第三章_时域分析方法
自控第三章 时域分析法
欠阻尼二阶系统的性能指标
第一次峰值 : n=1 所以: tp=Л / wd 峰值时间定性分析 wn↗→wd= wn(1-ζ 2)1/2 ↗→tp ↘ ζ ↘→wd= wn(1-ζ 2)1/2 ↗→tp ↘
峰值时间越小, 快速性越好.
欠阻尼二阶系统的性能指标
3. 超调量σ % h(tp)- h(∞) σ % = ————————— *100% h(∞) 由h(t)求出h(tp)和h(∞), 代入定义式即得.
三、一阶系统的单位脉冲响应
K(S)= G(S)R(S) = 1 /(TS+1) k(t)= L
-1
[ K(S)]
= e-t/T/T
T越小 → 响应的持续时间越短 → 快速性越好。
四、三种响应之间的关系
δ (t) = d/dt [u(t)] = d2/dt2 [r(t)] k(t) = d/dt [h(t)] = d2/dt2 [Ct(t)]
欠阻尼二阶系统的性能指标
h(tp)=1-(1-ζ 2)-1/2e–ζ =1-(1-ζ 2)-1/2e–ζ =1+(1-ζ =1+(1-ζ =1+ h(∞) = 1 σ% = e
2 1/2
Wntp Wntp
sin(wdtp+θ ) sin(Л +θ )
2
)-1/2e–ζ Wntp sinθ 2 )-1/2e–ζ Wntp w (1-ζ 2)1/2/w n n
eSS= 1 - h(∞)= 0
一阶系统在单位阶跃输入下的稳态误差为0。
二、一阶系统的单位斜坡响应
Ct(S)= G(S)R(S)
= 1/[(TS+1)S2] Ct(t)= L-1[Ct(S)] = t - T + e-t/T 稳态误差 : eSS= T 一阶系统在单位斜坡输入下的稳态误差为T。它只能通过 减小时间常数T来减小,而不能最终消除。
时域分析法
§ 3.2 一阶系统的时间响应
一、一阶系统的数学模型 数学模型
其中时间常数T=1 / K
二、一阶系统的单位阶跃响应
对于单位阶跃输入
xi
(t )
1(t ),
Xi
(s)
1 s
故系统单位阶跃响应象函数为
1
1 s
s
T
1
A s
s
B 1
1 s
s
1
1
T
T
T
取拉氏反变换得系统单位阶跃响应为
1t
xo (t) 1 e T
,为闭环极点的实部; ,为闭环极点的虚部;
欠阻尼二阶系统的单位阶跃响应的象函数为
。
将上式进行拉氏反变换,单位阶跃响应为
(3.33)
x0 (t) 1
e n t
1 2
(n
1 2 n
cosdt sin dt)
1
ent
1 2
(sin
c osd t
cos
sin d t )
1
e nt
1
2
sin(
则
Xo
s
Xo Xi
s s
X
i
s
1 1 Ts 1
1
T
s
1 T
进行拉氏反变换
x0
(t
)
1 T
t
eT
四、响应之间的关系 对线性定常系统,输入之间存在微积分关系,其响
应间也存在相应微积分关系。
作用:在测试系统时,可由一种信号推断几种信号的相应响应。
§ 3.3 二阶系统的时间响应
一、典型二阶系统的数学模型
决定。
在稳态下,输出 x0 (t) 和输入 xi (t) 之间不存在误差,即系统
线性系统的时域分析法
三、动态性Leabharlann 和稳态性能动态性能:通常在阶跃函数作用下,测定或计算系统的动
态性能。一般认为阶跃输入对系统来说是最严峻的工作状态。
描述稳定的系统在阶跃函数作用下,动态过程随时间的
变化状况的指标称为动态性能指标。通常包括:
延迟时间 td :指响应曲线第一次到达稳态值一半所需的时间。
上升时间 tr :指响应第一次 h(t) % 误差带
洛比特法则
lim lim
(s pi )N (s)
(s pi )N (s) N (s) N ( pi )
s pi
D(s)
s pi
D(s)
D( pi )
f (t) L1
F (s)
L1
n i1
Ai s pi
n i 1
Aie pi t
② 具有多重极点的有理函数的反变换
F (s)
误差平方积分(ISE,Integral of Square Error)
ISE e2 (t)dt 0
( e(t)是输入输出之间存在的误差)
时间乘误差平方积分(ITSE,Integral of Timed Square Error)
ITSE te2 (t)dt 0
误差绝对值积分(IAE,Integral of Absoluted Error)
(s a
j)F (s) sa j
N (s) D(s)
sa j
k1
e j
思考:为何 k1,k2 必为共轭复数?
f
(t)
L1 F (s)
L1
s
A1 p1
k1 sa
j
k2 sa
j
A1e p1t
k1e(a j)t
自动控制原理-第3章-时域分析法
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点
语音信号处理-第03章 语音信号的时域分析方法
白噪声信号
相关分析的依据
修改坐标的自相关函数波形
• 用于确定两个信号在时域内的相似性。常用 的物理量为自相关函数和互相关函数。 • 当两个信号的互相关函数大时,则说明一个 信号可能是另一个信号的时间滞后或提前; • 当互相关函数为0时,则两个信号完全不同。 • 自相关函数用于研究信号本身,如波形的同 步性和周期性。
PG ( x ) = [ 3 8πσ x x ] e
1 2 − 3x 2σ x
PL ( x) =
− 1 e 2σ x 2σ x
2x
二、零均值 三、非平稳时变信号;短时平稳:10~30ms
§3.2语音信号短时分析方法
语音信号的开窗分析技术: (1)均匀窗: (2)非均匀窗:各种国际标准 (3)重叠窗(Overlap) 设:语音信号为S(n),加窗语音记为 Sw(n) = W[S(n)] = S(n) w(n-m),n=0~(N-1) 则语音处理系统可表示为
5
基于能量和过零率的双门限法检测法
首先用短时能量做第一次判断,然后在此基础上 用短时平均过零率做第二次判断。 这种方法端点的确定与以后的判决无关,因此称 为显式法。
三、短时相关分析
短时自相关函数性质 • 1. R w( −l ) = R w(l ) 为偶函数; • 2. 在-N+1~N-1之间有值; • 3. R ( 0 ) = ∑ s ( n ) ≥ R ( k ) 为最大值。 • 4.当时域信号为周期信号时,自相关函 数也是周期性函数,两者周期相同。 浊音:呈现‘准’周期性、逐渐衰减
男声汉语拼音s的一帧信号(在采样频率为22050Hz 的情况下,取20ms作为一帧),清音的短时能量为 3.88。
二.短时过零率分析
• 过零率定义:信号跨越横轴的次数情况。 • 对于连续信号,观察语音时域波形通过 横轴的情况; • 对于离散信号,相邻的采样值具有不同 的代数符号,也就是样点改变符号的次 数。
语音信号处理课件__第03章时域分析
x
xmax
)
(3-11)
3.1 语音信号的短时处理方法 脉冲编码调制
若是xmax取为4倍方差(δx)
SNRdB 6.02B 7.27
取样之位数 8 16 24
(3-12)
数字信号的信噪比 41 dB 89 dB 137 dB
3.1 语音信号的短时处理方法 脉冲编码调制
一个数字信号取样之后,变成离散时间信号,接下来就是要用数字 方式来表示这个离散时间信号上的每个取样值。 一个电位波形会有固定的电压范围,一个取样值可以是在此电压范 围内的任何电位。如果只能用固定数目的位来表示这些取样值,那 么这些二进数字就只能代表固定的几个电位值,这个转换就是量化 (quantization),而转换之后只允许存在的几个电位值就是量化阶 数(quantization level)。 执行量化转换的硬件电路,就是量化器(quantizer)。以二进数字 表示的信号就是数字信号(digital signal),而这种将信号波形转 变成二进数字的方法,就叫脉冲编码调制(pulse code modulation, PCM)。
3.1 语音信号的短时处理方法
预处理 平滑滤波器:D/A后面的低通滤波器是平滑滤 波器,对重构的语音波形的高次谐波起平滑 作用,以去除高次谐波失真。 预加重:
现象:由于语音信号的平均功率谱受声门激励和口 鼻辐射的影响,高频端大约在800 Hz以上按6dB/ 倍频程跌落,为此要在预处理中进行预加重。 目的:提升高频部分,使信号的频谱变得平坦,以 便于进行频谱分析或声道参数分析。 位置:预加重可在A/D变换前的反混叠滤波之前进行, 这样不仅能够进行预加重,而且可以压缩信号的动 态范围,有效地提高信噪比。
自动控制原理-第3章
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
自动控制原理第3章
2
一、典型的输入信号
1、阶跃信号 数学表达式
r(t) A t 0
拉氏变换式
R(s) A s
当A=1时,称为单位阶跃信号!
r(t) 1
2.斜坡信号 数学表达式
r(t)
R(s) 1 s
At t 0 0 t0
3
典型的输入信号
y(tr ) 1
经整理得
tr
n
1
2
25
二阶系统分析
t tp
2、超调量 :
暂态过程中被控量的最大值超过稳态值的百分数。
即
%
y(t
P ) y y
100
%
峰值时间 t t p
在 t 时t p刻对 求y导t,令其等于零,经整理得
tp 1 2n
将其代入超调量公式得
% e 1 2 100%
r(t)
A 0t 0 t0 t
拉氏变换式 R(s) A
5
典型的输入信号
当A=1时, 称为单位理想脉冲信号
r(t) (t) R(s) 1
5、正弦信号 数学表达式
r(t) Asin t t 0
拉氏变换式
R(s)
A s2 2
6
二、时域性能指标
以单位阶跃信号输入时,系统输出的一些特征值来表示。
系统对输入信号微分(积分)的响应,就等于该输入 信号响应的微分(积分)。
例3-1(解释)
14
第三节 二阶系统分析 一、二阶系统
用二阶微分方程描述的系统。 二、二阶系统典型的数学模型
先看例:位置跟踪系统
15
二阶系统分析 系统结构图:
第3章 时域分析法
6.稳态误差 在图3-6所示单位阶跃响应曲线中,对单位阶跃响应的稳态误差可以用ess来表 示,通常用ess反映系统跟踪输入时的稳态精度。
稳态误差ess:对单位负反馈系统,当t→∞时,系统单位阶跃响应的实际稳态 值与给定值之差,即
ess1= 1 − c(∞) 如果c(∞)为1, 则系统的稳态误差为零。
函数的图形如图3-5所示。
t 0
图3-5 正弦函数图形
3.2 阶跃响应的性能指标
(1)动态过程。动态过程也称过渡过程或瞬态过程,指系统在典型输入信 号作用下,其输出量从初始状态到最终状态的过程。根据系统结构和参数 选择的情况,动态过程表现为衰减、发散和等幅振荡几种形式。显然,一 个可以正常运行的控制系统,其动态过程必须是衰减的,即系统必须是稳 定的,动态过程除提供系统稳定的信息外,还可以提供其响应速度和阻尼 情况等信息,这些信息是用系统动态性能描述的 。
(2)稳态过程。稳态过程也称系统的稳态响应,指系统在典型输入信号 作用下,当t→∞时,其输出量的表现形式。稳态过程表征系统输出量最终复 现输入量的程度,提供系统稳态误差的信息,用系统的稳态性能描述。在分 析系统性能时,认为当系统的输出对其输入的复现进入允许的误差范围以后, 系统进入稳态。
由此可见,控制系统在典型输入信号作用下的性能指标由动态性能指标和稳 态性能指标两部分组成,一般认为阶跃输入对系统来说是最为严峻的工作状 态,如果系统在阶跃函数作用下的动态性能满足要求,那么在其他输入形式 作用下的动态性能也能满足要求。
时间ts。稳态值称为误差带,可以是5%或2%,前者称为5%误差带, 后者称为2%误差带。
5.峰值时间
在图3-6所示单位阶跃响应曲线中,对单位阶跃响应的峰值时间可以用tp来 表示,通常用tp评价系统的响应速度,也反映系统的局部快速性。
时域分析法
16:19
一般的控制系统多数为高阶系统,但是它们有可 能在一定的条件下用二阶系统去近似。因此,对 于二阶系统的分析具有重要的实际意义。在系统 的分析与设计中,通常将二阶系统的响应特性作 为一种基准。
16:19
二阶系统传递函数的标准形式
某随动系统方块图
如图所示随动系统的微分方程式:
TM
d
2c t
/ TM
s2
n2 2ns
n2
3.4.4
其中 n为无阻尼自然振荡角频率(固有频率); 称为阻尼比;
均为二阶系统的特征参数,是系统本身的固有特性。
16:19
二阶系统的特征方程
s2
2
ns
2 n
0
3.4.5
由上式解得二阶系统的二个特征根(即闭环极点)为:
s1,2 n jn 1 2 3.4.6
当0 1时,特征根为一对实部为
16:19
当-1< <0 ,特征根是位于右半平面的共轭复根,呈发散振荡 状态。如图3 .6(e)所示。
当 < -1,呈单调发散状态。如图3 .6(f)所示 P53图3.7表明了极点分布与n、 的关系图。
16:19
二阶系统的单位阶跃响应 1. 欠阻尼状态
令r t 1t,则有Rs 1
s
二阶系统在单位阶跃函数作用下输出:
16:19
3.1 线性定常系统的时间响应及 暂态响应性能指标
一、时间响应
线性系统的动态方程
an y(n) (t) an1 y(n1) (t) L a1y&(t) a0 y(t) bm x(m) (t) bm1x(m1) (t) L b1x&(t) b0x(t)
经过拉氏变换得
时域分析法
解:
系统闭环传递函数:
r+ -
K
x
+
1
y
+
s(1+Ts)
Y(s)
1
G( s ) X ( s ) Ts2 s K
K
1
T
K s2 1 s K
TT
1 K
s2
n2 2ns n2
其中 2
1 KT
n
K T
y( t )
1
1
K
1 1 2
e n t
sin( d t
,m
n
写成零极点形式: m
kg (s zi )
(s) n1
i 1 n2
, n1 2n2 n, m n
(s p j ) (s2 2 l nl s nl 2 )
j 1
l 1
其单位阶跃响应函数为:
C(s)
(s) 1 s
a0 s
n1 j1
aj s pj
n2 l 1
l (s lnl ) lnl 1 l 2 s2 2 l nl s nl 2
第三章 时域分析法
主要内容: 1. 控制系统的时间响应 2. 误差分析和计算 3. 稳定性分析(劳斯判据)
系统分析:对控制系统的稳定性、误差和动态 特性等方面的指标进行分析,即分析系统的稳 定性、准确性和快速性。
dny
d n1 y
dy
dmx
d m1 x
dx
an dt n an1 dt n1 L a1 dt a0 y bm dt m bm1 dt m1 L b1 dt b0 x
——相角
极点的虚部决定系统的震荡频率:
自动控制原理第3章
例1. 系统特征方程式为
s 6 s 12 s 11 s 6 0
4 3 2
例2. 系统特征方程式为
s 3 s 2 s s 5s 6 0
5 4 3 2
特殊情况:
1) 劳斯行列表中某一行左边第一个数为零,其余 不为零或没有. 例: 例:
s 4 3s 3 s 2 3S 1 0
-
1/s
k/(s+5)(s+1)
例:系统特征方程式:
2 s 3 T s 2 10 s 100 0 s
4
按稳定要求确定T的临界值.
六.系统的相对稳定性
§3-3 控制系统的稳态误差
一.误差及稳态误差的定义 系统的误差为 e(t)=被控量的希望值-被控量的实际值 常用的误差定义有两种
二.线性定常系统稳定的充分必要条件
线性定常系统微分方程为:
a0
d dt
n 1
n
n
c (t )
d a dt
1
n 1
c (t ) n 1
d a dt
2
n2 n2
c (t )
d a dt
3
n3 n3
c ( t ) ........
a
d dt
m m
c (t )
a
n
c (t )
第三章 控制系统的时域分析法
§3-1 引言
一. 典型输入信号 1、阶跃函数
r(t)
r (t ) {
0 A
t0 t0
A
t
2、斜坡函数
r(t) {
r(t)
0 At
t0 t0
斜率=A
自动控制原理 第三章时域分析方法
总结与分析:
一阶系统对典型试验信号的响应 输入信号x(t) 输出响应y(t)
1 2 3
t
1() δ(t)
t T Te t / T
1 et /T
1 T
et /T
l 线性定常系统对输入信号导数的响应,可以通过 把系统对输入信号的响应进行微分求得; l 系统对输入信号积分的响应,可以通过把系统对原 输入信号的响应进行积分求得,而积分常数则由初 始条件决定。
3.1.1 控制系统的输入信号
● 在分析和设计控制系统时,需要有一个对各种
系统性能进行比较的基础。
● 从实际应用中抽象出一些典型的输入信号,它
们具有广泛的代表性和实际意义。
● 通过比较各类系统对这些典型试验信号的响
应来分析它们的性能。
常用的典型试验信号:
r(t) A t (a) 阶跃信号
r(t)
1 E
实验方法求取一阶系统的传递函数:
63.2% T
1 Ts 1
对一阶系统的单位阶跃响应曲线, 1、直接从达到稳态值的63.2%对应的时间求出一阶 系统的时间常数;
2、从t=0处的切线斜率求得系统的时间常数。 思考题:
若系统增益K不等于1,系统的稳态值应是多少?如何用实
验方法从响应曲线中求取K值?
3.2.2单位斜坡响应
2、系统的稳态响应为y(∞)=t-T,是一个与输入斜 坡函数斜率相同但时间迟后T的斜坡函数。
3、输出总是小于输入,误差逐步从零增大到时间 常数T并保持不变,因此T也是稳态误差。系统 的时间常数T越愈小,系统跟踪输入信号的稳态 误差也越小。
3.2.3 单位脉冲响应
1 R( s) L[ ( t )] 1 Y ( s) G ( s) R( s) G (s ) Ts 1 系统输出量的拉氏变换式就是系统的传递函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章时域分析法基本要求3-1 时域分析基础3-2 一、二阶系统分析与计算3-3 系统稳定性分析3-4 稳态误差分析计算返回主目录基本要求1熟练掌握一、二阶系统的数学模型和阶跃响应的特点。
熟练计算性能指标和结构参数,特别是一阶系统和典型欠阻尼二阶系统动态性能的计算方法。
2了解一阶系统的脉冲响应和斜坡响应的特点。
3正确理解系统稳定性的概念,能熟练运用稳定性判据判定系统的稳定性并进行有关的参数计算、分析。
4正确理解稳态误差的概念,明确终值定理的应用条件。
5熟练掌握计算稳态误差的方法。
6掌握系统的型次和静态误差系数的概念。
控制系统的数学模型是分析、研究和设计控制系统的基础,经典控制论中三种分析(时域,根轨迹,频域)、研究和设计控制系统的方法,都是建立在这个基础上的。
3-1 时域分析基础一、时域分析法的特点它根据系统微分方程,通过拉氏变换,直接求出系统的时间响应。
依据响应的表达式及时间响应曲线来分析系统控制性能,并找出系统结构、参数与这些性能之间的关系。
这是一种直接方法,而且比较准确,可以提供系统时间响应的全部信息。
二、典型初始状态,典型外作用1. 典型初始状态通常规定控制系统的初始状态为零状态。
即在外作用加于系统之前,被控量及其各阶导数相对于平衡工作点的增量为零,系统处于相对平衡状态。
2. 典型外作用①单位阶跃函数1(t)tf(t)⎩⎨⎧<≥==0t 00t 1)t (1)t (f 其拉氏变换为:s 1dt e 1)s (F )]t (f [L 0st===⎰∞-其数学表达式为:t②单位斜坡函数0t 0t 0t)t (1t )t (f <≥⎩⎨⎧=.=其拉氏变换为:2sts 1dt e t )s (F )]t (f [L ===⎰∞-f(t)其数学表达式为:③单位脉冲函数000)()(=≠⎩⎨⎧∞==t t t t f d 其数学表达式为:其拉氏变换为:1)()]([==s F t f L ⎰+∞∞-=1)(dt t d 定义:图中1代表了脉冲强度。
单位脉冲作用在现实中是不存在的,它是某些物理现象经数学抽象化的结果。
④正弦函数其拉氏变换为:22sin )()]([ωs ωdt e ωt s F t f L st+===⎰∞-000sin )(<≥⎩⎨⎧=t t ωt t f 其数学表达式为:f(t)三、典型时间响应初状态为零的系统,在典型输入作用下输出量的动态过程,称为典型时间响应。
定义:系统在单位阶跃输入[r(t)=1(t)]作用下的响应,常用h(t)表示。
()s Φ若系统的闭环传函为,则h(t)的拉氏变换为[]1()()h t L H s -=故1()()()()H s s R s s s =Φ⋅=Φ⋅(311)--定义:系统在单位斜坡输入[r(t)=t·1(t)]作用下的响应,常用表示。
()t ct 故[]1()()t t c t L C s -=则有21()()()()t C s s R s s s=Φ⋅=Φ⋅(312)--定义:系统在单位脉冲输入r(t)=δ(t)作用下的响应,常用k(t)表示。
注:关于正弦响应,将在第五章里讨论故[][]11()()()k t L K s L s --==Φ则有()()()()1()K s s R s s s =Φ⋅=Φ⋅=Φ(313)--4.三种响应之间的关系由式(3-1-3)可将式(3-1-1)和式(3-1-2)写为:11()()()H s s K s s s=Φ⋅=⋅22111()()()()t C s s K s H s s s s=Φ⋅=⋅=⋅相应的时域表达式为0()()th t k d ττ=⎰0()()tt c t h d ττ=⎰四、阶跃响应的性能指标t)(t h )(p t h 1p t st 误差带1、峰值时间t p:指h(t)曲线中超过其稳态值而达到第一个峰值所需的时间。
2、超调量σ%:指h(t)中对稳态值的最大超出量与稳态值之比。
3、调节时间t s:指响应曲线中,h(t)进入稳态值附近±5%h(∞)或±2%h(∞)误差带,而不再超出的最小时间。
4、稳态误差e ss:指响应的稳态值与期望值之差。
注意事项:。
%和而没有稳态误差入,则只有而言的,对于非阶跃输应三项指标是针对阶跃响及s ss ss s t e e t σσ,%,3-2 一、二阶系统分析与计算一、一阶系统的数学模型及单位阶跃响应定义:由一阶微分方程描述的系统称为一阶系统。
一阶系统数学模型微分方程:动态结构图:传递函数:)()()(trtcdttdcT=+11)()(+=TssR sCTs1 )(sR)(sC一阶系统单位阶跃响应输入:输出:)(1)(t t r =ss R 1)(=sTs s R s s C 111)()()(*+=*=ΦTt et C --=1)(单位阶跃响应曲线初始斜率:0()1|t dh t dt T==性能指标1. 平稳性σ%:2. 快速性t s :3.准确性e ss :非周期、无振荡,σ%=0]%5[95.0)(3误差带对应时,==t c T t ]%2[98.0)(4误差带对应时,==t c T t 0)(1=∞-=c ess举例说明(一阶系统)一阶系统如图所示,试求:1.当K H=0.1时,求系统单位阶跃响应的调节时间t s,放大倍数K,稳态误差e ss;2.如果要求t s=0.1秒,试问系统的反馈系数K H应调整为何值?3.讨论K H的大小对系统性能的影响及K H与e ss的关系。
看懂例题3-1并回答上述各题s100)(sR)(sCH)(sE)(sB100sHK二、二阶系统的数学模型及单位阶跃响应定义:由二阶微分方程描述的系统称为二阶系统。
二阶系统数学模型二阶系统的微分方程一般式为:ς-阻尼比无阻尼振荡频率-n ω2222()()2()()n n n d c t dc t c t r t dt dtςωωω++=(0)n ω>二阶系统的反馈结构图)2(2n n s s ξωω+)(s R )(s C 2(2)nn s s ωςω+二阶系统的传递函数开环传递函数:222()()2nn nC s R s s s ωςωω=++2()(2)nn G s s s ωςω=+闭环传递函数:二阶系统的特征方程为2220n ns s ςωω++=解方程求得特征根:当输入为阶跃信号时,则微分方程解的形式为:12012()s t s tc t A A e A e=++式中为由r(t)和初始条件确定的待定的系数。
012,,A A A s 1,s 2完全取决于,ωn 两个参数。
ς21,21n n s ςωως=-±-此时s 1,s 2为一对共轭复根,且位于复平面的左半部。
01ς<<①特征根分析—(欠阻尼)21,21n n s s j ςωως=-±-②特征根分析—(临界阻尼)此时s 1,s 2为一对相等的负实根。
s 1=s 2=-ωn21,21n n ns ςωωςω=-±-=-1ς=⑷特征根分析—(过阻尼)此时s1,s2为两个负实根,且位于复平面的负实轴上。
21,21 n nsςωως=-±-1ς>⑤特征根分析—(零阻尼)❑此时s 1,s 2为一对纯虚根,位于虚轴上。
❑S 1,2= ±j ωn21,21n n ns j ςωωςω=-±-=±0ς=⑥特征根分析—(负阻尼)此时s 1,s 2为一对实部为正的共轭复根,位于复平面的右半部。
21,21n n s j ςωως=-±-10ς-<<⑦特征根分析—(负阻尼)此时s1,s2为两个正实根,且位于复平面的正实轴上。
21,21 n nsςωως=-±-1ς<-二阶系统单位阶跃响应21111/n n s T ςωως=-+-=-1.过阻尼二阶系统的单位阶跃响应22211/n n s T ςωως=---=-21212111()()()(1)(1)nC s s s s s s T s T s sω=⋅=⋅--++取C(s)拉氏反变换得:1211211211()1,(0)/1/1t t T T h t ee t T T T T --=++≥--(314)--(1)ς>过阻尼系统分析⏹衰减项的幂指数的绝对值一个大,一个小。
绝对值大的离虚轴远,衰减速度快,绝对值小的离虚轴近,衰减速度慢;⏹衰减项前的系数一个大,一个小;⏹二阶过阻尼系统的动态响应呈非周期性,没有振荡和超调,但又不同于一阶系统;⏹离虚轴近的极点所决定的分量对响应产生的影响大,离虚轴远的极点所决定的分量对响应产生的影响小,有时甚至可以忽略不计。
过阻尼系统单位阶跃响应tc(t)与一阶系统阶跃响应的比较tc(t)二阶过阻尼系统一阶系统响应1二阶过阻尼系统阶跃响应指标分析.2=%响应没有振荡σ0)]()([lim .1=-=∞→t c t r e t ss 误差对于过阻尼二阶系统的响应指标,只着重讨论,它反映了系统响应过渡过程的长短,是系统响应快速性的一个方面,但确定的表达式是很困难的,一般根据(3-1-4)取相对量及经计算机计算后制成曲线或表格。
s t s t 1/s t T 12/T T2.欠阻尼二阶系统的单位阶跃响应(01)ς<<21,21n n s j ςωως=-±-dj ωσ±-=222()()2nn nC s R s s s ωζωω=++n σςω=为根的实部的模值;21d n ωως=-为阻尼振荡角频率二阶欠阻尼系统的输出2221()2nn n c s s s sωςωω=⋅++22221()()n n n d n ds s s s ςωςωςωωςωω+=--++++拉氏反变换得:2()1[cos (sin )]1n td d c te t t ςωςωως-=-+-21()1sin(arccos )n td c t et ςωωςς-=-+二阶欠阻尼系统输出分析二阶欠阻尼系统的单位阶跃响应由稳态分量和暂态分量组成。
稳态分量值等于1,暂态分量为衰减过程,振荡频率为ωd。
下图为二阶系统单位阶跃响应的通用曲线。
下面根据上图来分析系统的结构参数、对阶跃响应的影响ζn ω•平稳性(σ%)21n teA ςως-=-暂态分量的振幅为:结论:越大,ωd 越小,幅值也越小,响应的振荡倾向越弱,超调越小,平稳性越好。
反之,越小,ωd 越大,振荡越严重,平稳性越差。
ςςς21d n ωως=-振荡角频率为:ζnω当=0时,为零阻尼响应,具有频率为的不衰减(等幅)振荡。
阻尼比和超调量的关系曲线如下图所示21d n ωως=-结论:对于二阶欠阻尼系统而言,大,小,系统响应的平稳性好。