勾股定理(2)学生学案
勾股定理的应用(2)
勾股定理的应用(二) 班级 姓名 学号教学目标:1能运用勾股定理及直角三角形的判定条件解决实际问题.2会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。
发展学生的分析问题能力和表达能力。
3在提升分析问题能力和完整表达解题过程能力的同时,感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利。
积极参加数学学习活动,增强自主、合作意识,培养热爱科学的高尚品质。
重 难 点:勾股定理及直角三角形的判定条件的应用教学过程(一)创设情景,引入新课;这些图形都有什么共同特征?几组勾股数.3,4,5; 5,12,13; 7,24,25; 8,15,17; 9,40,41;…… (二)实践探索,揭示新知1;.图1中的x 等于多少?图2中的z y x ,,分别是多少? (三)尝试应用,反馈矫正在数轴上画出表示5的点在数轴上表示76,,76--,的点怎样画出? 图2中的图形的周长和面积分别是多少? (四)实践探索,揭示新知2;图1x 11z y 11x图2例1、如图4,等边三角形ABC 的边长是6,求△ABC 的面积。
(五)尝试应用,反馈矫正2如图5,在△ABC 中,AB=AC=17,BC=16,求△ABC 的面积。
如图6,在△ABC 中,AD ⊥BC ,AB=15,AD=12,AC=13,求△ABC 的周长和面积。
(六)实践探索,揭示新知3;如图7,在△ABC 中,AB=25,BC=7,AC=24,问△ABC 是什么三角形? (七)尝试应用,反馈矫正1如图9,在△ABC 中, AB=15,AD=12,BD=9,AC=13,求△ABC 的周长和面积。
勾股定理与它的逆定理在应用上有什么区别? 材料5:如图10,以△ABC 的三边为直径向外作半圆,且S1+S3=S2,试判断△ABC 的形状?(目的:对总结的结论的应用)(八)归纳小结,巩固提高 (九)布置作业D CBA图6图9D CBA。
勾股定理(2)学生学案
O
D
例 3、一个大树高 8 米,折断后大树顶端落在离大树底端 2 米处,折断处离地面的 高度是多少?
A
B
D
C
1、若等腰三角形中相等的两边长为 10cm,第三边长为 16 cm,那么第三 边上 的高为 ( ) A、12 cm B、10 cm C、8 cm D、6 cm 2、如图,在⊿ABC 中,∠ACB=900,AB=5cm,BC=3cm,CD⊥AB 与 D。 求: (1 )AC 的长; (2)⊿ABC 的面积; (3)CD 的长。
A B
巩固 提升
3、如图,一圆柱高 8cm,底面半径 2cm,一只蚂蚁从点 A 爬到点 B 处吃食,要爬行的最短路程( 取 3)是( ) A、20cm; B、10cm; C、14cm; D、无法确定. 4、若等腰直角三角形的斜边长为 2,则它的直角边的长为 ,斜边 上的高的长为 。 5、要登上 8m 高的建筑物,为了安全需要,需使梯子底端离建筑物 6m, 至少需要多长的梯子?(画出示意图)
盘点 收获
D C
2化为数学问题,从中抽象出 Rt△ ABC,并求出斜边 AC 师生共同探究例题的内容,让学生讨论,教师难点进行点拨。 例 2、如图,一个 3 米长的梯子 AB,斜靠在一竖直的墙 AO 上,这时 AO 的距离为 2.5 米.如果梯子的顶端 A 沿墙下滑 0.5 米,那么梯子底端 B 也外移 0.5 米吗? (计算结果保留两位小数) 分析:要求出梯子的底端 B 是否也外移 0.5 米, A 实际就是求 BD 的长,而 BD=OD-OB A C C O C B D O B
八
班级:
年级 数学 导学案
姓名:
课题
勾股定理
课型
新授
课时
1
苏科版勾股定理教学案
B C A D 勾股定理的应用教学案(1)学习目标:1、会用勾股定理解决简单问题,会用勾股定理的逆定理判定直角三形。
2、理解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
会用开平方及开立方运算求式子中的x 的值。
学习重点:勾股定理的应用及勾股定理的逆定理判定及其应用 学习难点:勾股定理的应用及勾股定理的逆定理判定及其应用学习过程一、知识梳理 1、勾股定理的内容 ______________________________________________。
2、勾股定理的应用:在一个直角三角形中,知道其中的任意两边都可以求第三边(∠C =900)。
①c 2=a 2+b 2;②a 2=c 2-b 2;③b 2=c 2-a 2。
3、直角三角形的识别(勾股定理的逆定理):___________________________。
(这是判定一个三角形是直角三角形的又一种方法)4、平方根的定义:一般地,如果____________等于a ,那么这个数叫做a 的平方根。
也称二次方根,也就是说,如果x 2=a ,那么x 就叫做a 的平方根。
记作:________.5、平方根的性质:①一个正数有_________个平方根,它们互为________;②0的平方根是______,记作0 ;③_________没有平方根。
6、开平方的定义:求一个数a 的平方根的运算,叫做开平方。
7、算术平方根的定义:正数a 有2个平方根,其中正数a 的正的平方根,也叫做a 的算术平方根。
规定:0的算式平方根是0。
公式:( a )2=___ (a ≥0),a 2 =____ (a ≥0) , a 2 =_______(a ≤0)。
8、立方根的定义:一般地,如果一个数的立方等于a ,这个数就叫做a 的立方根,也称为三次方根;也就是说,如果x 3=a ,那么x 叫做a 的立方根,数a 的立方根记作______读作“三次根号a ”。
勾股定理的应用第2课时学案
17.1勾股定理的应用第2课时学习目标:1、会用勾股定理进行简单的计算 2、 会利用勾股定理解释生活中的实际问题,并能利用勾股定理解决一些简单的实际问题课前准备:1、在Rt △ABC 中,a 、b 为直角边, c 为斜边,若2216a b +=,则c =_______2、如图,在Rt △ABC 中,∠C =90°,若BC =3,AC =4,则AB 的长是____________.课堂导学自学指导一认真阅读课本P 25例1的内容,思考下列问题(1)若看能否通过需要量谁的长?(2)AB 、AD 行不行?(3)如何求AC 或BD 的长?(4)解决问题的前提是什么?仿照探究1完成P 26练习第1题,第2题.自学指导二认真阅读课本P 25例2的内容,思考下列问题要求BD 的长,由图可知BD=_____—____在本题中始终没有发生变化的量是________的长为______m 所以_____=______=_______m要求OB 得在Rt △_______中根据________定理计算要求OD 得在Rt △_______中根据________定理计算仿照例2完成下面练习1、如图,一个长为 10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直高度为 8m ,梯子的顶端下滑 2m 后,底端将水平滑动 2m 吗?试说明理由.AOB CD2有余力的同学完成P 28习题17.1第4题当堂作业: 必做题P 28习题17.1第3题 第5题选做题如图,点A 是一个半径为300米的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通.经测得∠ABC =45°,∠AC =30°,问此公路是否会穿过该森林公园?请通过计算进行说明. ABH C。
【2012秋新教材】辽宁省丹东七中八年级数学上册《探索勾股定理(2)》学案 北师大版
丹东七中八年级数学(上)第一章 勾股定理研学案1.探索勾股定理(2)第一版块:(前奏版)第一环节:课前热身提出问题:勾股定理的内容是什么? 第二板块:(启动版)第二环节:引入新课上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.第三环节:展示目标一、 学习目标:掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题. 二、重点 :用面积法验证勾股定理,应用勾股定理解决简单的实际问题.难点:验证勾股定理.第三版块:(核心版)第四环节:自主学习 合作探究: 小组活动,拼图验证.今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)小组讨论得到两个图形:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(a+b)2=4×21a b+c 2.并得到222c b a =+从而利用图1验证了勾股定理. 第五环节:展示汇报 小组展示自主探究,完成验证二.第四板块(强化版)例题讲解初步应用例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?第六环节:课堂小结通过这节课的学习,你有什么样的收获?师生共同畅谈收获.第七环节:反馈检测1、教材 P10练习题.2、一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?3、受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?第八环节:布置作业A组:本学案检测题 B组:教材15页习题1.3 1、第九环节:教学反思教师反思:学生反思:。
勾股定理全学案人教版
勾股定理 课 堂 练 习(1)导入:如图,每个小方格的面积均为1,请你分别计算图1、图2中正方形A 、B 、C 的面积,并观察正方形A 、B 、C 的三个面积之间存在的关系.图1中:图2中:结论:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 . 勾股定理再证明:将四个全等的直角三角形如图围成一个大的正方形,请你利用两种不同的方法计算正方形的面积.探究1:一个门框的尺寸如图所示,一个长m 3,宽m 2.2的薄木板能否从门框内通过?说明理由.练习:1.在ABC Rt ∆中,︒=∠90C ,A ∠、B ∠、C ∠的对边分别为a 、b 和c⑴若2=a ,4=b ,则c = ; 斜边上的高为 .⑵若3=b ,4=c ,则a = . 斜边上的高为 . ⑶若3=ba ,且102=c ,则a = ,_______=b .斜边上的高为 . ⑷若21=c b ,且33=a ,则c = ,_______=b .斜边上的高为 . 2.正方形的边长为3,则此正方形的对角线的长为 .3.正方形的对角线的长为4,则此正方形的边长为 .4.有一个边长为50dm 的正方形洞口,想用一个圆盖去盖住这个洞口,求圆的直径至少多长(结果保留整数)--1--勾股定理 强化练习(1)一.选择题1.如图,正方形A 的面积为16,正方形B 的面积为9,则正方形C 的面积为( )A .7B .25C . 12.5D .1442.如上图,正方形C 的面积为16,正方形B 的面积为9,则正方形A 的面积为( )A .7B .25C . 12.5D .1443.若ABC Rt ∆的两直角边长分别为3cm 和4cm ,则斜边长为( )A .2cmB .7cmC .5cmD .12cm4.在ABC Rt ∆中,︒=∠90A ,cm a 13=,cm b 5=,则c 为( )A .194B .12C .8D .185.如图,在ABC ∆中,边AC 的长为( )A .1B .21C .3281D .96.已知直角三角形的两边长分别为3和4,则另一边长为( )A .7B .5C .7D .7或5二.填空题:7.在ABC Rt ∆中,已知两直角边长为6和8,则斜边长为 .8.如图1,在ABC ∆中,边AC 的长为 .9.如图2,在ABC ∆中,边AB 的长为 .10.在ABC ∆中,12=AB ,3:4:=BC AC ,则AC = .三.解答题:11.一旗杆离地面m 6处折断,旗杆顶部落在离旗杆底部m 8处,求旗杆折断之前有多高?12.如图,要从电杆离地面5米处向地面拉一条长为7米的钢缆,求地面钢缆固定点A 到电线杆底部B 的距离(保留根号)--2--勾股定理 课 堂 练 习(2)一.复习:如图,在ABC Rt ∆中,︒=∠90C ,A ∠、B ∠、C ∠的对边分别为a 、b 、c⑴若6=a ,8=b ,求c 的值 ⑵ 若5=a ,13=c ,求b 的值二.探究2:如图,一个m 3长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 的距离为m 5.2,如果梯子顶端A 沿墙下滑m 5.0,那么梯子底端B 也外移m 5.0吗?练习:如图,等边三角形的边长为6.⑴求高AD 的长;⑵求这个三角形的面积(保留根号)三.探究3:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示13的点吗?练习:请你在数轴上表示出下列各数的点:5,10,17--3--勾股定理 强化练习(2)1.计算:⑴⎪⎭⎫ ⎝⎛-÷a b a b 3232 ⑵ ()y x xy x xy -⋅-22.解方程:⑴xx x --=+-21321 ⑵ 11113122-=--+x x x3.已知y 是x 的反比例函数,且该函数的图象经过点A (2,3).⑴求这个函数的解析式;⑵画出该函数图象4.如图,池塘边有A 、B 两点,点C 是与BA 方向成直角的AC 方向上一点,测得m CB 60=,m AC 20=,你能求出A 、B 两点间的距离吗?(结果保留根号)5.请你在数轴上表示出下列各数的点:2,3,66.在ABC ∆中,︒=∠90C ,cm AC 1.2=,cm BC 8.2=.⑴求ABC ∆的面积; ⑵求斜边AB 的长; ⑶求高CD 的长.--4--勾股定理 课 堂 练 习(3)一.复习:如图,一个圆锥的高cm AO 4.2=,底面半径cm OB 7.0=,求AB 的长二.练习1.长方形零件尺寸(单位:mm )如图,求两孔中心的距离.2.在ABC ∆中,︒=∠90C ,10=AB .⑴︒=∠30A ,求BC ,AC 的长(精确到0.01) ⑵︒=∠45A ,求BC ,AC 的长(精确到0.01)3.如图,有一个圆柱形水杯,底面直径为15厘米.将一个塑料吸管靠在一边正好高出水杯5厘米,如果把它拉向另一边,它的顶端恰好到达水杯的顶沿。
勾股定理应用二学案
2.7勾股定理的应用2学、巩固案主备人:徐红石 审核:席美丽 时间:2009年10月17日【学习目标】能用勾股定理及直角三角形判定条件解决实际问题,体会转化思想。
【预习导学】1. 预习课本第66页到67页,完成下列问题:⑴图中的x= 、y= 、z= ; ⑵如何画出5、6、7的线段?2. 预习P 66例3、 P 67例4 思考:如何构造直角三角形?【问题探究】1.交流自学质疑的答案;2.展示例题解法。
3.已知:如图,在△ABC 中,D 为边BC 上的一点,AB=13,AD=12,AC=15,BD=5.求△ABC 的面积.4.在平静的湖面上,有一支红莲,高出水面1m,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求这里的水深是多少米? (提示:画出图形建立直角三角形)5. 已知等腰△ABC 的周长为26,AB=AC,且AB=BC+4,求:⑴底边BC 上的高。
⑵△ABC 的面积和一腰上的高。
【反馈矫正】 练习1.2.3.(3中注意先判断,再求值)【迁移引申】1. 如图,一个高18m ,周长5m 的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿一张白纸动手操作,你一定会发现其中的奥妙)A D C【随堂练习】⒈ 若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为 ( )A. 48 cm 2B. 36 cm 2C. 24 cm 2D.12 cm 22. 已知:如图①,在Rt △ABC 中,两直角边AC 、BC 的长分别为6和8,现将直角 边AC 沿AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于 ( )A.2B.3C.4D.53. 在上题中的Rt △ABC 折叠,使点B 与A 重合,折痕为DE (如图②),则CD 的长 为( )A.1.50B.1.75C.1.95D.以上都不对4. 已知一个直角三角形的两边长分别为5和12,则其周长为______________.5. 一架5m 长的梯子靠在一面墙上,梯子的底部离建筑物1m ,若梯子底部滑开2m ,则梯子顶部下滑的距离是___________(结果可含根号).6. 有一圆柱形食品盒,它的高等于16cm ,底面直径为20cm , 蚂蚁爬行的速度为2cm/s. ⑴如果在盒内下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)⑵如果在盒外下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)B 图② AC BD E图①。
勾股定理(2)
备课教师 王洁 备课组长 王文忠 教导主任 王巧娥 班级 组别 姓名 2011 年 9 月 日 学习内容:18-1-2 勾股定理(2)
学习目标:1.会用勾股定理解决简单的实际问题。
2.树立数形结合的思想。
3.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。
4.培养思维意识,发展数学理念,体会勾股定理的应用价值。
学习重点、难点:勾股定理的应用以及实际问题向数学问题的转化。
学习过程:
一、自主学习
1.①在解决问题时,每个直角三角形需知道几个条件?
②直角三角形中哪条边最长?
2.在长方形ABCD 中,宽AB 为1m ,长BC 为2m ,求AC 长.
问题(1)在长方形ABCD 中AB 、BC 、AC 大小关系?
(2)一个门框的尺寸如图1所示.
①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?
②若薄木板长3米,宽1.5米呢?
③若薄木板长3米,宽2.2米呢?为什么?
图1
修改、补充 二.课堂展示 例:如图2,一个3米长的梯子AB ,斜着靠在竖直的墙AO 上,这时AO 的距离为2.5米. ①求梯子的底端B 距墙角O 多少米?
任何改革必须具备坚持、坚持再坚持,落实、落实再落实的精神才能成功!——王永恒
磴 口 一 中 “十 六 字 ”高 效 教 学 法 学 案 (电子版)
B
C 1m 2m A
六、学后感想(教学反思)
教师不替学生说学生自己能说的话,不替学生做学生自己能做的事,学生能讲明白的知识尽可能让学生讲。
——魏书生。
18.2勾股定理的逆定理(2)
变式3:如图,在四边形ABCD中,∠B=∠D=90°,AB=2,CD=1,
求四边形的面积
三、本课知识能力提升训练
提升能力点
灵活运用“勾股定理的逆定理”解决实际图形问题
学生层面
数形结合能力的培养,数学建模思想的渗透
提升容
在正方形ABCD中,F是DC的中点,E为BC上一点,
且 如图
四、课堂梳理小结作业说明
小结具体内容
1、典型例题的解题方法2、变式的灵活处理
详细分层作业
布置要求说明
必做:书76页习题18.2 3导航34页第二课时随堂练习
选作:书76页习题18.2 5学案课后提升题
例2某小区有一块草坪如图,已知AB=3 m,BC=4m,CD=12m,DA=13m,且AB BC,则这块草坪的面积是多少?
针对性练习:如图,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD= ,试求四边形ABCD的面积。
变式1:如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,若∠B=90°,猜想∠A与∠C的关系,并证明你的猜想
初二学案记录学科八下数学时间月日
课题
18.2勾股定理的逆定理(2)
课型
新授
课时
2-2
一、课堂导入知识点衔接
复习内容重点
1、勾股定理的逆定理2、命题与逆命题
具体衔接点
1、勾股定理成立的条件
2、勾股定理逆定理的成立条件3.进一步加深性质定理与判定定理之间关系的认识
二、本课知识点强调说明
本课重点难点
重点:灵活应用勾股定理及逆定理解决实际问题
勾股定理专题培优学案(勾股定理和几何计算、勾股定理和几何证明和勾股弦图)
勾股定理辅助线一、本章概述本章共分为勾股定理与几何计算、勾股定理与几何证明和勾股弦图三部分,都是勾股定理的重难点内容二、知识回顾1.勾股定理(1)直角三角形两直角边的平方和等于斜边c的平方和。
(即:)2.勾股定理的逆定理(2)如果三角形的三边长:。
满足关系,那么这个三角形是直角三角形。
3.勾股定理的证明:(3)勾股定理的证明方法很多,常见的是拼图方法,用拼图的方法验证勾股定理的思路是:①图形进行割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
(4)常见方法如下:方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积。
方法三:美国第二十任总统伽菲尔德的“总统证法”.1. 勾股定理与几何计算一、本节概述本节主要讲解勾股定理常见的三个辅助线模型,将斜三角形问题,转化为直角三角形问题。
当遇到三角形内的几何计算,特别是长度计算时,可以考虑用勾股定理解决。
在没有直角三角形时,我们就构造直角三角形,方法就是作高。
要尽量作与题中条件有关系的高,总有一条适合你的,比如特殊角所对的高。
二、典例精析知识点:勾股定理与几何计算【例1】如图,已知AC=2,思路分析:标记条件,题目中给出三角形的两个角和一条边,符合“AAS”,故三角形形状固定,可通过作高转化为勾股定理来解决,作高的时候,要充分利用特殊角。
作AB角形问题。
解:,先从右边已知一边和一角的直角三角形入手,这是个()的特殊直角三角形。
得到CD后,再看左边已知一边和一角的直角三角形,这是个()的特殊直角三角形。
方法总结这是利用勾股定理时常见的辅助线做法之一:三角形给出的条件满足“AAS”,作高的时候要充分利用特殊角,使分割后得到的直角三角形可求解即可,此例题是垂线在三角形内,并获得特殊直角三角形的例子。
【例2】思路分析:标记条件,给出的三角形符合“SAS”,故形状固定,可通过作高解决,作高时要充分利用特殊三角形,因为给出的特殊角是钝角,故可利用它的补角。
八年级数学下册 18.2 勾股定理逆定理(第2课时)学案2(无答案) 新人教版
勾股定理逆定理班级 姓名【学习目标】1.掌握勾股逆定理的内容.2. 能应用勾股逆定理解决实际问题【学习重难点】会结合勾股定理及直角三角形相关知识解决问题(一)【复习回顾】1.已知△ABC 的三边长a ,b ,c 分别为6,8,10,则△ABC__ ____(•填“是”或“不是”)直角三角形.2.△ABC 中,AB=7,AC =24,BC=25,则∠A=_____ _.3.△ABC 中,BC=n 2-1,AC=2n ,AB=n 2+1(n>1),则∠______=9004.如果三角形的三边长为1.5,2,2.5,那么这个三角形最短边上的高为______.(二)合作探究例2.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?(三)学以致用1.已知两条线段的长为3cm 和4c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.2. 在Rt △ABC 中,∠C=90°,(1)若a=5,b=12,则c= ;(2)b=8,c=17 ,则ABC S =3. 等边三角形的边长为6,则它的高是________4. 在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=____5.已知甲、乙两人从同一处出发,甲往东走了4km ,乙往南走了3km ,这时甲、乙两人相距 千米.6.下列各组数中,以它们为边的三角形不是直角三角形的是( )A .1.5,2,3 B. 7,24,25 C .6,8,10 D. 3,4,5 7.下列命题中是假命题的是( )A. △ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形.B. △ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形.C. △ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D. △ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形.8.若△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( )A. 等腰三角形B. 等边三角形C. 等腰直角三角形D. 等腰三角形或直角三角形9.一个直角三角形,有两边长分别为6和8,下列说法正确的()A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为1010.直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( ) A . 27cm B. 30cm C. 40cm D. 48cm11.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )cm 2A 6B 8C 10D 1212.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距()A .25海里 B. 30海里 C. 35海里 D. 40海里13. 如图所示,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求A B 的长.14.已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积.F 第11题 北南 A 东第12题15.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36,点P从点A开始沿AB边向B 点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?。
勾股定理(2)doc
2.1勾股定理(2) 教案班级 姓名 学号学习目标:1、通过拼图,用面积的方法说明勾股定理的正确性.2、通过实例应用勾股定理,培养学生的知识应用技能.重 难点:1. 用面积的方法说明勾股定理的正确.2. 勾股定理的应用.学习过程:一、学前准备:1、阅读课本第46页到第47页,完成下列问题:(1)我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦。
图(1)称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的。
图(2)是在北京召开的2002年国际数学家大会(TCM -2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就. 你能用不同方法表示大正方形的面积吗?2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的图形。
大正方形的面积可以表示为_______,又可以表示为____________.对比两种表示方法,看看能不能得到勾股定理的结论。
用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)。
归纳其共有的证明思路:利用图形的割补,借助前后的面积相等形成关于三边的数量关系。
二、合作探究:(一)思索、交流: 拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a 、b 、c ,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和__________ (填“大于”、“小于”或“等于”)图③中小正方形的面积,用关系式表示为________ .(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有__________个正方形,它们的面积之间的关系是________ ,用关系式表示为_____ .(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方形的面a cbc c b a b a b aba c cb a积之间的关系是_____ _____ ,用关系式表示________ _______ .(二)应用、探究: 1、如图 ,为了求出湖两岸的A 、B 两点之间的距离,一个观测者在点C 设桩,使三角形ABC 恰好为直角三角形.通过测量,得到AC 长160米,BC 长128米.问从点A 穿过湖到点B 有多远?2.如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC=1km ,BD=3km ,CD=3km ,现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20000元/千米,请你在CD 选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用F 。
人教版八下数学17.1 课时1 勾股定理教案+学案
人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理教案【教学目标】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题;3.了解利用拼图验证勾股定理的方法..【教学重点】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题.【教学难点】了解利用拼图验证勾股定理的方法.【教学过程设计】一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究知识点一:勾股定理【类型一】直接运用勾股定理例1如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用例2在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC 的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC 的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明例3探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD=S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.知识点二:勾股定理与图形的面积例4 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.【板书设计】17.1 勾股定理课时1 勾股定理1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.【教学反思】在课堂教学中应注意调动学生学习数学的积极性.让学生满怀激情地投入到数学学习中,提高数学课堂教学效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理学案【学习目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.【学习重点】掌握用面积法来证明勾股定理,体会数形结合的思想.【学习难点】能够运用勾股定理进行有关的运算.【自主学习】一、知识回顾网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?AB CCBA方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c=__________________________;右图:S c=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c=__________________________;右图:S c=__________________________.二、合作探究考点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”=________,证明:∵S大正方形S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 公式变形:222222, ,=+--.a cb bc a c a b知识点2:利用勾股定理进行计算【典例探究】例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【跟踪训练】求下列图中未知数x、y的值:三、知识梳理内容勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论四、学习中我产生的疑惑【学习检测】1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22. 如图,Rt△ABC(∠C=90°)的主要性质:(用几何语言表示)(1)两锐角之间的关系:____________________.(2)若∠B=30°,则∠B的对边和斜边:_________.3.如果直角三角形的两直角边分别为a、b,斜边为c,那么_________.4. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.5.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.6.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.7.如图所示,所有的四边形都是正方形,三角形是直角三角形,其中最大的正方形的边长为6,则正方形A,B的面积的和为_______.8.求斜边长17cm、一条直角边长15cm的直角三角形的面积.9.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.10.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底端B的距离AB。
勾股定理(2)学案
⑤④③②①EDB AC B AA BC DE a bca bc2.1勾股定理(2)学习、巩固案班级 姓名 学号一、复习:1.请说出勾股定理: 。
2.△ABC 中,∠A=90°,根据以下条件,求第三边和长 (1)a=15,b=12;(2)b=10,c=24;(3)c=7,a=25.二、实验、探究1.将P 43章头图中的①②③④⑤剪开 拼成大正方形ABDE 。
2.早在公元3世纪,我国数学家赵爽说用 4个直角三角形拼成如图所示的图形, 证明了勾股定理,这个图形称为“弦图”。
赵爽是怎样用“弦图”说明勾股定理的呢?3.如图,把火柴盒放倒,在这个过程中也能验证勾股定理 分析:请考虑用不同的方法计算梯形ACDE 的面积。
勾股定理的证明方法:有记载的就有几百种三、思考锐角三角形、钝角三角形三边之间也有这样的等量关系吗? 不是直角三角形没有这个结论。
看过动画演示后,你有什么结论?A B CD C B A四、再探索(1)用4张直角三角形纸片拼成如图形状,图中的3个正方形的面积之间有何关系?请用a 、b 、c 将所得的关系表示出来。
(2)用8个直角三角形纸片拼成如图形状,图中的3个正方形的面积之间有何关系?请用a 、b 、c 将所得的关系表示出来。
(1) (2)五、应用 如图,在△ABC 中,∠C=90°,AC=12, 边BC 上的中线AD 长为13,求边BC 的长。
六、反馈练习:P 46 练习七、拓展延伸2002年8月在北京召开了国际数学大会,其会标取材于我国古代数学家赵爽的“弦”图,此图是由4个斜边为c 的全等直角三角形和1个小正方形拼成的大正方形,如果大正方形的面积是13,小正方形的面积为2,且直角三角形两直角边分别为a 、b ,求(a+b )2的值。
a bbaa bc cbaabb abbaa ab ccbacc EDC BAGF 7DC B A 八、巩固练习1.如图,小方格的面积为1,画出图中以格点 为端点且长度为5的线段。
勾股定理教案2篇(一等奖)
勾股定理教案2篇(一等奖)教材分析:这节课是九年制义务教育课程标准实验教科书(苏科版),八年级上册第三章第一节“勾股定理”的第一课时、勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的重要性质,它把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,它是数形结合的典范,它可以解决许多直角三角形中的计算问题、学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解、教学目标:1、让学生经历从数到形再由形到数的转化过程,从探求三个正方形面积间的关系转化为三边数量关系的过程、培养学生主动探究意识,发展合理推理能力,体会数形结合思想、2、能说出勾股定理,并能用勾股定理解决简单问题、3、在经历数学知识的形成与应用过程中培养学生学习数学的兴趣;感受勾股定理的文化价值、教学重点:探索勾股定理的过程,会利用两边长求直角三角形的另一边长、教学难点:用割、补法求面积探索勾股定理、教学方法与教学手段:采用探究发现式教学,提供适当的问题情境、给学生自主探究交流的空间,引导学生有方向地探索、教学过程:(一)创设情境提出问题1、同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长6和8,你能确定第三边的长吗?你能确定第三边的长的范围吗?2、如果这两边所夹的角确定了,那么第三边的长确定吗?第三边的长是多少?3、直角三角形两边长确定了,第三边的长确定吗?如何求第三边的长呢?这节课就让我们一起来探讨这个问题、板书:直角三角形三边数量关系、(这是对三角形三边的不等关系和三角形全等的判定的回顾,从学生的原有认知出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课的目标、当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研究)(二)实践探索猜想归纳1、(几何画板出示),观察图形,我们以直角三角形ABC三边为边向形外作三个正方形、若将图形①②③④⑤剪下,用它们可以拼一个与正方形ABDE 大小一样的正方形吗?(同桌同学合作拼图)通过拼图,你有什么发现?(以BC为边的正方形面积与以AC为边的正方形面积的和等于以AB为边的正方形面积)(拼图活动,引发了学生的猜想,增加了研究的趣味性,锻炼了学生的空间思维能力和动手能力,体现了活动——数学)2、拼图活动引发我们的灵感,运算推演证实我们的猜想、为了计算面积方便,我们可将这幅图形放在方格纸中、如果每一个小方格的边长记作“1”,请你求出此时三个正方形的面积(SP=9,SQ=16)你是如何得到的?(可以数,也可以通过正方形面积公式计算得到)如何求SR?(SR的求法是这节课的难点,这时可让学生先在学案上独立分析,再通过小组交流,最后由小组代表到台前展示)学生可能提出割、补、平移、旋转四种方法(旋转这种方法只适用于斜边为整数的情况,没有一般性,而且此时斜边的长还不能求出来.若有学生提出,应提醒学生)肯定学生的研究成果,进而让学生打开书回顾课本上的提示、从小明、小丽的方法中你能得到什么启发?(把图形进行“割”和“补“,即把不能利用网格线直接计算面积的图形转化成可以利用网格线直接计算面积的图形、这种思想方法,称为化归思想)3、变化直角三角形,仿照以上方法计算直角边为5和3的直角三角形中以斜边为边的正方形面积(这是“割”和“补”思想的再一次应用、让学生感受所学即所用,体验成功的'乐趣)4、通过计算,你发现这三个正方形面积间有什么关系吗?(SP+SQ=SR,要给学生留有思考时间)5、利用方格纸,我们方便计算直角边为整数的情况,若直角边为小数时,所得到的正方形面积间也有如上关系吗?将网格线去掉,利用几何画板中的度量工具可以看到SP+SQ=SR(利用几何画板的高效性、动态性反映这一过程,让学生体会到更多一般的情形,从而为归纳提供基础,这样归纳的结论更具有一般性,学生的印象也更深刻)6、我们这节课是探索直角三角形三边数量关系、至此,你对直角三角形三边的数量关系有什么发现?(面积是边长的平方,面积间的等量关系转化为边长间的等量关系,即直角三角形三边的等量关系:两直角边的平方和等于斜边的平方)(这一问题的结论是本节课的点睛之笔,应充分让学生总结、交流、表达)7、用弯曲的手臂形象地表示勾、股、弦的概念,再给出勾股定理,进而给出字母表达式、一段紧张的探索过程之后,播放一段有关勾股历史的录音(这样既活跃了课堂气氛,又展现了勾股历史,激发学生热爱祖国悠久历史文化,激励学生发奋学习的情感)(三)学以致用体验成功1、完成课本第79-80页练习1、2(1)求下列直角三角形中未知边的长:(2)求下列图中未知数x、y、z的值:在学生回答的基础上,老师规范板书一题、(在对勾股定理基本应用的基础上,让学生体会知道直角三角形三边中的任意两边,可以求第三边)(四)课堂小结学生可以谈本节课的收获,也可以提出本节课的疑问、教师引导学生思考特殊的三角形直角三角形三边有特殊的等量关系,一般三角形三边是否也存在一种等量关系呢?这是我们今后将要探讨的内容、(学生总结本堂课的收获,从内容、应用,到数学思想方法,获取知识的途径等方面,给学生自由的空间,鼓励学生多说、这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力、最后提及的问题与引入首尾呼应,激发了学生深入研究的兴趣)(五)布置作业P82习题3.1第1、2题勾股定理教案(一等奖)一、教学内容分析这节课是人教版九年义务教育课程标准实验教材八年级第十八章勾股定理第一课时,是在前面学习了直角三角形一些性质的基础上学习的。
勾股定理
课题:勾股定理复习学案1.知识点梳理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用,a b 和c 分别表示直角三角形的直角边和斜边,那么__________2c =.(2)勾股定理各种表达式:在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边也分别为,,a b c ,则2a =_________,2b =_________,2c =_________.(3)勾股定理的逆定理:在△ABC 中,若,,a b c 三边满足___________,则△ABC 为___________.(4)勾股数:满足___________的三个___________,称为勾股数.(5)几何体上的最短路程是将立体图形的________展开,转化为_________上的路程问题,再利用___________两点之间,___________解决最短线路问题.(6)直角三角形的边、角之间分别存在着什么关系?从边的关系来说,当然就是勾股定理;从角度的关系来说,由于直角三角形中有一个特殊的角即直角,所以直角三角形的两个锐角 .直角三角形作为一个特殊的三角形.如果又有一个锐角是30︒,那么30︒的角所对的直角边是斜边的 .(7)举例说明,如何判断一个三角形是直角三角形?可以从角、边两个方面判断.①从定义即从角出发去判断一个三角形是直角三角形.例如:在△ABC 中,7515B C ∠=︒∠=︒,,根据三角形的内角和定理,可得A ∠= ,根据定义可判断△ABC 是直角三角形.在△ABC 中,1123A B C ∠=∠=∠,由三角形的内角和定理可知,A 30∠=︒,2B A ∠=∠= °,3C A ∠=∠= °,△ABC 是直角三角形.②从边出发来判断一个三角形是直角三角形.其实从边来判断直角三角形它的理论依据就是判定直角三角形的条件(即勾股定理的逆定理).例如:△ABC 的三条边分别为72524a b c ===,,,而2222262572524a c b +=+===,根据勾股定理的逆定理可知△ABC 是 三角形,但这里要注意的是b 所对的角90B ∠=︒.在△ABC 三条边的比为::5:12:a b c = ,△ABC 是直角三角形.8.通过回顾与思考中的问题的交流,由学生自己建立本章的知识结构图.三边的关系--勾股定理→历史、应用直角三角形直角三角形的判别→应用二、典型例题 1.利用勾股定理求边长.例1 已知直角三角形的两边长分别为3、4,求第三边长的平方.跟踪训练1:一个直角三角形的两直角边长分别为3和4,那么它斜边上的高线长为A. 5B. 2.5C. 2.4D. 22.利用勾股定理求图形面积.(1)如图,BC 长为3cm ,AB 长为4cm ,Af 长为12cm .求正方形CDEF 的面积.3.利用勾股定理逆定理判定△ABC 的形状或求角度. 例3 在△ABC 中,A B C ∠∠∠,,的对边分别为a b c ,,,且2()()a b a b c +-=,则(A )A ∠为直角(B )C ∠为直角 (C )B ∠为直角(D )不是直角三角形跟踪训练3:已知△ABC 的三边为a ,b ,c ,有下列各组条件,判定△ABC 的形状. ①41409a b c ===,,; ②222220a m n b m n c mn m n =-=+=>>,,().4.勾股定理及逆定理的综合应用.例4 B 港有甲、乙两艘渔船,若甲船沿北偏东60︒方向以每小时8 n mile 的速度前进,乙船沿南偏东某个角度以每小时15 n mile 的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34 n mile ,你知道乙船是沿哪个方向航行的吗?跟踪训练4:如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时, A 处受噪音影响的时间为 .{例5 如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()dm.A.20 B.25 C.30 D.35三、巩固练习1.下列四组线段中,可以构成直角三角形的是().A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,32.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于().A.75 B.100 C.120 D.1253.如图,在△ABC中,∠A=∠B=45°,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为().A.2 B.4 C.8 D.164.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是().A. 25B. 14C. 7D. 7或255.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD的面积.7.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)四、拓展提升1.已知Rt △ABC 中,90C ∠=︒,若1410a b c m c c m +==,,求Rt △ABC 的面积.2.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2 m ,坡角30906A B BC ∠=︒∠=︒=,,m .当正方形DEFH 运动到什么位置,即当AE = m 时,有222DC AE BC =+.3.有一个如图所示的长方体透明玻璃鱼缸,假设其长AD =80cm ,高AB =60cm ,水深AE =40cm .在水面上紧贴内壁G 处有一块面包屑,G 在水面线EF 上,且EG =60cm ,一只蚂蚁想从鱼缸外的A 点沿鱼缸壁爬进鱼缸内的G 处吃面包屑.(1)该蚂蚁应该沿怎样的路线爬行才能使路程最短呢?请你画出它爬行的路线,并用箭头标注;(2)求蚂蚁爬行的最短路线长.4.如图,铁路上A ,B 两点相距25 km ,C ,D 为两村庄,DA ⊥AB于点A ,CB ⊥AB 于点B ,已知DA =15 km ,CB =10 km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?第一章勾股定理单元测试题一、选择题.(共10道小题,每题3分,共30分)1.下列长度的三条线段,能组成直角三角形的是().A.1cm,3cm,3 cm; B.2 cm,3 cm,4 cm;C.4 cm,6 cm,8 cm; D.5 cm,12 cm,13 cm.2.若直角三角形两边长分别是3和4,则第三边的长的平方为().A.5 B.7 C.25 D.25或73.三角形的三边长分别为5,12,13,边长为12的边上的高为().A.5 B.12 C.13 D.60 134.已知一个直角三角形的斜边长比直角边长多2,另一条直角边长为8,则斜边长为().A.12 B.6 C.17 D.155.如图,在正方形ABCD中,AB=8,AE=4,DF=2,图中有()个直角三角形.A.1个 B .2个 C .3个 D .4个6.下列条件中,不能..判断一个三角形是直角三角形的是A. 三个角的比为1:2:3B. 三条边满足关系a2 =b2 - c2C. 三条边的比为1:2:3D. 三个角满足关系∠B+∠C=∠A7.如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为().A. 14B. 16C. 20D. 288.如图,在△ABC中,AC=10,DC=6,AD=8,BC=21,则AB 的长为().A. 15B. 16C. 14D. 179.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为().A.3cm2B.4cm2 C.6cm2 D.12cm210.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7 m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3 m.同时梯子的顶端B下降至B′,那么BB′().A.小于1mB.大于1m C.等于1mCBDFD .小于或等于1 m二、填空题.(共10道小题,每题3分,共30分)11.如图,数轴上点A 表示的数是__________.12.强大的台风使得一根旗杆在离地面3m 处折断倒下,旗杆顶不落在离旗杆底部4m 处,则旗杆折断之前的高度是 .14.如图,Rt △ABC 中,AB =9,BC =6,∠B = 90,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段DN 的长为 .17.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为 厘米.18.如图,长方体盒子(无盖)的长、宽、高分别是12cm ,8cm ,30 cm ,在AB 中点C 处有一滴蜜糖,一只小虫从P 处爬到C 处去吃,有多种走法,则最短路程是 .20.如图,在一个长方形草坪ABCD 上,放着一根长方体的木块,已知AD =6米,AB =5米,该木块的较长边与AD 平行,横截面是边长为1米的正方形,一只蚂蚁从点A 处爬过木块到达C 处需要走的最短路程是_________米.三.解答下列各题.21.如图是一个滑梯的示意图,若将滑道AC 水平放置,则刚好与AB 一样长,已知滑梯的高CE =BD =3m ,CD =1m ,求滑道AC 的长.(6分)22.如图,已知四边形ABCD 中,AB =15,BC =20,AD =7,CD =24,∠B =90○,求四边形ABCD 的面积. (6分)23.如图,25米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为7米,如果梯子的顶端沿墙下滑4米,那么梯足将向外移多少米?(6分)24.如图正方形网格中的△ABC ,若小方格边长为1,请你根据所学的知识.(6分)(1)判断△ABC 是什么形状?并说明理由.(2)求△ABC 的面积.25.构造定义(8分)学习了勾股定理及其逆定理,我们知道:在一个三角形中,如果一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形是直角三角形,反之结论也成立。
《勾股定理》学案
《勾股定理》复习学案第1讲勾股定理(1)一、勾股定理1.勾股定理的具体内容用字母表示为:。
2.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)两锐角之间的关系:;3. 若∠A=30°,三边之间的关系:;4. 若∠A=45°,三边之间的关系:;5. 若D是斜边AB的中点,则有==;二、回顾勾股定理的证明:你能用这个图形证明勾股定理吗?二、课堂练习1.在Rt△ABC中,∠C=90°⑴已知a=b=5,求c。
⑵已知a=1,c=2, 求b。
⑶已知c=17,b=8, 求a。
⑷已知a:b=1:2,c=5, 求a。
⑸已知b=15,∠A=30°,求a,c。
2.已知直角三角形的两边长分别为5和12,求第三边。
3.已知:如图,等边△ABC的边长是6cm。
⑴求等边△ABC的高;⑵求S△ABC。
三、课堂检测:1.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= 。
⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= 。
⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= 。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为。
⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。
⑹已知等边三角形的边长为2cm,则它的高为,面积为。
4,AC=4,AD是BC边上的高,求BC 2.已知:如图,在△ABC中,∠C=60°,AB=3的长。
3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
第2讲 勾股定理(2)一、求出下列直角三角形中未知的边.归纳:(1)在求解直角三角形的未知边时需要知道哪些条件?应该注意哪些问题?(2)直角三角形中哪条边最长?它所对的是什么角?二、探究11.在长方形ABCD 中,宽AB 为1m ,长BC 为2m ,求AC 的长2.在矩形中,如何确定直角三角形模型?3.一个门框的尺寸如图所示.①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?6 10 A C B 2 45° A 15C B 2 30°三.探究2如图,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米.①球梯子的底端B距墙角O多少米?②如果梯的顶端A沿墙下滑0.5米至C,请同学们猜一猜,底端也将滑动0.5米吗?算一算,底端滑动的距离近似值(结果保留两位小数).四、课堂检测:1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米。
江苏省仪征市第三中学八年级数学上册《2.7 勾股定理的
内容:2.7勾股定理的应用(2)学习目标:1、能运用勾股定理及直角三角形的判定条件解决实际问题。
2、在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。
学习重点:实际问题转化成数学问题再转化为直角三角形中学习难点:“转化”思想的应用学习过程:一.学前准备:阅读课本第82页到83页,完成下列问题:1、讨论P82中的问题⑴如何求出图中的x 、y 、x ?⑵如何画出5、6、7的线段吗?2、学生看书(学生小组讨论)P83例3、 P84例4 思考:如何得到直角三角形的?二.自学、合作探究:(一)自学、相信自己:1、完成课本P83练习1、2、3及P83-84习题2.7 4、5、62、在平静的湖面上,有一支红莲,高出水面1m,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求这里的水深是多少米? (提示:画出图形建立直角三角形)3、已知等腰△ABC 的周长为26,AB=AC,且AB=BC+4,求:⑴底边BC 上的高。
⑵△ABC 的面积和一腰上的高。
(二)思索、交流:1、.已知:如图,在△ABC 中,D 为边BC 上的一点,AB=13,AD=12,AC=15,BD=5.求△ABC 的面积.2、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm ,3dm ,2dm ,A 和B 是这个台阶两相对的端点,A 点有一只昆虫想到B 点去吃可口的食物,则昆虫沿着台阶爬到B 点的最短路程是多少dm ?3、一块长4m ,宽2.1m 的薄木板能否从一个宽1m 、高2m 的门框内通过?试说明理由.(三)应用、探究:B A DC A ·· B 3 2 201、如图,一个高18m ,周长5m 的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿一张白纸动手操作,你一定会发现其中的奥妙)2、如图,笔直的公路上A 、B 两点相距25km ,C 、D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA=15km ,CB=10km ,现在要在公路的AB 段上建一个土特产品收购站E ,使得C 、D 两村到收购站E 的距离相等,则收购站E 应建在离A 点多远处?三.学习体会:A DE BC。
勾股定理
时量
教师活动
二.自主学习
阅读教材定理 用自己文字语言将上述问题表述出来.
勾股定理:
。
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――பைடு நூலகம்边
(2)学生根据上述学习,提出自己的问题(待定)
三.合作交流
1、思考:你能发现图中的等腰直角三角形有什么性质吗?把模型展示如下:让学生思考后动手怎样找出它们的面积?
活动后得出结论:在等腰直角三角形中,直角边的平方之和等于斜边的平方。
2、在等腰直角三角形中有这样的关系,那么一般的直角三角形呢?
探究:
教学内容及学生活动
时量
教师活动
3、得出猜想:如果直角三角形的两条直角边分别为a和b,斜边为c,那么有如下关系:
4、验证猜想:如图
已知:直角三角形的直角边分别为a和b,斜边为c
教学重点
勾股定理及其应用
教学难点
通过有关勾股定理的历史讲解,对学生进行德育教育
教学过程
教学内容及学生活动
时量
教师活动
一.新课导入
(1)三角形的三边关系
(2)问题:直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
(3)三角形才称之为直角三角形?直角三角形的两个锐角是关系?
(4)有一个锐角等于30度的直角三角形的边有什么关系?(30度所对的直角边等于斜边的一半)
五.小结
谈谈本节课收获和体会:
课堂小结:
(1)勾股定理的内容
(2)勾股定理的作用
已知直角三角形的两边求第三边已知直角三角形的一边,求另两边的关系
六.布置作业
(本节课时夺冠)
板书设计
教学反思
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级:
年级 数学 导学案
姓名:
课题
勾股定理
课型
新授
课时1周次3学习 目标 重点 难点
通过经历和体验,运用勾股定理解决一些实际问题的过程,进一步掌握勾股定 理。
重点:勾股定理的应用 难点:实际问题向数学问题的转化。
导
学
过
程
自主 学习
1、一个门框的尺寸如图所示: (1) 若有一块长 3 米,宽 0.8 米的薄木板,能否从门框内通过? (2) 若有一块长 3 米,宽 1.5 米的薄木板,能否从门框内通过? (3) 若有一块长 3 米,宽 2.2 米的薄木板,能否从门框内通过? 分析:(3) 木板的宽 2.2 米大于 1 米,所以横着不能从门框内通过. 木板的宽 2.2 米大于 2 米,所以竖着不能从门框内通过. 因为对角线 AC 的长度最大,所以只能试试斜着能否通过. 所以将实际问题转化为数学问题.
A
盘点 收获
巩固 提升
3、如图,一圆柱高 8cm,底面半径 2cm,一只蚂蚁从点 A 爬 到点 B 处吃食,要爬行的最短路程( 取 3)是( ) B A、20cm; B、10cm; C、14cm; D、无法确定. 4、若等腰直角三角形的斜边长为 2,则它的直角边的长为 ,斜边 上的高的长为 。 5、要登上 8m 高的建筑物,为了安全需要,需使梯子底端离建筑物 6m, 至少需要多长的梯子?(画出示意图)
D C
2m
A
1m B
合作 探究
小结:此题是将实际为题转化为数学问题,从中抽象出 Rt△ ABC,并求出 斜边 AC 师生共同探究例题的内容,让学生讨论,教师难点进行点拨。 例 2、如图,一个 3 米长的梯子 AB,斜靠在一竖直的墙 AO 上,这时 AO 的距离为 2.5 米.如果梯子的顶端 A 沿墙下滑 0.5 米,那么梯子底端 B 也外移 0.5 米吗? (计算结果保留两位小数) 分析:要求出梯子的底端 B 是否也外移 0.5 米, A 实际就是求 BD 的长,而 BD=OD-OB A
C C O C B D O B
O
D
例 3、一个大树高 8 米,折断后大树顶端落在离大树底端 2 米处,折断处 离地面的高度是多少?
A
B
D
C
1、若等腰三角形中相等的两边长为 10cm,第三边长为 16 cm,那么第三 边上 的高为 ( ) A、12 cm B、10 cm C、8 cm D、6 cm 2、如图,在⊿ABC 中,∠ACB=900,AB=5cm,BC=3cm,CD⊥AB 与 D。 求: (1 )AC 的长; (2)⊿ABC 的面积; (3)CD 的长。