高等代数
高等代数知识结构
高等代数知识结构高等代数是数学中的一个重要分支,它研究向量空间和线性变换的性质和结构。
在高等代数中,学习者需要了解的主要知识点包括向量空间、矩阵、线性方程组、特征值和特征向量,以及代数学的应用等。
下面是对这些知识点的详细介绍。
1.向量空间向量空间是高等代数的基础概念之一、在向量空间中,有两个基本操作:向量加法和标量乘法。
向量加法满足交换律和结合律,标量乘法满足分配律。
向量空间还需要满足零向量的存在性和反元素的存在性,即对于任意向量v,存在一个向量-u,使得v+u=0。
向量空间还可以进一步研究其子空间,即一个向量空间V的子集W,如果W也满足向量加法和标量乘法的封闭性,那么W也是一个向量空间。
2.矩阵矩阵是高等代数中另一个重要的概念。
矩阵可以看作是一个由m行n 列元素组成的矩形阵列。
矩阵的运算包括矩阵加法、矩阵乘法、矩阵的转置等。
矩阵加法满足交换律和结合律,矩阵乘法满足分配律。
矩阵的转置操作是将矩阵的行变成列,列变成行。
3.线性方程组线性方程组是高等代数中的一个重要内容。
线性方程组可以看作是一系列线性方程的集合,其中每个线性方程由一系列未知数和一个常数项组成。
求解线性方程组的目标是找到满足所有方程的解。
线性方程组有两种形式:齐次线性方程组和非齐次线性方程组。
齐次线性方程组的常数项全为零,非齐次线性方程组的常数项至少有一个非零。
求解线性方程组可以通过消元法、矩阵法或特解法等多种方法。
4.特征值和特征向量特征值和特征向量是矩阵理论中的重要概念。
对于一个n阶方阵A,如果存在一个标量λ和一个非零向量v,使得Av=λv,则称λ为A的特征值,v为A对应于特征值λ的特征向量。
特征值和特征向量具有重要的几何和实际意义。
特征值可以用于矩阵的对角化和谱分解,特征向量可以用于描述矩阵的主要方向。
5.代数学的应用代数学是高等代数的一个重要应用分支。
代数学在物理学、工程学、计算机科学等领域有广泛的应用。
在物理学中,代数学可以用于描述物理系统的运动和变化,例如力学中的刚体运动、量子力学中的波函数等。
理学高等代数
101 又 1 3 1 12 0,
420
1 0 1 0
1
2 4
3 1 2
1 2 0
0 1 0
可逆.
令 (0,0,1,0)
则 1,2 ,4 , 线性无关,从而为P4的一组基.
例2、把复数域看成实数域R上的线性空间, 证明: C R2
证:证维数相等. 首先,x C, x 可表成 x a1 bi, a,b R 其次,若 a1+ bi= 0, 则 a= b 0. 所以,1,i 为C的一组基, dimC 2. 又, dim R2 2
所以, dimC dim R2. 故, V1 V2 .
三.线性变换
▪ 线性变换
➢ 定义 ➢ 线性变换的矩阵
▪ 相似矩阵 ▪ 特征值、特征向量
哈密尔顿-凯莱(Hamilton-Caylay)定理
▪ 可对角化
➢ 定义
定理 设 为 n 维线性空间V的一个线性变换,
则 可对角化 有 n个线性无关的特征向量.
▪ 选择题 ▪ 填空题 ▪ 小计算题 ▪ 大计算题 ▪ 证明题
题型
主要内容
一.二次型 二.线性空间 三.线性变换
四. -矩阵
五.欧几里得空间
一.二次型
▪ 合同变换化标准形
定理:数域P上任一对称矩阵合同于一 个对角矩阵.
▪ 正惯性指数、负惯性指数、符号差 ▪ 实二次型、复二次型的合同的等价条件
实对称矩阵A、B合同 秩( A) 秩(B) 且二次型 X ' AX与X ' BX的正惯性
,
2 0 0
则
C
'
AC
0 0
2 0
0 6
,
作非退化线性替换X=CY, 则二次型化为标准形
高等代数知识点总结
f : A B, a f (a).
如果 f (a) b B ,则 b 称为 a 在 f 下的像, a 称为 b 在 f 下的原像。 A 的所有元素
称为矩阵的行(列)初等变换。
定义(齐次线性方程组) 数域 K 上常数项都为零的线性方程组称为数域 K 上的齐次
线性方程组。 这类方程组的一般形式是
a11x1 a12 x2 a1n xn 0, a12 x1 a22 x2 a2n xn 0, ...... am1x1 am2 x2 amn xn 0.
f (x) a0 (x 1 )(x 2 )......(x n ) 证明 利用高等代数基本定理和命题 1.3,对 n 作数学归纳法。
2.高等代数基本定理的另一种表述方式
定义 设 K 是一个数域, x 是一个未知量,则等式
a0 x n a1 x n1 ...... an1 x an 0
命题 变元个数大于方程个数的齐次线性方程组必有非零解; 证明 对变元个数作归纳。 说明 线性方程组的解的存在性与数域的变化无关(这不同于高次代数方程)。事实上, 在(通过矩阵的初等变换)用消元法解线性方程组时,只进行加、减、乘、除的运算。如果
所给的是数域 K 上的线性方程组,那么做初等变换后仍为 K 上的线性方程组,所求出的解 也都是数域 K 中的元素。因此,对 K 上线性方程组的全部讨论都可以限制在数域 K 中进行。
命题 n 次代数方程在复数域C内有且恰有 n 个根(可以重复)。
命题(高等代数基本定理的另一种表述形式)给定C上两个n次、m次多项式
高等代数教案
全套高等代数教案第一章:高等代数概述1.1 高等代数的定义与意义理解高等代数的基本概念了解高等代数在数学及其它领域中的应用1.2 基本术语和符号学习常见的代数运算符掌握基本的代数表达式1.3 基本定理和性质学习线性方程组的解的存在性定理理解线性空间的基本性质第二章:矩阵和行列式2.1 矩阵的基本概念理解矩阵的定义和矩阵元素的意义学习矩阵的运算规则2.2 行列式的定义和性质理解行列式的概念掌握行列式的计算方法2.3 矩阵和行列式的应用学习矩阵在几何中的应用了解矩阵在概率论和统计中的应用第三章:线性方程组3.1 高斯消元法学习高斯消元法的原理和步骤掌握高斯消元法的应用3.2 矩阵的秩理解矩阵秩的概念学习矩阵秩的计算方法3.3 线性方程组的解的结构理解线性方程组解的存在性定理学习线性方程组解的方法第四章:特征值和特征向量4.1 特征值和特征向量的定义理解特征值和特征向量的概念学习特征值和特征向量的计算方法4.2 矩阵的对角化理解矩阵对角化的概念掌握矩阵对角化的方法4.3 特征值和特征向量的应用学习特征值和特征向量在几何中的应用了解特征值和特征向量在物理中的应用第五章:向量空间和线性变换5.1 向量空间的基本概念理解向量空间和子空间的概念学习向量空间的基和维数5.2 线性变换的基本概念理解线性变换的定义和性质学习线性变换的矩阵表示5.3 线性变换的应用学习线性变换在几何中的应用了解线性变换在信号处理中的应用第六章:特征多项式和最小多项式6.1 特征多项式的定义和性质理解特征多项式的概念学习特征多项式的计算方法6.2 最小多项式的定义和性质理解最小多项式的概念掌握最小多项式的计算方法6.3 特征多项式和最小多项式的应用学习特征多项式和最小多项式在矩阵对角化中的应用了解特征多项式和最小多项式在多项式环中的应用第七章:二次型7.1 二次型的定义和基本性质理解二次型的概念学习二次型的标准形和规范形7.2 惯性定理和二次型的分类理解惯性定理的概念学习二次型的分类方法7.3 二次型的应用学习二次型在几何中的应用了解二次型在优化问题中的应用第八章:线性微分方程组8.1 线性微分方程组的定义和性质理解线性微分方程组的概念学习线性微分方程组的解的结构8.2 常系数线性微分方程组的解法学习常系数线性微分方程组的解法掌握常系数线性微分方程组的通解8.3 线性微分方程组的应用学习线性微分方程组在物理学中的应用了解线性微分方程组在经济学中的应用第九章:特征值问题的数值解法9.1 特征值问题的数值解法概述了解特征值问题的数值解法的概念学习特征值问题的数值解法的方法9.2 幂法和反幂法学习幂法和反幂法的原理和步骤掌握幂法和反幂法的应用9.3 稀疏矩阵和迭代法理解稀疏矩阵的概念学习迭代法的原理和步骤第十章:高等代数的进一步研究10.1 向量丛和纤维丛理解向量丛和纤维丛的概念学习向量丛和纤维丛的分类方法10.2 群表示论的基本概念理解群表示论的概念学习群表示论的基本性质10.3 高等代数的其它研究领域了解高等代数在数学物理方程中的应用学习高等代数在和机器学习中的应用重点和难点解析重点环节一:矩阵的秩秩的概念是高等代数中的重要概念,理解秩的计算方法和秩的性质对于后续学习线性变换、矩阵对角化等高级内容至关重要。
高等代数
说明
的标准分解式, ① 若已知两个多项式 f ( x ), g ( x ) 的标准分解式, 则可直接写出
( f ( x ), g( x ) ) .
f ( x ), g ( x ) 的标准
( f ( x ), g( x ) ) 就是那些同时在
分解式中出现的不可约多项式方幂的乘积, 分解式中出现的不可约多项式方幂的乘积,所带 方幂指数等于它在 f ( x ), g ( x ) 中所带的方幂指数 中较小的一个. 中较小的一个.
(
)(
x2 + 2
)
(在有理数域上) 在有理数域上)
= x 2 = x 2
(
)(
x+ 2
)(
x2 + 2
)
(在实数域上) 在实数域上)
(
) ( x + 2 ) ( x 2i ) ( x +
在复数域上) 2i (在复数域上)
)
§1.5 因式分解定理
一,不可约多项式
定义: 定义: 设 p( x ) ∈ P[ x ] ,且 ( p ( x ) ) ≥ 1 ,若 p( x )
f ( x ) = p1 ( x ) p2 ( x ) ps ( x )
= q1 ( x )q2 ( x ) qt ( x )
⑴
pi ( x ), q j ( x ) ( i = 1,2, , s ; j = 1,2, , t . ) 都是不可约
多项式. 多项式 作归纳法. 对 s 作归纳法. 若 s = 1, 则必有 s = t = 1, f ( x ) = p1 ( x ) = q1 ( x )
§1.5 因式分解定理
例如, 例如,若 f ( x ), g ( x ) 的标准分解式分别为
高等代数知识点总结
分块三角矩阵的行列式
Cauchy-Binet 公式
Vandermonde 行列式
定义
性质
*
*
分块三角形行列式
Laplace定理 (按第i1,...,ik行展开)
Cauchy-Binet公式 设U是m×n矩阵, V是n×m矩阵, m≥n, 则
*
*
融资项目商业计划书
单击此处添加副标题
重要结论: 带余除法定理 对于任意多项式f(x)和非零多项式g(x),有唯一的q(x)和r(x)使得 f(x)=g(x)q(x)+r(x),r(x)=0或degr(x)<degg(x). 最大公因式的存在和表示定理 任意两个不全为0的多项式都有最大公因式,且对于任意的最大公因式d(x)都有u(x)和v(x)使得 d(x)=f(x)u(x)+g(x)v(x) 互素 f(x)和g(x)互素有u(x)和v(x)使得 f(x)u(x)+g(x)v(x)=1.
向量组等价:
S和T等价,即S,T可以互相表示 S,T的极大无关组等价 S,T的秩数相等,且其中之一可由另一表示
对于向量组S,T,下列条件等价
线性相关与线性表示: 1,...,r线性相关当且仅当其中之一可由其余的线性表示 若,1,...,r线性相关,而1,...,r线性无关,则可由1,...,r线性表示,且表法唯一
A,B等价有可逆矩阵P,Q使得A=PBQ 每个秩数为r的矩阵都等价于
矩阵等价
*
可逆矩阵vs列满秩矩阵
对于n阶矩阵A,下列条件等价 A是可逆矩阵 |A|0 秩A=n 有B使得AB=I或BA=I A是有限个初等矩阵之积 A(行或列)等价于I A的列(行)向量组线性无关 方程组Ax=0没有非零解 对任意b,Ax=b总有解 对某个b,Ax=b有唯一解 A是可消去的(即由AB=AC或BA=CA恒可得B=C) 对于m×r矩阵G,下列条件等价 G是列满秩矩阵, G有一个r阶的非零子式 秩G=列数 G有左逆,即有K使得KG=I 有矩阵H使得(G, H)可逆 G行等价于 G的列向量组线性无关 方程组Gx=0没有非零解 对任意b,若Gx=b有解则唯一 对某个b,Gx=b有唯一解 G是左可消去的(即由GB=GC恒可得B=C)
高等代数(第1章)
称为系数在数域P中的一元多项式,简称为数域P上 符号x 可以是为未知数, 的一元多项式.
也可以是其它待定事物.
习惯上记为f (x),g(x)……或f, g……上述形 n 式表达式可写为 i
2012-12-2
f (x)
a
i0
i
x
8
几个概念:
零多项式 ——系数全为0的多项式 多项式相等 —— f (x)=g(x)当且仅当同次项的系 数全相等 (系数为零的项除外) 多项式 f (x)的次数 ——f (x)的最高次项对应的幂 次,记作(f (x)) 或deg (f (x)) .
数域 一元多项式 整除的概念 最大公因式 因式分解定理 重因式 多项式函数 复系数与实系数多项式的因式分解 有理系数多项式
3
2012-12-2
§1
数域
要说的话:对所要讨论的问题,通常要明确所考 虑的数的范围,不同范围内同一问题的回答可能 是不同的。例如,x2+1=0在实数范围与复数范围 内解的情形不同。 常遇到的数的范围:有理数集 、实数集、复数集 共性(代数性质):加、减、乘、除运算性质 有些数集也有与有理数集 、实数集、复数集相同 的代数性质 为在讨论中将其统一起来,引入一个一般的概 念——数域。
解之得
a
6 5
,b
13 5
,c
6 5
.
2012-12-2
15
例2 设 f (x), g(x)与h(x)为实数域上多项式.证明:如果 f 2(x)= x g2(x)+ x h2(x) 则 f (x)=g(x)=h(x)=0 证:反证. 若f (x)0,则f 2(x) 0.由 若g(x)0,由于
高等代数1
高等代数高等代数是现代数学中的一门重要学科,它研究的是代数结构的基础和性质。
代数结构是指由一组元素及其相关运算组成的数学系统,如群、环、域等。
高等代数是对线性代数和抽象代数等基础知识的延伸和深化,对于理解现代数学中许多分支都至关重要。
一、线性代数高等代数中最基础的部分是线性代数。
线性代数是代数学中的一个分支,主要研究向量、矩阵以及线性方程组的性质和运算。
线性代数是微积分和微分方程等数学领域必不可少的基础知识,它的应用范围也很广泛,包括了图像处理、信号处理、机器学习等领域。
1. 向量空间向量空间是线性代数中最重要的概念之一,它是由一组向量以及其对应的加法和数乘运算组成的数学结构。
向量可以是实数向量或复数向量,它们具有加法、数乘、向量求和、向量求差等运算。
2. 线性变换线性变换是一种从一个向量空间到另一个向量空间的映射,它具有线性性质。
线性变换的本质是将一个向量空间中的向量映射到另一个向量空间中的向量,它可以用矩阵表示,从而得到更方便的运算方式。
3. 矩阵及其运算矩阵是线性代数中常见的数学工具,它具有加法、数乘、矩阵乘法等运算,可以用于解决线性方程组、对称矩阵的特征值和特征向量等问题。
二、抽象代数抽象代数是研究代数结构的基本性质和理论结构的一门学科,它通过对代数结构的抽象和推广,研究了许多重要的代数性质。
抽象代数包括了群论、环论、域论等领域。
1. 群论群是一种有限或无限的、具有代数结构的量,它由一组元素以及合成运算组成。
群具有封闭、结合、单位元和逆元等运算性质,在数学研究中被广泛应用。
群论的应用领域包括了几何学、物理学、密码学等领域。
2. 环论环是一种数学结构,它由一个集合以及两个二元运算(加法和乘法)组成。
环论是研究环以及环上的运算和性质的数学分支,它的应用包括了计算机科学、代数几何学等领域。
3. 域论域是一种具有加法、乘法、加法逆元和乘法逆元等运算的数学结构,它是一个基本的代数结构。
域论是研究域以及域上的运算和性质的数学分支,它在现代数学和理论物理学中都有广泛的应用。
《高等代数》考试大纲
《高等代数》考试大纲(适用专业:数学与应用数学、应用统计学)第一章基本概念一.主要内容1、集合子集集的相等集合的交与并及其运算律笛卡儿积2、映射映射满射单射双射映射的相等映射的合成可逆映射映射可逆的充要条件3、数学归纳法自然数的最小数原理第一数学归纳法第二数学归纳法4、整数的一些整除性质5、数环和数域二. 考试要求(一)掌握1、集合的交与并及其运算律2、映射满射单射双射映射的相等映射的合成3、数环和数域的定义及性质4、数学归纳法的运用(二)理解1、集合的交与并及其运算律2、可逆映射映射可逆的充要条件3、数环和数域的判别(三)了解自然数的最小数原理第一数学归纳法、第二数学归纳法的证明整数的一些整除性质第二章多项式一. 主要内容1、一元多项式的定义和运算2、多项式的整除性整除的基本性质带余除法定理3、多项式的最大公因式最大公因式概念、性质辗转相除法多项式互素概念、性质4、多项式的唯一因式分解定理不可约多项式概念唯一因式分解定理典型分解式5、多项式的重因式多项式的重因式概念多项式有重因式的充要条件6、多项式函数与多项式的根多项式函数的概念余式定理综合除法多项式的根的概念根与一次因式的关系多项式根的个数7、复数域和实数域上多项式的因式分解(代数基本定理不证明)8、有理数域上多项式的可约性及有理根本原多项式的定义Gauss引理整系数多项式在有理数域上的可约性问题Eisenstein判别法有理数域上多顶式的有理根9、多元多项式多元多项式的概念字典排列法多元多项式的和与积的次数10、对称多项式对称多项式的概念初等对称多项式对称多项式基本定理二. 考试要求(一)掌握1、一元多项式的定义和运算2、整除的基本性质带余除法定理3、最大公因式概念、性质辗转相除法多项式互素概念、性质4、唯一因式分解定理典型分解式5、多项式的重因式概念多项式有重因式的充要条件6、余式定理综合除法多项式的根的概念7、复数域和实数域上多项式的因式分解有理数域上多顶式的有理根(二)理解1、不可约多项式概念2、多项式的重因式概念3、多项式函数与多项式的根4、多项式函数的概念5、本原多项式的定义 Gauss引理6、整系数多项式在有理数域上的可约性问题Eisenstein判别法(三)了解1、对称多项式的概念2、多元多项式的概念3、多元多项式的概念字典排列法初等对称多项式对称多项式基本定理三. 说明本章主要介绍数域上一元多项式的概念及其运算、整除性、因式分解和有理系数多项式有理根的求法,简单介绍了多元多项式及对称多项式。
高等代数
多项式第一节 数域定义1 设P是由一些复数组成的集合,其中包括0与1.如果P中任意两个数(这两个数也可以相同)的和·差·积·伤(除数不为零)仍然是P 中的数,那么P就称为一个数域。
第二节 一元多项式 定义2 设n是一非负整数。
形式表达式110...nn n n a x a xa --+++(1),其中01,,...,na a a 全属于数域P,称为系数在数域P中的一元多项式,或者简称为数域P 上的一元多项式。
定义3 如果在多项式f (x )与g (x )中,除去系数为零的项外,同次项的系数全相等,那么f (x )与g (x )就称为相等,记为f (x )=g (x )系数全为零的多项式称为零多项式,记为0定义4 所有系数在数域P 中的一元多项式的全体,称为数域P上的一元多项式环,记为[P],P称为[P]的系数域第三节 整除的概念带余除法 对于P[x]中任意两个多项式f(x)与g(x),其中()0g x ≠,一定有P[x]中的多项式q(x),r(x)存在,使()()()()fx q x g x r x =+成立,其中()()()()r x g x ∂<∂或者()0r x =,并且这样的q(x),r(x)是唯一决定的。
定义5 数域P上的多项式g(x)称为整除f(x),如果有数域P上的多项式h(x)使等式()()()fx g x h x =成立。
我们用“()()|g x f x ”表示g(x)整除f(x),用“()|()g x f x ”表示g(x)不能整除f(x)定理1 对于数域P上的任意两个多项式f(x),g(x),其中()()()0,|g x g x fx ≠的充分必要条件是g(x)除f(x)的余式为零。
第四节 最大公因式定义6 设f(x),g(x)是P[x]中两个多项式。
P[x]中多项式d(x)称为f(x),g(x)的一个最大公因式,如果它满足下面两个条件:(1)d(x)是f(x),g(x)的公因式;(2)f(x),g(x)的公因式全是d(x)的因式。
高等代数
二、基本方法1.V 1,V 2是线性空间V 的两个子空间,证明V =V 1△V 2只要证明以下两点:(1)V 1∩V 2={0};(2)dim V =dim V 1+dim V 22.求线性空间V 的基与维数,可先找到V 的一个生成元组n ααα,,,21 ,然后证明n ααα,,,21 线性无关.3.证明多个子空间的和是直和,一般采用零向量的表示方法是唯一的.4.几种常见的线性空间:(1)数域P 上的线性空间Pn ,dim Pn=n ,是Pn 的一组基,其中 =(0,…,1,…,0),i =1,2,…,n .(2)数域P 上的线性空间Pm ×n ,dim Pm ×n =mn , Eij ,i =1,2,…,m ;j =1,2,…,n 是Pm ×n 的一组基,其中Eij 是第i 行第j 列的元素为1,其余元素为0的m ×n 矩阵.(3)数域P 上的线性空间P [x ]n ,dim P [x ]n =n.1,x ,x 2,…,xn -1是P [x ]n 的一组基.5.求线性变换σ的特征值与特征向量的方法:(1)取定V 的一组基n εεε,,,21 ,写出 σ 在这组基下的矩阵A .(2)求出| λE-A |在数域P 中的全部根,它们就是σ的全部特征值.(3)对每个特征值 i λ,解齐次线性方程组(i λE-A )X =0,求出一组基础解系,它们就是属于这个特征值的几个线性无关的特征向量在基 n εεε,,,21 下的坐标.注意:在解方程|λE-A |=0时,最好能分离出关于 λ 的因式,否则可用求整系数的有理根的方法求它的根.(一般地,A 的元素是整数).三、例题考点1:线性空间的定义、维数与基,坐标变换考点点拨:主要对线性空间的定义、线性空间的维数和基的求出,以及线性空间中不同基之间的坐标变换的考查.例6.1.1 (西安交通大学,2004年)设A ∈Rn ×n (R 表示实数域)记S (A )={Z |AZ =ZA ,Z ∈Rn ×n }(1)证明: S (A )为Rn ×n 的子空间.(2)若取A 为对角阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n 001 ,求S (A )的基与维数. 解: (1)显然只要验证对加法和数乘封闭即可.对任意Z 1,Z 2∈S (A ),任意k ∈R ,有A (Z 1+Z 2)=AZ 1+AZ 2=Z 1A +Z 2A =(Z 1+Z 2)A .知Z 1+Z 2∈S (A ). (kZ 1)A =kAZ 1=A (kZ ).知kZ 1∈S (A ).即知S (A )为一个子空间.(2)对任何矩阵C ,若:C n n C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001 那么比较等式两边易得C (i ,j )=0(i ≠j ),于是S (A )的维数为n 维,它的一组基可取为E 11,E 22,…,Enn . □例6.1.2 (北京航空航天大学,2005年)设向量组s ααα,,,21 与t βββ,,,21 是两组n 维向量,证明:若这两个向量组都线性无关,则 ),,,(),,,(2121t s L L βββααα ⋂ 的维数等于齐次方程组022112211=+++++++t t s s y y y x x x βββααα 的解空间的维数证明:设 >=<s W ααα,,,211 , ><t W βββ,,,212 ,那么由题知dim(W 1)=s ,dim(W 2)=t . 记矩阵),,,,,,,,(2121t s A βββααα = X =(x 1,x 2,…,xs ,y 1,y 2,…,yt )T .那么方程组AX =0的解空间的维数为:s +t -r (A ),注意到W 1+W 2= ><t s βββααα,,,,,,,2121 ,那么显然有dim(W 1+W 2)=r (A ).于是有:s +t -r (A )=dim W 1+dim W 2-dim(W 1+W 2)=dim(W 1∩W 2).即解空间的维数等于><⋂><t s βββααα,,,,,,2121 的维数例6.1.3 (北京理工大学,2004年)设A ,B 分别是数域K 上的p ×n 、 n ×m 矩阵,令V ={x |x ∈Km ,ABx =0},W ={y |y=Bx ,x ∈V }.证明: W 是向量空间的子空间,且dim W =r (B )-r (AB ).证明: 要证明W 是一个子空间,只要说明它对加法和数乘封闭即可.若y 1,y 2∈W ,k ∈K ,那么存在x 1,x 2∈V ,使得y 1=Bx 1,y2=Bx 2,显然V 是方程组ABx =0的解空间,它是一个子空间,那么有x 1+x 2∈V , kx 1∈V ,这时y 1+y 2=Bx 1+Bx 2=B (x 1+x 2).于是有y 1+y 2∈W ,而ky 1=kBx 1=B(kx 1),知ky 1∈W ,知W 必是向量空间的一个子空间.把B 看成是向量空间Km 到向量空间Kn 的线性映射,那么有:W =B (V ),于是有: dim ImB |V +dim kerB |V =dim V (I)注意到ImB |V=W ,那么有dim ImB |V=dim W .而dim V =m -r (AB ),kerB |V =kerB ∩V .若Bx =0,显然有ABx =0,所以有kerB ⊆V ,那么有B=B ∩V .注意到dim kerB 即为Bx =0的解空间的维数,它等于m -r (B ),于是有dim kerB|V =dim kerB ∩V =dim kerB =m-r (B ),代入等式(I)有: dim W+(m-r (B ))=m -r (AB ). 移项即得: dim W =r (B )-r (AB ). □例6.1.4 (中南大学,2003年)设P 是一个数域,A 是Pn ×n 中一个矩阵,令F (A )={f (A )|f (x )∈P [x ]}.证明:(1)F (A )是Pn ×n 的一个线性子空间.(2)可以找到非负整数m ,使I ,A ,A 2,…,Am 是F (A )的一组基.(3)F (A )的维数等于A 的最小多项式的次数.解: (1) 任取f (A ),g (A )∈F (A ),k ∈P , 有f (A )+g (A )=(f+g )(A ).显然由f (x ), g (x )∈P [x ]可得(f+g )(x )=f (x )+g (x )∈P [x ],于是有f (A )+g (A )∈F (A ).而kf (A )=(kf )(A ),那么由kf (x )∈P [x ] 可知kf (A )∈F (A ),即知F(A )是Pn ×n 的一个线性子空间.(2) 不妨设A 的最小多项式为)(λm ,并记 ))((λm ∂ =m +1,那么由m (A )=0 且)(λm 的首项系数为1可知Am +1可被I ,A ,A 2,…,Am 线性表出.显然有任意f (A )∈F (A ),都可使得f (A )被I ,A ,A 2,…,Am 线性表出.下证I ,A ,A 2,…,Am 线性无关,利用反证法.若I ,A ,A 2,…,Am 线性相关,那么存在一组不全为零的数k 0,k 1,…,km ∈P ,使得:k 0I +k 1A +k 2A 2+…+kmAm =0.令h (x )=k 0+k 1x +k 2x 2+…+kmxm ,显然有h (A )=0且))(())((x m m x h ∂≤≤∂ ,这将与 是A 的最小多项式矛盾.于是I ,A ,A 2,…,Am 线性无关,那么I ,A ,A 2,…,Am 构成F (A )的一组基.(3)显然由第(2)问知I ,A ,A 2,…,Am 构成F (A )的一组基,那么有dim(F (A ))=m +1=)).((x m ∂例6.1.5 (北京大学,2002年)用Mn (K )表示数域K 上所有n 阶矩阵组成的集合,对于矩阵的加法和数量乘法它成为K 上的线性空间.数域K 上n 阶矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-1432121321a a a a a a a a a a a a A n n n称为循环矩阵.用U 表示K 上所有n 阶循环矩阵组成的集合.证明:U 是Mn (K )的一个子空间,并求U 的一个基和维数.证明: 令矩阵:。
高等代数知识点总结
• 当c1,...,cr不全为0时,必有c11+...+crr0 • 当c11+...+crr=0时,必有c1=...=cr=0 • 1,...,r的秩数等于r • (1,...,r)是列满秩矩阵
28
极大无关组与秩数:
1. 1,...,rS是S的一个极大无关组当且仅当 ① 1,...,r线性无关 ② S的每个向量都可由1,...,r线性表示
22
两种常用方法
1.分块矩阵的初等变换和Schur公式
• 把初等变换和初等矩阵的思想用到分块矩阵 • Schur公式 设A可逆
I
CA1
O I
A C
B D
A O
B
D CA1B
A C
B D
I O
A1B
A
I B
O
D CA1B
I
CA1
O I
A C
B D
I O
按第k行 第k列展开
Laplace定理
|aij| = ak1Ak1+…+aknAkn = a1kA1k+…+ankAnk
| A | j1
jk
式
A
i1 j1
ik jk
代余式
A
i1 j1
ik
jk
aj1Ak1+…+ajnAkn = a1jA1k+…+anjAnk =jk|aij|
分块三角矩阵的行列式
对称多项式基本定理 每个对称多项式,都可唯一
地表示成初等对称多项式的多项式
10
运算
行列式
高等代数(绪论)讲解课件
善于总结
在做题过程中,要注意总结解题方法和技巧 ,形成自己的解题思路和经验。
学习过程中注重归纳总结
要点一
归纳知识体系
在学习过程中,要注重归纳总结,将所学知识形成完整的 知识体系,以便更好地理解和记忆。
要点二
总结解题方法
对于同一类问题,要总结出通用的解题方法,形成自己的 解题技巧和策略。
培养数学思维与逻辑推理能力
矩阵的加法、减法、乘法
矩阵的逆
掌握矩阵的基本运算规则,能够进行 矩阵的加法、减法和乘法运算。
掌握矩阵逆的定义和性质,能够求出 矩阵的逆。
矩阵的转置
了解矩阵转置的定义和性质,能够进 行矩阵的转置运算。
多项式的因式分解与根的性质
因式分解
掌握多项式的因式分解方法,如提取公因式、分组分 解、十字相乘法等。
线性变换与几何变换
总结词
线性变换是高等代数中描述几何变换的 基本工具,它可以用于图像处理、计算 机图形学和机器人学等领域。
VS
详细描述
线性变换是矩阵在向量空间上的作用,它 可以描述旋转、平移、缩放等基本的几何 变换。通过线性变换,可以研究几何对象 的性质和关系,并将其应用于图像处理、 计算机图形学等领域,实现图像的旋转、 缩放和剪切等操作。
培养数学思维
学习高等代数需要具备数学思维,即能够运用数学语言 和符号进行推理和表达的能力。
提高逻辑推理能力
通过学习和练习高等代数的证明和推导,可以提高逻辑 推理能力,增强思维的严密性和条理性。
T量是一个有方向的量,它由一组有 序数组成。在高等代数中,向量通常 表示为有序数对的序列,这些数对可 以表示空间中的点、方向和大小。
矩阵
矩阵是一个矩形阵列,由若干行和若 干列组成。在高等代数中,矩阵是重 要的数学工具,它可以表示向量之间 的关系、线性变换等。
高等代数教案
高等代数教案教案标题:高等代数教案教案目标:1. 了解高等代数的基本概念和原理。
2. 掌握高等代数中的常见运算规则和技巧。
3. 能够应用高等代数解决实际问题。
4. 培养学生的逻辑思维和数学推理能力。
教学内容:1. 高等代数的基本概念:包括矩阵、行列式、向量、线性方程组等。
2. 高等代数的运算规则:包括矩阵的加法、减法、乘法,行列式的性质,向量的线性组合等。
3. 高等代数的应用:包括线性方程组的解法、矩阵的应用、向量的几何意义等。
教学步骤:第一步:导入1. 引入高等代数的概念和重要性,激发学生对高等代数的兴趣。
2. 通过实例引导学生思考高等代数在实际问题中的应用。
第二步:讲解基本概念和原理1. 介绍矩阵的定义、性质和基本运算规则。
2. 解释行列式的概念、性质和计算方法。
3. 讲解向量的定义、线性组合和线性相关性。
4. 介绍线性方程组的基本概念和解法。
第三步:演示运算规则和技巧1. 通过示例演示矩阵的加法、减法和乘法运算。
2. 指导学生掌握行列式的展开法和性质运用。
3. 演示向量的线性组合和线性相关性的计算方法。
第四步:应用实例1. 提供一些实际问题,引导学生运用高等代数的知识解决问题。
2. 鼓励学生进行讨论和思考,培养他们的逻辑思维和数学推理能力。
第五步:总结和评价1. 总结本节课的重点内容和学习要点。
2. 针对学生的学习情况进行评价,鼓励他们继续努力。
教学资源:1. 教材:高等代数教材。
2. 多媒体设备:投影仪、计算机等。
3. 实例题目和解答。
教学评估:1. 课堂练习:通过课堂练习检验学生对高等代数知识的掌握情况。
2. 作业布置:布置相关的练习题,巩固学生的学习成果。
3. 个别辅导:针对学生的学习困难,进行个别辅导和指导。
教学延伸:1. 拓展应用:引导学生进一步应用高等代数知识解决更复杂的实际问题。
2. 知识拓展:介绍高等代数在其他学科中的应用,拓宽学生的知识视野。
以上是一份高等代数教案的基本框架,具体的教案内容和步骤可以根据教学实际情况进行调整和完善。
大学 高等代数 线性代数
其中 ( r2 ( x )) ( r1 ( x )) 或 r2 ( x ) 0 . 若 r2 ( x ) 0 ,用 r2 ( x ) 除 r1 ( x ) ,得
r1 ( x ) q3 ( x )r2 ( x ) r3 ( x ),
……
如此辗转下去,显然,所得余式的次数不断降低, 即
于是有
u( x ) f ( x )h( x ) v( x ) g( x )h( x ) h( x ) f ( x ) | f ( x )h( x )
又 f ( x ) | g( x )h( x ),
f ( x ) | h( x ).
推论
若 f1 ( x ) | g( x ), f 2 ( x ) | g( x ) ,且
证: " " 显然.
" " 设 ( x )为 f ( x ), g( x ) 的任一公因式,则
( x ) f ( x ), ( x ) g( x ), 从而 ( x ) 1, 又 1 ( x ),
( x ) c, c 0.
故 ( f ( x ), g( x )) 1.
………………
ri 2 ( x ) qi ( x )ri-1 ( x ) ri ( x )
……………… rs 3 ( x ) qs1 ( x )rs 2 ( x ) rs1 ( x )
rs 2 ( x ) qs ( x )rs1 ( x ) rs ( x ) rs1 ( x ) qs1 ( x )rs ( x ) 0
( f ( x )、g( x )) u( x ) f ( x ) v( x ) g( x ).
注:
若仅求 ( f ( x )、g( x )) ,为了避免辗转相除时出现
高等代数§1
x y (a c) (b d ) 2 Q( 2), x y (ac 2bd ) (ad bc) 2 Q( 2)
设 a b 2 0, 于是 a b 2 也不为0.
(不然,若 a b 2 0, 则 a b 2, 于是有 a 2 Q, b 或 a 0,b 0 a b 2 0. 矛盾)
二、数域旳性质
定理: 任意数域P都涉及有理数域Q. 即,有理数域为最小数域.
证明: 设P为任意一种数域.由定义可知,
于是有 0 P, 1 P. m Z , m 1 1 1 P
进而 有
m,n Z , m P, n
m 0 m P.
n
n
而任意一种有理数可表成两个整数旳商,
Q P.
Remar 数k环: 设P为非空数集,若
a,b P, a b P, a b P
则称P为一种数环.
例如,整数集Z 就作成一种数环.
三、数学归纳法
第一数学归纳法 设S是一种与自然数有关旳命题,且满足. 1)当 n 时n0 ,S成立 2)假设当n k (k N时,k , nS0)成立,则
意两个数旳差与商(除数≠0)仍属于P,则P为一
一种数域.
证:由题设任取 a,b P, 有
0 a a P, 1 b P (b 0), a b P,
a P (b 0), b
b a b a (0 b) P,
b 0 时,
ab
1
1
P
,
b 0 时, ab 0 P.
b
所以,P是一种数域.
高等代数课件
第一章 多项式
§1.1 数域
代数与几何教研室
高等代数课件
对于一个线性变换,如果存在一组基 使得该线性变换在这组基下的矩阵表 示是恒等变换,那么这组基是这线性 变换的一个基底。
CHAPTER 02
线性方程组与矩阵的秩
线性方程组的解法
高斯消元法
通过消元将线性方程组转化为求解单变量方程,是求解线性方程 组的基本方法。
克拉默法则
适用于系数行列式不为零的线性方程组,通过展开式求解。
特征值的计算方法与性质
计算方法
特征多项式f(λ)=|λE-A|,其中E为单位矩 阵,A为给定矩阵。通过求解f(λ)=0得到 的根即为特征值。
VS
性质
特征多项式f(λ)的根即是特征值,f(λ)的阶 数即是矩阵A的阶数。f(λ)无重根,则A有 n个线性无关的特征向量。
特征向量的应用与性质
应用
在矩阵理论中,特征向量的应用广泛,如求解线性方程组、判断矩阵的稳定性、求矩阵的秩等。
性质
对于可逆矩阵A,其逆矩阵的特征向量是A的特征向量的倍数。对于相似矩阵,它们的特征向量是相互正交的。
CHAPTER 04
行列式与高阶矩阵
行列式的定义与性质
总结词
行列式是n阶方阵所有行列的n个代数余子 式的乘积之和,具有丰富的性质。
详细描述
行列式是一种特殊的n阶方阵的函数,其值 按照排列方式决定。行列式的定义可以推广 到任意阶数。行列式具有以下性质
递推公式法:利用递推公式,将高阶行 列式转化为低阶行列式,以便计算。
行列展开法:利用代数余子式的性质, 将行列式按照某一行或某一列展开,转 化为低阶行列式,以便计算。
详细描述
化简法:利用行列式的性质,化简行列 式,将其转化为更简单的形式,以便计 算。
高阶矩阵的运算与性质
《高等代数》课程简介
《高等代数》课程简介一、课程概述《高等代数》是高等院校数学专业的一门重要的基础课,其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、向量空间、线性变换、欧氏空间和酉空间、二次型、群,环和域简介等方面的系统知识。
它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛函分析)提供一些所需的基础理论和知识。
尤其在本世纪,计算机技术、通讯信息技术和现代生物工程技术已成为最热门的学科领域,这些学科均需要代数学的发展。
《高等代数》是中学代数的继续和提高。
通过这一课程的教学,应使学生掌握为进一步提高专业知识水平所必需的代数基础理论和基本方法,且对初等代数内容有比较深入的了解,并能居高临下地处理中学数学的有关教材,培养学生独立思考、科学抽象思维、正确的逻辑推断能力和迅速准确的运算能力,对开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造能力、树立辩证唯物论观点等有重要的作用。
二、本课程的教学目的及要求1、使学生掌握多项式理论、线性代数理论的基础知识和基本理论,着重培养学生解决问题的基本技能。
2、使学生熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。
3、使学生进一步掌握具体与抽象、特殊与一般、有限与无限等辩证关系,培养其辩证唯物主义观点。
4、逐步培养学生的对知识的发现和创新的能力,训练其对特殊实例(正例和反例)的观察、分析、归纳、综合、抽象概括和探索性推理的能力。
5、使学生对中学数学有关内容从理论上有更深刻的认识,以便能够居高临下地掌握和处理中学数学教材,进一步提高中学数学教学质量。
6、根据教学的实际内容的需要,对课程标准中所列各章内容,分别提出了具体的教学内容与内容要求,教学时必须着重抓住重点内容进行教学。
高等代数和高等数学的区别
高等代数和高等数学的区别11、高等代数:代数在讨论任意多个未知数的一次方程组,也叫线性方程组。
高等数学:是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
2、高等数学就是微积分+微分方程+空间解析几何。
高等代数是线性代数+线性空间+多项式,主要内容是矩阵运算和线性空间的变换。
高等代数和高等数学的区别:一、指代不同1、高等代数:代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。
2、高等数学:是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
二、特性不同1、高等代数:高等代数是代数学发展到高级阶段的总称,包括两部分:线性代数、多项式代数。
在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。
2、高等数学:高度的抽象性、严密的逻辑性和广泛的应用性。
抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。
三、发展不同1、高等代数:代数学除了对物理、化学等科学有直接的实践意义外,就数学本身来说,代数学也占有重要的地位。
代数学中发生的许多新的思想和概念,大大地丰富了数学的'许多分支,成为众多学科的共同基础。
2、高等数学:高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。
在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。
高等代数和高等数学的区别2学习高数的好处1、可以培养思维能力2、可以应用到其他学科的学习3、专升本或考研都需要考数学4、最直接的,期末考试要考,过了才能毕业,才能拿到毕业证对于高等学校工科类专业的本科生而言,高等数学课程是一门非常重要的基础课,它内容丰富,理论严谨,应用广泛,影响深远。
不仅为学习后继课程和进一步扩大数学知识面奠定必要的基础,而且在培养学生抽象思维、逻辑推理能力,综合利用所学知识分析问题解决问题的能力,较强的自主学习的能力,创新意识和创新能力上都具有非常重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数方法论文信科090109271013孟庆阳等价无穷小性质的理解、延拓及应用【摘要】等价无穷小具有很好的性质,灵活运用这些性质,无论是在在求极限的运算中,还是在正项级数的敛散性判断中,都可取到预想不到的效果,能达到罗比塔法则所不能取代的作用。
通过举例,对比了不同情况下等价无穷小的应用以及在应用过程中应注意的一些性质条件,不仅使这些原本复杂的问题简单化,而且可避免出现错误地应用等价无穷小。
【关键词】等价无穷小极限罗比塔法则正项级数比较审敛法Comprension,Expand and Application of Equivalent Infinitesimal's CharacterAbstract Equivalent Infinitesimal have good characters,both in opreation of test for Limit and determine whether the positive series converges or diverges,if these quality that apply flexibly can obtain more effect,the effection can not be replace by L'Hospital Rule.this paper give examples and compare some instance to pay attention to condition in application of Equivalent Limit,so the question can be simply and avoid error in application.Key words equivalent Infinitesimal; limit; L'Hospital rule positive series;comparison test等价无穷小概念是高等数学中最基本的概念之一,但在高等数学中等价无穷小的性质仅仅在“无穷小的比较”中出现过,其他地方似乎都未涉及到。
其实,在判断广义积分、级数的敛散性,特别是在求极限的运算过程中,无穷小具有很好的性质,掌握并充分利用好它的性质,往往会使一些复杂的问题简单化,可起到事半功倍的效果,反之,则会错误百出,有时还很难判断错在什么地方。
因此,有必要对等价无穷小的性质进行深刻地认识和理解,以便恰当运用,达到简化运算的目的。
1 等价无穷小的概念及其重要性质〔1〕无穷小的定义是以极限的形式来定义的,当x→x0时(或x→∞)时,limf(x)=0,则称函数f(x)当x→x0时(或x→∞)时为无穷小。
当limβα=1,就说β与α是等价无穷小。
常见性质有:设α,α′,β,β′,γ 等均为同一自变量变化过程中的无穷小,①若α~α′,β~β′,且limα′β′存在,则limαβ=limα′β′②若α~β,β~γ,则α~γ性质①表明等价无穷小量的商的极限求法。
性质②表明等价无穷小的传递性若能运用极限的运算法则,可继续拓展出下列结论:③若α~α′,β~β′,且limβα=c(≠-1),则α+β~α′+β′证明:∵ limα+βα′+β′=lim1+βαα′α+β′α′=lim1+c1+αα′·βα·β′β=lim1+c1+c=1 ∴ α+β~α′+β′而学生则往往在性质(3)的应用上忽略了“limβα=c(≠-1)”这个条件,千篇一律认为“α~α′,β~β′,则有α+β~α′+β′④若α~α′,β~β′,且limAα′±Bβ′Cα′±Dβ′存在,则当Aα′±Bβ′Cα′±Dβ′≠0且limAα±BβCα±Dβ存在,有limAα±BβCα±Dβ=limAα′±Bβ′Cα′±Dβ′此性质的证明见文献〔2〕,性质③、④在加减法运算的求极限中就使等价无穷小的代换有了可能性,从而大大地简化了计算。
但要注意条件“limβα=c(≠-1)”,“Aα′±Bβ′Cα′±Dβ′≠0”的使用。
2 等价无穷小的应用2.1 在求极限中经常用到的等价无穷小有x~sinx~arcsinx~tanx~arctanx~ln(1+x)~ex-1, 1-cosx~12x2, n1+x~1+xn,(x→0)例1 limx→0tanx-sinxx3解:原式=limx→0sinx(1-cosx)x3cosx=limx→0x·12x2x3(∵ sinx~x,1-cosx~x22)=12此题也可用罗比塔法则做,但不能用性质④做。
∵ tanx-sinxx3=x-xx3=0,不满足性质④的条件,否则得出错误结论0。
例2 limx→0e2x-31+xx+sinx2解:原式=limx→0e2x-1-(31+x-1)x+x2=limx→02x-13xx(1+x)=53用性质④直接将等价无穷小代换进去,也可用罗比塔法则做。
例3 limx→0(1x2-cot2x)解法1:原式=limx→0sin2x-x2cos2xx2sin2x=limx→0(sinx+xcosx)(sinx-xcosx)x4=limx→0x2(1+cosx)(1-cosx)x4 (∵ sinx~x)=limx→0(1+cosx)(1-cosx)x2=limx→012x2·(1+cosx)x2=1解法2:原式=limx→0tan2x-x2x2tan2x=limx→0(tanx+x)(tanx-x)x4=limx→02x(tanx-x)x44 (∵ tanx~x)=limx→02(tanx-x)x3=limx→02(sec2x-1)3x2=23limx→0tan2xx2=23 (∵ tanx~x)两种解法的结果不同,哪一种正确呢?可以发现解法1错了,根源在于错用sinx-xcosx~x-xcosx (注意limx→0sinx-xcosx=-1), 由性质③ sinx-xcosx并不等价于x-xcosx 。
从解法2又可以看到尽管罗比塔法则是求极限的一个有力工具,但往往需要几种方法结合起来运用,特别是恰当适时地运用等价无穷小的代换,能使运算简便,很快得出结果。
2.2 在正项级数的审敛判别法中,用得比较多的是比较审敛法的极限形式,它也是无穷小的一个应用。
比较审敛法的极限形式:设∑∞n=1un 和∑∞n=1vn 都是正项级数,①如果limn→∞unvn=l(0≤l<+∞) ,且级数∑∞n=1vn收敛,则级数∑∞n=1un收敛。
②如果limn→∞unvn=l>0 或limn→∞unvn=+∞,且级数∑∞n=1vn发散,则级数∑∞n=1un 发散。
当l=1时,∑un,∑vn就是等价无穷小。
由比较审敛法的极限形式知,∑un与∑vn同敛散性,只要已知∑un,∑vn中某一个的敛散性,就可以找到另一个的敛散性。
例4 判定∑∞n=11n2-lnn 的敛散性解:∵ limn→∞1n2-lnn1n2=limn→∞n2n2-lnn=1 又∑1n2 收敛∴ ∑∞n=11n2-lnn 收敛例5 研究∑∞n=11ln(1+n)的敛散性解:limn→∞1ln(1+n)1n=limn→∞nln(1+n)=1 而∑1n 发散∴ ∑∞n=11ln(1+n) 发散3 等价无穷小无可比拟的作用以例3看,若直接用罗比塔法则会发现出现以下结果:原式=limx→0tan2x-x2x2tan2x=limx→02(secx·tanx-x)2xtan2x+2x2tanx·secx =limx→0secx(tan2x-sec2x)-1tan2x+4x·tanx·secx+x2secx(sec2x+tan2x)式子越变越复杂,难于求出最后的结果。
而解法2适时运用性质①,将分母x2tan2x替换成x4,又将分子分解因式后进行等价替换,从而很快地求出正确结果。
再看一例:例6〔3〕limx→0+tan(sinx)sin(tanx)解:原式=limx→0+sec2(sinx)cosx2tan(sinx)cos(tanx)sec2x2sin(tanx) (用罗比塔法则)=limx→0+sec2(sinx)cosxcos(tanx)sec2x·limx→0+sin(tanx)tan(sinx) (分离非零极限乘积因子)=limx→0+sin(tanx)tan(sinx) (算出非零极限)=limx→0+cos(sinx)sec2x2sin(tanx)sec2(sinx)cosx2tan(sinx) (用罗比塔法则)=limx→0+cos(sinx)sec2xsec2(sinx)cosx·limx→0+tan(sinx)sin(tanx)=limx→0+tan(sinx)sin(tanx)出现循环,此时用罗比塔法则求不出结果。
怎么办?用等价无穷小代换。
∵ x~sinx~tanx(x→0)∴原式=limx→0+xx=1而得解。
由此可看到罗比塔法则并不是万能的,也不一定是最佳的,它的使用具有局限性〔3〕。
只要充分地掌握好等价无穷小的4条性质就不难求出正确的结论。
【参考文献】1 同济大学应用数学系,主编.高等数学.第5版.北京:高等教育出版社,2002,7(38):56~59.2 杨文泰,等.价无穷小量代换定理的推广.甘肃高师学报,2005,10(2):11~13.3 王斌.用罗比塔法则求未定式极限的局限性的探讨.黔西南民族师专学报,2001,12(4):56~58.。