不等式组的实际应用
二元一次不等式组的解法与应用
二元一次不等式组的解法与应用一、引言二元一次不等式组是数学中常见的问题之一,对于解不等式组以及应用于实际问题中具有重要的意义。
本文将介绍二元一次不等式组的解法,并探讨其在实际问题中的应用。
二、二元一次不等式组的解法要解决二元一次不等式组,我们可以通过图像法、代数法和线性规划法等多种方法。
接下来将详细介绍这些方法。
1. 图像法图像法是一种直观的解决二元一次不等式组的方法。
我们可以将每个不等式都转化为一个直线,并找出其解集的交集区域。
通过观察这个交集区域,我们可以得到不等式组的解。
2. 代数法代数法是一种基于代数运算的解决方法。
首先,我们需要将二元一次不等式组进行标准化,即将所有不等式移项并合并同类项。
然后,我们可以通过消元法或代入法来求解。
3. 线性规划法线性规划法是一种用于求解有约束条件的优化问题的方法,也可以应用于解决二元一次不等式组。
我们可以将不等式组转化为线性规划模型,并利用线性规划的理论和算法求解。
三、二元一次不等式组的应用二元一次不等式组在实际生活中有着广泛的应用。
以下是几个常见的例子。
1. 经济学中的应用在经济学中,我们经常会遇到一些涉及资源分配和约束条件的问题。
通过建立二元一次不等式组模型,可以帮助我们解决这些问题。
比如,某企业要通过生产两种产品来最大化利润,但存在资源限制和市场需求的约束,我们可以将这些条件转化为不等式组,并求解最优解。
2. 几何学中的应用几何学中的一些问题也可以通过二元一次不等式组来解决。
比如,某个区域内有一定数量的点,我们想要找到一个点,使得它到这些点的总距离最小。
我们可以将该问题转化为不等式组,并利用解不等式组的方法求解最优解。
3. 生活中的实际问题除了学科领域,二元一次不等式组也经常出现在我们的日常生活中。
比如,我们需要在一定的时间和金钱限制下,找到合适的方式安排旅行行程,或者在购物时选择最优的价格和质量。
通过建立二元一次不等式组模型,我们可以帮助解决这些实际问题。
一元一次不等式(组)在生活中的应用
一元一次不等式(组)在生活中的应用
一元一次不等式(组)是小学数学中的一个重要内容,它在我们的日常生活中有很多应用。
以下是一些关于一元一次不等式(组)在生活中的应用:
购物打折:很多商场会举办打折活动,例如:打五折、打八折等。
我们可以用一元一次不等式来计算打折后商品的价格,帮助我们做出更明智的购物决策。
制定家庭预算:家庭预算可以帮助我们合理规划家庭收支,避免浪费。
在制定家庭预算时,我们可以使用一元一次不等式来计算各种开支和收入之间的关系,以及如何分配家庭预算。
健身计划:健身计划可以帮助我们制定科学合理的健身计划,达到健身的目的。
在健身计划中,我们可以用一元一次不等式来计算身体指标和目标之间的关系,例如:BMI指数和体重、身高之间的关系。
公交出行:公交车站的到达时间通常是不确定的,我们可以使用一元一次不等式来计算公交车的到达时间和出发时间之间的关系,以便更好地安排出行时间。
总之,一元一次不等式(组)在我们的日常生活中有很多应用。
它可以帮助我们计算各种事物之间的关系,从而更好地规划生活和工作。
实际问题与一元一次不等式(组)
(2)什么情况下选择乙公司比较合算?
(3)什么情况下两公司的收费相同?
2、某学校有6名教师,234名学生集体外出活动,准备
租用45座大客车或30座小客车,若租用1辆大客车和2 辆小客车共需租车费1000元;若租用2辆大客车和1辆 小客车共需租车费1100元。
(1)求大小客车每辆的租车费各是多少元?
解:设饼干的标价为x元,则牛奶的标价为:(10-0.8-0.9x)元,由题意,得
{ x+10-0.8-0.9x>10, x<10,
解得, 8<x<10,
∵x为整数,∴x=9.
10-9×0.9-0.8=1.1(元)
答:饼干的标价为9元,牛奶的标价为1.1元。
当堂测试
用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入 ,铁钉所受的阻力也越来越大.当未进入木块的钉子长度 足够时,每次钉入木块的钉子长度是前一次的二分之一. 已知这个铁钉被敲击3次后全部进入木块(木块足够厚), 且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长 度为acm,则a的取值范围是______.
∵z为整数
∴z=4或5
方案一:当z=4时,需要花400×4+300×2=2200(元);
方案二:{当z=5时,需要花400×5+300×1=2300(元);
∴最省钱的方案为租大客车4辆,小客车2辆.
3、认真阅读对话,根据对话的内容试求出饼干和牛奶的标价 各是多少元? 小朋友:阿姨,我买一盒饼干和一袋牛奶(递上10元钱) 导购员:小朋友,本来你用10元钱买一盒饼干是有多余钱的, 但是要再买一袋牛奶就不够了!今天是儿童节,我给你买的 饼干打九折,两样东西请拿好!还找你8角钱。 温馨提示:一盒饼干的标价可是整数元哦!
列不等式组解决实际问题
列一元一次不等式组解应用题的一般步 骤是: (1):审题,分析题目中已知什么,求 什么,明确各数量之间的关系 (2):设适当的未知数 (3):找出题目中的所有不等关系 (4):列不等式组 (5):求出不等式组的解集 (6):写出符合题意的答案 答:审、设、找、列、解、答。
某工人在生产中, 例1 某工人在生产中,经过第一次改进技 每天所做的零件的个数比原来多10个 术,每天所做的零件的个数比原来多 个, 因而他在8天内做完的零件就超过 因而他在 天内做完的零件就超过200个, 个 天内做完的零件就超过 后来,又经过第二次技术的改进, 后来,又经过第二次技术的改进,每天又多 个零件, 做37个零件,这样他只做 天,所做的零件 个零件 这样他只做4天 的个数就超过前8天的个数 天的个数, 的个数就超过前 天的个数,问这位工人原 先每天可做零件多少个? 先每天可做零件多少个?
例2、某中学为八年级寄宿学生安 排宿舍,如果每间4人,那么有20 人无法安排,如果每间8人,那么 有一间不空也不满,求宿舍间数 和寄宿学生人数。
例3、 某校为了奖励在数学竞赛中获奖 、 的学生,买了若干本课外读物准备送给他 的学生 买了若干本课外读物准备送给他 们. 如果每人送3本 则还余 则还余8本 如果前面每 如果每人送 本,则还余 本;如果前面每 人送5本 最后一人得到的课外读物不足 最后一人得到的课外读物不足3 人送 本,最后一人得到的课外读物不足 设该校买了m本课外读物 本.设该校买了 本课外读物 有x名学生 设该校买了 本课外读物,有 名学生 获奖,请解答下列问题 请解答下列问题: 获奖 请解答下列问题 (1)用含 的代数式表示 用含x的代数式表示 用含 的代数式表示m; (2)求出该校的获奖人数及所买课外读物 求出该校的获奖人数及所买课外读物 的本数. 的本数
不等式组的应用(分书)
1. 把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名
同学分5本,那么最后一人就分不到3本.这些书有多少本?共有多少人?
2.某校初二年级组织春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;问该校初二年级共有多少人参加春游?
3.若干名学生住宿舍,如果每间住4人,那么还有19人无房可住,如果每间住
6人,那么还有一间不空不满,试求学生人数和宿舍间数.
4.有若干个苹果分给几个孩子,若每人分3个则余8个;若每人5个,则最后一个孩子得到了苹果但不足5个,问共有几个孩子,有多少苹果?
5.将若干只鸡放入若干个笼,若每个笼放4只,则有一只鸡无笼可放;若每个笼放5只,则有一笼无鸡可放,那么至少有多少只鸡,多少个笼?
6. 某校初一初二两年级学生参加社会实践活动,原计划租用48座客车若干辆,但还有2人无座位坐。
现决定租用60座客车,则可比原计划租48
座客车少2辆,且所租60座客车中有一辆没有坐满,这辆车已坐的座位
超过36位,请你求出该校这两个年段学生的总数.
3.一艘轮船从某江上游的A地匀速行驶到下游的B地用了10小时,从B地匀速返回A地用了不到12小时,这段江水流速为3km/h,轮船在静水中的往返速度v不变,v满足什么条件?
4.老张和老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔数增加了2只,老李养兔数比买入种兔数的2倍少1只,老张养兔数不超过老李养兔数的三分之二,一年前老张至少买了多少只种兔?。
二元一次不等式组100道利用方程不等式解决实际问题
二元一次不等式组100道利用方程不等式解决实际问题以下是100道利用方程(组)不等式(组)解决实际问题的例子:1.问题:一个矩形花坛的长是宽的2倍,其面积不小于10平方米。
求矩形花坛可能的长和宽。
解答:设矩形花坛的长为x,宽为y。
根据题意得到两个方程:x = 2y 和xy ≥ 10。
将第一个方程代入第二个方程得到2y^2 ≥ 10,化简得y^2 ≥ 5,解得y ≥ √5 或者y ≤ -√5、由于长和宽都不能为负数,所以y ≥ √5、再将y = √5 代入第一个方程得到 x = 2√5、因此,矩形花坛可能的长和宽为2√5 和√52.问题:小明与小红一起制作蛋糕,小明做了x个小时,小红做了y 个小时。
如果小明完成的蛋糕比小红多1个,而且他们总共做了不少于8个小时。
问小明和小红各自做的时间至少是多少?解答:设小明做蛋糕的时间为x,小红做蛋糕的时间为y。
根据题意得到两个不等式:x-y=1和x+y≥8、将第一个不等式整理得到x=y+1,代入第二个不等式得到y+1+y≥8,化简得y≥3/2、由于时间不能是小数,所以y≥2、再将y=2代入第一个不等式得到x=2+1=3、因此,小明和小红各自做蛋糕的时间至少是3小时和2小时。
3.问题:一家小超市每天至少卖出200瓶饮料和100袋薯片。
饮料一瓶价格为x元,薯片一袋价格为y元。
天总销售额不小于300元。
求饮料和薯片的最低价格。
解答:设饮料的价格为x元,薯片的价格为y元。
根据题意得到两个不等式:200x+100y≥300和x≥0,y≥0。
将第一个不等式化简得到2x+y≥3、我们希望价格最低,因此令x=0和y=0。
代入得到0≥3,不符合条件。
接下来我们令x=0,得到y≥3、再令y=0,得到2x≥3,化简得到x≥3/2、所以饮料的最低价格是3/2元,薯片的最低价格是3元。
不等式组_精品文档
不等式组1. 引言不等式组是数学中一个重要的概念,它由一组不等式组成。
不等式是数学中用于描述数值之间大小关系的工具,而不等式组则可以用于描述多个数值之间的复杂关系。
本文将介绍不等式组的定义、解法以及其在应用中的一些常见场景。
2. 不等式组的定义不等式组是由多个不等式组成的集合,每个不等式可以是大于(>)、小于(<)、大于等于(≥)或小于等于(≤)等符号连接的数学表达式。
一个不等式组的一般形式可表示为:{不等式1,不等式2,...不等式n}其中,每个不等式可以包含一或多个变量,表示了变量之间的大小关系,或者变量与常数之间的关系。
3. 不等式组的解法不等式组的解是使得每个不等式都成立的变量的取值范围。
要解决一个不等式组,可以通过以下步骤进行:- 确定每个不等式中的变量个数和类型。
- 找到每个不等式中变量的取值范围。
可以通过移项、合并同类项、因式分解等方法将不等式转化为形式更简单的不等式。
- 根据不等式符号的特性进行取值范围的确定。
例如,对于大于(>)或小于(<)的不等式,变量的取值范围应排除等号右侧的值;对于大于等于(≥)或小于等于(≤)的不等式,变量的取值范围应包括等号右侧的值。
- 根据每个不等式的取值范围求解整个不等式组的解。
可以通过求交集或并集的方式得到最终的解集。
4. 不等式组的表示方法不等式组可以用不等式图形表示法、解集表示法或区间表示法来表示,具体的表示方式取决于问题的要求和解的形式。
不等式图形表示法是通过绘制每个不等式的图形并表示它们的交集或并集来表示不等式组。
解集表示法是通过写出每个不等式的解集并表示它们的交集或并集来表示不等式组。
区间表示法是用数轴上的区间表示不等式组的解集。
5. 不等式组的应用不等式组在实际问题中具有广泛的应用。
以下是一些常见的应用场景:- 经济领域:不等式组可以用于描述供需关系、利润最大化问题等经济学中的问题。
- 工程领域:不等式组可以用于描述工程中的约束条件,如最大承载能力、最短路径等。
二元一次方程(不等式)组应用
二元一次方程1.你知道吗?中国在近几届亚运会金牌榜上一直位居榜首,下表是第十五届亚运会中某日的金牌榜.根据此表你能列出方程组求出中国获得的金牌数吗?请试之.2.根据条件,设出适当的未知数,并列出二元一次方程或方程组.(1)摩托车的速度是货车的倍,它们速度之和是150km/h;(2)某时装的价格是某皮装价格的1.4倍,5件皮装要比3件时装贵2800元.3.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?4.根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?5.甲、乙、丙三队要完成A、B两项工程.B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别是20天、24天、30天.为了共同完成这两项工程,先派甲队做A 工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程.问乙、丙二队合作了多少天?6.(2018•株洲)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?7.(2018•扬州)古运河是扬州的母亲河.为打造古运河风光带,现有一段长为180M的河道整治任务由A、B两工程队先后接力完成.A工程队每天整治12M,B工程队每天整治8M,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:根据甲、乙两名问学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示,y表示乙:x表示,y表示(2)求A、B两工程队分别整治河道多少M.8.(2018•烟台)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60M,下坡路每分钟走80M,上坡路每分钟走40M,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?9.(2018•威海)为了参加2018年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑工程进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600M,跑步的平均速度为每分钟200M,自行车路段和长跑路段共5千M,用时15分钟.求自行车路段和长跑路段的长度.10.(2018•台州)毕业在即,九年级某班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课教师每人一本作纪念,其中送给任课教师的留念册单价比给同学的单价多8元.请问这两种不同留念册的单价分别是多少?11.(2018•泉州)某班将举行“庆祝建党90周年知识竞赛“活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息.解决问題:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?12.(2018•娄底)为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2018年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.13.(2018•临沂)去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?14.(2018•济南)某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?20(2018•长沙)某工程队承包了某标段全长1755M的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6M,经过5天施工,两组共掘进了45M.(1)求甲、乙两个班组平均每天各掘进多少M?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2M,乙组平均每天能比原来多掘进0.3M.按此旄工进度,能够比原来少用多少天完成任务?21.(2018•长春)在长为10m,宽为8m的矩形空地中,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求小矩形花圃的长和宽.不等式(组)1.(2018•永州)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?2.(2018•温州)2018年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.6、(2018•铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?7、(2018•绍兴)筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.8、(2018•邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人.规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年级学生.请求出该合唱团中七年级学生的人数.9、(2018•清远)某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?10、(2018•宁波)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.11、(2018•内江)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?12、(2018•绵阳)王伟准备用一段长30M的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为aM,由于受地势限制,第二条边长只能是第一条边长的2倍多2M.(1)请用a表示第三条边长;(2)问第一条边长可以为7M吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.数量的.请你通过计算,求出义洁中学从荣威公司购买18、(2018•桂林)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?19、(2018•毕节地区)小明到一家批发兼零售的文具店给九年级学生购买考试用2B铅笔,请根据下列情景解决问题.(1)这个学校九年级学生总数在什么范围内?(2)若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?。
二元一次方程(组)和不等式(组)的应用
二元一次方程(组)和不等式(组)的应用1、端午节是我国传统的节日,人们素有吃粽子的习俗。
某商场在端午节来临之际,用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同,已知A种粽子的单价是B种粽子的单价的1.2倍。
(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共260 0个,已知A、B 两种粽子的进价不变,求A种粽子最多能购进多少个?2、某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品,这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:老板:如果你在多买一个,就可以打八五折,花费比现在还省17元。
小明:那就多买一个吧,谢谢!(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?3、在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的总量比A型粽子的2倍少20千克,购进两种粽子公用了2560元,求两种型号粽子各多少千克?4、刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用了140元又买了一些,两次一共购买了40 kg,这种大米的原价是多少?5、随着中国传统几日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折销售,乙品牌粽子打七五折销售,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需要660元,打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元。
(1)打折前甲乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?6、某商场购进甲乙两种商品,甲种商品公用了2000元,乙种商品公用了2400元。
浙教版八年级数学上册《3.4一元一次不等式组在实际生活中的应用》同步练习含答案
一元一次不等式组在实际生活中的应用一、解答题。
1.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?二、选择题。
2.如图是测量一颗玻璃球体积的过程:(1)将300mL的水倒进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在(1mL水的体积为1cm3)()A.20cm3以上,30cm3以下B.30cm3以上,40cm3以下C.40cm3以上,50cm3以下D.50cm3以上,60cm3以下3.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.44.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A.10道题B.12道题C.13道题D.16道题5.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%三、填空题(共2小题,每小题3分,满分6分)7.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为克.8.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是立方米.四、解答题。
9.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.10.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元每月用水量(吨)单价不超过6吨 2元/吨超过6吨,但不超过10吨的部分4元/吨超过10吨部分 8元/吨(1)若该居民2月份用水12.5吨,则应收水费多少元?(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?11.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?12.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费130 290 (x)累计购物在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?一元一次不等式组在实际生活中的应用参考答案与试题解析一、解答题。
数学中的不等式及其推导方法和应用
数学中的不等式及其推导方法和应用不等式是数学中一个非常重要的概念之一,它可以涵盖范围广泛,从初中到高中再到大学几乎都会涉及。
不等式是一种数学语言,它可以帮助我们更好地描绘出数学世界中的各种关系和规律。
在本文中,我们将会探讨不等式的概念、推导方法和应用。
1.不等式的概念不等式是一种包含至少一个不等于号的关系式。
相对于等式来说,不等式可以有多种结果,而不仅仅是一种。
比如,x>2表示x比2大,但x可以是3、4或更大的数;x≠2表示x不等于2,这意味着x可以是任何不等于2的数。
在不等式中,我们可以使用各种数学符号来表示不同的关系。
以下是一些最常见的符号:大于号 >:表示比较两个数的大小,如 a>b 表示a大于b。
小于号 <:表示比较两个数的大小,如 a<b 表示a小于b。
大于等于号≥:表示比较两个数的大小,如a≥b 表示a大于等于b。
小于等于号≤:表示比较两个数的大小,如a≤b 表示a小于等于b。
不等号≠:表示两个数不相等,如a≠b 表示a不等于b。
2.不等式的推导方法不等式的推导方法有很多种,但常见的方法有以下几种:(1)加减法法则:不等式的加减法法则是指对等式的两边同时加上或减去同一个数,不等式的关系不变。
比如,如果a>b,那么a+c>b+c,其中c为任意常数。
(2)乘除法法则:如果a>b,那么a×c>b×c,其中c为正数;如果a>b,但c为负数,那么a×c<b×c。
(3)开平方法则:如果a>b,那么√a>√b。
(4)移项法则:不等式中的x可以代表一个未知数,移项可以将x视为一个常数将其移到另一边,从而改变不等式的形式。
比如,如果ax+b<c×d,我们可以将b移到不等式的右侧,得到ax<c×d-b。
(5)取绝对值:对于一个绝对值不等式,我们可以将绝对值内的式子分成两种情况,分别取相反的符号。
方程组、不等式组实际应用
分式方程、方程组、不等式组实际应用1.(2015•XX)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?2.(2015•XX)XX火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?3.(2015•XX)华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?4.(2014•XX)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?5.(2015•XX)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.6.(2015•达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?7.(2014•XX)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.8.(2014•XX)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/件)38 36 34 32 30 28 26t(件) 4 8 12 16 20 24 28假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)9.(2015春•X家港市期末)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?10.(2014•XX)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格200011.(2014•XX)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.(2014•XX)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?13.(2014•XX)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值X 围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.14.(2014•XX)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和薰衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)薰衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,薰衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和薰衣草,根据市场调查,要求玫瑰花的种植面积大于薰衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?15.(2014•资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.16.(2014•XX)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.17.(2015•XX)XX市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A、B两种品牌的龟苓膏共1000包.(1)若小王按需购买A、B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式.(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?18.(2015•XX)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?19.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?20.(2015•资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.21.(2015•XX)南海地质勘探队在南沙群岛的一小岛发现很有价值的A,B两种矿石,A矿石大约565吨,B矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元.(1)设运送这些矿石的总费用为y元,若使用甲货船x艘,请写出y和x之间的函数关系式;(2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.22.(2015•德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.23.(2015•XX)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.24.(2015•XX)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?25.(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?26.(2011•XX)海峡两岸林业博览会连续六届在XX市成功举办,XX市的林产品在国内外的知名度得到了进一步提升.现有一位外商计划来我市购买一批某品牌的木地板,甲、乙两经销商都经营标价为每平方米220元的该品牌木地板.经过协商,甲经销商表示可按标价的9.5折优惠;乙经销商表示不超过500平方米的部分按标价购买,超过500平方米的部分按标价的9折优惠.(1)设购买木地板x平方米,选择甲经销商时,所需费用为y1元,选择乙经销商时,所需费用为y2元,请分别写出y1,y2与x之间的函数关系式;(2)请问该外商选择哪一经销商购买更合算?27.(2010春•海安县期末)为迎接2010年海安经贸洽谈会,园林部门决定利用现有3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧.已知搭配一个A种造型所需甲种花卉盆数是乙种花卉盆数的2倍,且搭配一个A种造型所需甲种花卉是搭配一个B种造型所需甲种花卉盆数的1.6倍;搭配一个B种造型乙种花卉的盆数是搭配一个A种造型乙种花卉盆数的2倍多10盆,搭配一个B种造型共需甲、乙两种花卉140盆.(1)求搭配一个A种造型、一个B种造型各需甲乙两种花卉多少盆?(2)某校七年级(1)班艺术兴趣小组承接了这个园艺造型搭配方案的设计,那么符合题意的搭配方案有几种?请你帮助设计出来.(3)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(2)中哪种方案成本最低?最低成本是多少元?28.(2011•XX)我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)- - -29.(2011•XX)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?30.(2013春•沙坪坝区校级期中)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,商场有哪几种进货方案?(3)商场决定甲种玩具的售价为20元,乙种玩具售价为35元,试问该商场在(2)的条件下如何进货利润最大?最大利润是多少?- .可修编.。
一元一次不等式组的应用
一元一次不等式组的应用一元一次不等式组是数学中的重要知识点,也是我们日常生活中经常会遇到的问题。
它可以帮助我们解决许多实际问题,如生活中的购物、物品生产等方面。
下面我们就来具体了解一下一元一次不等式组的应用。
首先,让我们来看一个实际例子。
假设小明去商店买水果,他带了40元钱,他知道苹果和橙子的价格分别是每斤5元和每斤4元。
他想知道自己最多能买多少斤水果,以确保自己不会超出预算。
这个问题可以用一元一次不等式组来解决。
首先,我们设苹果的购买量为x斤,橙子的购买量为y斤。
根据题意,我们可以得到两个不等式:5x + 4y ≤ 40和x ≥ 0,y ≥ 0。
其中,5x + 4y ≤ 40表示所花费的钱不能超过40元,x ≥ 0和y ≥ 0表示水果的购买量必须是非负数。
接下来,我们来解决这个不等式组。
首先我们可以将不等式5x +4y ≤ 40转化为等式5x + 4y = 40。
根据一元一次方程的知识,我们可以求出一组解,即x = 8,y = 0。
这表示小明最多只能买8斤苹果而没有橙子,因为再多买的话就会超出预算了。
这个例子告诉我们,一元一次不等式组可以帮助我们在实际生活中解决预算等问题。
通过设定合理的不等式和约束条件,我们可以得出最理想的解决方案。
除了购物问题,一元一次不等式组还可以应用在许多其他方面。
比如,在物品生产方面,我们可以根据生产成本和销售价格来确定最适宜的生产量,以保证利润最大化。
在时间管理方面,我们可以根据工作时间和休息时间的约束条件,来平衡工作和生活的安排,以达到工作效率的最大化和身心健康的保持。
综上所述,一元一次不等式组是一个非常实用的数学工具,在我们的日常生活中应用广泛。
通过解决实际问题,它可以帮助我们做出理性的决策,提高生活质量和工作效率。
因此,掌握一元一次不等式组的应用是非常有指导意义和实际价值的。
希望大家能够认真学习并灵活运用这一知识点,为自己的生活和工作带来更多的便利和效益。
高中不等式组的解集取值范围
高中不等式组的解集取值范围摘要:一、不等式组的概念1.不等式组的定义2.不等式组解集的求法二、高中不等式组的解集取值范围1.一元一次不等式组的解集取值范围2.一元二次不等式组的解集取值范围3.多元不等式组的解集取值范围三、不等式组解集取值范围的求法1.口诀求解2.代入法求解3.图像法求解四、实际应用1.高中数学题目中的应用2.实际生活场景中的应用正文:一、不等式组的概念不等式组是由多个不等式组成的集合,求解不等式组的解集就是找到满足所有不等式的数值。
不等式组的解集可以用图像法、口诀法、代入法等方法求解。
二、高中不等式组的解集取值范围高中阶段,我们主要学习一元一次不等式组、一元二次不等式组和多元不等式组。
1.一元一次不等式组的解集取值范围:当所有不等式的符号都相同时,解集为所有满足不等式条件的数值;当有不等式符号不同时,解集为满足最大(小)不等式条件的数值。
2.一元二次不等式组的解集取值范围:首先求出对应的一元二次方程的根,然后根据根与系数的关系判断解集。
3.多元不等式组的解集取值范围:通常需要利用线性规划的方法求解,也可以通过图像法直观地得到解集。
三、不等式组解集取值范围的求法1.口诀求解:根据口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”,可以快速地找到不等式组的解集。
2.代入法求解:将每个不等式的解代入到其他不等式中,判断是否满足,从而找到解集。
3.图像法求解:将不等式组转化为对应的函数图像,通过观察图像找到解集。
四、实际应用1.高中数学题目中的应用:不等式组在高中数学题目中非常常见,如在解析几何、函数、概率等题目中都有涉及。
第9讲 不等式(组)及其应用
3(x+1)>x-1
正解 解:令:-32x+3≥4
,
解不等式①得 x>-2,
解不等式②得-23x≥1,不等式两边同乘以-32得 x≤-23.∴原不等式组的
解集为-2<x≤-32.
∴原不等式组的最小整数解是-1
请完成考点精练
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
剖析 (1)在解不等式的过程注意不等式性质3的使用,即给不等式两边 同时乘以(或除以)一个负数,不等号要改变方向;(2)求不等式组的整数 解时,“实心”点所表示的实数如果是整数,则该点也是所求整数解, 如果不是整数,要从离该点最近的整数点开始算起;“空心”点所在的 实数如果是整数,则该点不是整数解,如果不是整数,则要从解集中离 该点最近的整数点开始算起.
[对应训练]
1.(2016·西宁)某经销商销售一批电话手表,第一个月以550元/块的价格
售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售
出,销售总额超过了5.5万元.这批电话手表至少有( C )
A.103块
B.104块
专题10 利用不等式与不等式组解决实际问题
是否符合题意.
写出答案.
学习了这节课,你有哪些收获?
见精准作业单
谢谢观看
11
.
又∵x 为正整数.
∴x≥182.
答:这时至少已售出 182 辆自行车.
针对练习
针对训练
长跑比赛中,张华跑在前面,在离终点100 m 时他以 4
m/s 的速度向终点冲刺,在他身后 10 m 的李明需以多
快的速度同时开始冲刺,才能够在张华之前到达终点?
解:设李明以 x m/s 的速度冲刺.
100
解:设每个小组原先每天生产x件产品,由
题意,得
3×10x<500,
3×10(x 16 2
3
3
根据题意,x的值应是整数,所以x=16.
答:每个小组原先每天生产16件产品.
针对练习
.蓝球比赛记分规则为:胜一场得3分,平一场得1分,负一场得0分.某篮球队
识不等式的应用价值。
旧知回顾
列一元一次不等式解决实际问题的一般步骤:
01
审:认真审题,分清已知量、未知量;
02
设:设出适当的未知数;
03
找:找出题目中的不等关系,抓住关键词,如“超
过”“不大于” “最多”等;
旧知回顾
01
列:根据题中不等关系,列出一元一次不等式或一元
一次不等式组;
01
解:求出一元一次不等式的解集;
3a 8 a< 23
解得:6 < < 7.5
因为a取整数,所以a=7,则8-a=1
答:胜7场,平1场
总结提升
解用
决一
实元
际一
问次
题不
不等式的解法和应用
不等式的解法和应用不等式是数学中常用的一种描述两个数或者两个算式大小关系的工具。
解决不等式问题需要掌握一些基本的解法和技巧,并能够应用于实际问题中。
本文将介绍不等式的解法和应用。
一、一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似。
例如要解不等式3x + 5 > 10,可以按照以下步骤进行:1. 首先将不等式转化为等价的方程。
将不等式中的大于号改为等号,得到:3x + 5 = 10。
2. 解方程,得到x = 5/3。
3. 最后根据不等式的性质,确定解集。
由于原不等式中不等号是大于号,所以解集为x > 5/3。
二、一元一次不等式组的解法一元一次不等式组是由多个一元一次不等式组成的方程组。
解决一元一次不等式组的关键是找到所有不等式的交集,也就是满足所有不等式的解。
例如解决以下一元一次不等式组:2x + 7 > 53x - 4 < 101. 首先解决每个不等式,得到:x > -1x < 42. 然后求出交集,即满足所有不等式的解。
由于x既要大于-1又要小于4,所以解集为-1 < x < 4。
三、二元一次不等式的解法二元一次不等式可以由两个变量表示,常用的方法是绘制平面图形。
例如解决以下二元一次不等式:2x + 3y ≤ 10x - y > 11. 首先将不等式转化为等式,得到:2x + 3y = 10x - y = 12. 然后绘制平面图形。
以x轴表示x变量,y轴表示y变量,绘制两个方程的直线。
3. 接下来根据不等式的符号绘制阴影部分。
对于第一个不等式2x + 3y ≤ 10,只需要将直线上方的区域进行阴影处理。
对于第二个不等式x - y > 1,需要将直线下方的区域进行阴影处理。
4. 最后求出交集部分,即满足所有不等式的解。
根据图形,确定交集部分,得到最终的解集。
四、不等式在实际问题中的应用举例不等式在解决实际问题中起到了重要的作用,下面以两个例子来说明。
不等式(组)的应用(含答案)-
第2 课不等式(组)的应用◆考点分析利用不等式(组)解决某些实际生活中的问题是近几年中考应用题的热点。
不等式(组)的应用题常与方程、函数和几何知识结合起来考查。
解决这类题关键是抓住以下几点:1、认真审题,把握问题中表示不等关系的关键语句。
2、根据题意,恰当地设置未知数。
3、准确地用代数式表示相关的量。
4、根据不等关系列出不等式(组)。
◆典型例题例1某中学九年级甲、乙两班在“美化、绿化家乡”的活动中,两班栽树的总棵数相同,均多于300棵且少于400棵。
已知甲班有一人栽了6棵,其余每人都栽了9棵;乙班有一人栽了13棵,其余每人都栽了8棵。
求甲、乙两班学生总人数。
(2006年新疆乌鲁木齐)【解题分析】本题的取材与学生息息相关,贴近学生的生活。
根据题目中“总棵树相同”,“多于”“少于”这些关键词,把它们转化为符号语言,从而得到方程和不等式。
可用消元法,进而再求出未知数的整数解。
【同类变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人,求这个中学共选派值勤学生多少?共有多少个交通路口安排值勤?例2某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示。
现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶。
设生产A种饮料x瓶,解答下列问题:(1)有几种符合题意的生产方案?写出解答过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与 x之间的关系式,并说明x取何值会使成本总额最小?(2007年青岛)Array【解题分析】(1)观察图表,可知生产A、B两种饮料分别用甲、乙原料的量,由题意可得,甲、乙原料各2800克,所以由甲、乙原料总和均小于或等于2800克,得不等式组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、写出下列不等式组的解集。
记忆口诀:
四、自学任务与方法指导:
探究1:3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品?
回答问题:
(1)“不能完成任务”是什么意思?
七年级数学导学稿
一、课题
一元一次不等式组的应用
姓名:
所属小组:
二、本课学习目标与任务:
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
2、奖游戏规则:两小组比赛,各小组的小组长先确定一个糖果数量的数字(100以内)和小组的人数(10以内),然后与本小组成员讨论出一个要用到一元一次不等式组来解决的数学问题题目,并做出标准的解答,然后题目交给pk小组来解答,最快解答出对方小组的题目的小组就为胜方,胜方小组的每位成员就能从对方的糖果包中多得1颗的糖果奖励。
题目模板:把一些糖果分给某小组的成员,如果每人分()颗,那么余()颗;如果前面的每个人分()颗,那么最后1人能分到糖但分不到()颗糖果,问这些糖果有多少颗?这个小组有多少人?
当堂检测题
某校七年级(1)班计划把全班同学分成若干组开展数学探究活动。如果每个组3个人,则还剩10,如果每个组5人,则有一个组的学生数最多只有1个人,求该班在数学探究活动中计划分的组数和该班的学生数。
(5)检验,确定实际问题的答案;(6)答
解一元一次不等式组的应用题的关键是找不等关系。(关键词有“不大于,至少,不超过”等)
3、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表
设
列
解(结果)
答
一元一次不等式组
个未知数
找关系
一个范围
根据题意写出答案
二元一次不等式组
个未知数
找关系
一组数
五、小组合作探究问题与拓展:
1、有若干男学生参加夏令营活动,晚上在一宾馆住宿时,如果每间住4人,那么还有20人住不下;相同的房间,如果每间住8人,那么还有一间住不满也不空,请问:这群男学生有多少人?有多少间房供他们住?
按原先的生产速度,10天的产品数量_ 500
(2)“提前完成任务”是什么意思?
提高生产速度后,10天的产品数量____500
(3)根据以上不等关系,设未知数列不等式组并解不等式组:
(4)根据实际意义确定问题的解,并回答问题:
2、解一元一次不等式组的应用题的步骤:
(1)审题;(2)设未知数;(3)列不等式组;(4)解不等式组;