2016年第十四届希望杯六年级初赛(带答案)

合集下载

六年级希望杯试题及答案

六年级希望杯试题及答案

六年级希望杯试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是正确的?A. 2+3=5B. 3+4=7C. 5+5=10D. 6+6=12答案:C2. 哪个图形是正方形?A. 四边形,四个角都是直角,四条边相等B. 三角形,三条边相等C. 五边形,五条边相等D. 圆形,没有边答案:A3. 下列哪个是最小的质数?A. 1B. 2C. 3D. 4答案:B4. 哪个是正确的分数?A. 3/2B. 2/0C. 4/3D. 1/1答案:A5. 下列哪个是正确的因式分解?A. x^2 - 1 = (x+1)(x-1)B. x^2 - 1 = (x+2)(x-2)C. x^2 - 1 = (x+1)(x+1)D. x^2 - 1 = (x-1)(x-1)答案:A二、填空题(每题2分,共10分)1. 一个数的平方是36,这个数是______。

答案:6或-62. 一个数的倒数是1/4,这个数是______。

答案:43. 一个三角形的底是10厘米,高是5厘米,它的面积是______平方厘米。

答案:254. 一个圆的半径是7厘米,它的周长是______厘米。

答案:44π5. 一个数乘以它自己等于49,这个数是______。

答案:7或-7三、解答题(每题10分,共20分)1. 计算下列表达式的值:(1) (3+2)×2(2) 45÷5+6(3) 9×(3-2)答案:(1) (3+2)×2 = 5×2 = 10(2) 45÷5+6 = 9+6 = 15(3) 9×(3-2) = 9×1 = 92. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。

答案:周长= 2×(长+宽) = 2×(15+10) = 2×25 = 50厘米面积 = 长×宽= 15×10 = 150平方厘米四、应用题(每题15分,共30分)1. 小明有30元钱,他买了3个苹果,每个苹果3元,他还剩多少钱?答案:小明买苹果花费了3×3=9元,所以他还剩下30-9=21元。

(答案解析)2016年第十四届希望杯初赛六年级真题解析

(答案解析)2016年第十四届希望杯初赛六年级真题解析

4
【解析】从条件可知乙和丙一直在工作,总共工作了 12-8=4(时);此时他们的工作总量为
1 1 9 9 1 1 1 6 ( ) 4 ,那么剩下 1 为甲工作的。 (时)=36(分),所以 8 点 36 8 10 10 10 10 10 6 10
分甲就离开了. 18、已知四位数������ ������ ������ ������ ,甲、乙、丙三人的结论如下: 甲:“个位数字是百位数字的一半”; 乙:“十位数字是百位数字的 1.5 倍”; 丙:“四个数字的平均数是 4”; 根据上面的信息可得,������ ������ ������ ������ =_______。 【答案】4462 【解析】四个数字的平均数是 4,那么四个数字和为 16。个位数字是百位的一半,十位数是百位的 1.5 倍,有这几种可能,①当 D=0 时,B=0,C=0;②当 D=1 时,B=2,C=3;③当 D=2 时, B=4,C=6;④当 D=3 时,B=6,C=9。根据四个数字和是 16,可以排除①②④,第③种情况, A=4,那么这四位数为 4462. 19、用棱长为 m 的小正方体拼成一个棱长为 12 的大正方体,现将大正方体的表面(6 个面)涂成 红色,其中只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则 m=_______. 【答案】3 或 6 【解析】小正方体要拼成棱长为 12 的大正方体,那么小正方体棱长必须是 12 的因数,而且不等于 12,那么就有可能是 1、2、3、4、6。要知道只有一个面是红色的在大正方体的 6 个面中间部分, 而两个面是红色的在 12 条棱上且不是顶点的地方。也就是说一条棱长上的刷两个面的小正方体个数 是一个面上刷一个面的小正方体个数的一半。当小正方体棱长是 6,那么一个面红色和两个面红色的 小正方体都为 0;当小正方体棱长为 4,发现一条棱上两个面是红色的有 1 个,而一个面上一个面是 红色的也是 1 个,不满足;当小正方体棱长为 3 时,发现一条棱上两个面是红色的有 2 个,而一个 面上一个面是红色的是 4 个,满足条件;当小正方体棱长为 1 时,发现一条棱上两个面是红色的有 10 个,而一个面上一个面是红色的是 100 个,不满足条件。总结发现 m=3 或 6 都可以。 20、有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从 A 地出发走向 B 地,全程 需要 12 分钟。有一只兔子从 B 地跑步到 A 地,它出发的时候,恰好有一只猴子到达 B 地,在路上 它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候,恰好又有一只猴子从 A 地出发。若 兔子跑步的速度是 3 千米/小时,则 A、B 两地相距_______米。

2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第1试).doc

2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第1试).doc

2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第1试)2016 年第十四届小学希望杯全国数学邀请赛试卷(六年级第 1 试)一、以下每题 6 分,共 120 分 1.(6 分)计算:121 +12 . 2.(6 分)将化成小数,小数部分从左到右第 2016 个数字是. 3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是.,,,, 4.(6 分)已知 a 是 1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= . 5.(6 分)若四位数能被 13 整除,则 A+B+C 的最大值是. 6.(6 分)某自行车前轮的周长是 1 米,后轮的周长是 1 米,则当前轮比后轮多转 25 圈时,自行车行走了米. 7.(6 分)定义 a*b=2{ }+3{ },其中符号{x}表示 x 的小数部分,如{2.016}=0.016.那么,1.4*3.2= .【结果用小数表示】 8.(6 分)下列两个算式中,不同的字母代表不同的数字,相同的字母代表相同的数字,则 x+y+z+u= . 9.(6 分)如图,时钟显示 9:15,此时分针与时针的夹角是度.10.(6 分)如图,在正方形 ABCD 中,点 E 在边 AD 上,AE=3ED,点 F 在边 DC 上,当 S △ BEF 最小时,S △ BEF :S 正方形 ABCD 的值是. 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是. 12.(6 分)3 2014 +4 2015 +5 2016 的个位数字是.(注:a m 表示 m 个 a 相乘) 13.(6 分)一个分数,若分母减 1,化简后得,若分子加 4,化简后得,这个分数是. 14.(6 分)如图是由 5 个相同的正方形拼接而成,其中点 B、P、C 在同一直线上,点 B、N、F 在同一条直线上,若直线 BF 左侧阴影部分的面积是直线 BF右侧阴影部分的面积的 2 倍,则 MN:NP= . 15.(6 分)在如图所示的 1012 的网格图中,猴子 KING 的图片是由若干圆弧和线段组成,其中最大的圆的半径是 4,图中阴影部分的面积是.(圆周率取 3)16.(6 分)若 2 a 3 b 5 c 7 d =252000,则从自然数 a、b、c、d 中任取 3 个组成三位数,这个三位数可被 3 整除并且小于 250 的概率是.17.(6 分)有一项工程,甲单独做需要 6 小时,乙单独做需 8 小时,丙单独做需 10 小时,上午 8 时三人同时开始,中间甲有事离开,如果到中午 12 点工程才完成,则甲离开的时间是上午时分. 18.(6 分)已知四位数,甲、乙、丙三人的结论如下:甲:个位数字是百位数字的一半;乙:十位数字是百位数字的 1.5 倍;丙:四个数字的平均数是 4.根据上面的信息可得: = . 19.(6 分)用棱长为 m 的小正方体拼成一个棱长为 12 的大正方体,现将大正方体的表面(6 个面)涂成红色,其中只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则 m= . 20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从A 地出发走向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰好又有一只猴子从 A 地出发,若兔子跑步的速度是 3 千米/小时,则 A、B 两地相距.2016 年第十四届小学希望杯全国数学邀请赛试卷(六年级第 1 试)参考答案与试题解析一、以下每题 6 分,共 120 分 1.(6 分)计算:121+12 .【分析】把 121 看作 100+21,再两次根据乘法分配律简算即可.【解答】解:121 +12 =(100+21) +12 =100 +21 +12 =52+13 +12 =52+(13+12)=52+25 =52+21 =73.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算. 2.(6 分)将化成小数,小数部分从左到右第 2016 个数字是 5 .【分析】首先找到循环小数的循环节,用 2016 除以循环节找余数即可.【解答】解:依题意可知: = . 20163=672.那么第 2016 个数字就是 5.故答案为:5 【点评】本题考查对周期问题的理解和运用,关键是找到周期和余数,问题解决. 3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是.,,,,【分析】分子是奇数列,分母是公差为 3 的等差数列,根据高斯求和相关公式:末项=首项+(项数﹣1)公差解答即可.【解答】解:分子:1+(100﹣1)2 =1+992 =199 分母:2+(100﹣1)3 =2+993 =299 所以,这列数从左到右第 100 个数是.故答案为:.【点评】本题考查了高斯求和相关公式:末项=首项+(项数﹣1)公差的灵活应用. 4.(6 分)已知 a 是1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= 6 .【分析】0.1 化成分数是,则可得 = ,然后解关于 a 的一元二次方程即可.【解答】解:根据题意可, = 化简可得: a 2 +9a﹣90=0 (a+15)(a﹣6)=0 解得:a=﹣15(舍去),或 a=6,故答案为:6.【点评】本题考查了循环小数与分数的互化,以及因式分解. 5.(6 分)若四位数能被 13 整除,则 A+B+C 的最大值是 26 .【分析】要使 A+B+C 的最大值,最好使 A、B、C 三个字母都是数字 9,然后分 3个 9,2 个 9,1 个 9,来检验即可.【解答】解:首先考虑三个都是 9,即 =2999,检验可得 2999 不能被 13 整除;再考虑两个 9,一个 8,检验可得 2899 能被 13 整除,所以 a+b+c 的最大值为:8+9+9=26;故答案为:26.【点评】解答本题要结合数位知识和数字的特征解答. 6.(6 分)某自行车前轮的周长是 1 米,后轮的周长是 1 米,则当前轮比后轮多转 25 圈时,自行车行走了 300 米.【分析】可以先求得自行车后轮走的圈数,根据题意,每一圈前轮比后轮多走:1 ﹣1 = 米,前轮比后轮多转 25 圈,即多走了 251 = ,则可以求得前轮走的圈数,再用圈数乘以后轮的周长,即可得知自行车行走的路程.【解答】解:根据分析,先求得自行车后轮走的圈数,根据题意,每一圈前轮比后轮多走:1 ﹣1 = 米,前轮比后轮多转 25 圈,即多走了 251 = ,则可以求得后轮走的圈数: =200(圈);自行车行走了:2001 =300 米.故答案是:300.【点评】本题考查了分数和百分数的应用,突破点是:先求自行车后轮走的圈数,再求行程. 7.(6 分)定义 a*b=2{ }+3{ },其中符号{x}表示 x 的小数部分,如{2.016}=0.016.那么,1.4*3.2= 3.7 .【结果用小数表示】【分析】重点理解*{}的意义【解答】解: 1.4*3.2 =2{ }+3{ } =2{0.7}+3{0.7 }=20.7+3 =1.4+2.3 =3.7 故答案是 3.7 【点评】理解新定义内容,结合分数和小数之间的转换计算比较方便. 8.(6 分)下列两个算式中,不同的字母代表不同的数字,相同的字母代表相同的数字,则 x+y+z+u= 18 .【分析】显然,由第一个算式可知,x、y 中肯定有一个为 0,由第二个算式可知,x 不能为 0,故 y=0,又 y﹣x=x,得 x=5,由第二个算式,两个两位数相减和为一位数,则 z=4,再由第一个算式,不难求得其它字母代表的数字,最后求和.【解答】解:根据分析,由第一个算式可知,x、y 中肯定有一个为 0,由第二个算式可知, x 不能为 0,故 y=0,又 y﹣x=x,得 x=5;由第二个算式,两个两位数相减和为一位数,则 z=4;再由第一个算式,u=9,综上,x+y+z+u=5+0+4+9=18.故答案是:18.【点评】本题考查了整数的裂项和拆分,本题突破点是:从两个算式中求得每个字母代表的数字. 9.(6 分)如图,时钟显示 9:15,此时分针与时针的夹角是 172.5 度.【分析】在 9 点整时,分针每转一个大格式是 30 度,分针每分钟转 6 度,分针与时针的夹角是330=90 度,分针每分钟比时针多转(6﹣0.5)=5.5 度的夹角,15 分后,分针每分钟比时针多转 5.515=82.5(度),所以 9 点 15 分,时钟的分针与时针的夹角是:90+82.5=172.5(度);据此解答.【解答】解:根据分析,按顺时针计算: 330=90(度),(6﹣0.5)15 =5.515 =82.5(度),90+82.5=172.5(度);答:时钟显示 9:15,此时分针与时针的夹角是 172.5 度.故答案为:172.5.【点评】本题是钟面追及问题,难点是确定分针比时针每份追及的角度;注意分针每转一个大格式是 30 度,分针每分钟转 6 度. 10.(6 分)如图,在正方形 ABCD 中,点 E 在边 AD 上,AE=3ED,点 F 在边 DC上,当 S △ BEF 最小时,S △ BEF :S 正方形 ABCD 的值是 1:8 .【分析】按题意,显然 F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF的面积最小,此时不难求得 S △ BEF :S 正方形 ABCD 的值.【解答】解:根据分析,F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF 的面积最小,故如图:∵AE=3EDS △ BEF=S △ BDE== =S △ BEF : S 正方形 ABCD=1 : 8 故答案是:1:8 【点评】本题考查了三角形的面积,突破点是:利用 BEF 的面积的最小值,求得S △ BEF :S 正方形 ABCD 的值. 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是 57 .【分析】根据题意可得,47+m=53+n=71+p,则 m=71+p﹣47,n=71+p﹣53,然后代入式子 m+n+p,讨论 p 的取值即可求出最小值.【解答】解:根据题意可得, 47+m=53+n=71+p,则 m=71+p﹣47=24+p,n=71+p﹣53=18+p,代入式子 m+n+p 可得, m+n+p =71+p﹣47+71+p﹣53+p =42+3p p=2、3、5、7 偶质数 2 不和题意舍去;当 p=3 时,n=18+p=18+3=21,21 不是质数,舍去;当 p=5 时,n=18+p=18+5=23,m=24+5=29,21、29 都是质数符合题意;所以,m+n+p 的最小值是: m+n+p =42+3p =42+35 =42+15 =57.故答案为:57.【点评】本题考查了极值问题与质数问题的综合应用,关键是统一到一个未知数上进行列举讨论.12.(6 分)3 2014 +4 2015 +5 2016 的个位数字是 8 .(注:a m 表示 m 个 a 相乘)【分析】可以分别求出 3 2014 、4 2015 、5 2016 的个位数字,再求和,即可得出原式结果的个位数字.【解答】解:根据分析,先求 3 2014 的个位数字,∵3 1 =3,3 2 =9,3 3 =27,3 4 =81,3 5 =243,显然 3 n 个位数为 3、9、7、1 按周期 4 循环出现,而 3 2014 =3 503*4+ 2 ,3 2014的个位数字为 9;然后求 4 2015 的个位数字,∵4 1 =4,4 2 =16,4 3 =64,4 4 =256,45 =1024,显然 4 n 个位数为 4、6 按周期 2 循环出现,而 4 2015 =4 1007 2 + 1 ,4 2015的个位数字为 4;最后求 5 2016 的个位数字,∵5 1 =5,5 2 =25,5 3 =125,5 4 =625,显然 5 n 个位数均为 5,5 2016 的个位数字为 5, 3 2014 +4 2015 +5 2016 的个位数字=9+4+5=18,故个位数字为:8 故答案是:8.【点评】本题考查了乘积的个位数,突破点是:利用乘积个位数的周期性求得原式的个位数. 13.(6 分)一个分数,若分母减 1,化简后得,若分子加 4,化简后得,这个分数是.【分析】设原来这个分数是,若分母减去 1,就变成,这与相等,若分子加 4,这个分数就变成了,这与相等,由此列出方程进行求解,得出x 和 y 的取值,从而得出这个分数.【解答】解:设原来这个分数是,则: = 那么 3y=x﹣1 x=3y+1; =x=2y+8,则: 3y+1=2y+8 3y﹣2y=8﹣1 y=7 x=27+8=22 所以这个分数就是.故答案为:.【点评】解决本题先设出数据,根据分数的变化情况找出等量关系列出方程求解即可. 14.(6 分)如图是由 5 个相同的正方形拼接而成,其中点 B、P、C 在同一直线上,点 B、N、F 在同一条直线上,若直线 BF 左侧阴影部分的面积是直线 BF右侧阴影部分的面积的 2 倍,则 MN:NP= 1:5 .【分析】可以将图形进行分割和拼接,最后得出两个长方形的面积之比,从而线段之比不难求得.【解答】解:根据分析,设正方形的边长为a,如图,过 P 点作 PDBD 交 BD于 D,∵OF=AB,PE=DP,S △ ONF =S △ ABN ,S △ PEC =S △ BDP ,左边阴影部分的面积=S △ ONF +S 四边形 BNMG =S 四边形 ABGM ;右边阴影部分的面积=S △ ABP +S △ PEC =S 矩形 APDB ,由题意,左边阴影部分的面积=2右边阴影部分的面积,(AMAB):(APAB)=2:1AM:AP=2:1故 AP= AM=EC,FC=EF+EC=2.5a,又因 NP= FC= ,故 MN=MP﹣NP=1.5a﹣ = a,MN:NP= a: =1:5,故答案为:1:5.【点评】本题考查了三角形的面积,突破点是:利用线段的比例关系,求得面积比,再求得线段的比例. 15.(6 分)在如图所示的 1012 的网格图中,猴子 KING 的图片是由若干圆弧和线段组成,其中最大的圆的半径是 4,图中阴影部分的面积是 21.5 .(圆周率取 3)【分析】按题意,可以将猴子 KING 的图中空白部分分割,而阴影部分的面积可以用圆的面积减去中间空白部分的面积,中间空白部分由一个长方形和两个半圆,以及两个圆组成.【解答】解:由图可知,圆的直径有 8 个方格,故可得:每个小方格的边长=88=1, a 和 b 部分的面积=2 1 2 = = =4.5;c 和d 部分的面积= =4=43=12;矩形的面积=25=10;最大的圆的面积=4 2 =163=48,故阴影部分的面积=最大的圆的面积﹣a 和 b 部分的面积﹣c 和 d 部分的面积﹣c和 d 之间的矩形的面积 =48﹣4.5﹣12﹣10=21.5.故答案是:21.5.【点评】本题考查了圆的面积,突破点是:利用大圆的面积减去中间空白部分的面积即可求得阴影部分的面积. 16.(6 分)若 2 a 3 b 5 c 7d =252000,则从自然数 a、b、c、d 中任取 3 个组成三位数,这个三位数可被3 整除并且小于 250 的概率是.【分析】首先分析将数字 252000 分解质因数求出 abcd 分别代表的数字是多少,同时枚举法即可.【解答】解:首先将 252000 分解质因数为 73 2 2 5 5 3 a=5,b=2,c=3,d=1.组成三位数共有 =432=24 个.小于 250 的数字有 1 开头的数字共 123,125,132,135,152,153 共 6 种.能被 3 整除的数有 123,132,153,135.数字 2 开头的有 213,215,231,235 共 4 个.3 的倍数有 213,231 共 2 种.概率为 = 故答案为:.【点评】本题考查对概率的理解和运用,关键问题是找到组成的三位数共有多少个.问题解决. 17.(6 分)有一项工程,甲单独做需要 6 小时,乙单独做需 8 小时,丙单独做需 10 小时,上午 8 时三人同时开始,中间甲有事离开,如果到中午 12 点工程才完成,则甲离开的时间是上午 8 时 36 分.【分析】甲乙丙的工作时间知道,工作效率即可知道.乙丙的工作时间已知,工作量可求.剩余的总量就是甲的总量,甲的效率已知,可以求出甲的工作时间.【解答】解:甲乙丙的效率分别为,乙丙工作共 4 小时,()4= ,甲工作总量为:1﹣ = ,甲的工作时间: = (小时),甲工作时间为:(分),甲离开的时间为 8:36.故答案为:8:36.【点评】此题为典型的分人工程,可根据乙丙工作效率和时间求出工作总量.再根据工作总量差求出甲的总量和所求的工作时间,问题解决. 18.(6 分)已知四位数,甲、乙、丙三人的结论如下:甲:个位数字是百位数字的一半;乙:十位数字是百位数字的 1.5 倍;丙:四个数字的平均数是 4.根据上面的信息可得: = 4462 .【分析】可以根据每个人的话判断 ABCD 的值,由甲的话可知,百位上的数字必为偶数,由三人的话可得出关系式,再求解,分别求得ABCD 的值.【解答】解:根据分析,由甲的话可知,百位上的数字必为偶数,由三人的话可得出关系式,A+B+C+D=44A+2D+21.5D+D=16 A=16﹣6D;∵1A9,116﹣6D9 ,又∵D 为非负整数,D=2,A=16﹣62=4;综上,B=22=4,C=1.54=6,=4462 故答案是:4462.【点评】本题考查位置原则,突破点是:利用千位上的数字的取值范围,确定 A的值,再判断其它的数字. 19.(6 分)用棱长为 m 的小正方体拼成一个棱长为 12 的大正方体,现将大正方体的表面(6 个面)涂成红色,其中只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则 m= 3 .【分析】用棱长为 m 的小正方体拼成一个棱长为 12的大正方体,则大正方体的每条棱上含有 12m 个小正方体,可设 12m=n,即大正方体的每条棱上含有 n 个小正方体,由于一面涂色的处在每个面的中间,有 6(n﹣2) 2 个,两面涂色的处在 12 条棱的中间上,有 12(n﹣2)个,根据只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,列方程求得n的值,进而求得 m 的值即可.【解答】解:由题意知,大正方体的每条棱上含有 12m 个小正方体,设 12m=n,即大正方体的每条棱上含有 n 个小正方体, 6(n﹣2) 2 =12(n﹣2)(n﹣2) 2 =2(n﹣2) n﹣2=2 n=4 因为 12m=4 所以 m=3 答:m=3.故答案为:3.【点评】根据立体图形的知识可知:三个面均为红色的是各顶点处的小正方体,在各棱处,除去顶点处的正方体的有两面红色,在每个面上,除去棱上的正方体都是一面红色,所有的小正方体的个数减去有红色的小正方体的个数即是没有涂色的小正方体. 20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从A 地出发走向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰好又有一只猴子从 A 地出发,若兔子跑步的速度是 3 千米/小时,则 A、B 两地相距 300 米.【分析】首先得出兔子的速度3千米/时=50米/分钟;设猴子的速度是x 米/分钟,则 AB 相距 12x 米,从出发到达 A 地,兔子相当于碰到 6 只猴子出发,每只猴子时间相差 3 分钟,那么每两只猴子之间的路程就是 3x 米,这个路程除以猴子和兔子的速度和,就是两只猴子之间兔子需要的时间,再乘 6,就是兔子行驶的总时间;用两地之间的总路程 12x 米除以兔子的速度,也是兔子行驶的总时间,由此列出方程求出兔子行驶的时间,再乘兔子的速度,即可求出 AB之间的距离.【解答】解:3 千米/时=50 米/分设猴子的速度是 x 米/分,则: 6= 解得:x=25 1225=300(米)答:A、B 两地相距 300 米.故答案为:300 米.【点评】此题解答的关键在于分别表示出出兔子跑步的时间,再根据等量关系列出方程求解.。

第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2=.2.(5分)已知 a=0.5,b=,则a﹣b是的倍.3.(5分)若+++<,则自然数x的最小值为.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是时;分.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为.7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是.8.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是.(π=3)10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球个.12.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧分钟.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2= 6 .【解答】解:3×1.3+3÷2=3.75×1.3+3×=0.375×13+3×=×13+3×=(13+3)×=16×=6故答案为:6.2.(5分)已知 a=0.5,b=,则a﹣b是的13 倍.【解答】解:(a﹣b)÷=(0.5﹣)÷=(﹣)÷=÷=13;故答案为:13.3.(5分)若+++<,则自然数x的最小值为 3 .【解答】解:+++<+++<<x>≈2.6因为x是自然数,所以x的最小值为3.答:自然数x的最小值为3.故答案为:3.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=0.48 .【解答】解:依据题意得:0.9:0.6=0.6:x0.9x=0.6×0.60.9x=0.36x=0.36÷0.9x=0.4;:=:yy=×y=÷y=0.08x+y=0.4+0.08=0.48.故答案为:0.48.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是9 时;57 分.【解答】解:由题意可知A的效率是,B的效率是,C的效率是,A工作27分钟,转换成小时单位是,A工作量是=,剩余工作总量为,三个人的效率和是,工作时间为:(小时),在8:27分再加上1.5小时是9:57分.故答案为:9:57.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为35% .【解答】解:数字1开始的质数有11,13,17数字2开始的质数有23数字3开始的数字有31,37数字5开始的质数有53共计7个质数.组成两位数的情况有1开始的后面可以是1,2,3,5,7共5种.2,3,5开始的分别有5种.计算5+5+5+5=4×5=20种%=35%故答案为:35%7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是256410 .【解答】解:依题意可知:(+)×8=整理得:=×4992;7995与4992有公因数39,可以约分.×205=×128;此时205和128互质,说明是205的倍数,是128的倍数,根据题目要求本身要为偶数,且这六个数不可以重复.当为205的2倍时满足.故答案为:2564108.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.【解答】解:依题意可知:设正方形的边长为12.正方形的面积为12×12=144.阴影的面积为:S=144﹣(12×8+4×9+3×12)=60.△BEF的面积与正方形ABCD的面积比值为60:144化简为5:12.故答案为:.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是 4.5 .(π=3)【解答】解:见上图,根据分析可得,大等腰三角形面积为:2×(2×2)÷2=4,半圆面积为:3×(2÷2)2÷2=1.5,小等腰三角形面积为:2×(2÷2)÷2=1,弓形面积为:1.5﹣1=0.5,整体阴影面积为:4+0.5=4.5,答:图中的阴影部分面积是 4.5.故答案为:4.5.10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.【解答】解:依题可知设这三个数分别为,因为,则abc=60.将60分解60=2×2×3×5,因为三个分数均为真分数,故c=3,a=5,b=4.所以最大是.综上所述最大分数是.故答案为:.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球 6 个.【解答】解:根据分析,26盒分成:26÷4=6(组)…2(个).∵任意相邻的 4 个盒子中乒乓球的个数和都是 15,所以处于位置1,5,9…25 的盒子里球的个数均为 4.最右边的盒子中有乒乓球:100﹣(15×6+4)=6(个).故答案是:612.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧150 分钟.【解答】解:根据分析,21﹣16=5,15﹣11=4,则:两段蜡烛的比为21:16=(21×4):(16×4)=84:64;18分钟后:15:11=(15×5):(11×5)=75:55,长蜡烛燃烧了:84﹣75=9份,段蜡烛也燃烧了:64﹣55=9份,每份燃烧了:18÷9=2分钟,较长的蜡烛还能燃烧:75×2=150分钟.故答案是:150.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.【解答】解:(1)根据观察,图①中有12小正方体;图②有1+22个小正方体;图③有1+22+32个小正方体;图④有1+22+32+42个小正方体;图⑤有1+22+32+42+52个小正方体;图⑥有1+22+32+42+52+62=91个小正方体,故答案是:91.(2)堆积体的表面积包括:前后2面、左右2面和上下2面.图⑩中有12+22+32+42+52+62+72+82+92+102=385个小正方体,表面积为:2×(1+2+3+…+10)+2×(1+2+3+…+10)+2×10×10=420.故答案为:420.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)【解答】解:根据分析,设x的整数部分为a,a≥1;x的小数部分为b,0≤b<1,依题意:ab+a+b=2b+9,整理得:(a﹣1)(b+1)=8,∵1≤b+1<2,∴4<a﹣1≤8,且a﹣1为整数.①当a﹣1=8,即a=9,b=0,x=9;②当a﹣1=7,a=8,b=,x=;③当a﹣1=6,即a=7,b=,x=;④当a﹣1=5,即a=6,b=,x=.综上,方程的解为:x=9;x=;x=;x=.故答案是:x=9;x=;x=;x=.15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【解答】解:(1)根据题意,阿春是第1个取糖果的,因为阿美取了剩下的全部糖果,所以阿美是最后1个取糖果的;因为阿天和阿丽不能在倒数第2的位置,否则跟最后1个的个数相同,所以阿真是倒数第2个取糖果的,所以阿真是第4个取糖果的.(2)若使这盒糖果最少,则倒数第1个人取1颗,则倒数第2个人取:1×(÷)=2(颗)1+2+(1+2)+(1+2+3)+4=3+3+6+4=16(颗)答:这盒糖果最少有16颗.16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【解答】解法一:在离山顶 150 米处相遇时,两人的路程差为200米,甲、乙的速度比为8:7,因此甲上山路程为×8=1600,这1600米中有50米是假设继续上山的结果,因此山底到山顶的路程=1600﹣50=1550米.解法二:设甲上山的速度是x,则下山的速度是3x.乙上山的速度是y,则下山的速度是3y,山顶到山底的距离为s.,由①得,由②得,∴,∴s=1550(米),综上所述答案为1550米.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:47:00;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

2020年第十四届小学数学“梦想杯”全国数学邀请赛试卷(六年级第1试)

2020年第十四届小学数学“梦想杯”全国数学邀请赛试卷(六年级第1试)

故答案为:5
3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是

,,, , …
【解答】解:分子:1+(100﹣1)×2 =1+99×2 =199 分母:2+(100﹣1)×3
第 4页(共 14页)
=2+99×3 =299 所以,这列数从左到右第 100 个数是 .
故答案为: .
4.(6 分)已知 a 是 1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= 6 .
北京天昭新闻网 ## 北京天昭新闻网,服务于北京本地用户的新闻资讯网站,为全球用户 24 小时提供全面及时的中文 新闻资讯。
第 6页(共 14页)
宁波头条新闻 ## 宁波头条新闻随时随地掌握宁波本地事、宁波头条、宁波新闻、宁波资讯、等宁波本地生活信息服务!
个数相等,则 m=

20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从 A 地出发走
向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只
猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰
【解答】解:根据分析,F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF 的面 积最小,故 如图:
∵AE=3ED ∴S△BEF=S△BDE=


∴S△BEF:S 正方形 ABCD=1:8 故答案是:1:8 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三 张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是 57 .
. .

2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2=.2.(5分)已知a=0.5,b=,则a﹣b是的倍.3.(5分)若+++<,则自然数x的最小值为.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知0.6是0.9和x的比例中项,是和y的比例中项,则x+y=.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是时;分.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B 盘的数字是b,则两位ab是质数的概率为.7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是.8.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE=2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是.(π=3)10.(5分)已知三个最简真分数的分母分别是6,15 和20,它们的乘积是,则在这三个最简真分数中,最大的数是.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球个.12.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧分钟.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2=6.【分析】先把带分数化成小数,除法变成乘法,再根据积不变的规律与乘法的分配律简算.【解答】解:3×1.3+3÷2=3.75×1.3+3×=0.375×13+3×=×13+3×=(13+3)×=16×=6故答案为:6.【点评】完成本题要注意分析式中数据的特征,运用合适的简便方法计算.2.(5分)已知a=0.5,b=,则a﹣b是的13倍.【分析】把a=0.5,b=代入a﹣b求出a和b的差,再除以即可.【解答】解:(a﹣b)÷=(0.5﹣)÷=(﹣)÷=÷=13;故答案为:13.【点评】本题考查了含字母式子的求值,以及“求一个数是另一个数的几倍,用除法计算”.3.(5分)若+++<,则自然数x的最小值为3.【分析】先把不等式的右边通分,然后求出不等式的解集,再根据x是自然数解答即可.【解答】解:+++<+++<<x>≈2.6因为x是自然数,所以x的最小值为3.答:自然数x的最小值为3.故答案为:3.【点评】本题考查了极值和求不等式的解集的综合应用.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知0.6是0.9和x的比例中项,是和y的比例中项,则x+y=0.48.【分析】依据题意可知,比例中项是指比例中两个内项相同,由此可列出比例方程0.9:0.6=0.6:x,以及:=:y,解这两个比例方程,分别求出x和y 的值,再相加即可.【解答】解:依据题意得:0.9:0.6=0.6:x0.9x=0.6×0.60.9x=0.36x=0.36÷0.9x=0.4;:=:yy=×y=÷y=0.08x+y=0.4+0.08=0.48.故答案为:0.48.【点评】解决本题先理解比例中项的含义,根据题意列出比例方程,再解方程求解.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是9时;57分.【分析】首先根据图示写出效率,求出A的工作总量,剩余的是三人合作.求出合作的时间.在从8:27加上三人合作的时间即可.【解答】解:由题意可知A的效率是,B的效率是,C的效率是,A工作27分钟,转换成小时单位是,A工作量是=,剩余工作总量为,三个人的效率和是,工作时间为:(小时),在8:27分再加上1.5小时是9:57分.故答案为:9:57.【点评】工程问题的典型分人工程,先求出一人的工作总量,剩余的工作总量就是合作的.用工作总量除以效率和即可求出工作时间.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B 盘的数字是b,则两位ab是质数的概率为35%.【分析】概率就是出现的情况和全部情况的比值.需要我们知道出现质数的所有可能性,还需要知道这些数字一共可以组成数字的可能性.a在前b在后.【解答】解:数字1开始的质数有11,13,17数字2开始的质数有23数字3开始的数字有31,37数字5开始的质数有53共计7个质数.组成两位数的情况有1开始的后面可以是1,2,3,5,7共5种.2,3,5开始的分别有5种.计算5+5+5+5=4×5=20种%=35%故答案为:35%【点评】找到所有质数的关键在于按照顺序进行枚举.找出现所有可能性时可直接用乘法4×5.最后计算时我们写成百分数不要忘记乘100%.或可以写成分数.7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是256410.【分析】首先按照位值原则进行分拆,列出等式再约分找到符合题意的数字即可.【解答】解:依题意可知:(+)×8=整理得:=×4992;7995与4992有公因数39,可以约分.×205=×128;此时205和128互质,说明是205的倍数,是128的倍数,根据题目要求本身要为偶数,且这六个数不可以重复.当为205的2倍时满足.故答案为:256410【点评】本题考查凑数谜的理解和运用,关键问题是利用位值原则进行拆分列出等式.8.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE=2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.【分析】首先分析题中的边长对比值没有影响,那么可根据三等分和四等分点设边长为12.求出阴影面积做比即可.【解答】解:依题意可知:设正方形的边长为12.正方形的面积为12×12=144.阴影的面积为:S=144﹣(12×8+4×9+3×12)=60.△BEF的面积与正方形ABCD的面积比值为60:144化简为5:12.故答案为:.【点评】本题考察对三角形面积的理解和运用,关键是找到边长不影响比值.问题解决.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是 4.5.(π=3)【分析】将右边阴影部分补到左边对应位置上,可以补成大等腰三角形,面积为2×(2×2)÷2=4;还有两个弓形,刚好是半圆减去小等腰三角形的面积,半圆面积为3×(2÷2)2÷2=1.5,小等腰三角形面积为2×(2÷2)÷2=1,那么弓形面积为1.5﹣1=0.5;从而求出整体阴影面积为4+0.5=4.5,据此解答即可.【解答】解:见上图,根据分析可得,大等腰三角形面积为:2×(2×2)÷2=4,半圆面积为:3×(2÷2)2÷2=1.5,小等腰三角形面积为:2×(2÷2)÷2=1,弓形面积为:1.5﹣1=0.5,整体阴影面积为:4+0.5=4.5,答:图中的阴影部分面积是 4.5.故答案为:4.5.【点评】本题关键是在保证面积不变的情况下通过旋转平移使的问题简单化.解答这种类型的问题往往利用“割补结合”等积变形:观察图形,把图形分割,再进行移补,形成一个容易求得的图形.10.(5分)已知三个最简真分数的分母分别是6,15 和20,它们的乘积是,则在这三个最简真分数中,最大的数是.【分析】,得到abc=60,然后分解质因数进行解答.【解答】解:依题可知设这三个数分别为,因为,则abc=60.将60分解60=2×2×3×5,因为三个分数均为真分数,故c=3,a=5,b=4.所以最大是.综上所述最大分数是.故答案为:.【点评】因数和倍数结合分解质因数综合考虑.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球6个.【分析】显然,可以分成6组,还多2盒,故除去最左边和最右边的两盒外刚好有6组,每组4盒,这6组的乒乓球总数不难算出,最右边和最左边的盒子里乒乓球总数也能算出,从容易算得最右边盒子里乒乓球个数.【解答】解:根据分析,26盒分成:26÷4=6(组)…2(个).∵任意相邻的 4 个盒子中乒乓球的个数和都是15,所以处于位置1,5,9…25 的盒子里球的个数均为4.最右边的盒子中有乒乓球:100﹣(15×6+4)=6(个).故答案是:6【点评】本题考查了数字和问题,突破点是:将所有盒子分组,求出中间盒子乒乓球的总数,再求最右边的乒乓球数量.12.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧150分钟.【分析】按题意,可以把比换一下形式,然后根据燃烧的时间,算出每一份燃烧的时间,即可求得剩下的蜡烛能燃烧的时间.【解答】解:根据分析,21﹣16=5,15﹣11=4,则:两段蜡烛的比为21:16=(21×4):(16×4)=84:64;18分钟后:15:11=(15×5):(11×5)=75:55,长蜡烛燃烧了:84﹣75=9份,段蜡烛也燃烧了:64﹣55=9份,每份燃烧了:18÷9=2分钟,较长的蜡烛还能燃烧:75×2=150分钟.故答案是:150.【点评】本题考查了比例的应用,本题突破点是:先算出每一份蜡烛燃烧的时间,再算剩下的蜡烛还能燃烧的时间.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.【分析】(1)先找到小正方体个数的规律,不难求出图⑥的正方体的个数;(2)先推测出图⑩所示的立体图形的小正方体的个数,再求表面积.【解答】解:(1)根据观察,图①中有12小正方体;图②有1+22个小正方体;图③有1+22+32个小正方体;图④有1+22+32+42个小正方体;图⑤有1+22+32+42+52个小正方体;图⑥有1+22+32+42+52+62=91个小正方体,故答案是:91.(2)堆积体的表面积包括:前后2面、左右2面和上下2面.图⑩中有12+22+32+42+52+62+72+82+92+102=385个小正方体,表面积为:2×(1+2+3+…+10)+2×(1+2+3+…+10)+2×10×10=420.故答案为:420.【点评】本题考查了正方体的表面积,本题突破点是:根据图找到规律分别求出小正方体的个数和表面积.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)【分析】可以把整数部分和小数部分分开,根据两部分的范围不同,分别取值,整理方程,即可得到方程的解.【解答】解:根据分析,设x的整数部分为a,a≥1;x的小数部分为b,0≤b <1,依题意:ab+a+b=2b+9,整理得:(a﹣1)(b+1)=8,∵1≤b+1<2,∴4<a﹣1≤8,且a﹣1为整数.①当a﹣1=8,即a=9,b=0,x=9;②当a﹣1=7,a=8,b=,x=;③当a﹣1=6,即a=7,b=,x=;④当a﹣1=5,即a=6,b=,x=.综上,方程的解为:x=9;x=;x=;x=.故答案是:x=9;x=;x=;x=.【点评】本题考查了不定方程的分析求解,突破点在于:把方程化成只含有两个未知数的方程,再根据整数范围和小数范围求值.15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【分析】(1)根据题意,阿春是第1个,阿美是最后1个;因为大家取的糖果个数都不同,所以阿天和阿丽不能在倒数第2的位置,否则跟倒数第1的个数相同,所以阿真是倒数第2个,即是第4个取糖果的.(2)若使这盒糖果最少,则倒数第1个人取1颗,倒数第2个人取1×(÷)=2颗,倒数第3个人取1+2=3颗,倒数第4人取1+2+3=6颗,所以第1个人取4颗时,糖果最少.【解答】解:(1)根据题意,阿春是第1个取糖果的,因为阿美取了剩下的全部糖果,所以阿美是最后1个取糖果的;因为阿天和阿丽不能在倒数第2的位置,否则跟最后1个的个数相同,所以阿真是倒数第2个取糖果的,所以阿真是第4个取糖果的.(2)若使这盒糖果最少,则倒数第1个人取1颗,则倒数第2个人取:1×(÷)=2(颗)1+2+(1+2)+(1+2+3)+4=3+3+6+4=16(颗)答:这盒糖果最少有16颗.【点评】此题主要考查了逻辑推理问题,考查了分析推理能力的应用,要熟练掌握,在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件.16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【分析】解法一:甲乙在离山顶150米处相遇,即甲已经下山150米,由于下山速度是上山的3倍,相当于甲继续上山50米,即两人上山路程差为200米;设上山路程为1,则下山路程为,当甲回到山底时,走的路程为1+=,乙下到半山腰时,走的路程为1+=,则甲、乙的速度比为:=8:7,结合路程差可求得上山路程;解法二:分别表示出甲乙上山和下山的速度,在150米处相遇时两人的时间相等即可列出等式关系.在根据甲到山底时,乙在半山腰,两人时间相等列等式.【解答】解法一:在离山顶150 米处相遇时,两人的路程差为200米,甲、乙的速度比为8:7,因此甲上山路程为×8=1600,这1600米中有50米是假设继续上山的结果,因此山底到山顶的路程=1600﹣50=1550米.解法二:设甲上山的速度是x,则下山的速度是3x.乙上山的速度是y,则下山的速度是3y,山顶到山底的距离为s.,由①得,由②得,∴,∴s=1550(米),综上所述答案为1550米.【点评】列方程关键是找到等量关系.根据时间相等列方程.解方程时考察计算能力,需要多加练习.。

2016年第14届希望杯复赛六年级数学试题(含答案解析)

2016年第14届希望杯复赛六年级数学试题(含答案解析)

2016年第14届六年级希望杯复赛试题一、 填空题(每小题5分,共60分)1.计算:32233.1433÷+⨯ 【答案】 6【解析】【答案】 13【解析】1378617831-21781310.5=⨯=⨯=÷-=)()(63138383313838331.33.753833.13.75=+⨯=⨯+⨯=⨯+⨯=÷+⨯=)(32233.1433÷+⨯781÷-)(b a ()倍。

的是则已知781,31,0.52.b a b a -==()。

的最小值为,则自然数若x x 251413121 3.<+++【答案】 3【解析】().y x y 21510.90.64124221,::4.=+==的比例中项,则和是的比例中项,和是已知的比例中项。

和是,则::的比例中项;如和称为那么定义:如果x c a b c b b a 【答案】 0.48【解析】0.48.y x 0.08;y 0.4,解比例得:x =+==3.236677226077601260156020603051413121 最小值为,故因为x 〈〈=+++=+++;0.60.60.9x ::依题意得:=;y 515121::=【答案】 9 ; 57【解析】6.如图2,A 、B 盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a ,指针指向B 盘的数字是b ,则两位数ab 是质数的概率为________.【答案】35%.【解析】组成的两位数一共有4x5=20种,其中质数有11、13、17、23、31、37、53共7个,所有7÷20 x100%=35%.()()分。

时时刻是则他们完成这项工作的加入,三人一起工作,和分钟后,开始工作,:上午所示,若时间如图所用的三人单独完成一项工程C B A C B A 270081,,.5分时分时分时)()()的时间:(剩余工作三人合作需要分钟完成的工作量:;工效:工效:,工效:知:由图579301278h 1.5514161403-14036027612751,41611=+=++÷=⨯A C B A7、在算式”就是好希望杯希望杯就是好“58⨯=⨯中,不同的汉字代表不同的数字,则”希望杯就是好“所代表的六位偶数是_______。

2016年希望杯初赛真题及解析(六年级)

2016年希望杯初赛真题及解析(六年级)

9.
如图 1,时钟显示的时间是 9:15,此时分针与时针的夹角是__________度. 思齐小红老师解析: 【考点】钟表问题; 【解析】15 分钟内时针走了 0.5 15 7.5 (度),夹角: 180 7.5 172.5 (度). 【答案】172.5;
10. 如图 2,在正方形 ABCD 中,点 E 在边 AD 上,AE=3ED,点 F 在边 DC 上,当
小书灯家长社区让家长无忧·让学习无忧 5 / 6
资料下载、家长交流、信息分享权威论坛:
19. 用棱长为 m 的小正方形拼成一个棱长为 12 的大正方形,现将大正方形的表面(6 个面)涂成红色,其中 只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则 m=________. 思齐小红老师解析: 【考点】正方体与长方体应用; 【解析】每边正方体的个数为: 【答案】3;
资料下载、家长交流、信息分享权威论坛:
5.
若四位数 2 ABC 能被 13 整除,则 A B C 的最大值是__________. 思齐小红老师解析: 【考点】数的整除; 【解析】因 1001 7 1113 ,能被 13 整除的特征: “末三位数字组成的数”与“末三位以前的数字组 成的数” 之差能被 13 整除;ABC 2 是 13 的倍数,ABC 2 最大为 988,ABC 可以是 990, 977,964,…… 数字和比 9+7+7 大的有:9、7、8 与 9、8、8 与 9、8、9 和 9、9、9,百位是 9 的排除,百位是 8 有 899, (899 2) 13 897 13 69 ,则 8 9 9 26 . 【答案】26;
13 21 12 25 25 13 13 12 100 21 21 25 25 25 52 21 (100 21) 73

(完整)“希望杯”全国小学六年级数学大赛决赛题附答案[C]

(完整)“希望杯”全国小学六年级数学大赛决赛题附答案[C]

“希望杯”全国数学大赛决赛题(小六)附答案(时间:90分钟 满分:120分)一、填空题。

(每题6分,共72分。

)1.计算: 4.5-13×8.13.6= 。

2.计算:34 +316 +364 +3256 +31024 +34096= 。

3.若10.5x -10=36-3y =14+ ,则x = ,y = 。

4.有一类自然数,从第四个数字开始每个数字都恰好等于它前面三个数字的和,直到不能再写为止,如2169,21146等等。

那么这类数中最大的一个数是____________。

5.下面是一串字母的若干次变换。

A B C D E F G H I J第一次变换后为 B C D A F G H I J E 第二次变换后为 C D A B G H I J E F 第三次变换后为 D A B C H I J E F G 第四次变换后为 A B C D I J E F G H……………………………………………………x 214至少经过次变换后才会再次出现“A、B、C、D、E、F、G、H、I、J”。

6.把一个棱长为2厘米的正方体在同一平面上的四条棱的中点用线段连接起来(如右图所示),然后再把正方体所有顶点上的三角锥锯掉。

那么最后所得的立方体的体积是立方厘米。

7.有一列数,第一个数是5,第二个数是2,从第三个数起每个数都等于它前面两个数中较大数减去较小数的差。

则这列数中前100个数之和等于。

8.在钟面上,当指针指示为6︰20时,时针与分针所组成的较小的夹角为度。

9.小明把五颗完全相同的骰子拼摆成一排(如右图所示),那么这五颗骰子底面上的点数之和是。

10. 有四个房间,每个房间里不少于4人。

如果任意三个房间里的总人数不少于14人,那么这四个房间里的总人数至少有人。

11.如果用符号“[a]”表示数字a的整数部分,例如[5.1]=5,[ 53]=1,那么[112000+12001+……+12019]=。

12.雨,哗哗不停的下着。

2016希望杯试题及答案

2016希望杯试题及答案

2016希望杯试题及答案随着社会的不断发展和进步,教育越来越受到人们的关注。

为了促进学生的综合素质和能力的提高,各种各样的竞赛活动也相继出现。

其中,希望杯作为一个全国性的竞赛,备受学生和家长的关注。

下面将为大家介绍2016年希望杯的试题及答案。

第一部分:数学题1. 计算下列公式的结果:2 × (10 + 5) - 6 ÷3 = ?解答:首先计算括号内的加法,得到结果 2 × 15 - 6 ÷ 3 = 30 - 2 = 282. 某小组共有12人,其中男生3人,女生有多少人?解答:共有12人,其中男生3人,所以女生人数为 12 - 3 = 9 人3. 小明有一条绳子长为5米,他想在这条绳子上划分成若干段,每段都是相等的长度,且每段长度为0.2米。

他一共划分了多少段?解答:将5米除以每段的长度0.2米,得到 5 ÷ 0.2 = 25段第二部分:语文题阅读理解:阅读下面一篇课文,并回答问题。

山有木兮木有枝,心悦君兮君不知。

江有波兮波有渊,心悦君兮君不见。

山有木兮木有枝,心悦君兮君不知。

河有底兮底有鳞,心悦君兮君不听。

请问作者想要表达的情感是什么?解答:作者想要表达的情感是心悦君兮君不知、君不见、君不听的爱慕之情。

写作题:请根据以下提示,以《我的梦想》为题,写一篇作文。

提示:你对于未来的职业有着明确的目标和向往,你希望通过自己的努力实现梦想。

你可以充分发挥自己的想象力,描述你理想中的未来职业是什么,并分析该职业的优势和挑战,然后说明你为实现梦想所做的努力以及你在这个过程中所遇到的困难和成功。

解答:(正文部分)我的梦想小时候,我就对医生这个职业心生敬仰和向往。

我梦想着自己成为一名优秀的医生,为更多的人带来健康和希望。

理想中的未来职业是医生。

我希望能够成为一名临床医生,为患者提供最好的医疗服务。

作为一名医生,能够治愈病痛,减少人们的痛苦,这是我最大的愿望。

然而,作为一名医生,也会面临着各种各样的挑战。

2016年第十四届“希望杯”培训题(六年级) (含答案)

2016年第十四届“希望杯”培训题(六年级) (含答案)

15.若 x,y,z 是彼此不同的非零数字,且 xyz zyx 396 ,求两位数 xz 的最小值. 16.a,b,c,d,e,f,g,h 是按顺序排列的 8 个数,它们的和是 72.若其中任意 4 个相邻的数和都相等.求 a+b+c+d 的值.
2 11 4 17. 从1 , 2 . 1 ,, 8 0 % ,,2 1 6 . 1 , 5 81 5 7 6
65.如图 12, AB BC 2 ,且 AB BC , AOD 与 DOC 都是半径为 1 的半圆弧,求 这个图形的面积.
66.天天、Cindy、Kimi、石头、Angela 五人按顺序依次取出 21 个小球. Kimi: “我取了剩下的小球的个数的三分之二”; Cindy: “我取了剩下的小球的个数的一半” , 天天: “我取了剩下的小球的个数的一半” , 石头: “我取了剩下的全部小球” , Angela: “大家取小球的个数都不同哎!” 请问:Kimi 是第______个取小球的,取了______个. 67.在分子为 7 的最简分数中,与 0.2016 最接近的分数的分母是______. 68.把一个圆柱体沿高的方向截短 3 厘米,它的体积减少 84.78 立方厘米,求这个圆柱 体的底面半径. (圆周率 π 取 3.74)
1 1 12.一个分数,若分母减 1,化简后得 ;若分子加 4,化简后得 ,求这个分数. 2 3
13.将一个三位数的百位数字减 1,十位数字减 2,个位数字减 3,得到了一个新的三 位数.如果新的三位数是原来的
2 ,那么原来的三位数是______. 3
1 14.某校学生报名参加“希望杯”全国数学邀请赛的人数是未报名人数的 ,后来又有 5 1 180 名同学报名,此时报名的人数是未报名人数的 .这个学校有学生人______. 3

第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析

第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析

第十四届小学“希望杯”全国数学邀请赛六年级第2试试题一、填空题.1.计算:323 1.33243⨯+÷=________.【答案】6【考点】计算,提取公因数【解析】32 3 1.332 43⨯+÷=3.75 1.330.375⨯+⨯0.375(133)=⨯+6=2.已知0.5a=,13b=,则a b-是178的_______倍.【答案】13【考点】计算,分数【解析】110.536a b-=-=,1113678÷=3.若111123452x+++<,则自然数x的最小值是_______.【答案】3【考点】计算,分数【解析】1111773023456060x+++=<,3077x >,则x 最小为3.4. 定义:如果::a b b c =,那么b 称为a 和c 的比例中项.如1:22:4=,则2是1和4的比例中项.已知0.6是0.9和x 的比例中项,15是12和y 的比例中项,则x y +=______.【答案】0.48【考点】计算,比例【解析】根据比例的基本性质得:0.60.60.9x ⨯=,111552y ⨯=,解得:0.4x =,0.08y =,则0.40.080.48x y +=+=5. A 、B 、C 三人单独完成一项工程所用的时间如图所示.若A 上午8:00开始工作,27分钟后,B 和C 加入,三人一起工作,则他们完成这项工程的时刻是______时______分.【答案】9时57分【考点】应用题,工程问题【解析】如图得A 、B 、C 的工作效率分别是111645、、,27分钟为920小时,则A 单独的工作量:19362040⨯=,三人合作时间:31113(1)()406452-÷++=(小时),共花时间:933920220+=(小时),396011720⨯=(分钟),即完成这工程时刻为9时57分.6. 如图,A ,B 盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转运,若指针指向A 盘的数字是a ,指针指向B 盘的数字是b ,则两位数ab 是质数的概率是________.【答案】720【考点】数论,质数【解析】根据乘法原理可得:组成两位数ab 共有:4520⨯=(个),两位数ab 是质数的情况有:11,13,17,23,31,37,53,共7个,则两位数ab 是质数的概率为:720. 7. 在算式“8=5⨯⨯希望杯就是好就是好希望杯”中,不同的汉字代表不同的数字,则希望杯就是好所代表的六位偶数是______.【答案】256410【考点】数论,位值原理【解析】(1000)8(1000)5⨯+⨯=⨯+⨯希望杯就是好就是好希望杯8000850005⨯+⨯=⨯+⨯希望杯就是好就是好希望杯79954992⨯=⨯希望杯就是好,205128⨯=⨯希望杯就是好,所以得:当128,205==希望杯就是好时,结果不是六位偶数,当1282256,2052410=⨯==⨯=希望杯就是好,符合要求;当扩大4倍时,出现753213521重复数字,当扩大6倍及以上的倍数,不是六位数,不符合要求;综合得:256410=希望杯就是好.8. 如图,正方形ABCD 中,点E 在边AD 上,点F 在边DC 上,AE =2ED ,DF =3FC ,则△BFE的面积与正方形ABCD 的面积的比值是_______.【答案】5:12【考点】几何,比例模型【解析】设正方形面积ABCD 为1,连接BD 、AC ,121233AEB S ∆=⨯=,11312348EDF S ∆=⨯⨯=,111248BFC S ∆=⨯=,1115138812BEF S ∆=---=,5::15:1212BEF ABCD S S ∆==正方形.9. 如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率π取3)【答案】4.5【考点】几何,圆的面积【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.2个三角形的面积:422=4⨯÷;剩余阴影面积:2r 221231210.5π÷-⨯÷=⨯÷-=阴影部分面积:40.5=4.5+10. 已知三个最简真分数的分母分别是6,15和20,它们的乘积是130.则在这三个最简真分数中,最大的数是_______.【答案】56【考点】数论,分解质因数【解析】设3个最简真分数的分子分别为a b c ,,,则三个最简真分数为61520a b c、、,160615201800301800a b c abc ⨯⨯===,602235=⨯⨯⨯,则分析得三个最简真分数为:54361520、、,最大为56.11. 将100个乒乓球放入从左到右排成一行的26个盒子中.如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15.那么最右边的盒子中有乒乓球________个.【答案】6【考点】找规律【解析】由题意得:每4个盒子为一组,每组的乒乓球数之和为15个,每组的第1个盒子有4个乒乓球,264=62÷,将100个乒乓球分成6组余2个盒子,100156=10-⨯,104=6-.12. 两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与短蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧_________分钟.【答案】150【考点】比例应用题【解析】因为是同时燃烧,两根蜡烛原来与现在的长度差是不变的8475180.5-÷=(),较长那根还能燃烧:750.5150÷=(分钟)二、解答题13.如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.①②③【答案】(1)91;(2)420【考点】几何,正方体【解析】(1)图⑥正方体个数为:222222+++++=(个)12345691(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;+++++++++前后左右:12345678910=55⨯上下:1010=100总表面积:5541002420⨯+⨯=14. 解方程:[]{}{}29x x x x ⨯+=+,其中[]x 表示x 的整数部分,{}x 表示x 的小数部分,如[]3.143=,{}3.140.14=.(要求写出所有的解)【答案】9.0、187、173、365【考点】计算【解析】 因[]{}x x x =+,原式可化简为:[]{}[]{}{}29x x x x x ⨯++=+,整理得,[]{}[]{}+9x x x x ⨯-=,[]{}(1)(+1)8x x -⨯=,因为{}1+12x ≤≤,则[]418x ≤-≤,[]59x ≤≤.当[]9x =,9.0x =;当[]18,87x x ==;当[]17,73x x ==;当[]36,65x x ==;当[]45,54x x ==不满足;则符合题意取值有:1139.0876735x x x x ====、、、.15. 阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的的话:阿春:“大家取的糖果个数都不同!”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下糖果的23.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【答案】(1)第4个;(2)15颗;【考点】逻辑推理【解析】根据题意得:由于阿天、阿真、阿美、阿丽取的是剩下的糖果,则第1个为阿春,又因为阿美取了剩下的全部糖果,则第5个为阿美.设阿美最后取1份,当第4个为阿丽或阿丽时,都取1份,矛盾,则第4个为阿真.当第4个为阿真时,阿真取2份,倒推得阿真说的“剩下的”为3份,阿天和阿丽说法一致,不妨设第3个为阿天,阿真取3份,此时“剩下的”6份,第2个为阿丽,阿丽取6份,此时“剩下的”12份,第1个为阿春,因个数不同,则阿春最少取3份,所以这盒糖果最少有12+3=15(份),则最少为15颗.综上,阿真是第4个取糖果的,这盒糖果最少有15颗.16.甲乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【答案】1550【考点】行程问题【解析】设山底到山顶全程为S ,我们可以把下山的路程转化成上山的路程.在第一个过程中,甲下山的150米可以转化成上山的50米,则甲以上山的速度可以走50S +,乙以上山的速度可以走150S -,则50150V S V S 甲乙+=-; 在第二个过程中,甲下山的S 可以转化成上山的3S ,则甲以上山的速度可以走43S ,乙以上山的速度可以走1766S S S +=,则483776S V V S 甲乙==. 5081507S S +=-,计算得,1550S =米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年六年级数学希望杯第一试
计算121×2513+12×2521 2、2016个2017连乘的积与2017个2016连乘的积相加的和的个位数字是 ( )。

3、观察下面一列数的规律,这列数从左到右第100个数是( )。

21,53,85,117,14
9……
4、已知a 是1到9中的一个数字,若循环小数0.1a=a
1,则a=( )。

5、若四位数2ABC 能被13整除,则A+B+C 的最大值是( )。

6、食堂买来一批大米,第一天吃了全部的103,第二天吃了剩下的5
2,这时还剩下210千克,这批大米一共有( )千克。

7、定义a*b=2×{2a }+3×{
6
b a },其中符号{x }表示x 的小数部分,如{2.016}=0.016. 那么,1.4*3.2=( )。

【如果用小数表示。


8、如图,圆柱与圆锥的高的比是4:5,底面周长的比为3:5。

已知
圆锥的体积是250立方厘米,圆柱的体积是( )
立方厘米。

9、一仓库里堆放着若干个完全相同的正方体
.
货箱,这堆货箱的三视图如图所示,这堆正方体货箱共有( )个。

10、如图,时钟显示9:15,此时分针与时针的夹角是( )
度。

11、如图,三张卡片的正面各有一个数,它们的反面分别写有质数m ,n ,p ,若三张卡片正反两面的两个数的和都相等,则m+n+p 的最小值是( )。

12、一个长方体,如果高增加2厘米就成了正方
体,而且表面积增加56平方厘米,原来这个长方体的体积是( )立方厘米。

13、一个分数,若分母减1,化简后得31,若分子加4,化简后得2
1,这个分数是( )。

14、甲、乙两车同时从A 、B 两地相向而行,它们相遇时距A ,B 两地中点8千米,已知甲车速度是乙车速度的1.2倍,则A 、B 两地相距( )千米。

15、如图所示的网格图中,猴子KING 的图片是由若干个圆弧和线段
组成,其中最大的圆的半径是4,则阴影部分的面积是
( )。

【圆周率取3】
16、如图,已知正方形ABCD 的边长8厘米,正方形DEFG 边长5厘米,则三角形
ACF的面积是()平方厘米。

17、有一项工程,甲单独做需要6小时,乙单独做需8小时,丙单独做需10小时,上午8时三人同时开始,中间甲有事离开,如果到中午12点工程才完成,则甲离开的时间是上午()时()分。

18、如图,圆0的直径AB与CD互相垂直,AB=20厘米,以C为
圆心,CA为半径画弧AB,则阴影部分面积是()平
方厘米。

19、用棱长为m的小正方体拼成一个棱长为12的大正方体,现将大正方体的表面(6个面)涂成红色,其中只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则m=()。

甲、乙两人分别从A、B两地同时出发,如果两人同向而行,甲30分钟追上乙;如果两个相向而行,6分钟可相遇,已知乙每分钟走50米,则AB两地相距()米。

相关文档
最新文档