线。

3. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电动势的现象。

它说明了磁场变化对电荷运动的影响。

四、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,它由麦克斯韦总结了电场和磁场的性质而得出。

麦克斯韦方程组包括四个方程,分别是:1. 麦克斯韦第一方程(高斯定律):它描述了电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。

2. 麦克斯韦第二方程(法拉第电磁感应定律):它描述了磁场变化引起感应电动势的现象,即电场沿闭合回路的环路积分与磁场变化的速率成正比。

3. 麦克斯韦第三方程(安培环路定律):它描述了环绕闭合回路的磁场强度与通过闭合回路的总电流之间的关系。

4. 麦克斯韦第四方程(法拉第电磁感应定律的推广):它说明了变化的电场可以产生磁场,反之亦然。

电场和磁场之间存在着相互转化的关系。

电磁场电磁波复习重点

电磁场电磁波复习重点

电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。

矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。

2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。

4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积F.dS定义为矢量F穿过面元矢量dS的通量。

如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。

如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。

如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。

电流是磁场的旋涡源。

5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。

Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。

6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。

第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。

电磁场知识点

电磁场知识点

电磁场附录1、通量、散度、环量、旋度2、无源场、无旋场以及无源无旋场的条件3、拉普拉斯方程、泊松方程第一章静电场1、库仑定律2、均匀带电的无限长线电荷、无限大带电平面、球面(球内、球外)的电场强度E3、静电场环路定律(无旋场)4、电偶极子5、电极化强度P、电通密度(电位移矢量)D(分别是怎么来的)6、静电场基本方程、分界面衔接条件、静电场折射定律7、静电场边值问题(求满足边界条件的破松方程或laplace方程的解)8、镜像法(球面时要注意球面是否接地)、电轴法第二章恒定电场1、电流密度;各元电荷(体、面、线)2、欧姆定律、焦耳定律、功率密度3、电源电动势和局外场强4、电流连续性方程(经过电源和不经过电源)5、恒定电厂基本方程、衔接条件6、恒定电场边值问题7、镜像法8、电导G9、接地电阻第三章恒定磁场1、毕奥-沙伐定律、安培力定律、洛伦兹力;无限长载流导线和无限大电流平面的磁感应强度B2、真空中安培环路定律3、分子磁矩;转矩作用(力图使M与外磁场B方向一致);磁化强度;磁化电流4、磁化强度M;磁场强度H(与B的关系);一般形式的安培环路定律;5、磁通连续性原理6、恒定磁场的基本方程;衔接条件(不同煤质)7、磁矢位A(可用于计算磁感应强度和磁通量),库伦规范条件8、磁矢位边值问题9、磁位(为简化计算而引入,无意义);边值问题;衔接条件10、镜像法11、电感12、聂以曼公式13、磁场能量(自由能和互有能);磁场能量体密度;利用磁场能量求自感第四章时变电磁场1、电磁感应定律2、全电流定律3、麦克斯韦方程组;各项同性煤质中D与E,B与H,J与E的关系4、分界面的衔接条件5、坡印亭定理例题(标红的很重要,其他的自己随意感受下吧)1-1,1-2,1-3,1-4,1-5,1-7,1-8,1-9,1-10,1-11,1-13,1-18, 2-1,2-2,2-3,3-1,3-4,3-5,3-6,3-9,3-12,3-13,3-15,3-16,3-174-1,4-2,4-6。

电磁场高分复习笔记知识点

电磁场高分复习笔记知识点

电磁场高分复习笔记知识点1.什么是电磁场?1)由带电物体产生的物理场,带电物体在电磁场内会受到电磁场的作用力。

2)电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。

变化的磁场生电场,变化的电场生磁场。

3)带电物体与电磁场之间的相互作用可以用麦克斯韦方程组和洛伦兹力定律来描述。

2.静电场(不运动、量不变化电荷产生的电场)1)库仑定律:无限大真空中,两带电体距离远大于本身尺寸时,两带电体之间的相互作用力●2)电场强度 E:用来表示电场强弱和方向的物理量,试探电荷在电场内所受力的方向就是电场方向(N/C)3)电位移矢量 D:在静电场存在介质时,用以描述电场的辅助量(C/平方米)4)静电场环路定理:静电场中,沿闭合路径移动电荷,电场力做功恒为零。

5)高斯定律:不管是在真空中还是电介质中,任意闭曲面S上电通密度D的面积分,等于该曲面内的总自由电荷,而与一切极化电荷及曲面外的自由电荷无关6)基本方程●高斯定律(库伦定律+叠加原理)●积分形式:电位移矢量闭合面积分=面内总自由电荷(静电场有源)●微分形式:静电场是有散场●环路定理●积分形式:电场强度环路积分=0(静电场能量守恒)●微分形式:静电场是无旋场7)边界条件:分界面两侧D法向量不连续且= 分界面上自由电荷面密度,E的切向量连续8)静电能量:静电场不为0的空间都储存着静电能量9)电位:由于静电场无旋性,用电位函数φ描述,电位是标量(V)10)泊松方程、拉普拉斯方程:(求解静电场边值问题下的电位函数或电场强度分布)●表达了场中各点电位的空间变化与该点自由电荷体密度之间的普遍关系,本质都是电位函数的微分方程,拉普拉斯方程是在无引力源的情况下的泊松方程。

11)静电场中导体:在导体表面形成为一定面积的电荷分布,使得导体内部的电场为零,每个导体都成为等位体,导体的表面均为等位面。

12)电介质的极化:在外加静电场的作用下,电介质分子由中性转而呈现正负电荷在分子范围内的极化,其作用中心不再重合,形成一个小小的电偶极子,形成附加电场,引起原先电场分布的变化3.恒定电场(电流恒定的场)1)电流密度 J:按体密度ρ分布的电荷,以速度v作匀速运动时,产生电流密度矢量J(A/m²)2)基本方程(积分——高斯散度定理+斯托克斯定理——微分)●电流连续性方程●积分形式:导电介质维持恒定电场,任一闭合面流出的传导电流=0●微分形式:电流面密度线是闭合曲线,因此恒定电流只在闭合电路流动●电场强度的环路线积分●积分形式:积分路线不经过电源,则只存在库伦场强●微分形式:场强的旋度=0,恒定电场是保守场3)边界条件:分界面两侧电流密度J的法向量连续,电场强度E的切向量连续4)恒定电场与静电场的比拟(表格)●对应物理量满足的方程形式上一样,若两个场边界条件相同,只要通过一个场的求解,再利用对应量关系置换,即可得到另一个场的解4.恒定磁场(恒定电流引起的磁场)1)奥斯特发现电流的磁效应,法拉第发现电磁感应现象,亨利发表自感应现象论文2)磁感应强度 B:描述磁场强弱和方向的矢量(特斯拉 T)3)磁场强度矢量 H:在磁场存在磁介质时,用以简化安培环路定理引入的描述磁场的辅助矢量(A/m)4)基本方程●磁通连续性原理——表明磁感应线连续,是磁场中的高斯定律●积分形式:磁路中磁通量守恒●微分形式:恒定磁场是一个无散场●安培环路定律——毕奥沙伐定律+磁场叠加性●积分形式:磁场强度H的线积分=穿过该回路包围面积的自由电流●微分形式:磁场是有旋场5)边界条件:6)电感:将电能转化为磁能储存起来的元件●自感:回路的电流与该回路交链的磁链的比值●互感:回路的电流与另一个回路产生的磁链的比值7)磁场能量:●磁场能量是建立回路电流过程中外源做的功,分布于磁场所在的整个空间8)矢量磁位:●由于磁场无散性,用矢量磁位A来描述。

电磁场与电磁波复习重点

电磁场与电磁波复习重点

电磁场与电磁波知识点要求第一章 矢量分析和场论基础1、理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。

2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(限直角坐标系)。

梯度:x y z u u uu x y z∂∂∂∇=++∂∂∂e e e , 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。

y x zA A A x y z∂∂∂∇⋅=++∂∂∂A散度:单位空间体积中的的通量源,有时也简称为源通量密度, 高斯定理: ()()V S dV d ∇⋅=⋅⎰⎰⎰⎰⎰A A S ,x y zy y x x z zx y z xy zA A A A A A x y z y z z x xy A A A ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫∇⨯==-+-+- ⎪⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭e e e A e e e旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。

斯托克斯定理:()()S L d d ∇⨯⋅=⋅⎰⎰⎰A S A l数学恒等式:()0u ∇⨯∇=,()0∇⋅∇⨯=A 3、理解亥姆霍兹定理的重要意义:若矢量场 A 在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场 A 可表示为一个标量函数的梯度和一个矢量函数的旋度之和。

u =∇⨯-∇A F第二、三、四章 电磁场基本理论1、 理解静电场与电位的关系,QPu d =⋅⎰E l ,()()u =-∇E r r2、 理解静电场的通量和散度的意义,d d d 0V SV SVρ⎧⋅=⎪⎨⋅=⎪⎩⎰⎰⎰D S E l ,0V ρ∇⋅=⎧⎨∇⨯=⎩D E 静电场是有散无旋场,电荷分布是静电场的散度源。

3、 理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。

电磁场导论 第三章]

电磁场导论 第三章]

恒定磁场
2) 1 2

得到
B dl 2πB 0 I l 0 I B e 2 π
3) 2 3,
2 32 2 2 2 I I I 2 I 2 2 2 3 2 3 2
图3.2.10 同轴电缆
0 I ( 32 2 ) l B dl 2πB 32 22

根据
B A
A

z Az
B
0 I l

2 2 32
4π ( z )
e
0 I l
4πr
sin e
第 三 章
恒定磁场
例 应用磁矢位 A,试求空气中长直载流细导线产生 的磁场。
A Aez 解: 定性分析场分布,
A
0 I
L
0 I L dz 4π L r
第 三 章
恒定磁场

真空中有一载流为 I,半径为R的圆环, 解:元电流 Idl 在 P 点产生的 B 为
试求其轴线上 P 点的 磁感应强度 B 。
0 Idl e r ( Idl dB 2
4 πr
dB
图3.1.3 圆形载流回路
er )
2 4π( R 2 x 2 )
0 Idl sin
图3.3.3 铁磁媒质与空 气分界面
与分界面近似垂直,铁磁媒质表面
近似为等磁面。
返 回
上 页
下 页
第 三 章
恒定磁场
磁矢位及其边值问题
1. 磁矢位 A 的引出 由
B 0 A 0 B A
A 磁矢位
Wb/m(韦伯/米)。
返 回
上 页

完整版电磁场理论复习总结

完整版电磁场理论复习总结

完整版电磁场理论复习总结1.1 标量场和⽮量场1.2 三种常⽤的正交坐标系1.3标量场的梯度哈密顿算符:(⼀e —e —e z)x y z2.梯度的垄本运算公式1) VC-0 (C^S)2) V(Cu)⼆CVw3) V((/ ⼟巧⼆可肿⼟V7附4) V(/a T) = Z/V V +T V;/5) VF(u) = F r(u)Vu6) V(-) = -l(rV?/-i/Vv)v vFF cF7) ^7(^ v) = —Vw + — Vvdu dv式中:U育常報;级⽢为半标变最遢載;3”梯度的重要性质16CJ55 「「⼩V x V/z = 0产⽣场的场源所在的空闾位国点称为源点上记为am或7 场所在的疇间⾫置点称为场贞「记为(x,y\2}或⼫源点到场点的距S?j?=|r-r| 从源点指向场点的⽮量为^ = r-F例3求鸥叫哙呻?刃畑%&R⾐⽰对仗」4运算R表⽰对运算.R^r-r1^J(x-A?)r+(y-/>:BR 、BR 、BR—MY臥叫帝M还W(R) = ARWR = ^-\R(lii dii fir ?S A dS A. A y A zdivA lim ——V 0 V x y zdivA A x A y A z Ax y zA e x( A z A y) e y( A x A z) e z(⼊sy z z x x y1) V Y C=02) Vx(i = A3) V x(H ±B) —V XJ1±V>.54) V x (u = uV y /< + V u KX B)=2J-V XJ4-J4-V X5l f ***** 4;jd' V x Vy - 0! 7)V (VxJ)-O:W屜囲焉唉屋?熾常数,址为标量函数「du电磁总复习第⼀章⽮量分析l ?Eit ⼗dit ?duIt= 0 r ——+ 0 L ——+&——标量场⼼的梯度. ex cy czV u =—yir rotAc'R ex R_y-y r漁—R 忑RVR = -RR'⽮童场的雄度1.4⽮量场的通量与散度三. 散度的运算公式])V C-02)V(Arl) = )tV^4) V (u A) =wV .4 + 4 Vw 沐为常数」为标量函数)- (IA5) V J(rt) - V// —du四、⾼斯定理(散度定理)L v知⼀丄%物理詳5G穿过⼀封闭曲⾓的总谓呈等于⽮虽散度的休秘分1.5⽮量场的环流与旋度-------------------- V VV v ?c A dl rotA nlim --S 0Sr r re x e y e zir irot A Ax y zA x A y A z4-症度计算相关公式:标葷场的梯度的旌度恒为零1G:2D3*酶点录场点df Rmax三、斯托克斯定理物理含义;—个⿂量场旋度的⾯税分導于演⽮量沿此由⾯周界的曲线眦四、⽮量场擬度的重要性质⼙(Vxj^O任意⽮量场I?度的散度等于議⽮量场有两种不同性质的源:(1)散度源(标量)(2)旋度源(⽮量)。

高三电磁场知识点总结详细

高三电磁场知识点总结详细

高三电磁场知识点总结详细电磁场是物理学中的一个重要概念,对于高三学生来说,电磁场是必修课程中的一个重点内容。

本文将详细总结高三电磁场的知识点,帮助学生们复习和理解相关知识。

第一部分:电磁场基础知识1. 电磁场的概念- 电磁场是由电荷体系形成的以电场和磁场为基本特征的力场。

2. 静电场与静磁场- 静电场:由静止的电荷所产生的电场。

- 静磁场:由静止的电荷所产生的磁场。

3. 电磁感应定律- 法拉第电磁感应定律:导体中的磁通量变化会产生感应电动势。

- 感应电动势的大小与导体中磁通量变化率成正比。

第二部分:电磁场的基本定律1. 库仑定律- 库仑定律描述了两个点电荷间相互作用力的大小与距离的关系。

- 库仑定律公式:F = k * (q1 * q2) / r^22. 电场的叠加原理- 多个电荷同时存在时,它们产生的电场可以通过叠加原理求和得到。

3. 磁场的基本性质- 磁场是由带电粒子运动或者电流产生的。

- 磁场具有方向性,用磁力线表示。

第三部分:电场与电势1. 电势能- 电荷在电场中具有电势能,电势能与电荷的大小、电势差和电场强度有关。

- 电势能的计算公式:Ep = q * V2. 电位- 电位是指某一点的电势能与单位正电荷之比。

- 电位的计算公式:V = U / q3. 静电平衡- 静电平衡要求电场内的电势能相等,即电荷处于平衡状态。

第四部分:电流与磁场1. 安培环路定理- 安培环路定理描述了电流通过闭合回路所产生的磁场的性质。

- 安培环路定理公式:∮B·dl = μ0 * I2. 磁场的磁感应强度- 磁感应强度描述了磁场中的力场作用强度。

- 磁感应强度的计算公式:B = F / (q * v * sinθ)第五部分:电磁感应与电磁波1. 电磁感应现象- 电磁感应现象是指磁场变化时在导体中感应出电流的现象。

2. 法拉第电磁感应定律- 法拉第电磁感应定律描述了磁通量变化导致感应电动势的产生。

- 法拉第电磁感应定律公式:ε = -ΔΦ / Δt3. 麦克斯韦方程组- 麦克斯韦方程组总结了电场和磁场的关系以及它们对物质的作用。

工程电磁场导论复习重点要点提纲

工程电磁场导论复习重点要点提纲

第一章1、电荷和电荷之间的作用力是通过电场传递的。

2、电场强度定义:①没有电场中某P点,置一带正点的实验电荷q0,电场对他的作用力为F,则电场强度(简称场强)E=lim q0→0F/q0②电场密度③电位:在静电场中,沿密闭合路径移动的电荷,电场力所作的功恒为零。

3、均匀球面电荷在球内建立的电场恒为零(判断)4、功只和两端点有关。

电场力所作用的功也是和路径无关的。

5、静电场,电场强度的环路积分恒等于零(判断)(非保守场不等于0,保守场(静电场)恒为零,静电场是保守场)6、等位面和E线是到处正交的。

在场图中,相邻两等位面之间的电位差相等,这样才能表示出电场的强弱。

等位面越密,外场强越大。

7、静电平衡状态:第一,导体内的电场为零,E=0。

第二,静电场中导体必为一等位体,导体表面必为等位面。

————第三,导体表面上的E必定垂直于表面。

第四,导体如带电,则电荷只能分布于其表面(不是分布在内部)8、静电场中的电介质不是导体也不是完全绝缘介质。

9、电介质对电场的影响可归结为极化后极化电荷或电偶极子在真空中产生的作用。

10、任意闭合曲面S上,电场强度E的面积分等于曲面内的总电荷q=∫v pdv的1/e0(希腊字母)倍(v是s限定的体积)11、静电场积分方程:∮S D·ds=∫V pdv微分方程:▽﹒D=p∮l E·dv=0 ▽×E=0 12、D2n-D1n=0E1t=E2t称为静电场中分界上的衔接条件。

n垂直,t水平13、电位——的泊松方程:————在自由电荷密度——的区域内,——(电位——的拉普拉斯方程)(看空间中有无自由电荷)14、在场域的边界面S上给定边界条件的方式有以下类型:①已知场域辩解面S上各点的电位值,即给定————,称为第一类边界条件②已知场域边界面S上各点的电位法向导数值,即给定————,称为第二类边界条件。

③已知场域边界面S上各点电位和电位法向导数的线性组合的值,即给定————,称为第三类边界条件。

电磁场导论总复习

电磁场导论总复习
分别求这些基本物理量 3.验证答案是否正确(简单验证)
例: 同轴电缆内外导体半径分别为R1和R2长度为l,中间为线
性各向同性电介质,电容率 。已知内外导体间的电压为U,
求:外导体单位面积所受的电场力
解:1.已知条件显化:
①电荷轴对称→等位面同轴圆柱面→E 只有er 方向分量且只与r有关 ②同轴电缆无限长E与z无关 2.由已知条件和要求解的问题确定解题 方法并求解 ①定位 静电场→虚位移法→确定主要计算公式
电力线微分方程: E dl = 0
由E= 可知: 等位面与电力线处处正交(垂直) 等电位面越密处,电场强度越大
2-3 静电场的边值问题
泊松方程
2
场域边界、自然边界、介质分界面衔接条件
2 1
与E1t=E2t等效
1n12n2 与D2nD1n= 等效
当电荷分布在有限区域,场域延伸到无限远处时, 0。称为自然边界条件。
f We g qk 常数
f We g k 常数
a:
We
1 2
n 1
kqk
1
b:
We
2
EDdV
V
② 分解:a: 求qk
b:求E
a: 解:设内导体表面带电量为q
由于

DdSq
S

D
q
2rl
er
ED 2(2q0)rler4q 0rler
U R 2E d lq R 2d rqln R 2
D2 n –D1 n =
5.2 坡印亭定理与坡印亭矢量
VE eJ d V W tVJ2d V S (E H )d S
电源提供 的电磁功 率(VA)
物理意义
电磁场储 能增加率 (J/S)

高三物理电磁场知识点

高三物理电磁场知识点

高三物理电磁场知识点电磁场是物理学中一个重要的概念,它描述了电荷和电流周围空间的物理特性。

在高三物理学习中,电磁场是一个重要的知识点,本文将介绍高三物理电磁场的相关知识。

一、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律。

它表明,当闭合回路中的磁通发生变化时,会在闭合回路中诱导出电动势和电流。

公式表示为ε = -dΦ/dt,其中ε为感应电动势,Φ代表磁通量,dt表示时间的微分。

2. 纳日尔定律纳日尔定律是描述磁场中感应电流方向的规律。

根据纳日尔定律,感应电流的方向总是使得产生它的磁场发生变化的方式。

二、电磁波1. 麦克斯韦方程组麦克斯韦方程组是电磁场理论的基本方程组,它由麦克斯韦提出并总结了电磁场的基本规律。

麦克斯韦方程组包括四个方程:电场高斯定律、电场环路定律、磁场高斯定律和磁场环路定律。

2. 电磁辐射电磁辐射是电磁波的传播方式。

电磁波具有电场和磁场的相互作用,它们垂直传播,并以光速传播。

电磁波可以根据频率分为不同的波段,包括射频、微波、红外线、可见光、紫外线、X射线和γ射线。

三、电磁场的应用1. 电动机和发电机电动机和发电机是利用电磁场相互作用的原理来实现能量转换的设备。

电动机将电能转换为机械能,而发电机则将机械能转换为电能。

2. 电磁炉和感应加热电磁炉和感应加热利用电磁感应的原理来实现加热功能。

通过产生交变磁场来激发物体内部的感应电流,从而产生热量。

3. 电磁波的应用电磁波在通信、雷达、医学诊断等领域有着广泛的应用。

无线通信利用电磁波的传播特性来进行信息传输,而医学诊断则利用电磁波的穿透能力来观察人体内部的结构和组织。

四、电磁场的符号表示和单位1. 电场强度和磁感应强度的符号表示电场强度用E表示,磁感应强度用B表示。

2. 电场强度和磁感应强度的单位电场强度的国际单位是N/C,磁感应强度的国际单位是T(特斯拉)。

五、电磁场的性质1. 电场和磁场的荷质量参量电荷是电磁场相互作用的物理量,它具有电量和质量。

工程电磁场导论准静态电磁场和边值问题知识点

工程电磁场导论准静态电磁场和边值问题知识点

工程电磁场导论准静态电磁场和边值问题知识点一、知识概述准静态电磁场和边值问题①基本定义:- 准静态电磁场呢,简单说就是一种近似的电磁场情况。

在一些情况下,电磁场变化不是那么快,就可以把它当作准静态的。

比如说电场或者磁场的变化率相对比较小的时候,就像是大家走路的时候一步一步慢慢走,而不是跑来跑去那种很剧烈的变化。

电场准静态的时候,可以近似用静电场的一些方法去分析,磁场准静态的时候也类似能用上一些静磁场的办法。

边值问题呢,就是在给定的边界条件下,去求解电磁场的问题。

就好比你要在一个限定的区域里,根据这个区域四周的情况来确定里面电磁场是啥样的,这个区域周围的情况就是边界条件。

②重要程度:- 在工程电磁场导论这个学科里,这可是很重要的一部分呢。

因为实际工程中很多电磁场的情况都可以用准静态的概念简化分析,让复杂的问题变得好理解一些。

边值问题相当于把电磁场的理论和实际应用连接起来的一座桥,如果搞不定边值问题,很多实际工程中的电磁场就没法准确计算和设计。

③前置知识:- 得先掌握静电场、静磁场的基本概念和计算方法。

比如说库仑定律得知道吧,安培定律这些也得有个印象。

就像你要学烧复杂的菜,那得先把切菜洗菜、基本的煎炒烹炸先学会。

④应用价值:- 在电气设备的设计里经常用到。

比如电机的电磁场分析,就可以用准静态电磁场的概念简化计算。

还有像变压器的设计,要考虑铁芯周围的磁场分布,这时候就会涉及到边值问题。

如果这些搞不清楚,电机可能性能就不好,变压器效率也上不去。

二、知识体系①知识图谱:- 准静态电磁场和边值问题在工程电磁场导论这个学科里就像是大树的树干分出来的一个大树枝。

它跟之前学的静电场、静磁场有联系,又为后面学习更复杂的时变电磁场打基础。

②关联知识:- 和麦克斯韦方程组里的各个方程关系密切。

像准静态电磁场很多时候就是在麦克斯韦方程组在特殊情况下的一种反映。

和电磁感应原理也有关联,因为磁场变化产生感应电场之类的。

③重难点分析:- 重点是确定不同情况下的准静态电磁场的近似条件,还有就是高效准确地根据边界条件求解边值问题。

电磁场导论之物理基础

电磁场导论之物理基础

场线——一种形象描绘场分布的工具 标量场--等值线(面)
矢量场--矢量线
其方程为 h (x, y, z) const 其方程为
Adl 0
g
x
ex
y
ey
z
ez
grad
梯度(gradient)
divA
A
Ax x
Ay y
Az z
散度(divergence)
rot A A
旋度(curl)
SA dS V AdV
图 1-5
dq
K v dl dl db ds dt di
dt dt db dt db db db
通过载流面上任一截线b的电流 i K db b
注意:公式中截线b及其法线方向n
第一章电磁场的物理基础
13
3)线电流
如果电荷在横截面可忽略不计的导线上流 动,就是常说的“线电流”。可看为密度为 的线电荷,以速度v沿导线运动
2.轴对称场:如果在经过某一轴线(设为 Z 轴)的一族子午面上,场 F 的分布都相同, 即 F=f(r,),则称这个场为轴对称场。
3,球面对称场:如果在一族同心球面上(设球心在原点),场 F 的分布都相同,即 F=f(r),则称这个场为球面对称场。
第一章电磁场的物理基础
3
第一章 电磁场的物理基础
1-1 电荷密度与电流密度 1-2 电场强度与电位移矢量 1-3 磁感应强度与磁场强度 1-4 麦克斯韦方程组
第一章电磁场的物理基础
23
无极性分子
电介质的极化
有极性分子
第一章电磁场的物理基础
24
电介质被极化的程度用“极化强度”表示
p
P lim
v0
v

电磁场复习要点

电磁场复习要点

电磁场复习要点第⼀章1、⽮量的点乘和叉乘公式、性质,特别是在直⾓坐标系下的计算公式2、三种常⽤正交坐标系的相互转换,各⽅向单位⽮量之间的⽅向关系。

3、场论的基础知识:(1)标量场的梯度的概念、性质、公式、与⽅向导数的关系(2)⽮量场的散度的概念、公式、与通量的关系、散度定理、通量源和⽮量线的特点(3)⽮量场的旋度的概念、公式、与环量的关系、斯托克斯定理、漩涡源和⽮量线的特点(4)两个恒等式(5)亥姆霍兹定理第⼆章1、三⼤实验定律:公式、含义、物理意义2、两个基本假设:有旋电场和位移电流3、麦克斯韦⽅程组微分形式、积分形式及其物理意义4、两种不同介质分界⾯上的边界条件(普通的、理想介质与理想介质、理想导体与理想介质)5、媒质的电磁特性:极化、磁化和传导。

6、三种介质的本构关系对以上公式要求理解,能够灵活运⽤公式进⾏解题。

重点例题:P80页例2.7.1,例2.7.3第三章1、电位函数:引⼊依据,与电场强度之间的关系(积分形式和微分形式),电位参考点的选取原则。

2、电容的定义及其求解3、静电场的能量和能量密度(各种公式)重点查看课本P96页双导体电容的计算步骤。

例3.1.4,例3.1.54、⽮量磁位:引⼊依据,与磁感应强度之间的关系(积分形式和微分形式),⽮量磁位的⽅向。

5、电感的定义,⾃感⼜分内⾃感和外⾃感。

圆截⾯长直导线单位长度的内⾃感是多少6、恒定磁场的能量和能量密度(各种公式)P125页例3.3.77、恒定电场的源量和场量,基本性质。

电阻的求解。

8、什么是边值问题,他的分类,唯⼀性定理及其意义9、边值问题的常⽤解法10、镜像法的原理、求解关键。

接地的⽆限⼤导体平⾯的镜像,具有⼀定夹⾓的接地导体平⾯的镜像。

接地和不接地导体球⾯的镜像。

主要能够求出镜像电荷的个数、位置、⼤⼩。

11、分离变量法的原理。

针对给出问题能够列出位函数满⾜的⽅程和边界条件。

12、有限差分法的主要思想,和主要公式。

第四章1、波动⽅程的意义2、位函数和场量的关系3、坡印廷⽮量的定义,物理意义。

(完整word版)电磁场与电磁波课程知识点总结和公式

(完整word版)电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂-=⨯∇•∂∂+=•∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖρ本构关系: E J HB ED ϖϖϖϖϖϖσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ϖϖϖϖϖϖϖϖϖϖϖϖϖρ2 边界条件(1)一般情况的边界条件nn n sT t t s n s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-•=-=-⨯=-=-•==-⨯ϖϖϖϖϖϖϖϖϖϖϖϖϖ((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-•==-⨯==-•==-⨯ϖϖϖϖϖϖϖϖϖϖϖϖ(((1)基本方程0022=•==∇-=∇=•=•∇=•=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρϖϖϖϖϖϖϖϖ本构关系: E D ϖϖε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。

● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。

电磁场理论知识点总结

电磁场理论知识点总结

电磁场与电磁波总结第1章 场论初步一、矢量代数A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) =B ∙(C ⨯A ) = C ∙(A ⨯B ) A ⨯ (B ⨯C ) = B (A ∙C ) – C ∙(A ∙B ) 二、三种正交坐标系 1. 直角坐标系矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dxdydz单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ 体积元dV = ρd ρd ϕd z 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元d l = e r d r + e θ r d θ+e ϕ r sin θd ϕ 矢量面元d S = e r r 2sin θd θd ϕ 体积元dv = r 2sin θd r d θd ϕ 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθcos sin 0sin cos 0 001x r y z z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ϕϕϕϕϕ sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦θϕθϕθϕθθϕθϕθϕϕ sin 0cos cos 0sin 010r r z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦θϕϕθθθθ 三、矢量场的散度和旋度1.通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxnrot =lim∆→⋅∆⎰A l A e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()∂∂∂∇=++∂∂∂⋅A zA A A zϕρρρρρϕ 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕx y z ∂∂∂∇⨯=∂∂∂e e e A x y z x y z A A A ∂∂∂∇⨯=∂∂∂e e e A z z z A A A ρϕρϕρρϕρsin sin ∂∂∂∇⨯=∂∂∂e e e A r r zr r r A r A r A ρϕθθθϕθ 4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγ cos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y z u u u u u n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e x y z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u =∇F u六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z zu u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V ’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第2章 电磁学基本规律一、麦克斯韦方程组 1. 静电场基本规律真空中方程: 0d ⋅=⎰SE S qε d 0⋅=⎰lE l 0∇⋅=E ρε0∇⨯=E 场位关系:3''()(')'4'-=-⎰r r E r r r r V q dV ρπε=-∇E φ 01()()d 4π''='-⎰r r |r r |V V ρφε介质中方程: d ⋅=⎰D S S qd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε极化电荷:==⋅P e PS n n P ρ=-∇⋅P P ρ 2. 恒定电场基本规律电荷守恒定律:0∂∇⋅+=∂J tρ 传导电流:=J E σ与运流电流:ρ=J v 恒定电场方程: d 0⋅=⎰J S Sd 0l ⋅=⎰E l 0∇⋅=J 0∇⨯E =3. 恒定磁场基本规律真空中方程:0 d ⋅=⎰B l lIμ d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场位关系:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中方程:d ⋅=⎰H l l Id 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμ 磁化电流:m =∇⨯J M ms n =⨯J M e4. 电磁感应定律d d ⋅=-⋅⎰⎰SE l B S lddt ∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt ∂∇⨯=+∂DH J t位移电流:d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B Sl S lS S V S l t l t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m e m e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H D B H J E J D B D B t t&t t ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件 1. 一般形式12121212()0()()()0⨯-=⨯-=⋅-=⋅-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第3章静态场分析一、静电场分析1. 位函数方程与边界条件位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解方法:2211⋅⋅===⋅⋅⎰⎰⎰⎰D SE S E l E lS Sd d q C U d d ε 3. 静电场的能量N 个导体:112==∑ne i i i W q φ连续分布:12=⎰e V W dV φρ电场能量密度:12D E ω=⋅e二、恒定电场分析1. 位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式:=J E σ焦耳定律的微分形式:=⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E l E l J S E S SSU R G I d d σ(L R =σS)4.静电比拟法:C ——G ,ε——σ2211⋅⋅===⋅⋅⎰⎰⎰⎰D SE S E l E lS Sd d q C U d d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G U σ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ0=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =⋅⎰V W V 磁场能量密度:m 12H B ω=⋅ 第4章 静电场边值问题的解一、边值问题的类型● 狄利克利问题:给定整个场域边界上的位函数值()=f s φ ● 纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ● 混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ ● 自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

电磁场导论

电磁场导论
第一章
§1-1电场强度· 电位
静电场
近代物理学的发展告诉我们:凡有电荷的地方,四周就存 在着一种特殊形式的物质,称为电场。即任何电荷都在自己周
围的空间激发电场。相对于观测者静止,且其电量不随时间而
变化地电荷,在其周围空间产生的电场,即为静电场。
1.1.1 电场强度
表征电场基本特性的场矢量是电场强度,简称场强,用E 表示,它被定义为:
r1 +q d
θ
r
r2
o
-q
图1-6 电偶极子
因r>>d,则r1r2≈r2, r2-r1≈dcosθ,所以有
1 1 q 4 0 r1 r2 4 0 q
r2 r1 rr 2 1
因r>>d,则r1r2≈r2,r2-r1≈dcosθ,所以有
q r ' dq r ' 体密度:(r) ' lim (C / m 3 ) V ' 0 V ' dV ' q r ' dq r ' 面密度:(r) ' lim (c / m 2 ) S ' 0 S ' dS ' q r ' dq r ' 线密度:(r) ' lim (C / m ) l ' 0 l ' dl'
n
(r )

1 4 0 1 4 0

k 1
qk r rk '

1 4 0 1

( r ')
r r'
V'
dV '

( r ')
r r'
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 静电场
§1-1电场强度·电位
近代物理学的发展告诉我们:凡有电荷的地方,四周就存 在着一种特殊形式的物质,称为电场。即任何电荷都在自己周 围的空间激发电场。相对于观测者静止,且其电量不随时间而 变化地电荷,在其周围空间产生的电场,即为静电场。
1.1.1 电场强度
表征电场基本特性的场矢量是电场强度,简称场强,用E 表示,它被定义为:
面密度:(r)' lim q r' dq r' (c / m2 )
S '0 S '
dS'
线密度:(r)' lim q r' dq r' (C / m)
l'0 l'
dl'
它们在空间一点r产生的电场强度分别为:
E(r) 1
r' r r' dV ' 1
r' eR dV '
A的积分,两者之和必为零,可表示成:
rB d
E
l E d l 0
r l dr q
对于任意分布电荷得电场,可以看成点电荷r电场得A迭加,
A
而每一分量均符合于上式,故相加的结果也符合于上式。由
此可知:在静电场中沿任意闭合途径,电场强度的线
积分恒等于零。这个结论也可看作是单位正电荷在电场作
用下,沿闭合曲线移动一周时,电场力所作的功为零。它反
d E(x)
dq
4 0 R 2
eR
其中eR是由dq指向观测点(x)的单位矢量,考虑整个圆环产生
的电场,根据对称性,与平面平行的方向上合成电场为零,与平
面垂ห้องสมุดไป่ตู้的方向上,合成电场为:
d E(x)
dq
4 0 R 2
cos
en
此时dq=σdS=σ·2πada,cosθ=x/R,R=(a2+x2)1/2,所以
2
r rk’ r r‘k
1
4 0
n k 1
qk Rk2
eRk
根据物质结构理论,从微观上看,电荷是不连续的。 但从宏观效果来看,人们往往把电荷看成是连续分布的。 这样,就可以引入电荷密度的概念,其定义为:
体密度:(r)' lim q r' dq r' (C / m3 )
V '0 V ' dV '
ada x2 )3/2
en
2 0 e n
ada
1
1
C
(a 2
x
2
)
n 2
2n
(a 2
x )2
n 1
2
E的量值是一常数,与场点和带电平面的距离无关。
dq
a
da
R x En
θ
图1-3 均匀带电无限大平面电荷的电场
1.1.3 电位
考虑由点电荷q单独产生的电场中任意两点A、B
间电场强度的线积分,参照图1-4,并考虑到er·dl=dr,
(x’,y’,
z z’) r-r’
(x,y,z)
r’
点到源点的矢量,用r表示 r
从坐标原点到场点的矢量。
因此,矢量差r-r’就表示由
源点到场点的距离矢量(见 图1-2),通常用R表示之。 x
o
y
图1-2
根据电场强度的定义和库仑定律在无限大真空中
r’处的点电荷q,在r处引起的电场强度为
E(r)
4 0
可得:
B
B
Edl
q
A
4 0
B er d l A r2
q
4 0
1 rB r rA 2
dr
q
q
4
0
1 rA
1 rB
rB dl
E
dr r
rA
A
图1-4
积分的结果只与A、B两点的位置有关,而与积分的途径无
关。我们也可以沿图中虚线的途径积分,得到相同的结果。假如
我们沿一条途径计算从A到B的积分,并从另一条途径计算B由B到
映了静电场的一条重要性质,称为静电场的守恒性。
应用斯托克斯定理: [书P.328式(20)]
l E d l S E d S 0
其中S为以l为周界的任意曲面。此式告诉我们,静电场中场强的 旋度的面积分在任何情况下总是零,所以被积函数一定为零,即
E lim F q q0 0 0
式中F表示试验电荷q0在点(x,y,z)所受的力,显 然,E是一个无论大小和方向都与试验电荷无关的矢量, 它只反映了电场本身的性质。
根据库仑定律,在无限大真空中有两个带电体,
它们之间的相互作用力可表示为:
F 12
q1q2
4 0
e 21 R2
F 21
q1q2
4 0
q
2
r r’
r r
r’ r’
q
4 0 R 2
eR
当q位于坐标原点时
E(r)
q
4 0 r 2
er
1.1.2叠加积分法计算电场强度
由电场强度的迭加原理可知,当n个点电荷在空间 一点形成电场时,该点的电场强度等于各个点电荷单独 在该点产生的电场强度的矢量和:
E(r)
1
4 0
n k 1
qk r r‘k
4 0
V'
2
r r'
r r'
4 0 V ' R 2
E(r) 1
r' r r' dS' 1
r' eR dS'
4 0
S'
2
r r'
r r'
4 0 S ' R 2
E(r) 1
r' r r' dl' 1 r' eR dl'
4 0
l'
2
r r'
r r'
4 0 l ' R 2
例1-1 一均匀带电的无限大平面,其电荷面密度为σ,求距 该平面前x处的电场。(p.5例1-2)
解:在平面上取一圆
环,以观测点到平面的垂
足为圆心,半径为a、宽为
da,环上的元电荷dq在观
测点产生的电场为
d E(x)
dq
4 0 R 2
eR
dq R
a
da
x
En
θ
图1-3 均匀带电无限大平面电荷的电场
e12 R2
其中:q1、q2分别是两带电体的电荷量。R是两带电体 之间的距离,e21和e12是沿两带电体之间的连线方向的 单位矢量,F的下标中第一个数是力的受体编号,第二
个数是力的施体编号,例如F12表示第1个带电体受到 第2个带电体的作用力。如图1-1所示。
ε0=10-9/36π=8.85×10-12F/m (法/米)
q1 e12
F12
q1
图1-1
q2 e21 q2
F21
F 21
q1q2
4 0
e12 R2
F 12
q1q2
4 0
e 21 R2
以后,为了分析问题和计算上的方便,作如下记法约定:
在场的问题中,必须经常地区分两类“点”:一类是表明
场源所在的点,简称源点,记为(x’,y’,z’);另一类是需要 确
定场量的点,简称场点, 记为(x,y,z)。同时,我 们规定用r’表示从坐标原
E(x)
平面
dq
4 0 R 2
cos
en
2ada x
0
4 0 R 2
en R
dq R
a
da
x En
θ
图1-3 均匀带电无限大平面电荷的电场
E(x)
dq
平面 4 0 R 2
cos
en
0
2ada 4 0 R 2
x R
en
x
2 0
0
ada R3
en
x 2 0
0 (a 2
相关文档
最新文档