第八章组合变形构建的强度习题答案_百度文库.

合集下载

材料力学第八章组合变形

材料力学第八章组合变形


A截面
C3
C1
C4


C3
C1
C2

C4
T

C1

C2

三、强度分析
1.主应力计算
1 2 2 1 2 ( ) 4 2 3 2 2 2 2


C1


2 0
2.相当应力计算 第三强度理论,计算相当力
r 3 1 3 4

z0 z
y
z1
F F
350 n n 150
50
50 150
F
n
n
FN My
由弯矩 My产生的最大弯曲正应力为
tmax
max c
M y z0 425 7.5F MPa ( ) Iy 5310 M y z1 425 12.5 F MPa ( ) Iy 5310
杆件将发生拉伸 (压缩 )与弯曲组合变形 示例1 F1 产生弯曲变形 F2 产生拉伸变形 示例2 F2 F1 F2
Fy 产生弯曲变形
Fx 产生拉伸变形
Fy

F
Fx
三、内力分析
横截面上内力 FS Mz
O
z x
FN
1.拉(压) :轴力 FN
2.弯曲
剪力F
弯矩 Mz
s
y
因为引起的切应力较小,故一般不考虑.
2 z 2 y
My Qy T
Mz Qz
T H1 r 510 Nm
l
强度校核
按第四强度理论
r4
1 W
M 0.75T 111 MPa [ ]
2 2

混凝土结构设计原理 第八章钢筋混凝土构件裂缝及变形的验算习题+答案

混凝土结构设计原理 第八章钢筋混凝土构件裂缝及变形的验算习题+答案

第八章 钢筋混凝土构件裂缝及变形的验算一、填空题1.混凝土构件裂缝开展宽度及变形验算属于 正常使用 极限状态的设计要求,验算时材料强度采用 标准值 。

2. 增加截面高度 是提高钢筋混凝土受弯构件刚度的最有效措施。

3. 裂缝宽度计算公式中的,σsk是指裂缝截面处纵向手拉刚筋的应力,其值是按荷载效应的 标准 组合计算的。

4.钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而 曾大。

用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距 小(大、小)些。

5.钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在 同号 弯矩范围内,假定其刚度为常数,并按 最大弯矩 截面处的刚度进行计算。

6.结构构件正常使用极限状态的要求主要是指在各种作用下 裂缝宽度和变形值 不超过规定的限值。

7.裂缝间纵向受拉钢筋应变的不均匀系数Ψ是指 裂缝间钢筋平均应变与裂缝截面钢筋应变 之比,反映了裂缝间 受拉区混凝土 参与工作的程度。

8.平均裂缝宽度是指 受拉钢筋合力重心 位置处构件的裂缝宽度。

9. 钢筋混凝土构件裂缝宽度计算中,钢筋应变不均匀系数ψ愈小,说明裂缝之间的混凝土协助钢筋抗拉的作用 抗拉作用越强。

10.钢筋混凝土受弯构件挠度计算与材料力学方法()相比,主要不同点是前者沿长向有变化的 抗弯刚度 。

11. 混凝土结构的耐久性与结构工作的环境有密切关系,纵向受力钢筋的混凝土保护层厚度 由所处环境类别决定。

12.混凝土的耐久性应根据结构的 使用环境 和设计使用年限进行设计。

二、选择题1. 计算钢筋混凝土梁的挠度时,荷载采用( B )A、平均值;B、标准值;C、设计值。

2. 当验算受弯构件挠度时,出现f>[f]时,采取( C )措施最有效。

A、加大截面的宽度;B、提高混凝土强度等级;C、加大截面的高度;D、提高钢筋的强度等级。

3. 验算受弯构件裂缝宽度和挠度的目的是( B )。

A、使构件能够带裂缝工作;B、使构件满足正常使用极限状态的要求;C、使构件满足承载能力极限状态的要求;D、使构件能在弹性阶段工作。

周建方版材料力学习题解答[第八章9]分析

周建方版材料力学习题解答[第八章9]分析

8-49现用某种黄铜材料制成的标准圆柱形试件做拉伸试验。

已知临近破坏时,颈缩中心部位的主应力比值为113321::::=σσσ;并已知这种材料当最大拉应力达到770MPa 时发生脆性断裂,最大切应力达到313MPa 时发生塑性破坏。

若对塑性破坏采用第三强度理论,试问现在试件将发生何种形式的破坏?并给出破坏时各主应力之值。

解: 令主应力分别为:σσ31=,σσσ==32脆性断裂时,由第一强度理论=1r σσσ31==770MPa所以,塑性破坏时,由第三强度理论 所以故,试件将发生脆性断裂。

破坏时MPa 7701=σ,MPa 25732==σσ8-50 钢制圆柱形薄壁压力容器(参见图8-13),其平均直径mm d 800=,壁厚mm 4=δ,材料的M P a ][120=σ,试根据强度理论确定容器的许可内压p 。

解:在压力容器壁上取一单元体,其应力状态为二向应力状态。

p pd 504'==δσ ,p pd1002"==δσ 其三个主应力为p 100"1==σσ, p 50'2==σσ,03=σ据第三强度理论所以 ,MPa p 2.13≤,许可内压MPa p 2.13= 据第四强度理论所以,MPa p 39.14≤,许可内压MPa p 39.14=8-51 空心薄壁钢球,其平均内径mm d 200=,承受内压MPa p 15=,钢的MPa ][160=σ。

试根据第三强度理论确定钢球的壁厚δ。

解:钢球上任一点应力状态如图示 其三个主应力为:σσσ==21,03=σ而 MPa MPa d p R R p δδδδππσ4342.0152222=⨯=⋅=⋅⋅=据第三强度理论 所以 mm m 69.41069.41601433=⨯=⨯≥-δ 8-52 图8-77所示两端封闭的铸铁圆筒,其直径mm d 100=,壁厚mm 10=δ,承受内压MPa p 5=,且在两端受压力kN F 100=和外扭矩m kN T ⋅=3作用,材料的许用拉应力MPa ][40=+σ,许用压应力MPa ][160=-σ,泊松比250.=ν,试用莫尔强度理论校核其强度。

第八章-组合变形及连接部分的计算-习题选解

第八章-组合变形及连接部分的计算-习题选解

习 题[8-1] 14号工字钢悬臂梁受力情况如图所示。

已知m l 8.0=,kN F 5.21=,kN F 0.12=,试求危险截面上的最大正应力。

解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压性能相同,故只计算最大拉应力:yz yyz zW l F W lF lF W M W M 211max 2++⋅=+=σ式中,z W ,y W 由14号工字钢,查型钢表得到3102cm W z =,31.16cm W y =。

故MPa Pa mm N m m N 1.79101.79101.168.0100.11010228.0105.236363363max=⨯=⨯⨯⨯+⨯⨯⨯⨯⨯=--σ [8-2] 矩形截面木檩条的跨度m l 4=,荷载及截面尺寸如图所示,木材为杉木,弯曲许用正应力MPa 12][=σ,GPa E 9=,许可挠度200/][l w =。

试校核檩条的强度和刚度。

图习题⋅-28解:(1)受力分析)/(431.13426cos 6.1cos '0m kN q q y ===α )/(716.03426sin 6.1sin '0m kN q q z ===α(2)内力分析)(432.14716.0818122max ,m kN l q M z y ⋅=⨯⨯===)(864.24432.1818122max ,m kN l q M y z ⋅=⨯⨯===(3)应力分析最大的拉应力出现在跨中截面的右上角点,最大压应力出现在左下角点。

zz yy W M W M max ,max ,max +=+σ式中,32232266*********mm hb W y ≈⨯== 32246933361601106mm bh W z ≈⨯== MPa mm mm N mm mm N 54.1046933310864.232266710432.13636max=⋅⨯+⋅⨯=+σ(4)强度分析因为MPa 54.10max =+σ,MPa 12][=σ,即][max σσ<+,所以杉木的强度足够。

第八章组合变形时的强度计算

第八章组合变形时的强度计算

Iy
IY
由 mz 产生的正应力
s"' MZ .y Fyp y
IZ
IZ
假设C 点在第一象限内,根据杆件的变形可知, s ',s '',s ''' 均为拉应
力,由叠加原理,即得 C点处的正应力为:
σ σ' σ'' σ'''
任意横截面 n-n上的 C点的正应力为
c
σ F F zP z F yP y
与y轴的夹角θ为:
tgθ z0 Mz Iy Iy tgφ y0 My Iz Iz
公式中角度 是横截面上合成弯矩 M 的矢量与 y 轴的夹角 . 横截面上合成弯矩 M 为:
M
M
2 y
M
2 z
tgθ Iy tgφ Iz
讨论:
(1) 一般情况下,截面的 IzIy ,故中性轴与合成弯矩 M 所在平面不垂直,此为斜弯曲的受力特征。导致挠曲线与外 力(合成弯矩)所在面不共面,此为斜弯曲的变பைடு நூலகம்特征。
s s ' s '' My z - Mz y
Iy
Iz
式中,Iy和Iz分别为横截面对于两对称轴y和z的惯性矩; M y和Mz分别是截面上位于水平和铅垂对称平面内的弯矩,且 其力矩矢量分别与y轴和z轴的正向相一致。在具体计算中,
也可以先不考虑弯矩M y、Mz和坐标y、z的正负号,以它们的 绝对值代入,然后根据梁在P1和P2分别作用下的变形情况, 来判断上式右边两项的正负号。
FN A
Mz Wz
158 MPa
s
所以强度是安全
【例8-4】矩形截面柱如图所示。P1的作用线与杆轴线重合, P2作用在 y 轴上。已知, P1= P2=80kN,b=24cm , h=30cm。 如要使柱的m—m截面只出现压应力,求P2的偏心距e。

材料力学组合变形答案

材料力学组合变形答案

材料力学组合变形答案【篇一:材料力学组合变形及连接部分计算答案】,试求危险截面上的最大正应力。

解:危险截面在固定端m,,==返回8-2 受集度为的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为梁的尺寸为m,,如图所示。

已知该梁材料的弹性模量mm,mm;许用应力;;许可挠度。

试校核梁的强度和刚度。

解:=,强度安全,==返回刚度安全。

8-3(8-5) 图示一悬臂滑车架,杆ab为18号工字钢,其长度为m。

试求当荷载作用在ab的中点d处时,杆内的最大正应力。

设工字钢的自重可略去不计。

解:18号工字钢,,ab杆系弯压组合变形。

,,====返回8-4(8-6) 砖砌烟囱高重kn,受m,底截面m-m的外径的风力作用。

试求:m,内径m,自(1)烟囱底截面上的最大压应力;(2)若烟囱的基础埋深许用压应力m,基础及填土自重按,圆形基础的直径d应为多大?计算,土壤的注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。

解:烟囱底截面上的最大压应力:=土壤上的最大压应力=:即即解得:返回m8-5(8-8) 试求图示杆内的最大正应力。

力f与杆的轴线平行。

解:固定端为危险截面,其中:轴力,弯矩,,z为形心主轴。

=a点拉应力最大==b点压应力最大==因此返回8-6(8-9) 有一座高为1.2m、厚为0.3m的混凝土墙,浇筑于牢固的基础上,用作挡水用的小坝。

试求:(1)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土的密度为);(2)如果要求混凝土中没有拉应力,试问最大许可水深h为多大?解:以单位宽度的水坝计算:水压:混凝土对墙底的压力为:墙坝的弯曲截面系数:墙坝的截面面积:墙底处的最大拉应力为:【篇二:材料力学b试题8组合变形】心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e和中性轴到形心的距离d之间的关系有四种答案: (a)e?d;(b) e?d;(c) e越小,d越大; (d) e越大,d越大。

组合变形时的强度计算

组合变形时的强度计算

§84弯曲与扭转组合变形
一、单向弯曲与扭转组合变形
1.引例:以钢制摇臂轴为例。
①外力向形心简化(建立计算模型):
②作弯矩、扭矩图(找危险截面):
由弯矩图知:A截面|M|→max;全梁Mn处处相同,
∴A截面为危险截面:
|TMn AP|aPL
③危险截面的危险点:A截面K1、K2点,t、s数值均为最大,
⑤用强度准则进行强度计算
§8-2 两相互垂直平面内的弯曲
平面弯曲:对于横截面具有对称轴的梁,当横向外力或
外力偶作用在梁的纵向对称面内时,梁发生对称弯曲。这时, 梁变形后的轴线是一条位于外力所在平面内的平面曲线。
斜弯曲:双对称截面梁在水平和垂直两纵向对称平面内
同时承受横向外力作用的情况,这时梁分别在水平纵对称面
∴K1、K2点均为危险点:
K1点:
sstmax|M W A z|
tMn W n
K2点:sscmax|M W A z|
tMn W n
y
A d
z
L
Tn
_
PL
M
_
P C
B a x
P Pa
K1
st Pa
K1 A
t s
s K2 t
K2
ss t
s
Байду номын сангаас
④对危险点进行应力分析:(从K1、K2点取单元体,因它们的 s、t数值分别相同,危险程度也相同,不妨取K1点研究):
一、单向弯曲与扭转组合变形
④对危险点进行应力分析(s1≥s2≥s3)
在梁的任意横截面m—m上,由P1和P2引起的弯矩值依次为:
在梁的任意横截面m—m上,由P 和P 引起的弯矩值依次为: 试校核此夹具竖杆的强度。

第8章组合变形及连接部分的计算(答案)

第8章组合变形及连接部分的计算(答案)

第8章组合变形及连接部分的计算(答案)8.1梁的截⾯为2100100mm ?的正⽅形,若kN P30=。

试作轴⼒解:求得约束反⼒24Ax F KN =,9Ay F KN =,9B F KN =为压弯组合变形,弯矩图、轴⼒图如右图所⽰可知危险截⾯为C 截⾯最⼤拉应⼒maxmax 67.5ZM MPa W σ== 最⼤压应⼒max max69.9N Z M FMPa W Aσ=+=8.2若轴向受压正⽅形截⾯短柱的中间开⼀切槽,其⾯积为原来⾯积的⼀半,问最⼤压应⼒增⼤⼏倍?解:如图,挖槽后为压弯组合变形挖槽前最⼤压应⼒挖槽后最⼤压应⼒22222286/)2/(4/2/a P a a Pa a P W M A N c =+=+=σ8//82212==a P a P c c σσ211a P A N c ==σ8.3外悬式起重机,由矩形梁AB (2=bh尺⼨。

解:吊车位于梁中部的时候最危险,受⼒如图解得BC F P =,2Ax F P =,2Ay P F =梁为压弯组合变形,危险截⾯为梁中N F =压),4PL M =(上压下拉)[]max4NZ F PL W A σσ=+≤,代⼊()226Z b b W =,A bh =,由2h b = 解得125b mm =, 250h mm =8.4图⽰为⼀⽪带轮轴(1T 、2T 与3T 相互垂直)。

已知1T 和2T 均为kN 5.1,1、2轮的直径均为mm 300,3轮的直径为mm 450,轴的直径为mm 60。

若M P a 80][=σ,试按第三强度理论校核该轴。

解:由已知条件解得32T KN = 内⼒图如右:最⼤弯矩所在截⾯可能为:1C M KN m ==?1.2D M KN m =?故危险截⾯为D 截⾯32T KN =由第三强度理论[]360r MPa σσ==故安全38.5铁道路标圆信号板装在外径mm D 60=的空⼼圆柱上,若信号板上所受的最⼤风载2/2m kN p =,MPa 60][=σ,试按第三强度理论选择空⼼柱的厚度。

组合变形习题课

组合变形习题课

解: w q0 x l 3 3lx 2 2x 3 48EI w q0 l 3 9lx 2 8x 3 48EI
M EIw q0 18lx 24x 2 48
FS
EIw
q0 48
18l
48 x
q EIw 4 q0
w q0 x l 3 3lx 2 2 x 3 w q0 l 3 9lx 2 8x 3
M FS FS q M q
y
A
B
x
y=Ax3
l
反问题
2. 反应梁旳变形与内力旳关系
——挠曲线近似微分方程。
y M EI
M EIy FS EIy q EIy4
y
A
B
x
y=Ax3
l
反问题
解:
y =Ax3
EIy 3AEIx 2
M EIy 6AEIx 线性分布(M<0)
FS EIy 6AEI q EIy4 0
48EI
48EI
M EIw q0 18lx 24x 2
48
FS
EIw
q0 48
18l
48 x
q EIw 4 q0
x=0, w=0 , M=0 , FS≠0 , θ ≠0 铰支座 x=l , w=0 , θ =0 , FS≠0 , M≠0 固定端
q0
l
3.公式合用范围问题
每个公式都有其合用条件,使用公式时
F
1 2 3 4
选项
1
2
3
4
(A)
(B)
(C)
(D) 正确答案:B,D
如图所示直角三角形单元体旳斜面上无应力,它属
于____。
xy
x
30°
yx y

第八章组合变形习题集

第八章组合变形习题集

8-2 人字架及承受的荷载如图所示。

试求m-m 截面上的最大正应力和A 点的正应力。

m解:(1)外力分析,判变形。

由对称性可知,A 、C 两处的约束反力为P/2 ,主动力、约束反力均在在纵向对称面内,简支折将发生压弯组合变形。

引起弯曲的分力沿y 轴,中性轴z 过形心与对称轴y 轴垂直。

截面关于y 轴对称,形心及惯性矩1122123122328444A A 20010050200100(100100)125A +A 200100+200100200100200100(12550)12100200100200(300125100)123.0810 3.0810C z zzy y y I I I -+⨯⨯+⨯⨯+===⨯⨯⨯=+=+⨯⨯-⨯++⨯⨯--=⨯=⨯mmmm m(2)内力分析,判危险面:沿距B 端300毫米的m-m 横截面将人字架切开,取由左边部分为研究对象,受力如图所示。

梁上各横截面上轴力为常数:,m-m 250(1.80.3sin )(1.80.3202.5(k 22250cos =100(k )22y N P M P F ϕϕ=⨯-=⨯-=⋅=⨯=N m)N(3)应力分析,判危险点,如右所示图①m-m 截面上边缘既有比下边缘较大的弯曲压应力,还有轴力应力的压应力,故该面上边缘是出现最大压应力。

m mmax33410010202.510(0.30.125)(Pa) 2.5115.06MPa 117.56MPa 2(0.20.1) 3.0810N zF M y A I σ---=+⋅-⨯⨯=-⨯-=--=-⨯⨯⨯上② A 点是压缩区的点,故m m33410010202.510(0.30.1250.1)(Pa) 2.549.31MPa 51.83MPa 2(0.20.1) 3.0810N a a zF M y A I σ--=+⋅-⨯⨯=-⨯--=--=-⨯⨯⨯注意:最大拉应力出现在下边缘m mmax33410010202.5100.125(Pa) 2.582.18MPa 79.68MPa2(0.20.1) 3.0810N zF M y A I σ---=+⋅-⨯⨯=+⨯=-+=⨯⨯⨯下8-3 图示起重机的最大起吊重量为W=35kN ,横梁AC 由两根NO.18槽钢组成。

《材料力学》第八章组合变形

《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。

材料力学第八章组合变形及连接部分的计算

材料力学第八章组合变形及连接部分的计算
t . max
Mz 0 FN Iy A
F
350
M
FN
425 10 3 F 0.075 F 5.3110 5 15 10 3 667 F Pa F Mz c. max 1 N Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
50 150
425F 103 N.m
A 15000 mm2 z0 75mm z1 125mm I y 5.31107 mm4
y1
z0
y
z1
150 50 150
(2)立柱横截面的内力 FN F 50 M 425103 F N.m (3)立柱横截面的最大应力
az
中性轴
z0 0 y0 0
i z2 a y yo ey 2 iy a z zo ez
截面核心
y
中性轴
F (e y , e z )
z
求直径为D的圆截面的截面核心.
d a y1 2
i z2 ay ey
a z1
az
2 iy
2 4 d d 64 2 iy i z2 2 A d 4 16
F
1, 首先将斜弯曲分解 为两个平面弯曲的叠加
Fy F cos

L2
L2
Z y
My Wy
Fz F sin
2, 确定两个平面弯曲的最大弯矩
Z y
Wz 70.758cm 3
Mz
Fy L 4
Fz L My 4
查表: W y 692.2cm 3

材料力学第八章-组合变形

材料力学第八章-组合变形

12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算

第八章组合变形构件的强度

第八章组合变形构件的强度

偏心距e。
P
εa
P
e e h
【解】1)将P向轴线平移。
M e Pe
P
2)由虎克定律得:
Me
z
εb
b
εa
P
εb
Me
a b
a
E
b
E
1 E
1 E
P A
P A
Me Wz
Me Wz
1 E
1 E
P bh P bh
12Pe b h3
12Pe b h3
P
Ebh( a
2
e
h(
a
b)
6( a b)
A
F
+
σ'
2)当梁上只有P作用时,其弯
P ab
矩图和应力图为:
A
B
C
σ''
正应力:σ M (x) y
Iz
3)F、P同时作用时正应力:
Pab/(a+b)
+
AC
B
σmin σ σmax
F M (x) y
A
Iz
4)整个梁正应力在C截面上 下边缘取得极值:
Hale Waihona Puke 5)梁处于单向应力状 态,强度条件为:
σ
态,处于二向应力状态。
τ
5)强度计算:
eq3 2 4 2
2 m
ax
4
2max
M ma Wz
x
2
4
Tm W
ax t
2
M max Wz
2
4
T max 2W z
2
1 W
z
M
2 m
ax
T

结构力学 第八章

结构力学 第八章

根据工字形截面的特点,可知,截面的最大弯曲正应力为
σ max
8-2、受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为α=30o, 如图所示。己知该梁材料的弹性模量 E=10GPa;梁的尺寸为 l=4m,h=160mm;b=120mm;许用应力 [σ]=l20MPa;许可挠度[w]=l/1150。试校核梁的强度和刚度。
max My = F2 l = 1.0 × 0.8 = 0.8 ( kN .m )
14 号工字钢的抗弯截面模量分别为
Wz = 102cm3 ;
Wy = 16.1cm3
max 3 × 103 0.8 ×103 M zmax M y = + = + = 79.1× 106 ( Pa ) −6 −6 102 × 10 16.1×10 Wz Wy
8-10、受拉构件形状如图,己知截面尺寸为 40mm×5mm,承受轴向拉力 F=l2kN。现拉杆开有切口,如不 计应力集中影响,当材料的[σ]=100MPa 时,试确定切口的最大许可深度,并绘出切口截面的应力变 化图。
38MPa
100 MPa A-A 截面应力分布图
解、由于切口的存在,在切口截面载荷为偏心力,切口截面上的轴力和弯矩分别为
3 3 2⎤ ⎡1 ⎤ ⎡1 I zC = ⎢ ( 4a )( 2a ) + ( 4a )( 2a ) a 2 ⎥ + ⎢ a ( 4a ) + ( 4a )( a )( 2a ) ⎥ = 32a 4 ⎣12 ⎦ ⎣12 ⎦ 1 1 3 I yC = ( 2a )( 4a ) + ( 4a ) a 3 = 11a 4 12 12
2
, FN = qx x = qx sin α

混凝土结构设计原理-第八章钢筋混凝土构件裂缝及变形的验算习题+答案

混凝土结构设计原理-第八章钢筋混凝土构件裂缝及变形的验算习题+答案

第八章钢筋混凝土构件裂缝及变形的验算一、填空题1.混凝土构件裂缝开展宽度及变形验算属于正常使用极限状态的设计要求,验算时材料强度采用标准值。

2.增加截面高度是提高钢筋混凝土受弯构件刚度的最有效措施。

3. 裂缝宽度计算公式中的,σsk是指裂缝截面处纵向手拉刚筋的应力,其值是按荷载效应的标准组合计算的。

4.钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而曾大。

用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距小(大、小)些。

5.钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在同号弯矩范围内,假定其刚度为常数,并按最大弯矩截面处的刚度进行计算。

6.结构构件正常使用极限状态的要求主要是指在各种作用下裂缝宽度和变形值不超过规定的限值。

7.裂缝间纵向受拉钢筋应变的不均匀系数Ψ是指裂缝间钢筋平均应变与裂缝截面钢筋应变之比,反映了裂缝间受拉区混凝土参与工作的程度。

8.平均裂缝宽度是指受拉钢筋合力重心位置处构件的裂缝宽度。

9. 钢筋混凝土构件裂缝宽度计算中,钢筋应变不均匀系数ψ愈小,说明裂缝之间的混凝土协助钢筋抗拉的作用抗拉作用越强。

10.钢筋混凝土受弯构件挠度计算与材料力学方法(2Mlf aEI=)相比,主要不同点是前者沿长向有变化的抗弯刚度。

11. 混凝土结构的耐久性与结构工作的环境有密切关系,纵向受力钢筋的混凝土保护层厚度由所处环境类别决定。

12.混凝土的耐久性应根据结构的使用环境和设计使用年限进行设计。

二、选择题1. 计算钢筋混凝土梁的挠度时,荷载采用(B )A、平均值;B、标准值;C、设计值。

2. 当验算受弯构件挠度时,出现f>[f]时,采取(C )措施最有效。

A、加大截面的宽度;B、提高混凝土强度等级;C、加大截面的高度;D、提高钢筋的强度等级。

3. 验算受弯构件裂缝宽度和挠度的目的是(B )。

A、使构件能够带裂缝工作;B、使构件满足正常使用极限状态的要求;C、使构件满足承载能力极限状态的要求;D、使构件能在弹性阶段工作。

组合变形

组合变形

第八章 组合变形判断 拉弯组合1、“斜弯曲时中性轴一定过截面的形心而且中性轴上的正应力为零。

”2、“当载荷不在梁的主惯性平面内,梁一定产生斜弯曲”3、“拉弯组合变形时,中性轴一定不过截面的形心”4、“杆件发生斜弯曲时,杆件变形的总挠度方向一定与中性轴相垂直。

”5、“只要杆件横截面上的轴力为零,则该横截面上的正应力各处为零”6、“承受偏心拉伸的杆件,其中性轴仍然通过截面的形心”7、“拉弯组合变形和偏心拉伸组合变形的中性轴位置都与载荷的大小无关。

”选择 拉弯组合1、应用叠加原理的前提条件是: 。

A :线弹性构件; B :小变形杆件;C :线弹性、小变形杆件;D :线弹性、小变形、直杆; 2、矩形截面偏心受压杆件发生 变形。

A :轴向压缩、平面弯曲B :轴向压缩、平面弯曲、扭转 C:轴向压缩、斜弯曲 D :轴向压缩、斜弯曲、扭转3、平板上边切h/5,在下边对应切去h/5,平板的强度。

A :降低一半;B :降低不到一半;C :不变;D :提高了;4、AB 杆的A 处靠在光滑的墙上,B 端铰支,在自重作用下发生变形, AB 杆发生 变形。

A :平面弯曲B :斜弯;C :拉弯组合;D :压弯组合;5、简支梁受力如图:梁上 。

A :AC 段发生弯曲变形、CB 段发生拉弯组合变形 B :AC 段发生压弯组合变形、CB 段发生弯曲变形C :两段只发生弯曲变形D :AC 段发生压弯组合、CB 段发生拉弯组合变形6、图示中铸铁制成的压力机立柱的截面中,最合理的是 。

7、矩形截面悬臂梁在自由端受到力P 的作用,如图。

OP 为载荷的作用线,已知I Z <I Y 。

则该梁横截面的 。

A :中性轴位于1、3象限,挠度方向可能为Of 1 B :中性轴位于1、3象限,挠度方向可能为Of 2C :中性轴位于2、4象限,挠度方向可能为Of 1D :中性轴位于2、4象限,挠度方向可能为Of 28、矩形截面拉弯组合变形时,对于横截面的中性轴有以下的结论。

材料力学习题册1-14概念答案

材料力学习题册1-14概念答案

第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。

( × ) 1.2 内力只作用在杆件截面的形心处。

( × ) 1.3 杆件某截面上的内力是该截面上应力的代数和。

( × ) 1.4 确定截面内力的截面法,适用于不管等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。

( ∨ ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。

( ∨ ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。

( ∨ ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。

( ∨ ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。

( × ) 1.9 同一截面上各点的切应力τ必相互平行。

( × ) 1.10 应变分为正应变ε和切应变γ。

( ∨ ) 1.11 应变为无量纲量。

( ∨ ) 1.12 假设物体各部分均无变形,则物体内各点的应变均为零。

( ∨ ) 1.13 假设物体内各点的应变均为零,则物体无位移。

( × ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。

( ∨ ) 1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。

( ∨ )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。

( × )二、填空题材料力学主要研究 受力后发生的,以及由此产生的 。

1.2 拉伸或压缩的受力特征是 ,变形特征是 。

1.3 剪切的受力特征是 ,变形特征B题5图题6图外力的合力作用线通过杆轴线 杆件 变形 应力,应变 沿杆轴线伸长或缩短 受一对等值,反向,作用线距离很近的力的作用 沿剪切面发生相对错动是 。

1.4 扭转的受力特征是 ,变形特征是 。

1.5 弯曲的受力特征是 ,变形特征是 。

1.6 组合受力与变形是指 。

材料力学刘鸿文第六版最新课件第八章 组合变形

材料力学刘鸿文第六版最新课件第八章 组合变形
667 667
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
6
2
6
Z
2
Max
2Max
r3
P ≈≤⨯+⨯=
+=
⋅=⨯
===++=++=解出总σπσ
d
((m kN 8. 16. 03621⋅=⨯-=-=R F F M
e
,此外力偶使轴发生变形。
故此轴属于弯扭组合变形。(2)内力分析
分别画出轴的扭矩图和弯矩图如图(c)、(d)危险截面上的弯矩m
kN 2. 4⋅=M,扭矩m
kN 8. 1⋅=T
(3)强度校核
(
(
[]σπσ
≤=⨯⨯+⨯=
+=
MPa W T
险截面在梁中间截面左侧, P T P
M 18. 02. 0max
==
(2强度计算第三强度理论:(
([]σπσ
≤+=
+=
2
2
3
2
2
3
18. 02. 032
P P d
W T
M
Z
r
[]
(
(
(
(
mm
m d 5. 320325. 010
118. 01012. 010
8032
10
118. 01012. 032
3
M
Z
r 6. 4632
1. 010
8. 1102. 43
2
3
2
3
2
2
3
故此轴满足强度要求。4、解:1)外力分析
kN
F Q Q F 625
. 01==∴⨯=⨯
2)内力分析,做内力图
- 3 -
2
2
2
2
22
3
7.65. 3. 7.653
111e q z
M k N m T k N m
M
T
M
T
W d m m
σ
==+++=
>
3)求直径[]MPa 801. 010375. 0 1065. 7(1. 075. 075. 03
2
62
6
3
2
2
z
2
2
4
r =≤⨯⨯⨯+⨯=⨯+=
+=
σσd
d
T M W T M

(mm 101≥
d5、Fm来自BmmN F ⋅140
mm N F ⋅150
解:
mm
N F T mm
N F M ⋅=⋅=140150
- 1 -
第八章组合变形构件的强度习题答案
一、填空题
1、组合
二、计算题
1、解:317888010157.610(N m m 4M =⨯⨯⨯=⨯⋅
3
36
78810141.8410(N m m
2
T =⨯
⨯=⨯⋅
3
3
80
0.10.1r d
d
σ
=
=
≤解得
d ≥30mm
2
、解:(1轴的计算简图
画出铰车梁的内力图:
2
3
2
3
6
3
2
3
2
3
==⨯⨯+⨯⨯⨯⨯=
⨯⨯+⨯⨯≥
πσπ
所以绞车的轴的最小直径为32.5mm。3、解:
- 2 -
m kN 8. 1⋅
m kN 2. 4⋅
(1)外力分析,将作用在胶带轮上的胶带拉力F 1、F 2向轴线简化,结果如图b.传动轴受竖向主动力:
kN 1436521=++=++=F F G F,此力使轴在竖向平面内弯曲。附加力偶为:
4
[]1603000
r z
M p a W σ
σ=
=
≤=
2353N 2.4kN F ≤≈故此结构的许可载荷F为2.4kN。
- 4 -
6、解简化力系
(
((
[]
200m m
d 32
10
9. 11025. 1W T M
m
25KN
. 12
15. 22
D F -2F M 9.5KN 522.52F F F F 3
相关文档
最新文档