数列通项公式和前n项和的常见解题方法

合集下载

求数列通项公式+求数列前 N项和的常用方法

求数列通项公式+求数列前    N项和的常用方法
例题2:求数列
的前n项和Sn 解:
点拨:这道题只要经过简单整理,就可以很明显 的看出:这个数列可以分解成两个数列,一个等差 数列,一个等比数列,再分别运用公式求和,最后 把两个数列的和再求和。 三.用裂项相消法求数列的前n项和
裂项相消法是将数列的一项拆成两项或多项,使 得前后项相抵消,留下有限项,从而求出数列的前 n项和。
例题3:求数列
(n∈N*)的和 解:
点拨:此题先通过求数列的通项找到可以裂项的 规律,再把数列的每一项拆开之后,中间部分的项 相互抵消,再把剩下的项整理成最后的结果即可。
四.用错位相减法求数列的前n项和 错位相减法是一种常用的数列求和方法,应用于
等比数列与等差数列相乘的形式。即若在数列 {an·bn}中,{an}成等差数列,{bn}成等比数列,在 和式的两边同乘以公比,再与原式错位相减整理后 即可以求出前n项和。
例题4:求数列{nan}(n∈N*)的和 解:设 Sn = a + 2a2 + 3a3 + … + nan①
则:aSn = a2 + 2a3 + … + (n-1)an + nan+1② ①-②得:(1-a)Sn = a + a2 + a3 + … + an nan+1③ 若a = 1则:Sn = 1 + 2 + 3 + … + n =
求数列 前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式, 再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为 基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律, 找到适合的方法解题。
一.用倒序相加法求数列的前n项和

求通项公式及前n项和的方法

求通项公式及前n项和的方法

求通项公式的方法一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数) 这种类型使用累加法 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求变式练习:已知{}n a 满足11=a ,)1(11+=-+n n a a n n ,求}{n a 的通项公式 二、)(1n f a a n n ⋅=+型数列,(其中()f n 不是常值函数)这种类型使用累乘法 例2.已知数列{n a }满足n a a nn =+1(n ∈N +),1a =1,求n a . 三、q pa a n n +=+1型数列 待定系数法,构造1n b a p +-是等比数列,公比为p ,首项为11b a p +-。

例3. 在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。

变式练习:已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式. 四、()n f pa a n n +=+1型数列(p 为常数),此类数列可变形为()111++++=n n n n n p n f p a p a 例4已知数列{}n a 满足1111,32n n n a a a ++==+,求n a .变式练习:已知{}n a 满足11122,2+++==n n n a a a ,求n a 。

五、“已知n S ,求n a ”型方法是利用111,2n n n S n a S S n -=⎧=⎨-≥⎩,把已知条件转化成递推式。

例:已知数列{}n a ,n S 表示其前n 项和,若满足231n n S a n n +=+-,求数列{}n a 的通项公式。

五、CBa Aa a n n n +=型数列(C B A ,,为非零常数) 这种类型的解法是将式子两边同时取倒数,把数列的倒数看成是一个新数列,便可顺利地转化为1n n a pa q +=+型数列。

数列求通项的七种方法及例题

数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。

例如:已知数列{an}中,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。

例如:已知数列{an}中,S2=6,S4=20,求a3。

答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。

例如:已知数列{an}为等差数列,a1=2,d=4,求a5。

答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。

例如:已知数列{an}为等比数列,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。

例如:已知数列{an}中,S4=20,求a3。

答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。

例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。

答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。

数列通项公式与前n项和的解法

数列通项公式与前n项和的解法
1 2 n 2 n 1 an ( … ) a1 2 3 n 1 n an 1 2 a1 n 3n
……
an 1 n2 an 2 n 1 n 1 an an 1 n
类型三:an+1 = pan+q 方法:(1)待定系数法,转化为 an+1-t = p(an-t) (2) 利用换元法,转化为等比数列求解. 例4:已知数列{an}中,a1=1,an+1 = 2an+3,求{an}.
(3) 利用类型三的方法求解.
an 1 p an n 1 n 1 q q q
例6:已知数列{an}中,a1=4,an+1 = 4an-2n+1,求{an}.
解:已知公式两边同除以2n+1,得
an 令 bn n ,则有 bn 1 2bn 1 即 bn 1 1 2(bn 1) 2 cn 1 a1 c b 1 1 1 c b 1 2 令 n ,则有 而 1 1 n 2 cn 所以{cn}是以1为首项,2为公比的等比数列.
4 ,n=1 an n 1 ,n≥2 2 3
1.2 已知递推公式求通项公式
类型一:an+1 = an + f(n) 方法:叠加法(逐差相加法) 例2:已知数列{an}中,a1=2,an+1 = an +n+1,求{an}.
例2:已知数列{an}中,a1=2,an+1 = an +n+1,求{an}. 解:由已知可得 a2 = a1 +2+1 a3 = a2 +3+1 a4 = a3 +4+1 …… an-1 = an-2 +(n-1) +1 an = an-1 +n+1 将各式相加,得 an = a1 + [3+4+…+(n+1)]

求前N项和方法技巧及公式

求前N项和方法技巧及公式

求前N项和方法技巧及公式前N项和是指将一个数列的前N项相加得到的和。

计算前N项和可以使用不同的方法和技巧,包括数学公式、推导公式和逐项相加等。

一、数学公式法对于一些特定的数列,存在求前N项和的数学公式,可以直接使用这些公式计算前N项和,而无需逐项相加。

1.等差数列的前N项和公式对于等差数列,其通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

前N项和公式如下:Sn = (a1 + an) * N / 2 = N * (a1 + a1 + (N-1)d) / 2 = N *(2a1 + (N-1)d) / 22.等比数列的前N项和公式对于等比数列,其通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。

前N项和公式如下:Sn=a1*(1-r^N)/(1-r)3.平方数序列的前N项和公式对于平方数序列,其通项公式为an = n^2,其中n为正整数。

前N项和公式如下:Sn=n*(n+1)*(2n+1)/6二、推导公式法对于一些特殊的数列,我们可以通过推导得到求前N项和的公式。

推导过程中可以使用数学归纳法、代数运算等方法。

1.等差数列的前N项和公式的推导设等差数列的首项为a,公差为d,第N项为an,则有:an = a + (N-1)dSn=a+(a+d)+(a+2d)+...+(a+(N-1)d)根据等差数列的性质,可以将Sn分为两部分:Sn=(a+(N-1)d)+(a+(N-2)d)+...+(a+d)+a将两式相加,可得:2Sn=(N*a)+(N*a+(N-1)*d)+...+((N-1)d+a)+(Nd)化简后得到等差数列的前N项和公式。

2.等比数列的前N项和公式的推导设等比数列的首项为a,公比为r,第N项为an,则有:an = a * r^(N-1)Sn=a+a*r+a*r^2+...+a*r^(N-1)Sn*r=a*r+a*r^2+...+a*r^N将两式相减Sn*(1-r)=a*(1-r^N)化简后得到等比数列的前N项和公式。

数列通项公式和前n项和的求法

数列通项公式和前n项和的求法

数列通项公式和前n 项和的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒,∵0≠d , ∴d a =1①∵255a S = ∴211)4(2455d a d a +=⋅⨯+② 由①②得:531=a ,53=d , ∴n n a n 5353)1(53=⨯-+=二、累加法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例2 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之, 即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以n a a n 111-=-, 211=a ,nn a n 1231121-=-+=∴三、累乘法(逐商相乘法):把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例4. 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒又321=a ,na n 32=∴四、待定系数法:递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

数列通项公式和前n项和求解方法(有针对训练)

数列通项公式和前n项和求解方法(有针对训练)

专题一:数列通项公式的求法 一.观察法(关键是找出各项与项数n 的关系.)例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,52,21,32,1一、 公式法公式法1:特殊数列公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n例2:已知数列}{n a 的前n 项和n S 的公式12-+=n n S n ,求}{n a 的通项公式.例3:已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等比数列.三、 累加法 【型如)(1n f a a n n +=+的递推关系】简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得。

例: 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a例4:已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.四、累乘法 【 形如1+n a =f (n)·n a 型】(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例5:在数列{n a }中,1a =1, n n a n a n ⋅=⋅++1)1( ,求n a 的表达式.五、构造特殊数列法 【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c d λ, 所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列. 例6:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .六、迭代法【一般是递推关系含有的项数较多】例7:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式.解析:由题得 )1(2121-=++++-n a a a a n n ①2≥n 时, )2(2121-=+++-n a a a n ②由①-②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a n n =⋅⋅- ,求数列{n a }的通项公式。

数列通项公式和前n项和常见求法

数列通项公式和前n项和常见求法

数列通项公式的常见求法一.公式法1、等差数列公式 例1、(2011辽宁理)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;2、等比数列公式例2.(2011重庆理)设{}n a 是公比为正数的等比数列,12a =,324a a =+。

(Ⅰ)求{}n a 的通项公式3、通用公式若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n n n n ΛΛΛΛΛ 求解。

一般先求出a1=S1,若计算出的an 中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。

例3、已知数列}{n a 的前n 项和12-=n s n ,求}{n a 的通项公式。

二.当题中告诉了数列任何前一项和后一项的递推关系即:n a 和a n-1的关系时我们可以根据具体情况采用下列方法 1、叠加法一般地,对于型如)(1n f a a n n +=+类的通项公式,且)()2()1(n f f f +++Λ的和比较好求,我们可以采用此方法来求n a 。

即:11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥; 例4、(2011四川理8)数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈.若则32b =-,1012b =,则8a =A .0B .3C .8D .112、叠乘法一般地对于形如“已知a 1,且n1n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。

即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L (2)n ≥; 例6、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。

数列通项公式与前n项和的18种求法(含详细例题)

数列通项公式与前n项和的18种求法(含详细例题)

求数列前N 项和的方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。

这个公式在很多时候可以简化运算。

等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。

其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n kS nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1解:S n =1+5x+9x 2+······+(4n-3)x n-1 ①①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ②①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ nx )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211nn 的前n 项和。

数列通项公式、前n项和求法总结(全)

数列通项公式、前n项和求法总结(全)

数列通项公式、前n项和求法总结(全)⼀.数列通项公式求法总结:1.定义法 —— 直接利⽤等差或等⽐数列的定义求通项。

特征:适应于已知数列类型(等差或者等⽐).例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等⽐数列,255a S =.求数列{}n a 的通项公式.变式练习:1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式2. 在等⽐数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的⾸项、公⽐及前n 项和.2.公式法求数列{}n a 的通项n a 可⽤公式≥?-=?=-2111n S S n S a n n n 求解。

特征:已知数列的前n 项和n S 与n a 的关系例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。

(1)13-+=n n S n 。

(2)12-=n s n变式练习:1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满⾜n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。

2. 已知数列{}n a 的前n 项和212n S n kn =-+(*k N ∈),且S n 的最⼤值为8,试确定常数k 并求n a 。

3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,22.求数列{}n a 的通项公式。

3.由递推式求数列通项法类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利⽤累加法求解。

例3. 已知数列{}n a 满⾜211=a ,a a n n +=+211,求n a 。

变式练习:1. 已知数列{}n a 满⾜11211n n a a n a +=++=,,求数列{}n a 的通项公式。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。

求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。

一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。

例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。

1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。

二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。

例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。

2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。

例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。

3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。

4.1公式和差公式是指通过首项、末项和项数计算公差的公式。

已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。

通项及前N项和的求法的方法总结(全)

通项及前N项和的求法的方法总结(全)

常见数列通项公式的求法1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可. 2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法.例1、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n +==++求求{}n a 的通项公式.3、 累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.例2、已知数列{}n a 满足11,2,31n n n n a a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式.练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.3、待定系数法(构造法)例3、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 例4、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式.练习1:已知数列{}n a 中,113,22n n n a a a -=-=+,则=n a ________.练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例5、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a ________.练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .4、利用n a 与n S 的关系如果给出条件是n a 与n S 的关系式,可利用111,2n n n an a S S n -=⎧=⎨-≥⎩求解.例6、已知数列{}n a 的前n 项和为322+-=n n S n ,求{}n a 的通项公式.练习1:已知数列{}n a 的前n 项和为2134n S n n =-+,求{}n a 的通项公式.练习2:若数列{}n a 的前n 项和为33,2n n S a =-求{}n a 的通项公式.5、倒数法例7、已知数列{}n a 满足1=1a ,1232nn n a a a +=+,求{}n a 的通项公式.练习:已知数列{}n a 中,113,,12nn na a a a +==+则n a ________.=例8、已知数列{}n a 满足1=1a ,11234n n n a a a --=+,求{}n a 的通项公式.练习:已知数列{}n a 中,1122,,31n n na a a a +==+则n a ________.=数列前n项和的求法总结一、公式法(1)等差数列前n项和: S n=n(a1+a n)2=na1+n(n+1)2d(2)等比数列前n项和: q=1时, S n=na1;q≠1时, S n=a1(1−q n)1−q(3)其他公式: S n=1+2+3+⋯+n=12n(n+1)S n=12+22+32+⋯+n2=16n(n+1)(2n+1)S n=13+23+33+⋯+n3=[12n(n+1)]2二、倒序相加法3、设等差数列{an },公差为d,求证:{an}的前n项和Sn=n(a1+an)/2三、裂项相消法4、求数列(n∈N*)的和四、错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。

求数列通项公式、数列求和问题的常用方法

求数列通项公式、数列求和问题的常用方法

求数列通项公式、数列求和问题的常用方法一、求数列通项公式的三种常用方法2;3.n n S a ⎧⎪⎨⎪⎩1、利用与的关系;、累加(乘)法、构造法(或配凑法、待定系数法)1、利用n n S a 与的关系求通项公式:1-11-1=1;=-.-n n n n n S a S S S S S ⎧⎨≥⎩ , 当n 时利用 ,当n 2时注意:当也适合时,则无需分段(合二为一)。

例1、设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,11a b =且2211().b a a b -= (Ⅰ)求数列}{n a 和}{n b 的通项公式;解:(1),24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当当;2,111===S a n 时也满足上式。

故{a n }的通项公式为42,n a n =-设{b n }的公比为q , 111, 4, .4b qd b d q ==∴=则 故1111122,44n n n n b b q ---==⨯= 12{}.4n n n b b -=即的通项公式为例2、数列}{n a 的前n 项和为S n ,且111,3, 1,2,3,n n a S a n +=== ,求: (1)2a 的值。

(2)数列}{n a 的通项公式; 解:(1)由得,,3,2,1,31,111 ===+n S a a n n .313131112===a S a 111234222211()(2),3344,(2), (33)114,()(2).3331,1,,{}14(), 2.33n n n n n n n n n n n n a a S S a n a a n a a a a q a a n n a a n +-+---=-=≥=≥===≥=⎧⎪=⎨≥⎪⎩(2)由得即,,,是以为首项,为公比的等比数列又所以所以数列的通项公式为例3、(09广东四校文期末)已知函数 f (x ) = a x 2 + bx -23 的图象关于直线x =-32对称, 且过定点(1,0);对于正数列{a n },若其前n 项和S n 满足S n = f (a n ) (n ∈ N *)(Ⅰ)求a , b 的值;(Ⅱ)求数列{a n } 的通项公式;(Ⅰ)∵函数 f (x ) 的图象关于关于直线x =-32对称,∴a ≠0,-b 2a =-32, ∴ b =3a ①∵其图象过点(1,0),则a +b -23=0 ②由①②得a = 16 , b = 12. 4分(Ⅱ)由(Ⅰ)得2112()623f x x x =+- ,∴()n n S f a ==2112623n n a a +- 当n ≥2时,1n S -=211112623n n a a --+- .两式相减得 2211111()622n n n n n a a a a a --=-+-∴221111()()062n n n n a a a a ----+= ,∴11()(3)0n n n n a a a a --+--= 0,n a >∴ 13n n a a --=,∴{}n a 是公差为3的等差数列,且22111111112340623a s a a a a ==+-∴--=∴a 1 = 4 (a 1 =-1舍去)∴a n =3n+1 9分2、累加(乘)法:11-111 12-1. 2 3+2. 3 2-1.14 .(n+1)n n n n n n n n n a a n a a n a a a a n ++++=+=+=+=+例如:、 、、、 n 1112. 2 .+1n n n n a a na a n ++==例如:、 、 3、配凑法或待定系数法或构造法:111 12 1. 2 2 1. 3 3 2.n n n n n n a a a a a a +++=+=+=+例如:、 、、11+111111+12+1 1.+1=2--------2.221,=2{}=1=21=.2n n n n n n n nn n n n n n a a a a a a a b b a b b b a a q b ++++=+=+∴=+++==+ 解:方法一配凑法(或拆配法) 即 令则有, 故是以为首项,以为公比的。

求数列的通项公式和前N项和的几种类型总结

求数列的通项公式和前N项和的几种类型总结
6、分组求和法(等差数列和等比数列相加)
例题精析
【例题1】在数列{ }中, , ,求通项公式 .
【例题2】已知数列 满足, 前 项和 ,求 的通项公式.
【例题3】数列 满足 ,求 .
【例题4】已知等差数列 满足: , , 的前n项和为 .
(Ⅰ)求 与 ;(Ⅱ)令bn= (n N*),求数列 的前n项和 .
知识讲解
一、求数列的通项公式的方法
1:观察法:此方法适用于小题和大题中的先猜后证;
2:公式法
等差数列通项公式:
等比数列通项公式
3:递推关系
累加法:
累乘法:
构造法:(1) :
令 ,则 为等比数列
(2)
令 ,则 为等差数列
(3)
令 ,则转化为第一类
(4)
令 ,则转化为第一类
(5)
令 ,则用累乘法
4:退位相减法
A.98 B.99C.96D.97
5、各项为正数的等比数列 的公比 ,且 成等差数列,则 的值是()
A. B. C. D. 或
6、数列 ( )
A. B. C. D.
7、数列 满足 ,则
A. B. C. D.
8、数列 中,若 , ,则
A. B. C. D.
9、数列an= ,其前n项之和为 ,则在平面直角坐标系中,直线(1)x+y+n=0在y轴上的截距为______.
10、设函数f(x)=xm+ax的导数为f′(x)=2x+1,则数列{ } (n∈N*)的前n项和是________
11、设数列 的前 项和为 已知
(1)设 ,证明数列 是等比数列;
(2)求数列 的通项公式.
12、设等差数列 的前 项和为 ,且 ,
(1)求数列 的通项公式

求数列通项公式及前n项和常见方法

求数列通项公式及前n项和常见方法

数列求通项及前n 项和常见方法求n a一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式注意:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

二、累加法求形如a n -a n-1=f(n)(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。

例2.已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a . 注意:累加法是反复利用递推关系得到n —1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n —1项的和,要注意求和的技巧三、迭代法求形如1n n a qa d +=+(其中,q d 为常数)的数列通项,可反复利用递推关系迭代求出。

例3.已知数列{a n }满足a 1=1,且a n+1=3n a +1,求n a注意:因为运用迭代法解题时,一般数据繁多,迭代时要小心计算,应避免计算错误,导致走进死胡同四、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n n n n ΛΛΛΛΛ求解。

例4.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式;注意:利用公式⎩⎨⎧≥-==-211n S S n S a n n n n ΛΛΛΛΛ求解时,要注意对n 分类讨论,但若能合写时一定要合并.五、累乘法 对形如1()n n a f n a +=的数列的通项,可用累乘法,即令n=2,3,…n —1得到n —1个式子累乘求得通项。

数列的通项公式及前n项和的的求法

数列的通项公式及前n项和的的求法

数列的通项公式及前n 项和的求法1.两个基本公式(1)等差数列的通项公式:d m n a d n a a m n )()1(1-+=-+=(2)等比数列的通项公式:11n n m n m a a q a q --==2.三个基本方法(1)n S 法:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩ (2)累加法 (3)累乘法一.n S 法(利用关系11(1)(1)n nn S n a S S n -=⎧=⎨->⎩) 1.已知数列}{n a 的前n 项和21n S n n =++,求}{n a 的通项公式。

注:要先分n=1和1n >两种情况分别进行运算,然后验证能否统一。

2.已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式。

注:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键.二.累加法(1()n n a a f n +-=型数列)3.已知111,21(2)n n a a a n n -=-=-≥,求{}n a 的通项公式。

4.已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

三.累乘法(1()n na f n a +=型数列) 5.已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式.注:将1n na a +表示出来,对n 从1开始取值。

四.构造法(构造等差或等比数列)6.已知数列{}n a 的首项12a =,()2,12*1≥∈+=-n N n a a n n ,求n a 。

注:构造新数列的实质是通过1()()n n a x q a x ++=+来构造一个我们所熟知的等差或等比数列.7. 已知数列{}n a 满足,*111,5,3N n a a a a a n n n n ∈⋅+==++,(1)求证:1{}na 是等差数列 (2)求数列{}n a 通项公式.8、若数列{}n a 满足11=a ,且nn n a a a +=+11, (1) 求证:1n a ⎧⎫⎨⎬⎩⎭是等差数列 (2)求数列{}n a 的通项公式9、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,(1)求证:2n n a ⎧⎫⎨⎬⎩⎭是等差数列 (2)求数列{}n a 的通项公式10、已知数列{}n a 满足132n n n a a +=+,11a =,求数列{}n a 的通项公式。

数列通项公式、前n项和求法总结全

数列通项公式、前n项和求法总结全
例3.已知数列满足a^1,时二a「pd,求a.。
2n2+n
变式练习:
1.已知数列{an}满足an厂an•2n •1,a^1,求数列佝}的通项公式
2. 已知数列:
3. 类型2特征:递推公式为an彳=f(n)an
变式练习:
1.已知数列Q匚中,3 = 2,an d= 3an,求通项公式an。
2.设G}是首项为1的正项数列,且(n+1)a;卅-na;+a^an= 0(n= 1,2, 3,…),求数 列的通项公式是an类型3特征:递推公式为an1二pan• q(其中p,q均为常数)
*
(1)求an,bn;
⑵求数列:an-bn[的前n项和Tn.
2.若公比为c的等比数列的首项为a^1,且满足an二a22甌(n二3,4,...)。
(1)求c的值;(2)求数列{nan}的前n项和Sn
3.倒序相加法
如果一个数列订奁,与首末两项等距的两项之和等于首末两项之和,则可用把正着写 与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。特^E: a1an=a?an4 =...
设an,通分整理后与原式相比较,根据对应项系数相等得
anan +b2
bnbn,再转化为类型1 (累加法),求出bn之后得a^ pnbn
p
例6•已知数列{an}满足an^2an43n」,a^1,求数列®}的通项公式。
变式练习:已知数列:an*满足a1=1,an=3n• 2an」(n一2),求an.

1.公式法
(1)等差数列前n项和:Sn二"去 空=门a1^^d
2 2
(2)等比数列前n项和:
(2)求数列 {俎} 的前n项和Sn。

数列知识(求通项公式前n项和全部方法)

数列知识(求通项公式前n项和全部方法)

数列重点备注:部分题目有些错误,这个是修正后的版本一、数列通项公式的求法1、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.两种常见的特殊数列:等差数列 d n a a n )1(1-+= (为公差为首项d a ,1) 等比数列 11-=n n q a a (为公比为首项q a q a n ,,0,01≠≠)例 已知首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列.求数列{}n a 的通项公式;解答: 依题意设)0(231≠=-q q a n n ,∵234,2,4S S S -成等差数列 ∴342242S S S =+-即)(2)(4)(2321432121a a a a a a a a a ++=+++++- 整理得0243=+a a 即032332=+q q 解得21-=q ∴12123-⎪⎭⎫ ⎝⎛-⋅=n n a练习:1.已知等差数列{}n a 的公差0d >,设{}n a 的前n 项和为n S ,11a =,2336S S ⋅= ,求d 及数列{}n a 的通项公式;解答:依题意设1)1(1+-=-+=d nd d n a a n ,则d a d a 21,132+=+= ∵2336S S ⋅= ∴36))((32121=+++a a a a a整理得)0(01032>=-+d d d 解得2=d∴12-=n a n2.已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.求数列{}n a 的通项公式; 解答:依题意设)0(11≠=-q qa a n n ,∵4S ,2S ,3S 成等差数列∴2342S S S =+ 即)(2213214321a a a a a a a a a +=++++++ 整理得0243=+a a 又23418a a a ++=-∴⎪⎩⎪⎨⎧-=++=+1802312113121q a q a q a q a q a 解得⎩⎨⎧-==231q a ∴1)2(3--⋅=n n a3.设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和. 记2nn nS b n c=+,N n *∈,其中c 为实数.若{}n b 是等差数列,求数列{}n b 的通项公式.解答:依题意设a d nd d n a a n +-=-+=)1(,则()2)2(21d nd a n a a n S n n -+=+=cn d nd a cn a d n cn d nd a cn d nd a cn d nd a n c n d nd a n c n nS b n n +-+-+-=+-+--++-+=+-+=+=2222222222)2(22)1(2)2(2)2(2)2(2)2(由{}n b 是等差数列知{}n b 的通项公式不含二次项,且为B A b n n +=型(B 为常数)∴02)2(22=+-+cn d nd a cn 又022≠-+d nd a ∴0=c ∴22)1(ad n b n +-=2、累加法求形如)(1n f a a n n =--()(n f 为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令1,....,3,2-=n n 得到1-n 个式子累加求得通项112211......a a a a a a a a n n n n n +-++-+-=---例 已知数列{}n a 中,11a =,对任意自然数2≥n 都有11(1)n n a a n n -=++,求n a .解答:依题意当2≥n 时,有11231112113121 (1111111)321....)1(1)1(1....112211+-=++-=+-++--++-=+⨯++-++=+-++-+-=---n n n n n n n n n n a a a a a a a a n n n n n当1=n 时,1111231=+-=a 也满足上式 ∴1123+-=n a n练习:1.已知数列{}n a 中,11a =,),2(311+--∈≥+=N n n a a n n n ,求数列{}n a 的通项公式 解答:依题意当2≥n 时,有213131)31(313...33. (1211)12211-=+--=++++=+-++-+-=------n n n n n n n n n a a a a a a a a 当1=n 时,121311=-=a 也满足上式 ∴213-=n n a2.{}n a 是首项为1的正数数列,)(0)1(11+++∈=+-+N n a a na a n n n n n ,求n a .解答:由0>n a 及0)1(11=+-+++n n n n a a na a n 得)1(11)1(11+=-++n n na a n n n设nn na b 1=,则11=b ,)1(11+=-+n n b b n n∴11212111 (1111111)121...)1(1)1(1 (1)12111+-=+-++--++-=+⨯++-++=+-++-+-=-++n n n n n n n n n b b b b b b b b n n n n n ∴当2≥n 时,n b n 12-=,又1=n 时,11121=-=b 也满足上式∴nn n b n 1212-=-=,∴12-=n a n3.已知数列{}n a 中,)(34,4,11221+++∈-===N n a a a a a n n n ,求数列{}n a 的通项公式 解答:依题意得:)(3112n n n n a a a a -=-+++,于是设n n n a a b -=+1 ∴n n b b 31=+,又03121≠=-=a a b ∴31=+nn b b 即{}n b 是首项为3,公比为3的等比数列 ∴nn b 3= 即n n n a a 31=-+∴213131)31(313...33. (111)12111-=+--=++++=+-++-+-=+--++n n n n n n n n n a a a a a a a a ∴当2≥n 时,213-=n n a ,又当1=n 时,121311=-=a 也满足上式 ∴213-=n n a3、累乘法对形如1()n naf n a +=的数列的通项,可用累乘法,即令1,....,3,2-=n n 得到1-n 个式子累加求得通项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 观察法:已知数列的前几项,要求写出数列的一个通项公式
例1、求下列数列的一个通项公式。

①1
3572,4,8,165101520
-- ②1,0,1,0
③3,33,333,3333
④11,103,1005,10007
二、定义法:主要应用于可定性为等差或等比数列的类型,可直接利用等差或等比数列的通项公式进行求解。

例2、求下列数列的通项公式
①已知数列{}a n 中()
*112,3n n a a a n N +==+∈求通项公式。

②已知{}a n 中a 13=-且n n a a 21=+求此数列的通项公式。

③已知等比数列2,a ,a +4,…写出其通项a n 的表达式.
④已知数列{}n a 中,满足a 1=6,a 1+n +1=2(a n +1) (n ∈N +
),则数列{}n a 的通项公式 三、 递推关系式形如1()n n a a f n +=+ (其中()f n 不是常数函数) 此类问题要利用累加法,
利用公式121321()()()n n n a a a a a a a a -=+-+-+⋅⋅⋅+-来求解.
例.若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。

变式:(1)数列{a n }满足a 1=1且132(2),n n n a a n n a -=+-≥求
(2)数列{a n }满足a 1=1且11(2),2
n n n n a a n a -=+
≥求 四、 递推关系式形如1()n n a a f n += (其中()f n 不是常数函数)
此类问题要利用累乘法,利用公式321121n n n a a a a a a a a -=⋅⋅⋅ 来求解. 例.在数列{}n a 中,11=a ,n n n a a 21=+(*
N n ∈),求通项n a 。

变式:若1124,n n n a a a n
++==,求n a 五、 (构造数列法) 递推关系式形如
1n n a pa q +=+(,,1,0)q p p q ≠≠为常数且 此类问题可化为1()11n n q q a p a p p ++=+--,即数列{}1
n q a p +-是一个以p 为公比的等比数列. 例.已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式
变式:115,23n n n a a a a -==+且,求
六、利用前n 项和S n 求通项
利用{11,1
,2n n a n n S S n a -=-≥= ,一定要验证首项。

例:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。

(1)223n S n n =-。

(2)12-=n s n
(2)若数列{a n }的前n 项和S n =32
a n -3,求{a n }的通项公式.
数列求和的方法
1、公式法:
如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求.
常见的数列的前n 项和:123+++……+n=
1+3+5+……+(2n-1)=
111112482n n - S =1+++++ 2、分组求和法:
有一类数列,它既不是等差数列,也不是等比数列.若将这类数列适当拆开,可分为几个等差、等比数列或常见的数列,然后分别求和,再将其合并即可.
例1、求和:()()()()123235435635235n n S n ----=-⨯+-⨯+-⨯++-⨯
针对训练1、求和:()()()()23123n n S a a a a n =-+-+-++-
3、裂项相消法:
把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。

(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭
,特别地当1k =时,()11111n n n n =-++
(21
k =,特别地当1k ==例2、数列{}n a 的通项公式为1(1)
n a n n =+,求它的前n 项和n S 针对训练3
的前n 项和n S . 针对训练4、求数列
1111...243546(1)(3)n n ++++∙∙∙++ 4、倒序相加法:
类似于等差数列的前n 项和的公式的推导方法。

如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。

这一种求和的方法称为倒序相加法.
例3 求值:2222
22222222123101102938101
S =++++++++ 5、错位相减法:
类似于等比数列的前n 项和的公式的推导方法。

若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法.
两式相减并整理即得
例4 求;,2
12,,25,23,2132 n n -的前n 项和 针对训练4、求和:()23230,1n n S x x x nx x x =++++≠≠。

相关文档
最新文档