直线参数t的几何意义
直线的参数方程
![直线的参数方程](https://img.taocdn.com/s3/m/35f46c40b84ae45c3a358c16.png)
直线的参数方程知识精讲:1.直线参数方程的标准式:(1)过点()000,P x y ,倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.(2)若12P P 、是直线上两点,所对应的参数分别为12t t 、,则122112P P t t P P t t==-∣,∣∣-∣. (3)若123P P P 、、是直线上的点,所对应的参数分别为123t t t 、、,则P 1P 2中点P 3的参数为1232t t t +=,12032t t P P +=∣∣. (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0.2.直线参数方程的一般式: 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是⎩⎨⎧+=+=bty y at x x 00(t 为参数).一、参数的几何意义323.()______.112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(二星)直线为参数的倾斜角是31:()1x t y t⎧=⎪⎨=-⎪⎩变改为直线为参数呢?答案:6π;变式:56π321.()(3,1)2_______.112x t M y t ⎧=-⎪⎪⎨⎪=+⎪⎩(二星)直线为参数上到点距离为的点的坐标是3()(3,1)2_______.1x t M y t⎧=+⎪⎨=-⎪⎩变式:直线为参数上到点距离为的点的坐标是答案:()()3;3;变式:()()3;31.(三星)已知直线l的参数方程为112x y t ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()6πρθ=-.(1)求圆C 的直角坐标方程;(2)若P (x ,y )是直线l 与圆面4sin()6πρθ≤-y +的取值范围.备注:直线的参数方程的典型使用解:(1)因为圆C 的极坐标方程为ρ=4sin (θ﹣),所以ρ2=4ρ(sin θ﹣cos θ),所以圆C 的直角坐标方程为:x 2+y 2+2x ﹣2y=0.(2)方法一:直接使用直线的参数方程: 设z=x+y由圆C 的方程x 2+y 2+2x ﹣2y=0,可得(x+1)2+(y ﹣)2=4所以圆C 的圆心是(﹣1,),半径是2将代入z=x+y 得z=﹣t又直线l 过C (﹣1,),圆C 的半径是2, 由题意有:﹣2≤t ≤2 所以﹣2≤t ≤2即x+y 的取值范围是[﹣2,2].方法二:完全化为直角坐标方程来做,运算比较麻烦。
直线的参数方程的几何意义
![直线的参数方程的几何意义](https://img.taocdn.com/s3/m/7736ab6c4a73f242336c1eb91a37f111f1850dde.png)
直线的参数方程的几何意义直线的参数方程是用变量表示直线上的每一个点的坐标的一种表示方法。
在二维空间中,直线的参数方程可以用以下形式表示:x = x0 + nt, y = y0 + mt,其中n和m是常数。
在三维空间中,直线的参数方程可以用以下形式表示:x = x0 + nt, y = y0 + mt, z = z0 + pt,其中n、m和p是常数。
直线的参数方程的几何意义体现在以下几个方面:1.直线的方向向量:直线的参数方程中的常数n、m和p是直线的方向向量的分量。
直线上的每一个点都可以通过起点坐标加上方向向量的分量与参数的乘积得到。
2. 直线的斜率:在二维空间中,直线的参数方程可以转化为斜截式方程y = mx + c的形式,其中m代表直线的斜率。
直线的斜率是直线上两个不同点之间纵坐标变化量与横坐标变化量的比值。
3. 直线的截距:在二维空间中,直线的参数方程可以转化为截距式方程y = mx + c的形式,其中c代表直线与y轴的交点坐标。
直线的截距可以通过将参数方程中x等于零得到。
4.直线的方向:直线的参数方程中的常数n、m和p可以决定直线的方向。
当n、m和p都不为零时,直线是斜的,方向由斜率来确定;当其中一个常数为零时,直线平行于一个坐标轴,方向由与之平行的轴来决定;当两个常数为零时,直线垂直于一个坐标轴,方向由与之垂直的轴来决定。
5.直线上的点的坐标:直线的参数方程中的变量t可以取不同的值,对应于直线上的不同点。
通过给定不同的t值,可以得到直线上的各个点的坐标。
直线上的点的坐标可以通过代入参数方程中的t值来计算。
总之,直线的参数方程能够描述直线的方向、斜率、截距以及直线上各个点的坐标。
利用参数方程,可以方便地求解与直线相关的问题,如直线与其他几何图形的交点、直线的长度等。
同时,参数方程也是研究曲线、平面、空间之间关系的重要工具。
直线的参数方程t的几何意义应用
![直线的参数方程t的几何意义应用](https://img.taocdn.com/s3/m/9775c9f849649b6649d7471d.png)
由韦达定理得
t1 t2 12cos,t1t2 11
AB t1 t2 t1 t2 2 4t1t2 10
即 144cos2 44 10
cos2 3 从而sin2 5
8
8
直线l的斜率k tan 15
3
【及时总结】
当直线与曲线相交于两点,解决有关弦长或 以直线所过定点为起点的线段长的有关问题的步 骤:
轨迹参数 方程
题 有 关 的
参化普
求圆的轨 迹方程
直化极
极化参
全国2卷
椭圆中点 弦的斜率
求三角形 面积最大 值
弦长问题
直线与圆 的切点坐 标
高 考
直线和圆 相交求倾 斜角范围
求双曲线 方程
参化普、 极化直
真 题
全国3卷
求圆的弦 中点的轨 迹方程
求直线与 双曲线交 点的极坐 标
椭圆上动 点到直线 距离的最 值
a的值.
y
解:设A, B两点对应的参数分别是 t1,t2
由| PA| 2 | PB | 得 | t1 | 2 | t2 |, 即t1 2t2
A
P
B
x
变式
2.若直线
l
的参数方程为
x
a
y
1
2t
2 2
t
(t为参数 , a
R)
,l
交 C1
:
y2
4x
于
2
A,B 两点,点 P(a,1) 在线段 AB 上,若| PA| 2 | PB | ,求实数 a 的值。
1. 确定该点所在直线的标准参数方程;
直线的参数方程中t的几何意义总结
![直线的参数方程中t的几何意义总结](https://img.taocdn.com/s3/m/8eab1b182bf90242a8956bec0975f46527d3a78a.png)
直线的参数方程中t的几何意义总结直线的参数方程中t的几何意义总结直线是平面几何中的基本图形之一,其参数方程是直线研究中常用的一种表达方式。
在直线的参数方程中,t代表着自变量,其具有较为重要的几何意义。
下面将从不同角度出发,对直线参数方程中t的几何意义进行总结。
一、t表示直线上某一点到起点距离所占总距离的比例在平面直角坐标系中,设直线L过点A(x1,y1)和B(x2,y2),则L的参数方程为:x = x1 + t(x2 - x1)y = y1 + t(y2 - y1)其中0≤t≤1。
这时,我们可以将t理解为从A到B这条线段上任意一点P到A点距离与AB长度之比。
例如当t=0.5时,P点距离A点和B点的长度相等,即P点处于AB 中点M处;当t=0时,P点位于A点处;当t=1时,P点位于B点处。
因此,在L的参数方程中,t表示了从起始端点到任意一点所需走过路程与整条直线长度之比。
二、t表示向量AB与向量AP夹角余弦值在向量学中,向量的夹角是指两个向量之间的夹角,其余弦值可以用点积公式来表示。
在直线参数方程中,我们可以将t理解为从起点A到任意一点P所对应的向量AP与直线L上已知向量AB之间的夹角余弦值。
设向量AB=(x2-x1,y2-y1),向量AP=(x-x1,y-y1),则有:cosθ = (AB·AP) / (|AB|×|AP|)= [(x2-x1)(x-x1)+(y2-y1)(y-y1)] / [(x2-x1)²+(y2-y1)²]^(1/2) × [(x-x1)²+(y-y1)²]^(1/2)其中θ为向量AB与向量AP之间的夹角。
因此,在直线参数方程中,t也可以表示从起始点A出发到任意一点P所对应的向量与已知向量之间的夹角余弦值。
三、t表示平面上一条射线上某个点到起点距离在平面几何中,射线是由一个端点和以该端点为原点的半直线组成的。
《直线参数方程t的几何意义》专题-直线参数方程t的意义
![《直线参数方程t的几何意义》专题-直线参数方程t的意义](https://img.taocdn.com/s3/m/f36b8e64f78a6529657d5305.png)
《直线参数方程t 的几何意义》专题2019年( )月( )日 班级 姓名直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) t 的几何意义:t 表示有向线段P P 0的数量,P 0P =t ∣P 0P ∣=t P (y x ,)为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 直线参数方程的一般式 过点P 0(00,y x ),斜率为abk =的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00 (t 为参数)性质一:A 、B 两点之间的距离为||||21t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|21t t性质二:A 、B 两点的中点所对应的参数为221t t +,若0M 是线段AB 的中点,则 021=+t t ,反之亦然。
在解题时若能运用参数t 的上述性质,则可起到事半功倍的效果。
应用一:求距离之积例1:已知直线l :01=-+y x 与抛物线2x y =交于B A ,两点,求线段AB 的长和点)2,1(-M 到B A ,两点的距离之积。
应用二:求距离例2、直线l 过点)0,4(0-P ,倾斜角为6π,且与圆722=+y x 相交于A 、B 两点。
(1)求弦长AB .(2)求A P 0和B P 0的长。
应用三:求点的坐标例3、直线l 过点)4,2(0P ,倾斜角为6π,求出直线l 上与点)4,2(0P 相距为4的点的坐标。
极坐标与参数方程专题(1)——直线参数t几何意义的应用
![极坐标与参数方程专题(1)——直线参数t几何意义的应用](https://img.taocdn.com/s3/m/6394c346a517866fb84ae45c3b3567ec102ddcbc.png)
极坐标与参数方程专题(1)——直线参数t几何意义的应用极坐标与参数方程专题(1)——直线参数t的几何意义的应用1.(2018•银川三模)在平面直角坐标系xoy中,以O为极点,x轴非负半轴为极轴建立极坐标系。
已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为:x=2t-2,y=2t+2求M、N两点。
Ⅰ)求曲线C的直角坐标方程和直线l的普通方程;Ⅱ)若P(﹣2,﹣4),求|PM|+|PN|的值。
解:(Ⅰ)根据x=ρcosθ、y=ρsinθ,求得曲线C的直角坐标方程为y2=4x。
用代入法消去参数求得直线l的普通方程x-y-2=0.Ⅱ)直线l的参数方程为:x=2t-2,y=2t+2(t为参数),两曲线相交于M、N两点。
代入y2=4x,得到t1=-4,t2=6.则|PM|+|PN|=|t1+t2|=10.2.(2018•乐山二模)已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为x=t+1,y=t-1(t为参数),点A的极坐标为(2,π/4),设直线l与圆C交于点P、Q两点。
1)求圆C的直角坐标方程;2)求|AP|•|AQ|的值。
解:(1)圆C的极坐标方程为ρ=2cosθ即ρ2=2ρcosθ,即(x-1)2+y2=1,表示以C(1,0)为圆心、半径等于1的圆。
2)点A的直角坐标为(2,2),所以点A在直线l上。
把直线的参数方程代入曲线C的方程可得t2+t-2=0.由韦达定理可得t1=-2,t2=1.根据参数的几何意义可得|AP|•|AQ|=|t1•t2|=2.3.(2018•西宁模拟)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系。
已知直线l的极坐标方程为ρcosθ+ρsinθ-2=0,C的极坐标方程为ρ=4sin(θ-π/2)。
I)求直线l和C的普通方程;II)直线l与C有两个公共点A、B,定点P(2,-2),求||PA|-|PB||的值。
解:(I)直线l的极坐标方程为ρcosθ+ρsinθ-2=0,所以直线l的普通方程为:x-y+2=0.圆C的极坐标方程为ρ=4sin(θ-π/2),所以圆C的直角坐标方程为:(x-2)2+y2=16.II)直线l的参数方程为:x=tcosθ+tsinθ,y=tsinθ-tcosθ-2(t为参数)。
直线参数方程t的几何意义
![直线参数方程t的几何意义](https://img.taocdn.com/s3/m/368b2f06cec789eb172ded630b1c59eef8c79ae9.png)
直线参数方程t的几何意义
1 几何意义
直线参数方程t是一种数学表达式,描述的是一条直线上所有点的位置。
它很好地表现出空间中的直线,是一种非常实用的空间表达方式。
直线参数方程t的广义形式如下:
t(X,Y)= X * Cosα + Y * Sinα – a
其中X,Y是一个直线上的点的极坐标,a是表达直线的参数,α是一个系数。
该系数α描述的是以原点为基准,水平方向为0°时,直线与水平方向的偏角,也叫斜率角或偏角。
但凡参数t的系数a和α都一定,则t可以表达出特定一条直线,从中可以看出t“=0”这条直线本身。
当
t“>0”或者“<0”时,表示一个空间中到该直线上某一点的距离,当t“=0”时,表示在直线上某一点的位置。
因此,直线参数方程t的几何意义就是用它来描述一条直线以及距离该直线距离的具体数值。
空间中任意一点到该直线距离可由t值来确定,如果t值等于0,就表示该点在该直线上。
这样就可以将直线参数方程t用来描述空间中任意一条直线,该方法非常方便、实用。
第04讲-直线参数t的几何意义-2020届一轮复习数学套路之极坐标与参数方程(解析版)
![第04讲-直线参数t的几何意义-2020届一轮复习数学套路之极坐标与参数方程(解析版)](https://img.taocdn.com/s3/m/4e34e0be192e45361066f5b5.png)
第四讲 直线参数t 的几何意义1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为00cos (sin x x t t y y t αα=+⎧⎪⎨=+⎪⎩为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(1)当0M M u u u u u r与e (直线的单位方向向量)同向时,t 取正数.(2)当0M M u u u u u r与e 反向时,t 取负数,(3)当M 与M 0重合时,t =0.3.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)212121212121212()4,0,0t t t t t t t t PA PB t t t t t t ⎧-=+-<⎪+=+=⎨+>⎪⎩当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】(1)直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.(2)直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-;知识解读考向一 参数t 的系数的平方和为1【例1】已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值.【答案】(1)见解析 (2)3【解析】(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t(t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3. 学科&网【举一反三】1.已知曲线C 1的极坐标方程为2sin 4cos ρθθ=, C 2的参数方程为32(32x t t y t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数)(1)将曲线C 1与C 2的方程化为直角坐标系下的普通方程; (2)若C 1与C 2相交于A 、B 两点,求AB .【答案】(1)曲线C 1的普通方程y 2=4x ,C 2的普通方程x+y-6=0 ;(2)AB 【解析】(1)曲线C 1的普通方程为y 2=4x , 曲线C 2的普通方程为x+y-6=0(2)将C 2的参数方程代入C 1的方程y 2=4x,得23=43-+()()整理可得260t +-=,由韦达定理可得12126t t t t +=-=-12AB t t =-==2.已知曲线C 的极坐标方程是4sin 0ρθ-=,以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 过点M (1,0),倾斜角为34π. (Ⅰ)求曲线C 的直角坐标方程与直线l 的参数方程; (Ⅱ)设直线l 与曲线C 交于A 、B 两点,求MA MB +的值. 【答案】(Ⅰ)曲线C 的直角坐标方程为:x 2+(y-2)2=4,直线l的参数方程为1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数)(Ⅱ).【解析】(Ⅰ)因为曲线C 的极坐标方程是4sin 0ρθ-=即曲线C 的直角坐标方程为:x 2+(y-2)2=4直线l 的参数方程31+t cos 4(3sin 4x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩为参数)即1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数)(Ⅱ)设点A 、B 对应的参数分别为t 1,t 2将直线l 的参数方程代入曲线C的直角坐标方程得22(1)2)4-+-=整理,得210t -+=,由韦达定理得12121t t t t +== 因为t 1t 2>0,所以1212MA MB t t t t +=+=+=考向二 t 系数平方和不等于1【例2】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为12{22x t y t=+=-(t 为参数),以O 为极点, x 轴的非负半轴为极轴,曲线2C 的极坐标方程为: 22cos sin θρθ=. (Ⅰ)将曲线1C 的方程化为普通方程;将曲线2C 的方程化为直角坐标方程; (Ⅱ)若点()1,2P ,曲线1C 与曲线2C 的交点为A B 、,求PA PB +的值.【答案】(Ⅰ) 12:30,:C x y C +-= 22y x =;(Ⅱ).【解析】(Ⅰ) 1:3C x y +=,即: 30x y +-=;222:sin 2cos C ρθρθ=,即: 22y x =(Ⅱ)方法一:由t 的几何意义可得C 1的参数方程为12(t 22x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数)代入22:2C y x =得26240t t ++=∴1262t t +=-,∴1262PA PB t t +=+=. 方法二:把1:3C x y +=代入22:2C y x =得2890x x -+=所以128x x +=, 129x x = 所以()221212*********PA PB x x x x +=+-++-=⨯-+-()()1221128262x x =⨯-+-=⨯-=【举一反三】1.在平面直角坐标系xOy 中,直线的参数方程为3(3x tt y t⎧=⎪⎨⎪=-⎩为参数)数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为cos ρθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点3,0),直线l 与曲线C 交于不同的两点A 、B ,求MA MB ⋅的值. 【答案】(1)直线l 330x y +-=,【总结套路】直线参数t 几何意义运用最终版套路 第一步--化:曲线化成普通方程,直线化成参数方程;第二步--查:检查直线参数t 的系数平方和是否为1,如果是,进行第三步;如果否,则先化1.2202200022(t a b y t a x x t x x at a b t y y bt b y y t a b ±+⎧=+⎪=+⎧+⎪⎪−−−−−→⎨⎨=+⎪⎪⎩=+⎪+⎩前的系数同时除以保证中的的系数为正数为参数) 第三步--代:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第四步--写:写出韦达定理:a c t t a b t t =-=+2121,曲线C 的直角坐标方程(x-2)2+y 2=4; (2)3MA MB ⋅=-【解析】(1)直线l30y +-= 因为曲线C 的极坐标方程为cos ρθ=. 所以曲线C 的直角坐标方程(x-2)2+y 2=4;(2)点在直线l 上,且直线l 的倾斜角为120°,可设直线的参数方程为:12(x t t y ⎧=⎪⎪⎨⎪=⎪⎩为参数)代入到曲线C 的方程得:30t +-=,由韦达定理得12122,t t t t +==-由参数的几何意义知123MA MB t t ⋅==。
直线的参数方程及其应用
![直线的参数方程及其应用](https://img.taocdn.com/s3/m/402e8a1adf80d4d8d15abe23482fb4daa58d1dc7.png)
直线的参数方程及其应用摘要:解析几何是高考考查的重要内容,主要有:直线与圆、直线与椭圆、直线与双曲线、直线与抛物线的位置关系,相交求交点坐标及弦长等。
直线作为解析几何的重要组成部分,直线的参数方程在解析几何中有着较为广泛的应用,且在具体题目中有着较强的的综合性与灵活性。
学生对直线方程的五种形式:点斜式、斜截式、两点式、截距式、一般式较为熟悉,能够熟练运用。
但对直线的参数方程较为陌生,应用起来有着一定的难度。
直线的参数方程作为选修4-4第二章参数方程的重要内容,近几年高考对直线的参数方程的考查力度有所加大,其中以参数方程中参数t的几何意义最为突出。
如何准确理解直线参数方程中参数t的几何意义,并能熟练运用直线的参数方程解题,对学生综合能力的提高及数学核心素养的培养有着十分重要的意义。
因此,本文主要从直线参数方程t的几何意义及其应用几个方面作较为详细的阐述,为直线的参数方程教学提供参考。
关键词:参数方程;倾斜角;普通方程;几何意义;1.直线的普通方程与参数方程北师大版必修二中,学生已经学习过直线方程的五种形式:点斜式、斜截式、两点式、截距式、一般式,并且掌握了这五种方程的应用条件,能够正确根据题目中的已知条件选择适当的方程形式求出直线的方程,并能够相互转化。
直线方程的这五种形式中,尤以点斜式、斜截式、一般式用的最多,也是高考考查的重要内容。
如:已知直线上点P的坐标及直线的斜率k(倾斜角α),常选用点斜式;已知直线斜率和直线在y轴上的截距及判断两直线的位置关系,常选用截距式;求与已知直线平行或垂直的直线方程,点到直线的距离公式,常选用一般式。
与直线的参数方程相对应,我们称直线方程的这五种形式为直线的普通方程。
普通方程是直接给出曲线上点的横纵坐标x和y之间的关系,参数方程是曲线上点的横纵坐标x和y之间引入一个参数。
在平面直角坐标系中,如果曲线上任意一点的坐标x和y都是某个变量t的函数,即,叫作曲线的参数方程。
例谈直线的参数方程标准式与非标准式中参数的几何意义
![例谈直线的参数方程标准式与非标准式中参数的几何意义](https://img.taocdn.com/s3/m/0dd671883169a4517623a329.png)
准式中参数的系数平方和不为1 ,非标准式中斜率
k = b ,标准式中的斜率 k = tana ,由于它们的斜 a
率相等,故 sina = b , cosa = a ,因
a2 + b2
a2 + b2
此我们可以如下从非标准式转化为标准式:
非标准式
=x =y
x0
+
at, (
t
为参数)转化为标准
y0 + bt
=
1+
3 t,
2 ( t 为参数);
y=
2+ 1t 2
(2)
x
=
1+
3t,( t 为参数).
y= 2 + t
y
y
(1,2)M 0
t M1t 2
O 3t x
2
图3
(1,2)
M
0
2t
M t
O 3t x
图4
评析 以上两组直线的参数方程所表示的直线
是相同的,都表示经过定点 M0 (1,2) ,倾斜角 α 为 30 的直线,(1)式中定点 (1,2) 到直线上任一点的
式
=x
=y
x0 + y0 +
a t′, a2 + b2 ( t′ 为参数).
b t′ a2 + b2
例 1 判断以下两组直线的参数方程是否为表
示同一直线.
(1)
x
=
1+
3 t, 2 ( t 为参数);
y=
2+ 1t 2
(2)
x
=
1+
3t,( t 为参数).
y= 2 + t
直线的参数方程及应用
![直线的参数方程及应用](https://img.taocdn.com/s3/m/86cf0fb226fff705cd170a55.png)
直线的参数方程及应用基础知识点击: 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)P 0P=t ∣P 0P ∣=t为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<02、 直线参数方程的一般式过点P 0(00,y x ),斜率为abk =的直线的参数方程是⎩⎨⎧+=+=bty y atx x 00 (t 为参数)点击直线参数方程:一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l 的参数方程. ⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t|① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线l 的参数方程为⎩⎨⎧=+=00y y tx x④ 当t>0时,点P 在点P 0的右侧;⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是一一对应关系.问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 ,则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣问题4:一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3, P 3为P 1、P 2的中点则t 3=221t t + 基础知识点拨:1、参数方程与普通方程的互化 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义. 点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2⎩⎨⎧+=+-= t 313y tx (t.2中,参数t 的1l 的参数方程 例301,3),倾斜角yx ,为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t为参数)和方程⎩⎨⎧+=+= t 331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t331y tx 能否化为标准形式?是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)2、直线非标准参数方程的标准化 一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,. 例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标.点拨:若使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 .基础知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( )A 65°B 25°C 155°D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=ty tx 521511(t 为参数)的斜率和倾斜角分别是( )A) -2和arctg(-2) B) -21和arctg(-21)C) -2和π-arctg2 D) -21和π-arctg 21 4、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 .5、直线l 的方程: ⎩⎨⎧+=+=bty y atx x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣C 2221ba t t +- D ∣t 1∣+∣t 2∣6、 已知直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离. 二、直线参数方程的应用 例6:已知直线l 过点P (2,0),斜率为34,直线l和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求:(1)P 、M 两点间的距离|PM|;(2)M 点的坐标; (3)线段AB 的长|AB| 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比较灵活和简捷. 例7:已知直线l 经过点P (1,-33),倾斜角为3π,(1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便. 例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.点拨:(1)(对称性) 由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程(含P 一个未知量,由弦长AB 的值求得P ).(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。
直线的参数方程
![直线的参数方程](https://img.taocdn.com/s3/m/87988157240c844768eaee87.png)
直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2. (3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C 的直角坐标方程为x2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85. 答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x .(2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。
第四节 直线参数方程t 的几何意义的应用
![第四节 直线参数方程t 的几何意义的应用](https://img.taocdn.com/s3/m/899f7334a8956bec0975e3d8.png)
直线参数方程t 的几何意义的应用(学案)学习目标:1、能明白并理解直线参数方程(标准形式)的几何意义的真正含义; 2、参数t 的几何意义在求距离方面的应用(如:两线段之和、之积等) 重点:能明白并理解直线参数方程(标准形式)的几何意义的真正含义并会应用 难点:能明白并理解直线参数方程(标准形式)的几何意义的真正含义并会应用 一、典例:例1、1)、已知直线l :01=--y x 与抛物线8y 2x =交于A 、B 两点,(1)求线段AB 的长;(2)求点M (2,1)到A 、B 两点的距离之积、MBMA 11+的值。
变式1、已知直线1C 的参数方程为)(,121为参数t t y t x ⎩⎨⎧+=-=,曲线2C 的极坐标方程为θρsin 4=,设曲线相交于两点,求线段AB 的长。
变式2、经过点M (2,1)作直线l ,交椭圆141622=+y x 于A 、B 两点.如果M 恰好是线段AB 的中点,求直线l 的方程。
例2、在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =5cos α,y =sin α(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos )4(πθ+= 2.l 与C交于A ,B 两点.(1)求曲线C 的普通方程及直线l 的直角坐标方程; (2)设点P (0,-2),求|PA |+|PB |的值.变式、在直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ-2cos θ-6sin θ+1ρ=0,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =3+32t (t 为参数).(1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,点P 的坐标为(3,3),求|PA |+|PB |的值.二、巩固练习1. 已知曲线C 的极坐标方程为ρ=21+sin 2θ,过点P (1,0)的直线l 交曲线C 于A ,B 两点.(1)将曲线C 的极坐标方程化为直角坐标方程; (2)求|PA |·|PB |的取值范围.2、在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =2+2sin θ(θ为参数),直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 22221(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)写出直线l 的普通方程以及曲线C 的极坐标方程;(2)若直线l 与曲线C 的两个交点分别为M ,N ,直线l 与x 轴的交点为P ,求|PM |·|PN |的值.3、 已知曲线C 1:⎩⎨⎧x =-4+cos t ,y =3+sin t (t 为参数),C 2:⎩⎨⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 的中点M 到直线C 3:⎩⎨⎧x =3+2t ,y =-2+t(t 为参数)距离的最小值.4、已知曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =t 2,y =2+3t(t 为参数). (1)写出直线l 与曲线C 的普通方程;(2)设曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=x ,y ′=12y 得到曲线C ′,过点F (3,0)作倾斜角为60°的直线交曲线C ′于A ,B 两点,求|FA |·|FB |.答案例1、解:(1)因为直线l 过定点M 且l 的倾斜角为43π,所以设l 的参数方程是)(,43sin 2,43cos 1为参数t t y t x ⎪⎩⎪⎨⎧+=+-=ππ 即)(,222,221为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+=--= 把直线参数方程代入抛物线方程,得0222=-+t t设A 、B 两点的参数分别为21t 、t ,则2,22121-=∙=+t t t t ,由参数t 的几何意义得 1024)2(4)(221221=⨯+=∙-+=t t t t AB(2)由(1)知2221=-=∙=∙t t MB MAMB MA 11+=210212121=∙=∙+=∙+t t AB t t t t MB MA MB MA 变式1、5952 变式2、x+2y-4=0例2、解 (1)由曲线C :⎩⎨⎧x =5cos α,y =sin α(α为参数)消去α,得普通方程x 25+y 2=1.因为直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ+π4=2,即ρcos θ-ρsin θ=2,所以直线l 的直角坐标方程为x -y -2=0.(2)点P (0,-2)在l 上,则l 的参数方程为⎩⎪⎨⎪⎧x =22t ,y =-2+22t(t 为参数),代入x 25+y 2=1整理得3t 2-102t +15=0,由题意可得|P A |+|PB |=|t 1|+|t 2|=|t 1+t 2|=1023.变式、解 (1)曲线C 的极坐标方程为ρ-2cos θ-6sin θ+1ρ=0, 可得ρ2-2ρcos θ-6ρsin θ+1=0,可得x 2+y 2-2x -6y +1=0,曲线C 的普通方程:x 2+y 2-2x -6y +1=0. (2)由于直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =3+32t(t 为参数).把它代入圆的方程整理得t 2+2t -5=0,∴t 1+t 2=-2,t 1t 2=-5,则|P A |=|t 1|,|PB |=|t 2|,∴|P A |+|PB |=|t 1|+|t 2|=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=2 6. ∴|P A |+|PB |的值为2 6. 巩固练习 1、解 (1)由ρ=21+sin 2θ得ρ2(1+sin 2θ)=2. 故曲线C 的直角坐标方程为x 22+y 2=1.(2)由题意知,直线l 的参数方程为⎩⎨⎧x =1+t cos α,y =t sin α(t 为参数).将⎩⎨⎧x =1+t cos α,y =t sin α 代入x 22+y 2=1. 化简得(cos 2α+2sin 2α)t 2+2t cos α-1=0.设A ,B 对应的参数分别为t 1,t 2,则t 1t 2=-1cos 2α+2sin 2α.则|P A |·|PB |=|t 1t 2|=1cos 2α+2sin 2α=11+sin 2α.由于12≤11+sin 2α≤1,2、解(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =22t(t 为参数),消去参数t ,得x +y -1=0.曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =2+2sin θ(θ为参数),利用平方关系,得x 2+(y -2)2=4,则x 2+y 2-4y =0.令ρ2=x 2+y 2,y =ρsin θ,代入得C 的极坐标方程为ρ=4sin θ. (2)在直线x +y -1=0中,令y =0,得点P (1,0). 把直线l 的参数方程代入圆C 的方程得t 2-32t +1=0, ∴t 1+t 2=32,t 1t 2=1.由直线参数方程的几何意义,|PM |·|PN |=|t 1·t 2|=1。
直线和圆的参数方程重要知识
![直线和圆的参数方程重要知识](https://img.taocdn.com/s3/m/83cdf59f9fc3d5bbfd0a79563c1ec5da51e2d670.png)
1.直线的参数方程
(1)过点 M0(x0,y0),倾斜角为 α 的直线 l 的参数方程为
x=x0+tcos α y=y0+t sin α
(t 为参数)
.
重点辅导
1
2 参数的几何意义 直线的参数方程中参数 t 的几何意义是:
直线上动点M到定点M0(x0,y0)的距离就是参数t的绝对值
M• 450 P x
O
的坐标为x, y,根据条件知
台风中心M移动形成的直线
图2 15
l 的方程为
x 300 40t cos1350 ,
y 40t sin1350 ,
t 为参数,t 0
x 300 20 2t ,
即 y 20 2t ,
t 为参数,t 0
重点辅导
18
当点M 300 20 2t,20 2t 在圆O内或在圆O上时,有
t为参数
②
思考 由M 0M te,你能得到直线l的参数 方 程②中 参 数t 的 几 何 意 义 吗?
重点辅导
4
因为e cos,sin ,所以| e | 1.由 M0M
te,得到| M0M || t | .所以,直线上的动点M 到定点M0的距离,等于② 中参数t 的绝对值.
当 0 时,sin 0,所以,直线l的单位
(2)设l与圆 x 2 y2 =4相交于两点A,B,求点P
到A,B两点的距离之积.
解:(1)直线的参数方程是
x=1+
3 2t
y=1+12t
(t 是参数).
重点辅导
7
(2)因为点 A,B 都在直线 l 上,所以可设它们对应的参数为 t1 和 t2,则点 A,B 的坐标分别为 A1+ 23t1,1+12t1,B1+ 23t2,1+21t2. 以直线 l 的参数方程代入圆的方程 x2+y2=4, 整理得到 t2+( 3+1)t-2=0.① 因为 t1 和 t2 是方程①的解,从而 t1t2=-2. 所以|PA|·|PB|=|t1t2|=|-2|=2.
直线的参数方程
![直线的参数方程](https://img.taocdn.com/s3/m/7f9469d6a1c7aa00b42acb01.png)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将直线l的参数方程 (t为参数)代入圆C的方程得:
,其两根 满足
所以,|MA|·|MB| 10分
9.解析:(1)由 得 即
(2)将 的参数方程代入圆C的直角坐标方程,得 ,
即 由于 ,故可设 是上述方程的两实根,
所以 故由上式及t的几何意义得:
.
即 10分
4.(I) ( 为参数, 为倾斜角,且 )
4分
(Ⅱ)
5.解答:⑴ …………5分
⑵将 代入 ,并整理得
设A,B对应的参数为 , ,则 ,
…………10分
6.解:(1)由 得曲线C: ,消去参数t可求得,直线l的普通方程为 .
(2)直线l的参数方程为 (t为参数),代入 ,得 ,设两交点M,N对应的参数分别为t1,t2,则有 , .因为|MN|2=|PM|·|PN|,所以(t1-t2)2=(t1+t2)2-4t1·t2=t1·t2,
(1)求曲线 的直角坐标方程和直线 的普通方程;
(2)设点 ,若直线 与曲线 交于两点 ,且 ,数 的值.
8.在极坐标系中, O为极点,半径为2的圆C的圆心的极坐标为 .(1)求圆C的极坐标方程;
(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线 的参数方程为 (t为参数),直线 与圆C相交于A,B两点,已知定点 ,求|MA|·|MB|。
则 的普通方程为 ,则 的参数方程为: 2分
代入 得 , . 6分
(2) . 10分
考点:(1)参数方程的应用;(2)直线与椭圆相交的综合问题.
3.(【解析】(Ⅰ)将 代入,得 ,配方得, ,表示以 为圆心, 为半径的圆.
(Ⅱ)将曲线 的参数方程代入 的直角坐标方程,得 ,7分由参数的几何意义, ,因为 ,故 ,
9.在直角坐标系xoy中,直线 的参数方程为 (t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为 。
(1)圆C的直角坐标方程;
(2)设圆C与直线 交于点A、B,若点P的坐标为 ,求|PA|+|PB|.
参考答案
1.解析:(Ⅰ)曲线 的极坐标方程 ,可化为 ,即 ;
6.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C: ( >0),已知过点P(-2,-4)的直线l的参数方程为: (t为参数),直线l与曲线C分别交于M,N两点.
(1)写出曲线C和直线l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求 的值.
7.已知曲线 的极坐标方程式 ,以极点为平面直角坐标系的原点,极轴为 轴的正半轴,建立平面直角坐标系,直线 的参数方程是 ,( 为参数).
数学试题(文)
1.在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 ,过点 的直线 的参数方程为 ( 为参数),直线 与曲线 相交于 两点.
(Ⅰ)写出曲线 的直角坐标方程和直线 的普通方程;
(Ⅱ)若 ,求 的值.
2.在平面直角坐标系中,以原点为极点, 轴为极轴建立极坐标系,曲线 的方程为 ( 为参数),曲线 的极坐标方程为 ,若曲线 与 相交于 、 两点.
直线 的参数方程为 ( 为参数),消去参数 ,化为普通方程是 ;
(Ⅱ)将直线 的参数方程代入曲线 的直角坐标方程 中,得 ;设A、B两点对应的参数分别为t1,t2,
则 ;∵ ,∴ ,
即 ;∴ ,解得: ,或 (舍去);∴ 的值为 .
考点:1.参数方程化成普通方程;2.点的极坐标和直角坐标的互化.
2.解析:解(1)曲线 的普通方程为 , ,
4.已知直线 的参数方程为 ,( 为参数, 为倾斜角,且 )与曲线 =1交于 两点.
(I)写出直线 的一般方程及直线 通过的定点 的坐标;(Ⅱ)求 的最大值。
5.已知直线 的参数方程为 (t为参数),曲线C的参数方程为 (θ为参数).⑴将曲线C的参数方程化为普通方程;⑵若直线l与曲线C交于A、B两点,求线段AB的长.
(1)求 的值;(2)求点 到 、 两点的距离之积.
3.已知在直角坐标系 中,曲线 的参数方程为 为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点 为极点, 轴的非负半轴为极轴)中,曲线 的方程为 , .
(Ⅰ)求曲线 直角坐标方程,并说明方程表示的曲线类型;
(Ⅱ)若曲线 、 交于A、B两点,定点 ,求 的最大值.
解得 .12分
7.解析:(1)曲线 的极坐标方程是 ,化为 ,可得直角坐标方程: .
直线 的参数方程是 ,( 为参数),消去参数 可得 .
(2)把 ,( 为参数),代入方程: ,化为: ,
由 ,解得 .∴ .∵ ,∴ ,
解得 .又满足 .∴实数 .
8.试题分析:(1)设 是圆上任意一点,则在等腰三角形COP中,OC=2,OP= , ,而 所以, 即为所求的圆C的极坐标方程。