第三章离心式压缩机

合集下载

离心式压缩机.课件

离心式压缩机.课件
2)油泵:润滑油泵一般均配置两台,一台主油泵,一台辅助油泵,机组 运行所需的润滑油由主油泵供给。当主油泵发生故障时,系统油压降 低后,辅助油泵自动投入运行,为机组提供润滑油。
3)润滑油冷却器:润滑油冷却器用于返回油箱的油温有所升高的润滑油 冷却,以控制油温升高。油冷器一般配置两台,一台使用,一台备用, 当投用的油冷器冷却效果不能满足要求时,要切换至备用的油冷器, 将停用的油冷器清洗后备用。
3、检查联轴节。 4、拆卸联轴节,检查其不平衡性。 5、检修或更换密封。 6、消除油膜涡动对轴承影响 7、设法使压缩机运行条件偏离喘振点。
8、气体带液体或杂质侵入
8、更换密封、排放积水。
9、叶轮过盈量小,在工作转速下消失。 9、消除叶轮与轴装配过盈小的缺陷。
离心式压缩机故障
压缩机 喘振
1、运行点落入喘振区或离喘 振线太近。
3)工艺系统 按规定时间和路线,检查工艺系统各部位的 温度、压力、液面的指示值,发现偏离及时调节,确保工 艺系统正常运行。
离心式压缩机的使用维护
4)主机 主机是检查维护的主体,要按规定时间,严格检 查各轴承的振动、瓦温、回油情况、转速和轴位移的指示 情况,如发现偏离操作指标规定的范围,要采取有效措施, 排出故障因素,使主机运行正常。
径向轴承是影响其安全工作和 使用率的关键零件之一,常用 可倾瓦轴承,可倾瓦支撑轴承 包括沿中心线 剖分的圆柱形轴承套和五个可 倾斜的扇形轴瓦,瓦块可以使 转子偏心,可以优化轴承瓦块 上的载荷分布情况,并且形成 更好的油楔。
油锲倾斜块式径向轴承
1.瓦块 2.上轴承套3.螺栓4.圆柱销5.下轴承套 6.定位螺钉 7.进油节流圈
移大波动 不好,压比变化大。
离心式压缩机叶轮
2、叶轮 叶轮又称工作轮,是压缩机的最主要的部件。叶轮随主轴高速旋转,对气

离心式压缩机3

离心式压缩机3

第三章 叶轮21thdp h ρΩ=∫222222212121222th u u w w c c h −−−=+−222211()22th hyd c cdp h h ρ=+−+∫§3-1 叶轮典型结构比较 一、反作用度为了评定在叶轮中提高压力能的部分与气体得到的能量的关系,引入反作用度,定义为叶轮中得到的静压能和气体的能量头之比伯努利方程:§3-1 叶轮典型结构比较22222222211221122222th u u u w w u u w w h c u −+−−+−Ω==假定0hyd h =1110,u r c c c ==112r rc c c =≈由速度三角形222111w u c−=2222222()ru w c u c −=−222222122222222222()()22u r uu u c u u c c u u c c u c u +−−−−−Ω==2222222222221111ctg 22222u u u u r u c u c c c u u ϕϕβ−Ω==−=−=+叶片出口角大,叶轮反作用度低流量系数大,叶轮反作用度低反作用度大的级效率高(尽量提高压能,减少动能损失)§3-1 叶轮典型结构比较二、叶轮效率§3-1 叶轮典型结构比较222211()()22th hyd imp c cdp h h ρ=+−+∫122111()11ii m m i pol impi m p dp h RT m p ρ−⎡⎤⎛⎞⎢⎥==−⎜⎟⎢⎥−⎝⎠⎢⎥⎣⎦∫12112222212111()()(1)22ii m m i i pol imp pol imp tot l df th m p RT m p h c c c c h h ηββ−⎡⎤⎛⎞⎢⎥−⎜⎟⎢⎥−⎝⎠⎢⎥⎣⎦==−−−++−()11i i pol imp i m k m k ση==−−0.84-0.92三、叶轮型式1 后弯叶片式2 径向叶片式3 前弯叶片式§3-1 叶轮典型结构比较290A β<�290A β=�290Aβ>�三、叶轮型式1 后弯叶片式2 径向叶片式3 前弯叶片式出口绝对速度和其圆周分速度较小,作功最小§3-1 叶轮典型结构比较290Aβ<�290Aβ=�290Aβ>�出口绝对速度和其圆周分速度较大,作功最大出口绝对速度和其圆周分速度级作功介于前后弯之间§3-1 叶轮典型结构比较前弯叶片式叶轮效率低:(1)反总用度最小,动能在叶片扩压器中损失最大(2)叶道短,弯曲度大-叶道截面积增大快-叶道当量扩张角大-扩压度大-边界层分离-损失大,效率低前弯叶片式叶轮效率低:(3)由于轴向涡流影响和气流通过曲线型通道受离心离作用而形成的速度差相叠 加--叶道中速度分布不均匀度大--边界层分离和二次涡流增大-后面固 定元件进口条件恶化-效率下降(4)叶轮出口绝对速度受Ma c2数限制,圆周速度不能太高,作功能力收到限制前弯叶片式:通风机; 后弯和径向叶片式:鼓风机和压缩机§3-1 叶轮典型结构比较§3-1 叶轮典型结构比较四、强后弯型、后弯型和径向型叶轮1 强后弯型(水泵型)2 后弯型 (压缩机型)3 径向型径向出口叶片式径向直叶片式(前设导风轮)21530A β=−��290A β=�23060A β=−��§3-1 叶轮典型结构比较2222222(1ctg )th u r h u uϕϕβ==−(1)径向型叶轮能量头不随流量系数变化,后弯型叶轮能量头随流量系数增大而减小(2)径向直叶片式叶轮气体所获能量头较后弯型叶轮大20-25%,强后 弯型叶轮大40-50%;故采用径向直叶片式叶轮可减少离心压缩机 级数。

离心式压缩机 原理

离心式压缩机 原理

离心式压缩机原理
离心式压缩机是一种常用的空气压缩机,它利用离心力将空气压缩,从而提高空气的压力和温度。

其工作原理如下:
1. 空气吸入:离心式压缩机通过一个入气口将空气吸入,空气随着转子的旋转进入离心式压缩机的轮盘。

2. 加速:空气被转子迅速旋转,离心力使得空气被从中心向外部推进,从而加速了空气的流动速度。

3. 压缩:随着空气流动速度的增加,空气被推至离心式压缩机的外围。

在外围,由于叶轮的不断压缩,空气的压力逐渐上升。

4. 出气:当空气达到所需的压力时,压缩后的空气通过排气管道被释放出来,并被送入用途。

需要注意的是,离心式压缩机的压缩过程是连续不断的。

通过不断的旋转和压缩,离心式压缩机可以提供持续的高压空气。

离心式压缩机的主要优点是结构简单、体积小、重量轻、维护方便,并且具有较高的压缩比和较小的功率损失。

因此,离心式压缩机被广泛应用于空气压缩、空调、制冷等各个领域。

离心压缩机培训教材

离心压缩机培训教材

级内气体流动的能量损失分析
级内气体流动的能量损失分析 (一)能的定义:度量物质运动的一种物质量,一般解释为物质作功的能力。能
的根本类型有势能、动能、热能、电能、磁能、光能、化学能、原子能等。 一种能可以转化为另一种能。能的单位和功的单位相同。能也叫能量。 (二)级内气体流动的能量损失分析 压缩机组实际运行中,通过叶轮向气体传递能量,即叶轮通过叶片对气体作 功消耗的功和功率外,还存在着叶轮的轮盘、轮盖的外侧面及轮缘与周围气 体的摩擦产生的轮阻损失,还存在着工作轮出口气体通过轮盖气封漏回到工 作轮进口低压低压端的漏气损失。都要消耗功。这些损失在级内都是不可防 止的,只有在设计中精心选择参数,再制造中按要求加工,在操作中精心操 作使其尽量到达设计工况,来减少这些损失。另外,还存在流动损失以及动 能损失以及在级内在非工况时产生冲击损失。冲击损失增大将引起压缩机效 率很快降低。还有高压轴端,如果密封不好,向外界漏气,引起压出的有用 流量减少。故此,我们有必要研究这些损失的原因,以便在设计、安装、操 作中尽量减少损失,维持压缩机在高效率区域运行,节省能耗。 1、流动损失:定义:就是气流在叶轮内和级的固定元件中流动时的能量损失。 产生的原因:主要由于气体有粘性,在流动中引起摩擦损失,这些损失又变 成热量使气体温度升高,在流动中产生旋涡,加剧摩擦损耗和流动能量损失, 因旋涡的产生就要消耗能量;在工作轮中还有轴向涡流等第二次流动产生, 引起流量损失。在叶轮出口由于出口叶片厚度影响产生尾迹损失。弯道和回 流器的摩擦阻力和局部阻力损失等。
离心压缩机本体结构介绍
MCL1006压缩机的叶轮均为顺排布置、机壳水平剖分结构,叶轮名 义直径为φ1000mm,共六级,工艺气体依次进入各级叶轮进行压缩, 一直压缩至出口状态。没有中间气体冷却器。

离心式压缩机原理pdf

离心式压缩机原理pdf

离心式压缩机原理pdf
离心式压缩机是一种广泛应用于各种工业领域的压缩设备。

它的
原理是通过离心力将气体加速到高速旋转的离心鼓中,然后通过叶轮
将气体压缩,最终达到所需的压缩效果。

离心式压缩机的结构包括离心鼓、进气口、出气口、叶轮、电机等。

离心鼓通常由多个离心筒组成,在高速旋转时通过离心力将气体
加速到鼓内,然后被叶轮旋转,快速压缩。

气体经过压缩后通过出气
口排出系统。

离心式压缩机有很多优点,例如占地面积小、噪音低、运作稳定等。

它适用于空气压缩、空气分离、低温制冷、饮料制造行业、氧气
生产等领域。

在空调系统中,离心式压缩机也是常见的压缩设备之一,它能够有效提高空调系统的制冷效果。

离心式压缩机的使用需要注意以下几点:
1. 离心式压缩机的运转必须保证平稳,避免剧烈震荡和突然停机,这有可能损害设备或者危及安全。

2. 在设备的安装和使用过程中,必须要严格按照相关规定和操作
手册进行操作,以免因操作不当导致设备出现故障和损坏。

3. 各种易燃易爆物品应该放置在离心式压缩机的远离位置,避免
因意外事故而引起火灾等危险。

4. 定期检查和清洁离心式压缩机设备,及时更换需要更换的零部件和进行维护保养。

这可以有效地延长设备的使用寿命,提高使用效率。

总之,离心式压缩机作为常见的压缩设备之一,可以为各种行业的生产和制造提供帮助和支持。

但是,在使用过程中需要遵守相关规定和操作手册,以确保设备的安全、有效运转。

同时,进行定期检查和维护保养,可以大大延长设备的使用寿命和提高工作效率。

H《化工过程流体机械》第3章叶片式压缩机-总结思考公式习题

H《化工过程流体机械》第3章叶片式压缩机-总结思考公式习题

《化工过程流体机械》总结、思考、公式、习题(第三章)2009.10.15(内容总结及思考题)第三章叶片式压缩机§ 3.1 离心压缩机的结构类型3.1.1 离心压缩机的基本结构3.1.2 主要零部件3.1.3 典型结构小结:1.基本结构级、段、缸、列;首级、中间级、末级;叶轮、扩压器、弯道、回流器、吸气室、蜗壳;2.主要零部件叶轮(后弯型,相对宽度b2/D2,直径比D1/D2);扩压器(叶片、无叶片);3.典型结构单级、多级,水平中开型、高压筒型等。

思考题:[2] 3-1.何谓离心压缩机的级?它由哪些部分组成?各部件有何作用?§ 3.2 离心压缩机的工作原理3.2.1 工作原理3.2.2 基本方程3.2.3 压缩过程3.2.4 实际气体小结:1.工作原理离心压缩机特点(优缺点);关键截面参数(s、0、1、2、3、4、5、0');2.基本方程连续性、欧拉方程,焓值方程(热焓形式)、伯努利方程(压损形式);3.压缩过程等温压缩、绝热压缩、多变压缩过程(过程指数m、绝热指数k);4.实际气体压缩性系数Z、混合气体(ρ、R、c p或c v、k)。

思考题:[2] 3-2.离心压缩机与活塞压缩机相比,它有何特点?[2] 3-3.何谓连续方程?试写出叶轮出口的连续方程表达式,并说明式中b2/D2和φr2的数值应在何范围之内?[2] 3-4.何谓欧拉方程?试写出它的理论表达式与实用表达式,并说明该方程的物理意义。

[2] 3-5.何谓能量方程?试写出级的能量方程表达式,并说明能量方程的物理意义。

[2] 3-6.何谓伯努利方程?试写出叶轮的伯努利方程表达式,并说明该式的物理意义。

[2] 3-14.如何计算确定实际气体的压缩性系数Z?[2] 3-15.简述混合气体的几种混合法则及其作用。

§ 3.3 离心压缩机的工作性能3.3.1 能量损失3.3.2 性能参数3.3.3 单级特性3.3.4 多级特性3.3.5 性能换算小结:1.能量损失流动(摩阻、分离、冲击、二次流、尾迹、M)、轮阻、内漏气损失;2.性能参数能头、功率、效率,级中气体状态参数(温度、压比、比容);3.单级特性能头(压比)、功率、效率特性,喘振和堵塞工况、稳定工况区;4.多级特性特性(曲线陡、喘振限大、堵塞限小、稳定区窄)、影响(u2、μ);M、k)、完全相似和近似相似(k=k')换算。

离心式压缩机工作原理

离心式压缩机工作原理

离心式压缩机工作原理
离心式压缩机是一种常见的压缩机类型,其工作原理主要基于离心力的作用。

它通过转子的旋转产生离心力,将气体吸入轴向进口处,随后气体沿着进口通道流入转子,并在离心力作用下被压缩。

压缩后的气体沿着离心力方向排出,经过排气通道被释放出去。

具体来说,离心式压缩机主要由以下几个部件组成:
1. 轴:提供转子旋转的动力源。

2. 转子:位于压缩机的核心部分,通过旋转产生离心力。

3. 进口通道:气体通过此通道进入转子。

4. 排气通道:压缩后的气体通过此通道被排出。

5. 外壳:包围整个压缩机,起到保护和密封的作用。

整个工作过程如下:
1. 当轴开始旋转时,转子也开始转动。

转子的旋转速度非常高,通常达到数千转每分钟。

2. 进口通道使进入压缩机的气体朝向转子的轴线方向流动。

由于转子的旋转,气体被迫转向,形成一个旋涡。

3. 当气体进入旋涡中时,由于离心力的作用,气体被迅速压缩。

离心力的作用使气体的分子更加密集,从而提高了气体的压力。

4. 压缩后的气体沿着离心力方向通过排气通道排出压缩机。

压缩机可以根据需要设计多级压缩,每个级别都会进一步增加气体的压缩。

5. 通过不断循环上述步骤,离心式压缩机可以将气体压缩到所需的压力。

需要注意的是,离心式压缩机适用于处理大量气体,但输出的压缩气体通常具有较低的质量流量。

此外,离心式压缩机相对来说比较复杂,需要较高的维护和操作要求。

离心式压缩机组成

离心式压缩机组成

离心式压缩机组成离心式压缩机组成是一种常见的压缩机类型,它在工业生产中广泛应用。

离心式压缩机组成由入口部分、压缩部分和出口部分组成,它通过旋转叶轮的离心力将气体压缩并排出。

本文将介绍离心式压缩机组成的原理和工作过程。

入口部分是离心式压缩机的第一个部分,它负责将气体引入压缩机。

入口部分通常包括进气道和进气滤清器。

进气道是气体进入压缩机的通道,而进气滤清器则起到过滤空气中杂质的作用,保护压缩机内部的部件不受损坏。

压缩部分是离心式压缩机的核心部分,它由旋转叶轮、静止叶轮和机壳组成。

旋转叶轮由驱动装置带动高速旋转,而静止叶轮则位于旋转叶轮的前方,起到引导气体流动的作用。

当气体被旋转叶轮吸入后,离心力使气体获得了动能,气体的压力也随之增加。

随着旋转叶轮的高速旋转,气体逐渐被压缩,并向离心力的方向排出。

出口部分是离心式压缩机的最后一个部分,它将压缩后的气体排出压缩机。

出口部分通常包括出气道和排气阀。

出气道是气体排出压缩机的通道,而排气阀则控制气体的流动,以保证压缩机的正常运行。

离心式压缩机组成的工作过程如下:当压缩机启动后,驱动装置带动旋转叶轮高速旋转。

气体通过进气道进入压缩机,并经过进气滤清器过滤杂质。

随着旋转叶轮的旋转,气体被吸入并受到离心力的作用,压缩过程中气体的温度和压力逐渐增加。

最后,压缩后的气体通过出气道排出压缩机。

离心式压缩机组成在工业生产中有着广泛的应用。

它可以将气体压缩成高压气体,供给工业生产中的各种设备使用。

离心式压缩机组成的结构简单,运行稳定可靠,且具有较高的效率。

在一些需要大量气体供应的场合,离心式压缩机组成可以满足生产需求。

离心式压缩机组成是一种常见的压缩机类型,它由入口部分、压缩部分和出口部分组成。

通过旋转叶轮的离心力将气体压缩并排出。

离心式压缩机组成在工业生产中应用广泛,具有结构简单、运行稳定可靠的特点。

它能够满足工业生产对气体供应的需求,提高生产效率。

离心式压缩机专题(三)

离心式压缩机专题(三)

离心式压缩机专题(三)离心式压缩机的叶轮3 离心式压缩机的转动部件在第一部分内容里,学习离心式压缩机的主要构成时,我们知道离心式压缩机主要由本体部分和辅助系统构成。

而离心式压缩机的本体主要包括转动部件和静止部件两个部分。

通过第三部分内容,将重点对离心式压缩机的主要转动部件进行介绍,包括叶轮、主轴、平衡盘、推力盘和轴套等。

3.1 离心式压缩机的叶轮叶轮是离心式压缩机中对气体做功的元件,气体流经叶轮时,压力和速度得到提高,实现将离心式压缩机的动能转换为气体的压力能和动能,是非常重要的元件,而且是高速旋转元件,所以对叶轮的设计、材料、制造和装配都有很高的要求。

①提供较大的能量头,能量头指的是单位质量气体经过压缩后所获得的能量,能够提供较大的能量头可以理解为,叶轮在旋转的过程中,能够对单位质量气体提供较多的能量。

②叶轮以及与之相配套的级的效率要高,指的是从设计、材料和制造工艺上要使得每一级叶轮与之相配套构成的级的能量损失要小,从而实现比较高的级效率。

③叶轮形式能使级及整机的性能稳定,后面的内容里将会介绍到,叶轮形式的不同会对流经叶轮的气流状态产生明显不同的影响,从而会对级的性能稳定性及整机性能的稳定性产生明显影响,因此,叶轮的形式要能使级及整机的性能稳定。

④强度和质量符合要求,不仅因为叶轮需要受力和做功,而且对于高速旋转的叶轮,如果强度和质量不符合要求,是比较危险的,因此不仅需要在设计、材料、制造和装配上确保叶轮的强度和质量,而且在压缩机的运行过程中,一定要确保各种工艺参数满足设计要求,避免对叶轮状态产生不良影响。

3.1.1 叶轮的分类①按照叶轮的结构形式可以分为开式叶轮、半开式叶轮和闭式叶轮;②按照叶片的弯曲形式可以分为前弯叶片式叶轮、后弯叶片式叶轮和径向叶片式叶轮;③按照加工工艺可以分为铆接式叶轮、焊接式叶轮和整体式叶轮。

三种不同结构的叶轮3.1.2 开式叶轮开式叶轮结构最简单,仅由轮毂和叶片组成。

压 缩 机 基 本 知 识

压 缩 机 基 本 知 识
32
综合上述三个定律可以得到:P1υ1/ T1= P2υ2/ T2=R或Pυ=RT(2——1式,适用于1千克气体)。由于V=mυ,因而 对于m千克的气体来说,上式可以写成:PV=mRT(2——2式适用于m千克气体)。1式和2式称为理想气体状态方程式。 式中: P——绝对压力,N/m2(牛顿/米2) υ——比容,m2/Kg(米3/千克) T——绝对温度,K m——气体质量,Kg R——气体常数,J/(Kg*K)(焦耳/千克*开),R=8314/μ,μ为气体的分子量。
3
(2)燃烧:燃料加入压缩空气中并点火; (3)膨胀:燃烧后的天然气通过一个喷管而膨胀并对外作功; (4)排气:燃烧后的天然气被排放到大气中。 压缩机广泛应用于化工企业各部门,主要用途是: (1)压缩气体用于输送。 (2)作为动力。
4
(3)用于制冷和气体分离。 (4)用于气体的合成和聚合。 (5)用于油的加氢精制。 2.压缩机的种类: (1)按作用原理分为:容积式和速度式。容积式压缩机靠在气缸作往复运动的活塞或旋转运动的转子来 改变工作容积,从而使气体体积缩小而提高气体的压力,即压力的提高是依靠直接将气体体积压缩来实 现的。速度式压缩机靠高速旋转叶轮的作用,提高
30
3.查理定律:法国科学家查理最先研究发现:比容不变时,理想气体的绝对温度与绝对压力成正比。可以 写成:P1/P2= T1/T2。
31
第二节 理想气体状态方程式 要使燃料的热能部分地转化为机械能,需要依靠工质状态发生一系列有规律的变化。而工质的状态是由压力P、
比容υ和温度T这三个基本参数来表示的。这三个参数之间并不是孤立的,而是有内在联系的。一定量的 气体在开始时的状态我们用P1、υ1 、T1 来表示,经过状态变化后气体状态用P2、υ2 、T2来表示。

第三章 离心式压缩机_7

第三章 离心式压缩机_7

喘振实例-1
例:前郭炼油厂一催化装置的MB-CH型7级串联水平中 分离心式气体压缩机。 a.由转速变化引起的喘振 正常情况下,压缩机转速的改变由系统反应的压力 信号控制,但机器发生故障时,压力信号不能使汽 轮机转速自由调节。某年冬季,由于蒸汽量不足, 蒸汽管网压力低,汽轮机用蒸汽经常出现0.7~0. 8MPa,机组出现满负荷状况非常多,转速上不去, 有时只达到给定信号的80%~90%,常出现喘振。
体的机器需要两缸或多缸串
联起来形成机组。
百万吨乙烯装置 “中国心”的诞生
a)级数与气体分子量的关系: 达到相同压比2.5时,压缩不同气体时所需压缩 气体分子量对所需压缩功的影响 功和级数的比较 多方压
气体
m 8315 pd 2 dp H pol T1 1 J 氟里昂- 1 kg 136.3 1.10 1 6.15 ps 186 1 m 16.97 11
曲线很陡4轴流压缩机的变工况特性较差轴流离心压缩机性能曲线对比3423按工作介质选型1按轻气体与重气体选型2按工作介质的性质及排气压力是否很高选型3按气固气液两相介质选型?压缩轻气体所需的有效压缩功就大因而选用的压缩机级数就多甚至需要选用多缸串联的压缩机机组为了使结构紧凑应尽可能选用优质材料以提高叶轮的u2并选用叶片出口角较大叶片数较多1按轻气体与重气体选型的叶轮以尽可能的提高单级的压力比从而减少级数
特点:简单、方便,省功,但增加设备。 原理:压缩机特性叠加,使流量或压力倍增。 qv qv1 qv 2 串联: p p1 p2
并联:q q q v v1 v2
2
1
1

dp : 进出口的静压能增量 ,
多变压缩功 多变能量头 ,

过程流体机械课件,过程装备要控制工程,离心压缩机1

过程流体机械课件,过程装备要控制工程,离心压缩机1

一 离心压缩机的典型结构
按叶片类型分类:即按叶片出口角β2A
前弯型(β
2A>90)
后弯型(β2A<90)
径 向 型(β2A=90)
一 离心压缩机的典型结构
(4)扩压器的结构形式
扩压器一般分为无叶扩压器、叶片扩压器两种。
无叶扩压器: 由两个平行壁面
构成的环形通道。气体从叶轮中排 出,经过该环形通道时降速增压。 是一种结构最简单的扩压器, 造价低,变工况适应性好。
一 离心压缩机的典型结构
(3)离心叶轮的结构形式
一 离心压缩机的典型结构
叶轮结构分类:
闭式叶轮
半开式叶轮
双面进气叶轮
闭式叶轮:由轮盘、叶片、轮盖组成。漏气量小,效率高;但 强度低,影响了叶轮圆周速度的提高,单级压力比较低。 半开式叶轮:由轮盘和叶片组成。叶轮强度高,可获得高的单 级压力比;但漏气量大,效率低。 双面进气叶轮:流量大,叶轮轴向力可得到平衡。
叶片扩压器: 在无叶扩压器的环形
通道上,沿圆周安装均布的叶片,就构 成叶片扩压器。
具有扩压程度大、结构尺寸小的优 点;缺点是变工况性能差。
一 离心压缩机的典型结构
(5)平衡盘
轴向力产生原因:
叶轮两侧间隙内气体压力分布不对称,使作用在叶轮两侧的
力不平衡所产生的轴向力; 气体以一定速度沿轴向进入叶轮,而后改为径向流入叶轮通 道,其速度大小和方向的改变,对叶轮产生一个轴向动反力。
0' 2 2 dp c0' c0 H hyd 00' 2
其中,第一项:气体在进出口获得的静压能增量; 第二项:气体在进出口获得的动能增量; 第三项:气体的级内的流动能量损失。
级内流体的伯努利方程:

离心式压缩机

离心式压缩机
箱,电动机以及连接压缩机的管线和设备等。
第三节
离心压缩机
防止压缩机喘振的发生的措施:
1、防止进气压力低、进气温度高和气体分子量减小等;
2、防止管网堵塞使管网特性改变; 3、要坚持在开、停车过程中,升、降速度不可太快,并 且先升速后升压和先降压后降速; 4、开、关防喘振阀时要平稳缓慢。关防喘振阀时要先低 压后高压,开防喘振阀时要先高压后低压。
第三节
离心压缩机
压缩机喘振发生后的应急措施:
如万一出现“旋转失速”和“喘振”,首先应立即全部
打开防喘振阀,增加压缩机流量,然后根据情况进行处理。若
是因进气压力低、进气温度高和气体分子量减小等原因造成的, 要采取相应措施使进气气体参数符合设计要求;如是管网堵塞 等原因,就要疏通管网,使管网特性优化;如是操作不当引起 的,就要严格规范操作。
第三节
离心压缩机
喘振发生的条件: 给定压力下,流量小 于最小喘振流量 给定流量下,压力大
于最高喘振压力
第三节
离心压缩机
喘振发生的现象: 发生喘振时,机组开始强烈振动,伴随发生异常
的吼叫声,而且是周期性地发生;
机壳相连接的出口管线也随之发生较大的振动;
进口管线上的压力表指针大幅度摆动;
出口止回阀处发生周期性的开和关的撞击声响;
第三节
2、其它辅助系统
离心压缩机
离心式压缩机还包括有齿轮箱或联轴器、轴向位移安全器和冷却分离 器等辅助设备。
离心式压 缩机的驱 动方式
第三节
离心压缩机
八、离心式压缩机的喘振和临界流速
1、喘振
任何离心压缩机按其结构尺寸, 在某一固定的转速下,都有一个最高 的工作压力,在此压力下有一个相应 的最低的流量。当离心压缩机出口的 压力高于此数值时,就会产生喘振。

第3章:离心压缩机的工作原理

第3章:离心压缩机的工作原理

第三章 离心压缩机的工作原理1 速度三角形因为叶轮对气体作功, 叶轮的进出口截面气体运动速度就有变化。

要研究叶轮作功大小,只需讨论叶轮进出口的气体速度。

气体在叶轮中的运动速度有三种相对速度 园周速度 绝对速度气体在叶轮中的实际流动不完全沿着叶片,会有一个与叶轮旋向相反的轴向旋涡。

叶轮出口的速度三角形如下:叶轮对气体所作的功:h = +-g u u 22122+-g w w 22221gc c 22122- (前两项为静压能,第三项为动压能)2 通流元件中参数的变化3 效率的概念压缩机消耗的轴功率 ( N ) 应尽可能用于提高气体压力,因此, 静压能是有用的,其它为无用的损失。

用效率来评价有用的部分。

相应有以下效率:等温效率η i s = N i s / N绝热效率η a d = N a d / N多变效率η p o l = N p o l / N一般地,η a d < η p o l <η i s不同过程下耗功计算:等温功N i s = 1.634 × P s × V × lnsd P P (KW)绝热功 压力温度速度曲线 压力曲线 温度曲线 速度曲线 进气室 叶轮 扩压器 蜗壳 压比N a d = 1.634 × P s × V × 1-k k × ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11k k s d p p (KW) 多变功N p o l = 1.634 × P s × V × 1-m m × ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11m m s d p p (K W) 式中 P d 排气压力 kgf/cm 2 (A) P s 进气压力 kgf/cm 2 (A) V容积流量 m 3 / min K绝热指数 m多变指数。

离心式压缩机组成

离心式压缩机组成

离心式压缩机组成离心式压缩机是一种常见的动力机械,广泛应用于空调、冷冻、制冷等领域。

它通过离心力将气体压缩,提高气体的压力和温度,使其适用于各种工业和商业应用。

离心式压缩机由以下几个主要部件组成:压缩机本体、电机、冷却器和控制系统。

压缩机本体是离心式压缩机的核心部分,它由压缩机壳体、压缩机叶轮和压缩机轴组成。

压缩机壳体是一个密封的容器,用于容纳压缩机叶轮和压缩机轴。

压缩机叶轮是一个旋转的轮盘,由多个叶片组成。

当电机带动叶轮旋转时,气体被吸入叶轮的中心,并随着叶轮的旋转而获得离心力的作用,最终被压缩。

电机是离心式压缩机的驱动装置,它将电能转化为机械能,带动压缩机叶轮的旋转。

电机需要具备足够的功率和转速,以满足压缩机的运行要求。

通常,离心式压缩机的电机采用交流电机或直流电机,具体选择取决于应用的需求。

冷却器是离心式压缩机的重要组成部分,它用于冷却压缩机产生的热量。

在离心式压缩机运行过程中,气体被压缩后会产生大量的热量,如果不及时散热,将会影响压缩机的性能和寿命。

因此,冷却器通常采用散热片或冷却水循环系统,将压缩机产生的热量散发到周围环境中。

控制系统是离心式压缩机的智能化管理系统,它用于监测和控制压缩机的运行状态。

控制系统通常包括传感器、控制器和显示器。

传感器用于感知压缩机的运行参数,如温度、压力和流量等。

控制器根据传感器的反馈信号,对压缩机进行自动调节和控制,以保证其正常运行。

显示器则用于显示压缩机的运行状态和参数,方便操作人员进行监测和调整。

离心式压缩机的工作原理是利用离心力将气体压缩,提高气体的压力和温度。

当电机带动叶轮旋转时,气体被吸入叶轮的中心,并随着叶轮的旋转而获得离心力的作用。

离心力将气体推向叶轮的出口,同时压缩气体的压力和温度也随之增加。

最终,压缩后的气体被排出压缩机,供应给下游设备进行工业生产或商业应用。

离心式压缩机具有结构简单、体积小、重量轻、噪音低等优点,因此被广泛应用于空调、冷冻、制冷等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管网特性曲线有三种形式:
图a,管网阻力与流量大小无关,例如压缩机后面仅经 过很短的管道即进入容积很大的储气筒,此即为忽略沿程 压力,而局部阻力为定值的情况。
图b,可用p=Aq2v表示,大部分管网都属于这种形式,如 输气管道、流经塔器、热交换器等。
工况之间为稳定工作范围
2. 压缩机的喘振与堵塞
a)压缩机的喘振机理(旋转脱离及压缩机的喘振) b)喘振的危害
Pc下降,效率下降、噪音、振动增加,轴承破坏,转子与 固定件碰撞。 c)防喘振的措施:
1) 标注喘振线的性能曲线,随时了解工作点位置
2) 降低转速,使喘振发生流量点下降
3) 设置调节导叶机构(特别是首级,改变进气冲角)
发展概况
离心压缩机是透平式压缩机的一种,具有处理 量大,体积小,结构简单,运转平稳,维修方 便以及气体不受污染等特点。随着气体动力学 研究的成就,使离心压缩机的效率不断提高, 又由于高压密封,小流量、窄叶轮的加工,多 油契轴承等关键技术的研制成功,解决了离心 压缩机向高压力、宽流量范围发展的一系列问 题,使离心压缩机的应用范围大为扩展,以致 于在许多场合可以取代往复活塞式压缩机。
工作原理
一般说,提高气体压力的主要目标就是增加单位 容积内气体分子的数量,也就是缩短气体分子与 分子间的距离。为达到这个目标,除了采用挤压 元件来挤压气体的容积式压缩机以外,还有一种 用气体动力学的方法,即利用机器的做功元件 (高速回转的叶轮)对气体作功,使气体在离心 场中压力得到提高,同时动能也大为增加,随后 在扩张流道中流动时,这部分动能又转变成静压 能,使气体压力进一步提高,这就是离心式压缩 机的工作原理或增压原理。
大。
适用范围
化工及石油化工工艺用 动力工程用 制冷工程和气体分离用 气体输送用
Use in process industries
3.2 性能、调节与控制
3.2.1离心式压缩机的性能 3.2.2压缩机的调节方法及其特点 3.2.3 附属系统 3.2.4 压缩机的控制
3.2.1 离心式压缩机的性能
1.性能曲线、最佳工况点与稳定工作范围
性能曲线亦称特性曲线
(1)增压比曲线(ε-qvin),选压缩机、定工况点、能量核算 (2)效率曲线(η -qvin),是经济指标、参数计算的原始数据 (3)轴功率曲线(N-qvin),决定原动机功率。 qvin是出口截面测得的流量换算到进口P、T下的qv
通常将曲线上效率最高点称为最佳工况点。 稳定工况范围: 压缩机左边受喘振工况限制,右边受堵塞工况限制,两个
4) 出口旁设置旁通管道,让多余气体放空或降压后回 进口
5) 进(温度、流量)出(压力)口安置监视仪表
6) 运行操作人员了解压缩机工作原理,注意机器所在 工况位置,使机器不致进入喘振状态
防喘振设计
d) 压缩机的堵塞工况
Q增加,气流产生负冲角,叶片工作面上气流分离,
当Q大大增加,叶轮做功全部成为能量损失,速度甚 至达到音速,这是压缩机达到堵塞工况,压力、 流量不再增加。
方。
3 压缩机与管网联合工作
压缩机前面或后面气体所经过的设备和管道的总称。 化工用的压缩机往往前后均有管道和容器设备等。管 网在前为抽气机、吸气机,管网在后为压缩机。
(1)管网特性曲线 气体在管网中流动时,需要足够的压力用来克
服沿程阻力和各种局部阻力。
每一种管网都有自己的特性曲线,亦称管网阻 力曲线,即p=f(qv )曲线。管网特性曲线决定于 管网本身的结构和用户的要求。
第三章 离心式压缩机
3.1 离心式压缩机的典型结构和工作原理 3.2 性能、调节与控制 3.3 安全可靠性 3.4. 选型
3.1 离心式压缩机的典型结构和工作原理
3.1.1 离心压缩机的典型结构与特点 • 发展概况
• 工作原理 • 工作过程与典型结构 • 级的结构与关键截面 • 离心压缩机的特点 • 适用范围
a) 为中间级,由叶轮(1)、扩压器(2)、 弯道(3)、回流器(4)c) 为末级,由叶轮(1)、扩压器(2)、 排气蜗室(5)组成
离心叶轮的典型结构: 叶轮有轮盖、叶片、轮盘组成 闭式叶轮:漏气少、效率高、性能好、轮盖强度影响u2 1 半开式 效率低、强度高、u2大作功大、单级压力高 双面进气 流量大、轴向力小 按弯曲形式、出口角分 后弯叶轮 效率高、工作范围大、常用 2 径向叶轮 介于两者间 前弯叶轮 效率小、工作范围小、常用于通风机
工作过程与典型结构
工作过程:
驱动机带动叶轮高速旋转,叶轮入口产生低 压,将气体从吸入室吸入,经叶轮后压力、 温度、速度增加,然后流入扩压器扩压, 经弯道和回流器回到第二级入口继续压缩。 为了降低温度与减少功耗,采用中间冷却 器冷却。
主要零部件如图
级的结构与关键截面
e) 性能曲线的变化规律
由制造厂商提供的离心式压缩机的性能曲线图上一般都注明 该压缩机的设计条件,例如气体介质名称、密度(或分子 量)、进气压力及进气温度等。因为如果运转时的气体介质、 进气条件与设计条件不符,那么压缩机的运转性能就有别于 所提供的性能曲线图。以如图形式表示的性能曲线与气体的 性质和进气状态密切相关。如图所示,如果进气温度T1不变, 在相同容积流量Qi下,压缩重的气体所得到的压力比较大, 反之,压缩轻的气体所得的压力比较小。同样,假设压缩机 是同一种气体介质,但进气温度T1不同,进气温度较高的气 体,其 性能曲线在下 方,进气温度 较低的气体的 性能曲线在上
扩压器典型结构 扩压器作用:升压、降速 无叶扩压器:结构简单、效率高、工作范围大,D4大 叶片扩压器:D4小、效率高、结构复杂、工作范围小 弯道作用:将气体引入回流器 蜗壳作用:升压、降速
离心式压缩机的特点
1)流量大;(连续、截面大、转速大) 2)转速高;(无惯性力、往复件) 3)结构紧凑;(重量小、占地面积小) 4)运转可靠,维修费低;(1~3年不停、无备机) 5)单级压力比不高;(P2>70MPa需用活塞式) 6)不适用小流量。(转速高、流通截面大 ) 7)效率低(能量损失大) 8)稳定工况区窄,不适宜工况变化大,故障破坏性
相关文档
最新文档