线性代数练习题集--线性方程组

合集下载

线性代数第二章综合练习题和答案

线性代数第二章综合练习题和答案

T T Ax b 有 两 个 解 为 : 1,2,3 , 1,0,1 。 则 其 导 出 组 一 定 有 一 个 解 :
1 , 2 , 3 线性相关,则 1 , 2 , 3, 4 必然 __________.
1 1, 2, 1T , 1 0, 1, T , 3 1, , 0T 线性相关.则 =______________.
)
(D)以上都不对 )
3.设 A, B, C 都是 n 阶矩阵,如果从 AB AC 必能推出 B C ,则 A 满足条件( (A) A 0 ; (B) A 0 ; (C) A 0 ; ) (B) 当 m n 时仅有零解; (D) 当 m n 时仅有零解. ) (D) A 0 .
(B) 必定没有解 ; (D) 以上都不对
12 1 1 2 (D) ; 3 2 2 2
(A)必有唯一解 ; (C)必有无穷多解 ;
17.设 1 , 2 , 3 线性无关,则下列向量组( A) 1 2 , 2 , 3 ;
线性方程组 A x B 的解为
1 1 2 20. 设 A 2 0 4 ,若 3 阶非零方阵 B ,满足 AB O ,则 t 3 2 t
21. 设 n 阶矩阵 A 的各行元素之和均为零,且 r A n 1 ,则线性方程组 AX O 的通解为 22. 设 非 齐 次 线 性 方 程 组 ______________. 23. 若向量组 24. 向量组
)线性相关。
B) 1 2 , 2 3 , 3 ;
C) 1 2 , 2 3 , 3 1 ; D) 1 2 3 , 1 2 3 , 1 2 。 18.设 R 3 中, 1 , 2 , 3 线性无关,则下列结论(

线性代数练习册附答案

线性代数练习册附答案

第1章 矩阵 习 题1. 写出下列从变量x ,y 到变量x 1, y 1的线性变换的系数矩阵:(1)⎩⎨⎧==011y x x ; (2)⎩⎨⎧+=-=ϕϕϕϕcos sin sin cos 11y x y y x x2.(通路矩阵)a 省两个城市a 1,a 2和b 省三个城市b 1,b 2,b 3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数.试用矩阵形式表示图中城市间的通路情况.3. 设⎪⎪⎪⎭⎫ ⎝⎛--=111111111Α,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 和A T B .4. 计算(1) 2210013112⎪⎪⎪⎭⎫ ⎝⎛(2) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛1)1,,(212221211211y x c b b b a a b a a y x5. 已知两个线性变换32133212311542322yy y x y y y x y y x ++=++-=+=⎪⎩⎪⎨⎧,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,写出它们的矩阵表示式,并求从321,,z z z 到321,,x x x 的线性变换.6. 设f (x )=a 0x m + a 1x m -1+…+ a m ,A 是n 阶方阵,定义f (A )=a 0A m + a 1A m -1+…+ a m E .当f (x )=x 2-5x +3,⎪⎪⎭⎫⎝⎛--=3312A 时,求f (A ).7. 举出反例说明下列命题是错误的.(1) 若A2= O,则A= O.(2) 若A2= A,则A= O或A= E..7. 设方阵A满足A2-3A-2E=O,证明A及A-2E都可逆,并用A分别表示出它们的逆矩阵.8.用初等行变换把下列矩阵化成行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛------=132126421321A(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=03341431210110122413B .9. 对下列初等变换,写出相应的初等方阵以及B 和A 之间的关系式.⎪⎪⎪⎭⎫ ⎝⎛--=121121322101A ~122r r -⎪⎪⎪⎭⎫⎝⎛---121123302101~13c c +⎪⎪⎪⎭⎫⎝⎛--131123302001=B .10. 设ΛAP P =-1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫⎝⎛-=2001Λ,求A 9.11. 设⎪⎪⎪⎭⎫ ⎝⎛-=200030004A ,矩阵B 满足AB =A+2B ,求B .12. 设102212533A --⎛⎫ ⎪=- ⎪⎪-⎝⎭,利用初等行变换求A -1.复习题一1. 设A , B , C 均为n 阶矩阵,且ABC =E ,则必有( ). (A) ACB =E ; (B) CBA =E ; (C) BAC =E ; (D) BCA =E .2. 设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,则必有 ( ) .(A) AP 1P 2=B ; (B )AP 2P 1=B ; (C) P 1P 2A =B ; (D) P 2P 1A =B .3. 设A 为4阶可逆矩阵,将A 的第1列与第4列交换得B ,再把B 的第2列与第3列交换得C ,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=00010100001010001P ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000010010000012P ,则C -1=( ). (A) A -1P 1P 2; (B)P 1A -1P 2; (C) P 2P 1A -1; (D) P 2A -1P 1.4. 设n 阶矩阵A 满足A 2-3A +2E =O ,则下列结论中一定正确的是( ). (A) A -E 不可逆 ; (B) A -2E 不可逆 ; (C) A -3E 可逆; (D) A -E 和A -2E 都可逆.5. 设A =(1,2,3),B =(1,1/2,1/3),令C =A T B ,求.6. 证明:如果A k =O ,则(E -A )-1=E +A +A 2+…+A k -1,k 为正整数.7.设A ,B 为三阶矩阵,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,且A -1BA =6A +BA ,求B .8. 设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O O B A .9. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000000000000000121n n aa a a X (021≠n a a a ),求X -1. 第2章 行列式习 题1.利用三阶行列式解下列三元线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-013222321321321x x x x x x x x x2.当x 取何值时,0010413≠xx x .3.求下列排列的逆序数:(1) 315624; (2)13…(2n-1)24…(2n).4.证明:3232a cb a b a ac b a ba acb a=++++++.. .5. 已知四阶行列式|A |中第2列元素依次为1,2,-1,3,它们的余子式的值依次为3,-4,-2,0 ,求|A |.6. 计算下列行列式: (1) 1111111111111111------(2)yx y x x y x y yx y x +++(3) 0111101111011110(4)1222123312111x x x x x x(5)nn a a a D +++=11111111121,其中021≠n a a a .7.设n 阶矩阵A 的伴随矩阵为A *,证明: |A *|=|A |n-1,(n ≥2)...8. 设A ,B 都是三阶矩阵,A *为A 的伴随矩阵,且|A |=2,|B |=1,计算 |-2A *B -1|.9.设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A ,利用公式求A -1. 复习题二1.设A ,B 都是n 阶可逆矩阵,其伴随矩阵分别为A *、B *,证明:(AB )*=B *A *.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2200020000340043A ,求A -1.3.已知A 1, A 2, B 1, B 2都是3⨯1矩阵,设A =( A 1, A 2, B 1,),B =( A 1, A 2, B 2),|A |=2,|B |=3,求|A+2B |...4.设A ,B 都是n 阶方阵,试证:AB E E A BE -=.第3章 向量空间习 题1.设α1=(1,-1,1)T , α2=(0,1,2)T , α3=(2,1,3)T ,计算3α1-2α2+α3.2.设α1=(2,5,1,3)T , α2=(10,1,5,10)T , α3=(4,1,-1,1)T ,且3(α1- x )+2(α2+x )=5(α3+x ) ,求向量x .3. 判别下列向量组的线性相关性:(1) α1=(-1,3,1)T , α2=(2,-6,-2)T , α3=(5,4,1)T ;(2) β1=(2,3,0)T , β2=(-1,4,0)T ,β3=(0,0,2)T .4.设β1=α1, β2=α1+α2, β3=α1+α2+a3,且向量组α1, α2, α3线性无关,证明向量组β1, β2, β3线性无关.5.设有两个向量组α1, α2, α3和β1=α1-α2+α3, β2=α1+α2-α3,β3= -α1+α2+α3,证明这两个向量组等价.6.求向量组α1=(1,2,-1)T, α2=(0,1,3)T, α3=(-2,-4,2)T,α4=(0,3,9)T的一个极大无关组,并将其余向量用此极大无关组线性表示...7.设α1, α2,…, αn是一组n维向量,已知n维单位坐标向量ε1,ε2,…,εn能由它们线性表示,证明:α1, α2,…,αn线性无关.8.设有向量组α1, α2, α3,α4, α5,其中α1, α2, α3线性无关,α4=aα1+bα2,α5=cα2+dα3(a, b, c, d均为不为零的实数),求向量组α1, α3,α4, α5的秩.9.设矩阵A= (1,2,…,n), B=(n,n-1,…,1),求秩R(A T B).10.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=97963422644121121112A ,求A 的秩,并写出A 的一个最高阶非零子式.11.已知矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---=120145124023021t t A ,若A 的秩R (A )=2,求参数t 的值...12. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=5913351146204532A ,求A 的列向量组的秩,并写出它的一个极大无关组.13. 设A 为n 阶矩阵,E 为n 阶单位矩阵,证明:如果A 2=A ,则R (A )+R (A -E )=n .14.已知向量空间3R 的两组基为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=010,01121αα,⎪⎪⎪⎭⎫ ⎝⎛=1130α和⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,01121ββ-,⎪⎪⎪⎭⎫ ⎝⎛-=1103β, 求由基α1, α2, α3到基β1, β2,β3的过渡矩阵.复习题三1.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k k k k 111111111111A ,已知A 的秩为3,求k 的值.2.设向量组A : α1, …,αs 与B :β1,…,βr ,若A 组线性无关且B 组能由A 组线性表示为(β1,…,βr )=(α1, …,αs )K ,其中K 为r s ⨯矩阵, 试证:B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r ...3.设有三个n 维向量组A :α1, α2, α3;B :α1, α2, α3, α4;C :α1, α2, α3, α5.若A 组和C 组都线性无关,而B 组线性相关,证明向量组α1, α2, α3, α4-α5线性无关.4.设向量组A : α1=(1,1,0)T ,α2=(1,0,1)T ,α3=(0,1,1)T 和B : β1=(-1,1,0)T ,β2=(1,1,1)T ,β3=(0,1,-1)T(1) 证明:A 组和B 组都是三维向量空间3R 的基;(2) 求由A 组基到B 组基的过渡矩阵;(3) 已知向量α在B 组基下的坐标为(1,2,-1)T ,求α在A 组基下的坐标.第4章 线性方程组习 题 1.写出方程组⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x 的矩阵表示形式及向量表示形式.2.用克朗姆法则解下列线性方程组⎪⎩⎪⎨⎧=+=+--=-0322az cx bc bz cy ab ay bx ,其中0≠abc3.问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02 00 321321321x x x x x x x x x μμλ有非零解?4. 设有线性方程组⎪⎩⎪⎨⎧-=+-=++=++42 - 4 3212321321x x x k x kx x x k x x ,讨论当k 为何值时, (1)有唯一解?(2)有无穷多解?(3)无解?5. 求齐次线性方程组⎪⎩⎪⎨⎧=-++=-++=++-0 26 83054202108432143214321x x x x x x x x x x x x 的一个基础解系...6.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1, η2, η3是它的三个解向量,且η1=(2,3,4,5)T , η2+η3=(1,2,3,4)T ,求此方程组的的通解.7 .求下列非齐次线性方程组的通解:⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x8.设有向量组A :12122,131-==-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα,3110-=⎛⎫ ⎪ ⎪ ⎪⎝⎭α及向量131β=-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 问向量β能否由向量组A 线性表示?. .9. 设η*是非齐次线性方程组AX =b 的一个解,ξ1, ξ2,…, ξn -r 是它的导出组的一个基础解系,证明:(1)η*, ξ1, ξ2,…, ξn -r 线性无关;(2)η*, η*+ξ1, η*+ξ2,…, η*+ξn -r 线性无关.复习题四 1.设⎪⎪⎪⎭⎫ ⎝⎛=101102121a a a A ,且方程组AX =θ的解空间的维数为2,则a =.2.设齐次线性方程组a 1x 1+a 2x 2+…+a n x n =0,且a 1,a 2,…,a n 不全为零,则它的基础解系所含向量个数为.3.设有向量组π:α1=(a ,2,10)T , α2=(-2,1,5)T , α3=(-1,1,4)T 及向量β=(1,b ,-1)T ,问a , b 为何值时,(1)向量β不能由向量组π线性表示;(2)向量β能由向量组π线性表示,且表示式唯一;(3)向量β能由向量组π线性表示,且表示式不唯一,并求一般表示式.4.设四元齐次线性方程组(Ⅰ)⎩⎨⎧=-=+004221x x x x (Ⅱ)⎩⎨⎧=+-=+-00432321x x x x x x 求: (1) 方程组(Ⅰ)与(Ⅱ)的基础解系;(2) 方程组(Ⅰ)与(Ⅱ)的公共解.5.设矩阵A =(α1, α2, α3, α4),其中α2, α3, α4线性无关,α1=2α2-α3,向量β=α1+α2+α3+α4,求非齐次线性方程组Ax=β的通解.6. 设⎪⎪⎪⎭⎫ ⎝⎛=321a a a α,⎪⎪⎪⎭⎫ ⎝⎛=321b b b β,⎪⎪⎪⎭⎫ ⎝⎛=321c c c γ,证明三直线⎪⎩⎪⎨⎧=++=++=++0:0:0:333322221111c y b x a l c y b x a l c y b x a l 3,2,1,022=≠+i b a i i相交于一点的充分必要条件是向量组βα,线性无关,且向量组γβα,,线性相关.第5章 矩阵的特征值和特征向量习 题1.已知向量α1=(1,-1,1)T ,试求两个向量α2, α3,使α1, α2, α3为R 3的一组正交基.2.设A , B 都是n 阶正交矩阵,证明AB 也是正交矩阵...3. 设A 是n 阶正交矩阵,且|A |=-1,证明:-1是A 的一个特征值.4.求矩阵⎪⎪⎪⎭⎫⎝⎛----201335212的特征值和特征向量.5. 已知三阶矩阵A 的特征值为1,2,3,计算行列式|A 3-5A 2+7E |.6.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=40000005y Λ相似,求y x ,;并求一个正交矩阵P ,使P -1AP =Λ.7.将下列对称矩阵相似对角化:(1)⎪⎪⎪⎭⎫ ⎝⎛----020212022..(2)⎪⎪⎪⎭⎫ ⎝⎛310130004.8. 设λ是可逆矩阵A 的特征值,证明:(1)λA是A *的特征值.(2)当1,-2,3是3阶矩阵A 的特征值时,求A *的特征值.9.设三阶实对称矩阵A 的特征值为λ1=6, λ2=λ3=3,属于特征值λ1=6的特征向量为p 1=(1,1,1)T ,求矩阵A .复习题五1.设n 阶矩阵A 的元素全为1,则A 的n 个特征值是.2.已知3阶矩阵A , A -E ,E +2A 都不可逆,则行列式|A +E |=.3.设⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A ,⎪⎪⎪⎭⎫ ⎝⎛=200010000B ,已知A 与B 相似,则a , b 满足. 4.设A 为2阶矩阵, α1, α2为线性无关的2维列向量,A α1=0, A α2=2α1+, α2,则A 的非零特征值为.5.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化,求x .6.设矩阵A 满足A 2-3A +2E =O ,证明A 的特征值只能是1或2.7.已知p 1=(1,1,-1)T 是对应矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的特征值λ的一个特征向量. (1) 求参数a , b 及特征值λ; (2) 问A 能否相似对角化?说明理由.8. 设⎪⎪⎭⎫ ⎝⎛--=3223A ,求φ(A )=A 10-5A 9. 第6章 二次型习 题1.写出下列二次型的矩阵表示形式:42324131212423222146242x x x x x x x x x x x x x x f -+-+-+++=2.写出对称矩阵⎪⎪⎪⎭⎫ ⎝⎛----=32201112121A 所对应的二次型.3.已知二次型322123222132164),,(x x x x ax x x x x x f ++++=的秩为2,求a 的值.4.求一个正交变换将322322213214332),,(x x x x x x x x f +++=化成标准形.5.用配方法将二次型31212322214253x x x x x x x f -+++=化成标准形,并写出所用的可逆线性变换.6. 设二次型)0(233232232221>+++=a x ax x x x f ,若通过正交变换Py x =化成标准形23222152y y y f ++=,求a 的值.7. 判别下列二次型的正定性:(1)312123222122462x x x x x x x f ++---=(2)4342312124232221126421993x x x x x x x x x x x x f --+-+++=8. 设3231212322214225x x x x x ax x x x f +-+++=为正定二次型,求a 的取值X 围.复习题六1. 设A 为n m ⨯矩阵,B =λE +A T A ,试证:λ>0时,矩阵B 为正定矩阵.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2100120000010010A ,写出以A , A -1为矩阵的二次型,并将所得两个二次型化成标准形.3. 已知二次曲面方程5223121232221=-+++x x x bx ax x x ,通过正交变换X=PY 化为椭圆柱面方程522221=+y y ,求b a ,的值.4. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,2)(A E B +=k ,其中k 为实数,求对角矩阵Λ,使B与Λ相似,并讨论k 为何值时,B 为正定矩阵.测试题一一、计算题:1.计算行列式111131112+=n D n .2.设⎪⎪⎪⎭⎫ ⎝⎛-=201A ,⎪⎪⎪⎭⎫ ⎝⎛---=210530001B ,计算T B A 3.3.设A 、B 都是四阶正交矩阵,且0<B ,*A 为A 的伴随矩阵,计算行列式*2BAA -.4.设三阶矩阵A 与B 相似,且⎪⎪⎪⎭⎫ ⎝⎛=321A ,计算行列式E B 22-. 5.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2411120201b a A ,且A 的秩为2,求常数b a ,的值. 二、解答题: 6.设4,3,2,1),,,1(32==i t t t T i i i i α,其中4321,,,t t t t 是各不相同的数,问4维非零向量β能否由4321,,,αααα线性表示?说明理由.7.求齐次线性方程组 ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系.8.问k 取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211k x x kx k x kx x kx x x(1)有唯一解;(2)有无穷多解;(3)无解.9.已知四阶方阵A =(4321,,,αααα),其中321,,ααα线性无关,3243ααα-=,求方程组4321αααα+++=Ax 的通解.10.三阶实对称矩阵A 的特征值是1,2,3.矩阵A 的属于特征值1,2的特征向量分别是T )1,1,1(1--=α,T )1,2,1(2--=α,求A 的属于特征值3的所有特征向量,并求A 的一个相似变换矩阵P 和对角矩阵Λ,使得Λ=-AP P 1. 三、证明题:11.设2112ααβ+=,32223ααβ+=,13334ααβ+=,且321,,ααα线性无关,证明:321,,βββ也线性无关.12.设A 为实对称矩阵,且满足O E A A =--22,证明E A 2+为正定矩阵. 测试题二一、填空题:1、若规定自然数从小到大的次序为标准次序,则排列134782695的逆序数为;2、已知A 为三阶正交矩阵,且A <0,则*AA =;3、设方阵A =⎪⎪⎪⎭⎫ ⎝⎛--24523121x ,若A 不可逆,则=x ; 4、设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛=5432P ,⎪⎪⎭⎫ ⎝⎛-=Λ1001,则6A =; 5、“若向量组321,,ααα线性无关,向量组432,,ααα线性相关,则4α一定能由32,αα线性表示”.该命题正确吗? 。

线性代数习题册(第三章 矩阵的初等变换与线性方程组参考答案)

线性代数习题册(第三章 矩阵的初等变换与线性方程组参考答案)

(B) 若 A B ,则 R( A) = R(B) ;
(C ) 若 P,Q 可逆,则 R(PAQ) = R( A) ; (D) R( A + B) ≥ R( A) + R(B) .
分析:本题是考察矩阵秩的性质。(A)、(B)、(C)都是正确的。如
R(= PAQ) R= ( AQ) R( A) ,所以(C)是正确的。(D)不正确。因为
( X) (X)
3. 若矩阵 A 所有的 k 阶子式全为 0 ,则 R( A) < k .
( √)
4. 初等变换不改变矩阵的秩.
(√)
5. 设矩阵 A, B 分别为线性方程组相应的系数矩阵和增广矩阵,则线性方程组 Ax = b 有唯
一解当且仅当 R( A) = R(B).
(X)
6. 若 A 是 m × n 矩阵,且 m ≠ n ,则当 R( A) = n 时,齐次线性方程组 Ax = 0 只有零解.
( x j − xi ) ≠ 0

1≤i< j≤n
1
xn

x n−1 n
故齐次线性方程组只有唯一的零解,即 a=1 a=2 = a=n 0 。
13. 设 A 为 m × n 矩阵,且 R( A=) m < n ,则(
).
( A) 若 AB = O ,则 B = 0 ;
(B) 若 BA = O ,则 B = 0 ;

1
1 0
0
0


a11 a21
a12 a22
a13 a23

=

a21 a11
a22 a12
a23 a13

0 0 1 a31 a32 a33 a31 a32 a33

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2

线性代数部分练习题

线性代数部分练习题

线性代数部分练习题线性代数部分练习题⼀、⾏列式、矩阵的运算 (第⼀、⼆章)1.设a ,b 为实数,且000101ab ba-=--,则()A.a =0,b =0;B.a =1,b =0;C.a =0,b =1;D.a =1,b =1 2.排列53142的逆序数(53142)τ=() A .7 ; B .6; C .5 ; D .43. 计算⾏列式=----32320200051020203() A.-180; B.-120; C.120; D.1804. 设⾏列式D 1=22221111a c b a a c b a ac b a +++,D 2=222111c b a c b a c b a ,则D 1= )A .0;B .D 2;C .2D 2;D .3D 25. 已知⾏列式a52231521-=0,则数a =( )A.-3;B.-2;C.2;D.36. 设⾏列式111213212223313233a a a a a a a a a =2,则111213212223313233232323a a a a a a a a a ------=() A .-12; B .-6; C .6; D .12 7. 设⾏列式==1111034222,1111304z y x zy x 则⾏列式( )A.32; B.1; C.2; D.38 8. 设⾏列式01110212=-k k ,则k 的取值为()A.2;B.-2或3;C.0 ;D.-3或29. 设矩阵A =(1,2),B =?4321,C ???? ??=654321则下列矩阵运算中有意义的是() A .ACB; B .ABC; C .BAC; D .CBA 10.设A 为三阶⽅阵,且|A |=2,则|-2A |=() A .-16; B .-4; C .4; D .1611.设矩阵123456709??=A ,则*A 中位于第2⾏第3列的元素是()A .-14;B .-6;C .6;D .1412.设A 是n 阶矩阵,O 是n 阶零矩阵,且2-=A E O ,则必有()A .1-=A A ; B .=-A E ; C .=A E ; D .1=A13.下列等式中正确的是() A .()222B BA AB A B A +++=+B .()T T TB A AB =C .()()22B A B A B A -=+- D .()A A A A 233-=-14. 设A =?4321,则|2A *|=() A.-8; B.-4; C.4; D.815. 设A ,B ,C 均为n 阶⽅阵,AB =BA ,AC =CA ,则ABC =() A .ACB; B .CAB; C .CBA ; D .BCA16. 设A 为3阶⽅阵,B 为4阶⽅阵,且⾏列式|A |=1,|B |=-2,则⾏列式||B |A |的值为() A .-8; B .-2; C .2; D .817. 设矩阵A =-11,B =(1,1)则AB =()A .0;B .(1,-1);C .???? ??-11 ;D .--111118. 设n 阶矩阵A 、B 、C 满⾜ABC =E ,则C -1=( ) A. AB; B. BA; C. A -1B -1; D. B -1A -119.已知2阶⾏列式第1⾏元素为2和1,对应的余⼦式为-2和3,则该⾏列式的值为__________.20.阶⾏列式011101110---=ij a 中元素a 21的代数余⼦式A 21=____________.21. 在四阶⾏列式中,项a 31a 22a 43a 14的符号是____________.22. 在五阶⾏列式中,项a 21 a 32 a 45 a 14 a 53的符号为_____________.23. 已知四阶⾏列式D 中第三列元素依次为-1,2,0,1,它们的代数余⼦式依次分别为5,-3,-7,-4,则D=_______24. 设⾏列式304222532D =-,其第3⾏各元素的代数余⼦式之和为____________.25. 已知⾏列式333222111c b a c b a c b a =1,则333333222222111111c b a b a a c b a b a a c b a b a a +--+--+--=______________. 26. ⾏列式11124641636=________.27. 已知3阶⾏列式|A|中第3列元素依次为-1,2,0,它们的余⼦式依次为5,3,-7,则|A|=__________.28. 3阶⾏列式767367949249323123=________.29.设矩阵011001000?? ?= ?A ,则A 2=______.30.111,,2(2),16A B A B A A --==-是两个四阶⽅阵,且则|B |=__________. 31.设A ,B 都是3阶矩阵,且|A |=2,B = -2E ,则|A -1B |=_________. 32.设A 、B 均为三阶⽅阵,|A |=4,|B |=5,则|2AB |=__________. 33.排列12453的逆序数为____________.34.已知A 2-2A -8E =0,则(A +E )-1=____________. 35. 设矩阵A =?-2112,E 为2阶单位矩阵,矩阵B 满⾜BA=B +E ,则|B |=___________. 36. 设A =411023, B =,010201则AB =___________. 37. 已知矩阵A =(1,2,-1),B =(2,-1,1),且C =A T B ,则C 2=__________.38. 设矩阵A =100012021,B =????? ??310120001,则A+2B =_____________.40.计算四阶⾏列式1234123412341234------41. 已知3阶⾏列式1120212x x-中元素12a 的代数余⼦式A 12=2,求元素21a 的代数余⼦式A 21的值.43. 求D =012010122101021046. 计算3112513420111533------47. 计算1 1 -1 2-1 -1 -4 12 4 -6 11 2 4 250. 计算422223222222222153. n 阶⾏列式n a b b b b a bb D bb ab b b ba=.56.计算123110311211230123(1)n n n n n nD nn ------=--------. 57. n 阶⾏列式11111 1111111n n n D nn=. 58. 设A =210011001??-??,B =102101?? ? ? ???,⼜AX =B ,求矩阵X.60. 已知矩阵A =111210101??- ? ?,B =100210021?? ? ? ???,求:(1)A T B ;(2)| A T B |.63.2A A A E O --2=设⽅阵满⾜⽅程:,+2A A E 证明:与都可逆,并求它们的逆矩阵。

(精心整理)线性方程组练习题

(精心整理)线性方程组练习题

(精心整理)线性方程组练习题一、单一线性方程组1. 求解下列线性方程组:(1)$$x-2y=3$$(2)$$2x+3y=4$$2. 求解下列线性方程组:(1)$$2x-3y+4z=1$$(2)$$3x-4y+5z=2$$(3)$$-x+y-2z=-3$$3. 求解下列线性方程组:(1)$$x-y+z=1$$(2)$$2x-3y-4z=-1$$(3)$$3x-4y+z=3$$二、多元线性方程组1. 求解下列多元线性方程组:(1)$$2x+y=3$$$$x-y=1$$2. 求解下列多元线性方程组:(1)$$x+2y+3z=4$$$$2x+y-3z=0$$$$3x-2y+5z=6$$3. 求解下列多元线性方程组:(1)$$x+y+z=1$$$$2x+y+3z=4$$$$x+3y+2z=3$$三、应用题1. 某商场一天销售了商品A、B两种,A、B两种商品单价分别为x元和y元,已知销售了x件A商品和y件B商品,总价为500元,且已知销售了10件A商品和5件B商品,总价为185元,求解方程组,并给出A商品和B商品的单价。

2. 某超市投放了两种品牌的巧克力A、B,其中A品牌单价为x元,B品牌单价为y元,已知某顾客购买了x份A品牌巧克力和y份B品牌巧克力,所付的总价为15元,且已知该顾客购买了两份A品牌巧克力和一份B品牌巧克力,所付的总价为6元,求解方程组,并给出A品牌和B品牌巧克力的单价。

四、挑战题1. 求解下列多元线性方程组:(1)$$2x-3y+4z=1$$$$x-2y+3z=0$$$$4x-3y+2z=-3$$2. 求解下列多元线性方程组:(1)$$2x+3y-z=1$$$$3x+4y-2z=2$$$$4x+5y-3z=4$$$$x-2y+z=3$$以上是一些关于线性方程组的练习题,希望能对你的学习有所帮助。

线性代数练习题集--线性方程组

线性代数练习题集--线性方程组

线性代数练习题集--线性方程组线性代数练习题第四章线性方程组系姓名第一节解线性方程组的消元法一.选择题:1.设A 是m ⨯n 矩阵,Ax =b 有解,则 [ C ] (A )当Ax =b 有唯一解时,m =n (B )当Ax =b 有无穷多解时,R (A )3.设A 是m ⨯n 矩阵,齐次线性方程组Ax =0仅有零解的充要条件是R (A ) [ D ] (A )小于m (B )小于n (C )等于m (D )等于n 二.填空题:1⎫⎛12⎛1⎫⎛x 1⎫⎪⎪⎪设A = 23a +2⎪,b = 3⎪,x = x 2⎪1a -2⎪ 0⎪ x ⎪⎝⎭⎝⎭⎝3⎭(1)齐次线性方程组Ax =0只有零解,则a ≠3或a ≠-1 (2)非齐次线性方程组Ax =b 无解,则a 三.计算题:⎧2x +y -z +w =1⎪1.求解非齐次线性方程组⎨4x +2y -z +w =2⎪2x +y -z -w =1⎩⎛21-111⎫r 2-2r 1⎛21-111⎫⎛21001⎫⎪r 3-r 1 ⎪r +r 2 ⎪42-112−−−→001-10−−−→001-10 ⎪⎪⎪ 21-1-11⎪ 000-20⎪ 000-20⎪⎝⎭⎝⎭⎝⎭⎧1-y⎪x =2=1⎧2x +y ⎧y =1-2x⎪⎪⎪z -w =0∴z =0或. ⎨⎨⎨z =0⎪⎪w =0-2w =0⎪w =0⎩⎩⎪⎩⎧λx 1+x 2+x 3=1⎪3.λ取何值时,非齐次线性方程组⎨x 1+λx 2+x 3=λ ⑴ 有唯一解⑵ 无解⑶ 有无穷多解⎪x +x +λx =λ223⎩1λ111λ111=λ3-3λ+2=(λ-1) 2(λ+2)λ11⎫⎛111⎪11⎪→ 00000011⎪⎭⎝111⎫⎛2⎪-21-2⎪→ 101-24⎪⎭⎝1⎫⎪0⎪,有无穷多解;0⎪⎭111⎫⎪-21-2⎪,方程组无解。

003⎪⎭当λ≠1,-2时,方程有唯一解⎛11当λ=1时 1111⎝⎛-2当λ=-2时 11⎝线性代数练习题第四章向量组的线性相关性系姓名第四节线性方程组的解一.选择题:T T1.设A 是5⨯4矩阵,A =(α1, α2, α3, α4) ,已知η1=(0, 2, 0, 4) ,η2=(3, 2, 5, 4) 是Ax =0的基础解系,则 [ D ] (A )α1, α3线性无关(B )α2, α4线性无关(C )α1不能被α3, α4线性表示(D )α4能被α2, α3线性表示η1, η2是其两个特解,2.设A 是5⨯4矩阵,若Ax =b 有解,导出组Ax =0的基础解系是α1, α2,则不正确的结论是 [ B ] (A )Ax =b 的通解是k 1α1+k 2α2+η1 (B )Ax =b的通解是k 1α1+k 2α2+(η1+η2) (C )Ax =b 的通解是k 1(α1+α2) +k2α2+(η1+η2) /2(D )Ax =b 的通解是k 1(α1+α2) +k 2(α2-α1) +2η1-η23.设α1, α2, α3是四元非齐次线性方程组Ax =b 的三个解向量,且R (A ) =3,α1=(1, 2, 3, 4) T ,α2+α3=(0, 1, 2, 3) T ,C 表示任意常数,则线性方程组Ax =b 的解是 [ C ](A )(1, 2, 3, 4) T +C (1, 1, 1, 1) T (B )(1, 2, 3, 4) T +C (0, 1, 2, 3) T (C )(1, 2, 3, 4) T +C (2, 3, 4, 5) T (D )(1, 2, 3, 4) T +C (3, 4, 5, 6)T⎧λx 1+x 2+λ2x 3=0⎪4.齐次线性方程组⎨x 1+λx 2+x 3=0 的系数矩阵记为A ,若存在三阶矩阵B ≠0使得⎪x +x +λx =023⎩1AB =0,则 [ C ](A )λ=-2且B =0,(B )λ=-2且B ≠0 (C )λ=1且B =0 (D )λ=1且B ≠0 二.填空题:1⎫⎛12⎛1⎫⎛x 1⎫⎪⎪⎪1.设A = 23a +2⎪,b = 2⎪,x = x 2⎪1a -2⎪ 3⎪ x ⎪⎝⎭⎝⎭⎝3⎭(1)齐次线性方程组Ax =0只有零解,则a (2)非齐次线性齐次组Ax =b 无解,则a = 三.计算题:1.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1, η2, η3是它的三个解向量,且η1=(2, 3, 4, 5) T ,η2+η3=(1,2,3,4)T ,求该方程的通解解:设方程为Ax =b , 则A η1=A η2=A η3=b那么A (2η1-η2-η3) =2b -b -b =0故2η1-η2-η3是Ax =0的解.又n -R (A ) =4-3=1, 故Ax =0的基础解系只有一个向量⎛3⎫⎛2⎫⎪⎪4⎪ 3⎪所以Ax =b 的通解为k (2η1-η2-η3) +η1=k +. 5⎪ 4⎪⎪⎪⎝6⎭⎝5⎭⎧x 1-5x 2+2x 3-3x 4=11⎪2.求非齐次线性方程组⎨5x 1+3x 2+6x 3-x 4=-1的一个解及对应齐次方程组的基础解系。

线性代数习题集(带答案)

线性代数习题集(带答案)

______________________________________________________________________________________________________________第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ). (A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ). (A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若22351011110403--=D ,则D 中第四行元的余子式的和为( ).______________________________________________________________________________________________________________(A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是. 4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111 .12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .______________________________________________________________________________________________________________14.已知db c a cc a b b a b c a c b a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a dcbad c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠);6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;______________________________________________________________________________________________________________9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题______________________________________________________________________________________________________________1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ;12.2-; 13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk knk k a a ; 6. ))2(()1)(2(b n b b ---+- ; 7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

考研专项练习 线性代数--习题集

考研专项练习 线性代数--习题集

第一章 行列式一. 填空题1. 四阶行列式中带有负号且包含a 12和a 21的项为______.2. 排列i 1i 2…i n 可经______次对换后变为排列i n i n -1…i 2i 1.3. 在五阶行列式中3524415312)23145()15423()1(a a a a a ττ+-=______3524415312a a a a a .4. 在函数 xx x x xx f 21112)(---=中, x 3的系数是______. 5. 设a , b 为实数, 则当a = ______, 且b = ______时, 010100=---ab b a .6. 在n 阶行列式D = |a ij |中, 当i < j 时a ij = 0 (i , j =1, 2, …, n ), 则D = ______.7. 设A 为3×3矩阵, |A | =-2, 把A 按行分块为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321A A A A , 其中A j (j = 1, 2, 3)是A 的第j 行, 则行列式=-121332A A A A ______.二.计算证明题1. 设4322321143113151||-=A2. 计算元素为a ij = | i -j |的n 阶行列式.3. 计算n 阶行列式nx x x nx x x n x x x D n n n n +++++++++=212121222111(n ≥ 2).4. 证明:奇数阶反对称矩阵的行列式为零.5. 试证: 如果n 次多项式n n x C x C C x f ++=10)(对n + 1个不同的x 值都是零, 则此多项式恒等于零. (提示: 用范德蒙行列式证明)6. 设).(',620321)(232x F x x x x x xx F 求=第二章 矩阵一. 填空题1. 设α1, α2, α3, α, β均为4维向量, A = [α1, α2, α3, α], B = [α1, α2, α3, β], 且|A | = 2, |B | = 3, 则|A -3B | = ______.2. 若对任意n ×1矩阵X , 均有AX = 0, 则A = ______.3. 设A 为m 阶方阵, 存在非零的m ×n 矩阵B , 使AB = 0的充分必要条件是______.4. 设A 为n 阶矩阵, 存在两个不相等的n 阶矩阵B , C , 使AB = AC 的充分条件是______.5. []42121b b b a a a n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ = ______. 6. 设矩阵12,23,3211-+-=⎥⎦⎤⎢⎣⎡-=B E A A B A 则= ______.7. 设n 阶矩阵A 满足12,032-=++A E A A则= ______.8. 设)9()3(,10002010121E A E A A -+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-则=______.9. 设.______])2[(______,)(_______,,3342122111*1*1=-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=---A A A A 则10. 设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=3111522100110012A , 则A 的逆矩阵1-A = ______.二. 单项选择题 1. 设A 、B 为同阶可逆矩阵, 则(A) AB = BA (B) 存在可逆矩阵P , 使B AP P=-1 (C) 存在可逆矩阵C , 使B AC CT = (D) 存在可逆矩阵P 和Q , 使B PAQ =2. 设A 、B 都是n 阶可逆矩阵, 则⎥⎦⎤⎢⎣⎡--1002B A T 等于(A) 12||||)2(--B A n (B) 1||||)2(--B A n (C) ||||2B A T - (D) 1||||2--B A3. 设A 、B 都是n 阶方阵, 下面结论正确的是(A) 若A 、B 均可逆, 则A + B 可逆. (B) 若A 、B 均可逆, 则AB 可逆.(C) 若A + B 可逆, 则A -B 可逆. (D) 若A + B 可逆, 则A , B 均可逆.4. 设n 维向量)21,0,,0,21( =α, 矩阵ααTE A -=, ααT E B 2+=其中E 为n 阶单位矩阵, 则AB =(A) 0 (B) -E (C) E (D) ααT E +5. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=233322322131131211232221a a a a a a a a a a a a B , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P , 设有P 2P 1A = B , 则P 2=(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001 (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001 (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010101 (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000101016. 设A 为n 阶可逆矩阵, 则(-A )*等于(A) -A * (B) A * (C) (-1)n A * (D) (-1)n -1A *7. 设n 阶矩阵A 非奇异(n ≥ 2), A *是A 的伴随矩阵, 则(A) A A A n 1**||)(-= (B) A A A n 1**||)(+=(C) A A A n 2**||)(-= (D) A A A n 2**||)(+=8. 设A 为m ×n 矩阵, C 是n 阶可逆矩阵, 矩阵A 的秩为r 1, 矩阵B = AC 的秩为r , 则(A) r > r 1 (B) r < r 1 (C) r = r 1 (D) r 与r 1的关系依C 而定9. 设A 、B 都是n 阶非零矩阵, 且AB = 0, 则A 和B 的秩(A) 必有一个等于零 (B) 都小于n (C) 一个小于n , 一个等于n (D) 都等于n三. 计算证明题1. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=243121013A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=143522011B . 求: i. AB -BA ii. A 2-B 2 iii. B T A T2. 求下列矩阵的逆矩阵i. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------1111111111111111 ii.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000cos sin 0sin cos ααααiii. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001001001001000 iv.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-11002100001200253. 已知三阶矩阵A 满足)3,2,1(==i i A i iαα. 其中T )2,2,1(1=α, T )1,2,2(2-=α, T )2,1,2(3--=α. 试求矩阵A .4. k 取什么值时, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=11100001k A 可逆, 并求其逆.5. 设A 是n 阶方阵, 且有自然数m , 使(E + A )m = 0, 则A 可逆.6. 设B 为可逆矩阵, A 是与B 同阶方阵, 且满足A 2 + AB + B 2 = 0, 证明A 和A + B 都是可逆矩阵.7. 若A , B 都是n 阶方阵, 且E + AB 可逆, 则E + BA 也可逆, 且 AAB E B E BA E 11)()(--+-=+8. 设A , B 都是n 阶方阵, 已知|B | ≠ 0, A -E 可逆, 且(A -E )-1 = (B -E )T , 求证A 可逆.9. 设A , B , A + B 为n 阶正交矩阵, 试证: (A + B )-1 = A -1 + B -1.10. 设A , B 都是n 阶方阵, 试证明: ||E AB B E E A -=.11. 设A 为主对角线元素均为零的四阶实对称可逆矩阵, E 为四阶单位矩阵)0,0(00000000000000>>⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k l k Bi. 试计算|E +AB |, 并指出A 中元素满足什么条件时, E + AB 可逆;ii. 当E + AB 可逆时, 试证明(E + AB )-1A 为对称矩阵.12. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλ100100A , 求A n .13. A 是n 阶方阵, 满足A m = E , 其中m 是正整数, E 为n 阶单位矩阵. 今将A 中n 2个元素a ij 用其代数余子式A ij 代替, 得到的矩阵记为A 0. 证明E A m =0.14. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010101001A i. 证明: n ≥ 3时, E A A A n n -+=-22(E 为三阶单位矩阵) ii. 求A 100.15. 当⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21232321A 时, A 6 = E . 求A 11.16. 已知A , B 是n 阶方阵, 且满足A 2 = A , B 2 = B , 与(A -B )2 = A + B , 试证: AB = BA = 0.第三章 向量一. 填空题1. 设)1,2,0,1(),,1,0,1(),0,3,2,4(),5,0,1,2(4321-=-=--=-=ααααk , 则k = ______时, α1, α2, α3, α4线性相关.2. 设)0,,3,1(),4,3,5,0(),2,0,2,1(),0,3,1,2(4321t -=-=-=-=αααα, 则t = ______时, α1, α2, α3, α4线性相关.3. 当k = ______时, 向量β = (1, k , 5)能由向量),1,1,2(),2,3,2(21-=-=αα 线性表示.4. 已知)1,4,0,1,1(),3,1,3,0,2(),10,5,1,2,0(),1,2,2,1,1(4321-=-=-==αααα, 则秩(α1, α2, α3, α4) = ______.5. 设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A , 则秩(A) = ______.7. 已知向量),6,5,4(),6,5,4,3(),5,4,3,2(),4,3,2,1(4321t ====αααα, 且秩(α1, α2, α3, α4) = 2, 则t = ______.二. 单项选择题1. 设向量组α1, α2, α3线性无关, 则下列向量组线性相关的是(A) α1 + α2, α2 + α3, α3 + α1 (B) α1, α1 + α2, α1+ α2 + α3(C) α1-α2, α2-α3, α3-α1 (D) α1 + α2, 2α2 + α3, 3α3 + α12. 设矩阵A m ×n 的秩为R (A ) = m < n , E m 为m 阶单位矩阵, 下列结论正确的是(A) A 的任意m 个列向量必线性无关 (B) A 的任意一个m 阶子式不等于零(C) 若矩阵B 满足BA = 0, 则B = 0 (D) A 通过行初等变换, 必可以化为(E m , 0)的形式3. 设向量组 (I): TT Ta a a a a a a a a ),,(,),,(,),,(332313332221223121111===ααα;设向量组 (II):TTT a a a a a a a a a a a a ),,,(,),,,(,),,,(433323133423222122413121111===βββ, 则(A) (I)相关⇒(II)相关 (B) (I)无关⇒(II)无关(C) (II)无关⇒(I)无关 (B) (I)无关⇔ (II)无关4. 设β, α1, α2线性相关, β, α2, α3线性无关, 则(A) α1, α2, α3线性相关 (B) α1, α2, α3线性无关(C) α1可用β, α2, α3线性表示 (D) β可用α1, α2 线性表示5. 设A , B 是n 阶方阵, 且秩(A ) = 秩(B ), 则(A) 秩(A -B ) = 0 (B) 秩(A + B ) = 2秩(A)三. 计算证明题1. 设有三维向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111k α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112k α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2113α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21k k β问k 取何值时 i. β可由α1, α2, α3线性表示, 且表达式唯一;ii. β可由α1, α2, α3线性表示, 但表达式不唯一;iii. β不能由α1, α2, α3线性表示.2. 设向量组α1, α2, α3线性相关, 向量组α2, α3, α4线性无关, 问i. α1能否由α2, α3线性表出? 证明你的结论;ii. α4能否由α1, α2, α3线性表出? 证明你的结论3. 已知m 个向量α1, α2, …αm 线性相关, 但其中任意m -1个都线性无关, 证明:i. 如果存在等式k 1α1 + k 2α2 + … + k m αm = 0则这些系数k 1, k 2, …k m 或者全为零, 或者全不为零;ii. 如果存在两个等式k 1α1 + k 2α2 + … + k m αm = 0l 1α1 + l 2α2 + … + l m αm = 0其中l 1 ≠ 0, 则m m l k l k l k === 2211.4. 设向量组α1, α2, α3线性无关, 问常数a , b , c 满足什么条件a α1-α2, b α2-α3, c α3-α1线性相关.5. 设A 是n 阶矩阵, 若存在正整数k , 使线性方程组A k x = 0有解向量α, 且A k -1α ≠ 0, 证明: 向量组α, A α, ⋯, A k -1α是线性无关的.6. 求下列向量组的一个极大线性无关组, 并把其余向量用极大线性无关组线性表示.i. )3,2,1,2(),7,4,3,1(),6,5,1,4(),3,1,2,1(4321=----=---==αααα.ii. ).10,5,1,2(),0,2,2,1(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321=-===-=ααααα7. 已知三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x y y y x y y y x A , 讨论秩(A)的情形.8. 设三阶矩阵A 满足A 2 = E(E 为单位矩阵), 但A ≠ ± E , 试证明 (秩(A -E )-1)(秩(A + E )-1) = 09. 设A 为n 阶方阵, 且A 2 = A , 证明: 若A 的秩为r , 则A -E 的秩为n -r , 其中E 是n 阶单位矩阵.10. 设A 为n 阶方阵, 证明: 如果A 2 = E , 则秩(A + E ) + 秩(A -E ) = n.第四章 线性方程组一. 填空题1. 在齐次线性方程组A m ×n x = 0中, 若秩(A) = k 且η1, η2, …, ηr 是它的一个基础解系, 则r = _____; 当k = ______时, 此方程组只有零解.2. 若n 元线性方程组有解, 且其系数矩阵的秩为r, 则当______时, 方程组有唯一解; 当______时, 方程组有无穷多解.3. 齐次线性方程组⎪⎩⎪⎨⎧=+=++=++0302032321321x kx x x x x kx x 只有零解, 则k 应满足的条件是______.4. 设A 为四阶方阵, 且秩(A) = 2, 则齐次线性方程组A *x = 0(A *是A 的伴随矩阵)的基础解系所包含的解向量的个数为______.5. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=112011121A , 则A x = 0的通解为______.6. 设α1, α2, …αs 是非齐次线性方程组A x = b 的解, 若C 1α1 + C 2α2 + … + C s αs 也是A x = b 的一个解, 则C 1 + C 2 + … + C s = ______.7. 方程组A x = 0以T T )1,1,0(,)2,0,1(21-==ηη为其基础解系,则该方程的系数矩阵为___.8. 设A x = b, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A , 则使方程组有解的所有b 是______.9. 设A, B 为三阶方阵, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110121211A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11202314k B , 且已知存在三阶方阵X , 使得B AX =, 则k = ___________.二. 单项选择题1. 要使ξ1 = (1, 0, 1)T , ξ2 = (-2, 0, 1)T 都是线性方程组0=Ax 的解, 只要系数矩阵A 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡112213321 (B) ⎥⎦⎤⎢⎣⎡-211121 (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡123020010 (D) ⎥⎦⎤⎢⎣⎡-0200102. 设0,,321=Ax是ξξξ的基础解系, 则该方程组的基础解系还可以表成 (A)321,,ξξξ的一个等阶向量组 (B) 321,,ξξξ的一个等秩向量组 (C)321211,,ξξξξξξ+++ (C) 133221,,ξξξξξξ---3. n 阶矩阵A 可逆的充分必要条件是(A) 任一行向量都是非零向量 (B) 任一列向量都是非零向量(C)b Ax =有解 (D) 当0≠x 时, 0≠Ax , 其中T n x x x ),,(1 =4. 设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r, 则0=Ax 有非零解的充分必要条件是 ( A )n r = ( B ) n r ≥ ( C ) n r < ( D ) n r >5. 设n m A ⨯为矩阵, m n B ⨯为矩阵, 则线性方程组0)(=x AB( A ) 当m n >时仅有零解. ( B ) 当m n >时必有非零解.( C ) 当n m >时仅有零解. ( D ) 当n m >时必有非零解.6. 设n 阶矩阵A 的伴随矩阵0*≠A , 若4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解, 则对应的齐次线性方程组0=Ax 的基础解系( A ) 不存在 ( B ) 仅含一个非零解向量( C ) 含有二个线性无关解向量 ( D ) 含有三个线性无关解向量三. 计算证明题1. 求方程组 ⎪⎩⎪⎨⎧=----=+-+-=-+-174952431132542143214321x x x x x x x x x x x 的通解, 并求满足方程组及条件16354321-=-++x x x x 的全部解.2. 设有线性方程组⎪⎩⎪⎨⎧=++--=++=++k mx x x x x x x x x 3213213214132303, 问m, k 为何值时, 方程组有惟一解? 有无穷多组解? 有无穷多组解时, 求出一般解.3. 问λ为何值时, 线性方程组⎪⎩⎪⎨⎧+=+++=++=+324622432132131λλλx x x x x x x x 有解, 并求出解的一般形式.4. 已知)0,2,1(1=α, )3,2,1(2a a -+=α, )2,2,1(3b a b ++-=α及)3,3,1(-=β.i. a, b 为何值时, β不能表示成321,,ααα的线性组合.ii. a, b 为何值时, β有321,,ααα的惟一线性表示, 并写出该表示式.5. 知方程组⎪⎩⎪⎨⎧=+++=+++=+++1322422432143214321cx x x x x bx x x x x ax x 与⎪⎩⎪⎨⎧-=+=-+-=+++12221434324321x x x x x x x x x 同解, 试确定a, b, c.6. 已知下列非齐次线性方程组( I )、( II ) ( I ) ⎪⎩⎪⎨⎧=--=----=-+3314623214321421x x x x x x x x x x ( II )⎪⎩⎪⎨⎧+-=--=---=--+121125434324321t x x x x nx x x mx x i. 求解方程组( I ), 用其导出组的基础解系表示通解;ii. 当方程组( II )中的参数m, n, t 为何值时, 方程组( I )与( II )同解.7. 设A 是m ×n 矩阵, R 是m ×n 矩阵, x =T n x x x ),,,(21 , B 是m ×m 矩阵, 求证: 若B 可逆且BA 的行向量都是方程组0=Rx 的解, 则A 的每个行向量也都是该方程组的解.8. A 是n 阶矩阵, 且A ≠ 0. 证明:存在一个n 阶非零矩阵B , 使AB = 0的充分必要条件是0||=A .9. 假设A 是m ×n 阶矩阵,若对任意n 维向量x , 都有0=Ax , 则A = 0.10. 假设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111,010,1113102112ηb c a A . 如果η是方程组b Ax =的一个解, 试求b Ax =的通解.11. 假设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=222141,111111B aa a A . 如果矩阵方程B AX =有解, 但解不惟一, 试确定参数a .第五章 特征值和特征向量一. 填空题1. 设A 是n 阶方阵, *A 为A 的伴随矩阵, |A | = 5, 则方阵*AA B =的特征值是______, 特征向量是______.2. 三阶方阵A 的特征值为1, -1, 2, 则2332A A B -=的特征值为_______.3. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=200031141,201034011B A 且A 的特征值为2和1(二重), 那么B 的特征值为_______.4. 已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000000210100002y B x A 与相似, 则x = _____, y = ______.5. 设A , B 为n 阶方阵, 且0||≠A , 则AB 与BA 相似, 这是因为存在可逆矩阵P = ______, 使得BA ABP P =-1.二. 单项选择题1. 零为矩阵A 的特征值是A 为不可逆的(A) 充分条件 (B) 必要条件 (C)充要条件 (D) 非充分、非必要条件2. 设21,λλ是矩阵A 的两个不同的特征值, ηξ,是A 的分别属于21,λλ的特征向量, 则(A) 对任意0,021≠≠k k , ηξ21k k +都是A 的特征向量.(B) 存在常数0,021≠≠k k , ηξ21k k +是A 的特征向量.(C) 当0,021≠≠k k 时, ηξ21k k +不可能是A 的特征向量.(D) 存在惟一的一组常数0,021≠≠k k , 使ηξ21k k +是A 的特征向量.3. 设0λ是n 阶矩阵A 的特征值, 且齐次线性方程组0)(0=-x A E λ的基础解系为21ηη和, 则A 的属于0λ的全部特征向量是(A) 21ηη和 (B) 21ηη或(C) 2211ηηC C +(21,C C 为任意常数) (D) 2211ηηC C +(21,C C 为不全为零的任意常数)4. 设21,λλ是矩阵A 的两个不同的特征值, βα与是A 的分别属于21,λλ的特征向量, 则有βα与是5. 与n 阶单位矩阵E 相似的矩阵是(A) 数量矩阵)1(≠k kE (B) 对角矩阵D (主对角元素不为1)(C) 单位矩阵E (D) 任意n 阶矩阵A6.B A ,是n 阶方阵, 且B A ~, 则(A) B A ,的特征矩阵相同 (B) B A ,的特征方程相同 (C)B A ,相似于同一个对角阵 (D) 存在正交矩阵T, 使得B AT T =-1三. 计算证明题 1. 设1=λ是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=10410213t A 的特征值, 求: i. t 的值; ii. 对应于1=λ的所有特征向量.2. 求n 阶矩阵⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=0101010 A 的特征值与特征向量.3. 假定n 阶矩阵A 的任意一行中, n 个元素的和都是a , 试证a =λ是A 的特征值, 且(1, 1, …, 1)T 是对应于a =λ的特征向量, 又问此时1-A 的每行元素之和为多少?4. 设B A ,均是n 阶方阵, 且n B r A r <+)()(, 证明B A ,有公共的特征向量.5. 设三阶矩阵A 满足)3,2,1(==i i A i i αα, 其中列向量T )2,2,1(1=α, T )1,2,2(2-=α,T )2,1,2(3--=α, 试求矩阵A .6. 设矩阵A 与B 相似, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=x A 00010221, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10001000y B ,i. 求x 和y 的值; ii. 求可逆矩阵P , 使得B AP P =-1.7. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101020101A , 矩阵2)(A kE B +=, 其中k 为实数, E 为单位矩阵, 求对角矩阵Λ, 使得B 与Λ相似, 并求k 为何值时, B 为正定矩阵.8. 设n 阶矩阵A 的特征值为1, 2, …, n , 试求|2|E A +.12. 设21,λλ是方阵A 的两个不同的特征值, r ηη,,1 是A 的对应于1λ的线性无关的特征向量,s ξξ,,1 是A 的对应于2λ的线性无关的特征向量, 证明r ηη,,1 ,s ξξ,,1 线性无关.9. 某试验性生产线每年一月份进行熟练工与非熟练工的人数统计, 然后将61熟练工支援其它生产部门, 其缺额由招收新的非熟练工补齐. 新、老非熟练工经过培训及实践至年终考核有52成为熟练工, 设第n 年一月份统计的熟练工和非熟练工所占百分比分别为n x 和n y , 记成向量⎥⎦⎤⎢⎣⎡n n y x i. 求⎥⎦⎤⎢⎣⎡++11n n y x 与⎥⎦⎤⎢⎣⎡n n y x 的关系式并写出矩阵形式: ⎥⎦⎤⎢⎣⎡++11n n y x = A ⎥⎦⎤⎢⎣⎡n n y x ; ii. 验证⎥⎦⎤⎢⎣⎡=141η, ⎥⎦⎤⎢⎣⎡-=112η是A 的两个线形无关的特征向量, 并求出相应的特征值; iii. 当⎥⎦⎤⎢⎣⎡11y x = ⎥⎦⎤⎢⎣⎡2121时, 求⎥⎦⎤⎢⎣⎡++11n n y x .21 第六章 二次型一. 填空题1. 二次型322123222143212432),,,(x x x x x x x x x x x f ++++=的矩阵是______.2. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=314122421A 对应的二次型是________.3. 当_______时, 实二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=是正定的.4. 设A 是实对称可逆矩阵, 则将Ax x f T =化为y A y f T 1-=的线性变换为______.5. 设n 阶实对称矩阵A 的特征值分别为1, 2, …, n , 则当t ______ 时,A tE -是正定的.二. 单项选择题1. 设B A ,均为n 阶方阵, T n x x x x ),,,(21 =, 且Bx x Ax x T T =, 当( )时, B A =(A) 秩(A ) = 秩(B ) (B)A A T = (C)B B T = (D) A A T =且B B T =2. 下列矩阵为正定的是(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200032021 (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200042021 (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---200052021 (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡5202100023. 设B A ,均为n 阶正定矩阵, 则( )是正定矩阵. (A)**B A + (B) **B A - (C) **B A (D) *2*1B k A k +三.计算证明题1. 用配方法将下列二次型化为标准形112221221),,,(+-+++=n n n n n x x x x x x x x x f22 2. 用正交变换将下列实二次型化为标准形i. 323121232221321204162511),,(x x x x x x x x x x x x f -++++=ii. 323121232221321444),,(x x x x x x x x x x x x f +++++=3. 设A 为n 阶实对称矩阵, 且满足E A A A 323=++, 证明A 是正定矩阵.4. 设实对称矩阵A 的特征值全大于a , 实对称矩阵B 的特征值全大于b , 证明A + B 的特征值全大于a + b .5. 设A 为n 阶实对称矩阵, 证明: 秩(A ) = n 的充分必要条件为存在一个n 阶实矩阵B , 使A B AB T +是正定矩阵.。

线性代数同步习题及答案

线性代数同步习题及答案
2
c21 c c2源自1 d d2 d4a4
b4
c4
= (a − b)(a − c)(a − d )(b − c)(b − d )(c − d )(a + b + c + d )
5.试求一个 2 次多项式 f ( x ) ,满足 f (1) = 0, f ( −1) = 1, f ( 2) = −1 .
a 0 0 b
b a 0 0
0 ⋯ b ⋯ 0 ⋯ 0 ⋯
0 0 a 0
0 0 b a
a a
(6) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
习 题 1.3
1. 解下列方程组
x1 + x 2 + x3 + x 4 = 5 5 x1 + 2 x 2 + 3x3 = −2 x + 2 x − x + 4 x = −2 1 2 3 4 (1) 2 x1 − 2 x 2 + 5 x3 = 0 (2) 2 x − 3 x − x − 5 x 2 3 4 = −2 3x + 4 x + 2 x = −10 1 2 3 1 3 x1 + x 2 + 2 x3 + 11x 4 = 0 2. k 取何值时,下列齐次线性方程组可能有非零:
3 2 − 1 − 3 − 2 (2) 2 − 1 3 1 − 3 7 0 5 − 1 8
1 1 (4) 0 0 0
0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1
2.问能否适当选取矩阵
1 − 2 − 1 3 A= 3 − 6 − 3 9 4 2 k − 2

线性代数练习题

线性代数练习题

习题练习答案整理一、行列式求解方法练习题知识点导航:本部分主要是求解行列式,我们上课所讲到求解行列式有三种方法:一是求逆序法,此方法不常用,只在求展开项正负项和行列式每一行只有一个为零的数且每行不为零的数是错位的或者是符合阶梯型行列式等;二是讲行列式化为阶梯型行列式在求解;三是利用代数余子式按照行列展开求解,后两种是常用方法。

1.练习演练(1)3214214314321111=D解:16040401210400401210111111311311032111113,2,11=---=---=--==--I R R I I D (2)abc d e e d c b a D 010000010000010=解:依次按照第2行展开2201001000010e a a eeaa bee d a ab c eedc a D -====。

(3)1020110220101221=D解:91221122112`0021`00`````10`1212`211100101221001221====D(4)dc b a D 004030020100=解:()()4641324`001`00`````00`300`200410003002013--====ab bc da cb da cb da cb D C(5)bb a a D -+-+=1111111111111111 解:220000000011100000011114321b a bba ab aba a a aD C baC b a C C =--=-----+=-+-(6)用行列式性质计算下列n(n>1)阶行列式(要求写出计算过程):1121122112111211111-----+++n n n n n b a a a a b a a a a b a a a a解:分析把行列式归结化简为上(下)三角形行列式来求解.),,2(,0000000111111211211112112211211121n i b b b a a a R R b a a a a b a a a a b a a a a n n i n n n n n=-+++-------.1-n 21b b b 上三角形 (7)111110000000001-n 1-n 2211a a a a a a ---解:),(1,,2,1132100000000000111110000000012111-n 1-n 2211-=----+----+n i nn a a a C C a a a a a a n i i.1-121-n na a na )(下三角形(8)2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c cb b b b a a a a解: 2212221222122212,5232125232125232125232122222233422221++++--++++++++++++--d d c cb b a a C C C C d d d dc c c cb b b b a a a a C C i i=0(9)计算行列式.84212793111111111----=D解: D 是4阶范德蒙德行列式),,(2-3,1-1=D 的转置,所以)32()12)(13()12)(13)(11()2,3,1,1(--⋅+-+⋅-----=--=D D .240)5()4(12=-⨯-⨯=(10).100000000000010001321nn a a a a a-解:逐次按第2行展开===-nnn a a a a a a a a a 0100100100000000000010003121321).1(1111321132-==--n n nn a a a a a a a a a a (11)计算行列式:.8814412-21111132x xx - 解:)12)(12)(22)(1)(2)(2(),2,2,1(8814412-21111132-------+=-=-x x x x D x x x).4)(1(122--=x x(12)计算n (n>1)阶行列式:.0000000000000000x y y x x y x y x解:yxx y xy y xy x y x xxyy x x y x y x n0000000000)1(00000)1(10000000000000000111++-+-列展开按第.)1(1n n n y x +-+=(13)计算当),,2,1(0n i a i =≠时,.1111111111111111321na a a a ++++解:)1,,1(11110000001111111111111111321321-=+----++++=n i a a a a a a a R R a a a a D nn nn n i n n, )0(,11000000011132111≠++----+∑∑-=-=i n i in n n n nn i ii n a a a a a a a a a a R a R 注意).11(121∑=+=ni i n a a a a(14)计算.15432215433215443215543215=D解:)5,4,3,2(4111332202223011110543215154315215415321515432115543215154322154332154432155432115215=-----------+=∑=i R R C C D i i i ,.53500550005550011110543215,234252423⨯=----------+++R R R R R R , 二、解线性方程组方法练习 1.练习演练(1)⎪⎪⎩⎪⎪⎨⎧=+-+--=++-=+-+-=++-42315223322124321432143214321x x x x x x x x x x x x x x x x 解:对增广矩阵进行初等行变换化为阶梯型⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=5`42002`31004`71001`21114`23111`52112`33221`2111A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→1`00002`100004`71001`21113`100002`100004`71001`2111 增广矩阵的秩与系数矩阵的秩不同,所以原方程组无解。

线性代数--线性方程组题库

线性代数--线性方程组题库


17、设向量组 A:α1,α2,α3 ;向量组 B:α1,α2,α3,α4 ;向量组 C:α1,α2,α3,α5 。
= 若 r(α1,α2,α3 ) r= (α1,α2,α3,α4 ) 3 , r(α1,α2,α3,α5 ) = 4 ,
则 r(α1,α2,α3,α5 − α4 ) = 。
1 2 1
17、向量组α1,α2 ,,αs 的秩为 r ,则( )。
(A)
α1,
α
2
,
,
α
s

r
个向量的部分组皆线性无关;
(B)α1,α2 ,,αs 中 r −1个向量的部分组皆线性无关;
(C)α1,α2 ,,αs 中 r −1个向量的部分组皆线性相关;
(D)
α1,
α
2
,
,
α
s
中任何
r
个向量的线性无关部分组与
-1-
题库
第三部分 线性方程组
14 、 设 四 元 非 齐 次 线 性 方 程 组 的 系 数 矩 阵 的 秩 为 3 , 已 知 η1,η2 ,η3 是 它 的 三 个 解 向 量 , 且
= η1 (2, 3, 4, 5)= T ,η2 +η3 (1, 2, 3, 4)T ,则该方程组的通解为

15、设齐次线性方程组为 x1 + x2 + + xn = ο ,则它的基础解系中所含解向量的个数为

16、设四元非齐次线性方程组 Ax = b 的系数矩阵的秩为 2,已知它的三个解向量为η1,η2 ,η3 ,且
η1 = (4, 3, 2,1)T ,η2 = (1, 3, 5,1)T ,η3 = (−2, 6, 3, 2)T ,则该方程组的通解为

《线性代数》练习题库参考答案

《线性代数》练习题库参考答案

《线性代数》练习测试题库一.选择题1、=-0000000000121nn a a a a ( B )A. n n a a a 21)1(-B. n n a a a 211)1(+-C. n a a a 212、n 阶行列式0000000000a a a a= ( B )A.na B. (1)2(1)n n n a -- C. (1)n n a -3、n21= ( B )A. (1)!nn - B. (1)2(1)!n n n -- C. 1(1)!n n +-4、 A 是n 阶方阵,m, l 是非负整数,以下说法不正确的是 ( C ). A. ()m l mlA A = B. mlm lA A A+⋅= C. m m mB A AB =)(5、A 、B 分别为m n ⨯、s t ⨯矩阵, ACB 有意义的条件是 ( C ) A. C 为m t ⨯矩阵; B. C 为n t ⨯矩阵; C. C 为n s ⨯矩阵6、下面不一定为方阵的是 (C )A.对称矩阵.B.可逆矩阵.C. 线性方程组的系数矩阵.7、 ⎥⎦⎤⎢⎣⎡-1021 的伴随矩阵是 (A ) A. ⎥⎦⎤⎢⎣⎡1021 B. ⎥⎦⎤⎢⎣⎡-1201 C. ⎥⎦⎤⎢⎣⎡-1021 8、 分块矩阵 00A B ⎡⎤⎢⎥⎣⎦(其中A 、B 为可逆矩阵)的逆矩阵是 ( A )A. 1100A B --⎡⎤⎢⎥⎣⎦ B. 00BA ⎡⎤⎢⎥⎣⎦ C. 1100B A --⎡⎤⎢⎥⎣⎦9、线性方程组Ax b = 有唯一解的条件是 ( A )A.()()r A r A b A ==的列数B.()()r A r A b = .C.()()r A r A b A ==的行数10、线性方程组 ⎪⎩⎪⎨⎧=++=++=++23213213211a ax x x a x ax x x x ax 有唯一解的条件是 (A )A. 2,1-≠aB. 21-==a a 或.C. 1≠a11、 的是则下面向量组线性无关),,,=(),,,=()6,2,4(054312--=--γβα(B )A. 0,,βα B. γβ, C. γα, 12、设A 为正交矩阵,下面结论中错误的是 ( C )A. A T 也为正交矩阵.B. A -1也为正交矩阵.C. 总有 1A =-13、二次型()233221214321342,,,,x x x x x x x x x x f --+=的矩阵为 ( C )A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---340402021B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---320201011 C 、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000032002010011 14、设r 是实二次型),,,(21n x x x f 的秩,p 是二次型的正惯性指数,q 是二次型的负惯性指数,s 是二次型的符号差,那么 ( B )A. q p r -=;B. q p r +=;C. q p s +=; 15、下面二次型中正定的是 ( B )A. 21321),,(x x x x x f =B.2322213212),,(x x x x x x f ++= C.22213212),,(x x x x x f +=二、判断题1、若行列式主对角线上的元素全为0,则此行列式为0. ( ⨯ )2、A 与B 都是3×2矩阵,则A 与B 的乘积也是3×2矩阵。

线性代数考试练习题带答案大全

线性代数考试练习题带答案大全

线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。

(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。

二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。

9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案1. 题目:矩阵运算题目描述:给定两个矩阵A和B,计算它们的乘积AB。

答案解析:矩阵A的维度为m x n,矩阵B的维度为n x p,则矩阵AB的维度为m x p。

矩阵AB中的每个元素都可以通过矩阵A的第i行与矩阵B的第j列的内积来计算,即AB(i,j) =∑_{k=1}^{n}A(i,k)B(k,j)。

2. 题目:矩阵转置题目描述:给定一个矩阵A,求其转置矩阵AT。

答案解析:如果矩阵A的维度为m x n,则转置矩阵AT的维度为n x m。

转置矩阵AT中的每个元素都可以通过矩阵A的第i行第j列的元素来计算,即AT(j,i) = A(i,j)。

3. 题目:线性方程组求解题目描述:给定一个线性方程组Ax = b,其中A是一个m x n的矩阵,x和b是n维向量,求解x的取值。

答案解析:假设矩阵A的秩为r,则根据线性代数的理论,线性方程组有解的条件是r = rank(A) = rank([A | b])。

若方程组有解,则可以通过高斯消元法、LU分解等方法求解。

4. 题目:特征值与特征向量题目描述:给定一个矩阵A,求其特征值和对应的特征向量。

答案解析:设λ为矩阵A的特征值,若存在非零向量x,满足Ax = λx,则x为矩阵A对应于特征值λ的特征向量。

特征值可以通过解特征方程det(A - λI) = 0求得,其中I为单位矩阵。

5. 题目:行列式计算题目描述:给定一个方阵A,求其行列式det(A)的值。

答案解析:行列式是一个方阵的一个标量值。

行列式的计算可以通过Laplace展开、初等行变换等方法来进行。

其中,Laplace展开是将行列式按矩阵的某一行或某一列展开成若干个代数余子式的和。

6. 题目:向量空间与子空间题目描述:给定一个向量空间V和它的子集U,判断U是否为V的子空间。

答案解析:子空间U必须满足三个条件:(1)零向量属于U;(2)对于U中任意两个向量u和v,它们的线性组合u+v仍然属于U;(3)对于U中的任意向量u和标量c,它们的数乘cu仍然属于U。

线性代数第三章练习题

线性代数第三章练习题

8、设有向量组 α1=(1, 0, 3, 1, 2), α3=(3, 0, 7, 14), α4=( 1, - 2, 2, 0)与 - 1, 2, 4), α2=(
9、齐次线性方程组 nx1 + ( n - 1) x2 + L + 2 xn -1 + xn = 0 的一个基础解系为
α5=( 2, 1, 5, 10),则向量组的极大线性无关组是(B) (A)α1,α2,α3 (B) α1,α2,α4 (C) α1,α2,α5 (D) α1,α2,α4,α5
(C)任意 r 个行向量都构成极大线性无关向量组; (D)任何一个行向量都可以由其它 r 个行向量线性表出。 12、 设 a 1 , a 2 , L , a m 均为 n 维列向量, 那么, 下列结论正确的是 ( B ) 。 (A)若 k1a 1 + k 2a 2 + L + k ma m = 0 ,则 a 1 , a 2 , L , a m 线性无关; ( B ) 若 对 任 意 一 组 不 全 为 零 的 数 k1 , k 2 , L , k m , 都 有
h 1 = (1 , 2 , 3 , 4 ) T , h 2 = ( 2 , 3 , 4 , 5 ) T 为其两个解,则 Ax = b 的通解为
x=
k (1,1,1,1)T + (1,2,3,4)T

11、设矩阵 A = ( a1 , a 2 , a3 , a 4 ) ,其中 a 2 , a3 , a4 线性无关, a1 = 2a2 - a3 , 向量 b = a1 + a 2 + a3 + a 4 ,则方程 Ax = b 的通解为
求解上述方组中线性无关的向量组是(

2020-2021学年线性代数之线性方程组例题

2020-2021学年线性代数之线性方程组例题

即((11
)(2 ) )(1 )2
0 0
1时,
有无穷多个解.
行 1 1 1 1
A ~ 0 0 0 0
0
0
0
0
1 1 1 通解为:x c1 1 c2 0 0 (c1, c2 R).
0 1 0
法二:
11
A 1 1 (1 )2 (2 ).
11
(1) A 0, 即 1且 -2时, 有唯一解.
2 2 1
1 4
例4:设 A
(1,2 ,3 )
2
1
2 , B (1, 2 ) 0
3
1 2 2
4 2
验证 1,2 ,3 是 R3 的一个基,并求 1, 2 在此基下的坐标 .
2 2 1
解: (1) A 2 1 2 0, 则 1,2 ,3 线性无关, 从而是 R3 的一个基 .
2
0
0
1 1
2
3
1 23
则 1 在基 1,2 ,3 下的坐标为 23 , - 23 , -1T .
2 在基 1,2 ,3 下的坐标为
43 , 1,
2 3
T.
例5:设 1,2 ,3 是 R3 的一个基,求
(1)
由基 1,
1 2
2
,
1
33
到基
1 2 , 2 3, 3 1的过渡矩阵 .
4 1, 2, 4, a 8T , 1,1, b 3, 5T.
(1) a, b 为何值时, 不能用 1,2 ,3,4 线性表出 .
(2) a, b 为何值时, 能用 1,2 ,3,4 唯一地线性表出, 并写出表达式 .
(3) a, b 为何值时, 能用1,2 ,3,4不唯一地线性表出, 并写出表达式 .

(完整版)线性代数第四章线性方程组试题及答案.doc

(完整版)线性代数第四章线性方程组试题及答案.doc

充 1:当 A 列 秩 ( 或 A 可逆 ,A 在矩 乘法中有左消去律AB=0 B=0;AB=AC B=C.明B =(1,, ⋯,t ), AB = Ai =0,i=1,2, ⋯,s., , ⋯ , t 都是 AX =0212的解 . 而 A 列 秩 , AX =0 只有零解 ,i=0,i=1,2,⋯ ,s, 即 B =0.同理当 B 行 秩(或 B 可逆 ),AB 0 B T A T0 A T0A 0AB CB A C充 2如果 A 列 秩(或 A 可逆) , r( AB )=r( B ).分析 : 只用 明 次方程ABX =0 和 BX =0 同解 .( 此 矩 AB 和 B 的列向量 有相同的 性关系, 从而秩相等 .)明:是 ABX = 的解 AB = B =0( 用推 ) 是 BX = 的解 .于是 ABX =0 和 BX =0 确 同解 .同理当 B 行 秩(或B 可逆) , r( AB )=r( A ).例题一 . 填空1.A m 方 , 存在非零的 m × n 矩 B, 使 AB = 0 的充要条件是 ______.解: Ax 0 有非零解, r Am2.A n 矩 , 存在两个不相等的n 矩 B, C, 使 AB = AC 的充要条件是解: A B C 0 , B, C 不相等, Ax0 有非零解, r An3.若 n 元 性方程 有解, 且其系数矩 的秩r, 当 ______, 方程 有唯一解;当 ______ , 方程 有无 多解 .解:假 方程A m × n x = b, 矩 的秩 r ( A) r .当 r n , 方程 有惟一解 ; 当 r n , 方程 有无 多解 .4. 在 次 性方程 A m ×n x = 0 中 , 若秩 (A) = k 且 1, , ⋯ , r 是它的一个基 解2系 ,r = _____; 当 k = ______ , 此方程 只有零解。

国开经济数学基础-线性代数-线性方程组练习与答案

国开经济数学基础-线性代数-线性方程组练习与答案

国开经济数学基础-线性代数-线性方程组练习与答案一、单项选择题试题1以下结论正确的是()正确答案是:A, B, C 都不对.试题2线性方程组有解的充分必要条件是( ).正确答案是:秩( )=秩()试题3线性方程组的增广矩阵化成阶梯形矩阵则方程组的一般解为( ) (其中是自由未知量).正确答案是:试题4若线性方程组只有0解,则线性方程组( ).正确答案是:只有唯一解试题5齐次线性方程组( ).正确答案是:有非0解二、多项选择题试题6对于齐次线性方程组,以下结论( )是正确的.正确答案是:时,一定有非0解, 秩()时,一定有非0解, 秩()时,只有0解, 秩()=秩()试题7线性方程组有无穷多解的充要条件是( )正确答案是:秩()=秩(), 方程组有解且化成阶梯形矩阵的非0行的行数三、是非题试题8将线性方程组的增广矩阵用初等行变换化成阶梯形矩阵时,若出现“0 0 …0d(d≠0)行,则线性方程组有无穷多解.正确答案是“错”。

试题9线性方程组有无穷多解.正确答案是“错”。

试题10线性方程组无解.正确答案是“错”。

试题11若线性方程组有唯一解,则方程组只有0解;若线性方程组有无穷多解,则方程组有非0解.反之,不成立.( ) 正确答案是“对”。

试题12齐次线性方程组有非0解的充分必要条件是秩(A)<n. ( ) 正确答案是“对”。

试题13齐次线性方程组当时, 有非0解.正确答案是“对”。

试题14齐次线性方程组当它所含方程的个数小于未知量的个数时,它一定有非0解.正确答案是“对”。

线性代数练习题及答案

线性代数练习题及答案

线性代数练习题及答案线性代数作为一门重要的数学学科,对于理工科学生来说是必修课程之一。

在学习线性代数的过程中,练习题是非常重要的一环,通过练习题的完成,可以巩固理论知识,提高解题能力。

本文将介绍一些常见的线性代数练习题及其答案,希望对读者有所帮助。

一、向量与矩阵1. 给定向量a=(2,3,1)和b=(1,-1,2),求向量a与向量b的内积及外积。

答案:向量a与向量b的内积为a·b=2*1+3*(-1)+1*2=1,向量a与向量b的外积为a×b=(7,3,-5)。

2. 给定矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵和逆矩阵。

答案:矩阵A的转置矩阵为A^T = [1 4 7; 2 5 8; 3 6 9],矩阵A的逆矩阵不存在,因为A的行列式为0。

二、线性方程组1. 解方程组:2x + 3y - z = 13x - 2y + 4z = 5x + y + 2z = 0答案:通过高斯消元法,可以得到方程组的解为x = -1,y = 2,z = -1。

2. 解方程组:x + 2y + z = 32x + 4y + 2z = 63x + 6y + 3z = 9答案:该方程组为一个超定方程组,通过最小二乘法可以得到方程组的近似解为x = 1,y = 1,z = 1。

三、特征值与特征向量1. 给定矩阵A = [2 1; 1 2],求矩阵A的特征值和特征向量。

答案:首先求解A的特征方程det(A-λI)=0,得到特征值λ=1,λ=3。

然后,将特征值代入(A-λI)x=0,得到特征向量x=(1,1)和x=(-1,1)。

2. 给定矩阵A = [3 -1; 1 3],求矩阵A的特征值和特征向量。

答案:同样地,求解特征方程det(A-λI)=0,得到特征值λ=2,λ=4。

将特征值代入(A-λI)x=0,得到特征向量x=(1,1)和x=(-1,1)。

四、线性变换1. 给定线性变换T:R^2 -> R^2,将向量(1,0)和(0,1)分别变换为(2,3)和(-1,4),求线性变换T的矩阵表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数练习题 第四章 线性方程组系 专业 班 姓名 学号 第一节 解线性方程组的消元法一.选择题:1.设A 是n m ⨯矩阵,b Ax =有解,则 [ C ] (A )当b Ax =有唯一解时,n m = (B )当b Ax =有无穷多解时,<)(A R m (C )当b Ax =有唯一解时,=)(A R n (D )当b Ax =有无穷多解时,0=Ax 只有零解 2.设A 是n m ⨯矩阵,如果n m <,则 [ C ] (A )b Ax =必有无穷多解 (B )b Ax =必有唯一解 (C )0=Ax 必有非零解 (D )0=Ax 必有唯一解3.设A 是n m ⨯矩阵,齐次线性方程组0=Ax 仅有零解的充要条件是)(A R [ D ] (A )小于m (B )小于n (C )等于m (D )等于n 二.填空题:设⎪⎪⎪⎭⎫ ⎝⎛-+=21232121a a A ,⎪⎪⎪⎭⎫⎝⎛=031b ,⎪⎪⎪⎭⎫ ⎝⎛=321x x x x(1)齐次线性方程组0=Ax 只有零解,则 31a a ≠≠-或 (2)非齐次线性方程组b Ax =无解,则a = 1=- 三.计算题:1. 求解非齐次线性方程组⎪⎩⎪⎨⎧=--+=+-+=+-+1222412w z y x w z y x w z y x213122211112111121001421120011000110211110002000020121122000.2000r r r r r r yx x y y xz w z z w w w --+--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-−−−→-−−−→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭-⎧=⎪+==-⎧⎧⎪⎪⎪-=∴==⎨⎨⎨⎪⎪⎪-===⎩⎩⎪⎩或3.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x ⑴ 有唯一解 ⑵ 无解 ⑶ 有无穷多解32111132(1)(2)11111111111000111000111111212212124003λλλλλλλλλλ=-+=-+≠⎛⎫⎛⎫⎪⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎪⎪--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭当1,-2时,方程有唯一解11当=1时10,有无穷多解;10-22当=-2时11,方程组无解。

10线性代数练习题 第四章 向量组的线性相关性系 专业 班 姓名 学号 第四节 线 性 方 程 组 的 解一.选择题:1.设A 是45⨯矩阵,),,,(4321αααα=A ,已知T),,,(40201=η,T)4,5,2,3(2=η是0=Ax 的基础解系,则 [ D ] (A )31αα,线性无关 (B )42αα,线性无关 (C )1α不能被43αα,线性表示 (D )4α能被32αα,线性表示2.设A 是45⨯矩阵,若b Ax =有解,21ηη,是其两个特解,导出组0=Ax 的基础解系是21αα,,则不正确的结论是 [ B ] (A )b Ax =的通解是12211ηαα++k k (B )b Ax =的通解是)(212211ηηαα+++k k (C )b Ax =的通解是22122211/)()(ηηααα++++k k(D )b Ax =的通解是211222112ηηαααα-+-++)()(k k3.设321ααα,,是四元非齐次线性方程组b Ax =的三个解向量,且3=)(A R ,T),,,(43211=α,T ),,,(321032=+αα,C 表示任意常数,则线性方程组b Ax =的解是 [ C ](A )TTC )1,1,1,1()4,3,2,1(+ (B )TTC )3,2,1,0()4,3,2,1(+ (C )TTC )5,4,3,2()4,3,2,1(+ (D )TTC )6,5,4,3()4,3,2,1(+4.齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ 的系数矩阵记为A ,若存在三阶矩阵0≠B 使得0=AB ,则 [ C ](A )2-=λ且0=B , (B )2-=λ且0≠B (C )1=λ且0=B (D )1=λ且0≠B 二.填空题:1. 设⎪⎪⎪⎭⎫ ⎝⎛-+=21232121a a A ,⎪⎪⎪⎭⎫ ⎝⎛=321b ,=x ⎪⎪⎪⎭⎫⎝⎛321x x x(1)齐次线性方程组0=Ax 只有零解,则a 31≠-, (2)非齐次线性齐次组b Ax =无解,则a = 31-或 三.计算题:1.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它的三个解向量,且T )5,4,3,2(1=η,23(1,2,3,4)T ηη+=,求该方程的通解1231231231231,(2)2020()431,03243(2).5465Ax b A A A bA b b b Ax n R A Ax Ax b k k ηηηηηηηηηηηηη====--=--=--=-=-==⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=--+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解:设方程为 则那么故是的解.又故的基础解系只有一个向量所以的通解为2.求非齐次线性方程组⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x 的一个解及对应齐次方程组的基础解系。

12342341234234152311152311152311:53611028414560142728242160142728000001523112,024*********2427x x x x x x x x x x x x x x ------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--→--→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎛⎫ ⎪-+-=-⎧ ⎪⎨ ⎪-+=-⎩⎪⎝⎭-+-=-+解原方程组化为求出一个解为另外34120917211,,.,72011091172112.72001010x x k k ⎧⎨=⎩⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫- ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭10设()分别为解01所以通解为线性代数练习题 第四章 线性方程组系 专业 班 姓名 学号第四节 克拉默法则一、选择题:1.若方程组304050x ky z y z kx y z +-=⎧⎪+=⎨⎪-+=⎩有非零解,则k (A )0 (B )1 (C )1- (D )3=k3.设21,ξξ为齐次线性方程组0=Ax 的解,21,ηη为非齐次线性方程组b Ax =的解,则[ C ] (A )112ηξ+为0=Ax 的解 (B )21ηη+为b Ax =的解 (C )21ξξ+为0=Ax 的解 (D )21ηη-为b Ax =的解二、填空题:2. 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则2k =三、计算题1.计算A 是秩为3的5×4矩阵,321,,ααα是非齐次线性方程组b Ax =的三个不同的解,若1232(2,0,0,0)T ααα++=,T )8,6,4,2(321=+αα,求方程组b Ax =的通解。

解:因A 是秩为3的5×4矩阵,431n r -=-=,故对应齐次线性方程组0Ax =的基础解系为ξ.1231212312[(2)(3)]23230A A A A A A b b b b b αααααααααα++-+=++--=++--=12312[(2)(3)](2,0,0,0)(2,4,6,8)(0,4,6,8)T T T ξααααα=++-+=-=---是对应齐次线性方程组0Ax =的基础解系. 又123123[(2)(3)]4304A b b ααααα++-+=-=, 123123312[(2)(3)](2,0,0,0)(2,4,6,8)(,3,,6)4429T T T ηααααα=++-+=-=---是非齐次线性方程组b Ax =的特解。

方程组b Ax =的通解为12(0,4,6,8)(,3,,6)29TTx C C ξη=+=---+---.四、用克拉默法则解方程组123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩解:2151130*********476D ---==≠--,方程组有唯一解。

1815193068152120476D ---==---,22851190610805121076D --==----321811396270252146D --==--4215813092702151470D --==---方程组有唯一解为118121D x D ==,2210821D x D ==-,3397D x D ==-,4497D x D ==.。

相关文档
最新文档