2012年河南省高考文科数学试题及参考答案

合集下载

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12 (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A )A +B 为1a ,2a ,…,N a 的和(B )2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0<x ≤12时,4log x a x <,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。

2012年高考试题:文科数学(全国卷)——含答案及解析

2012年高考试题:文科数学(全国卷)——含答案及解析

2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本卷和答题卡一并交回。

第Ⅰ卷注意事项:1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2、每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3、第Ⅰ卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

一、选择题(1)已知集合{|}{|}{|}{|}A x xB x xC x xD x x ==是平行四边形,是矩形,是正方形,是菱形,则( ).()()()()A A B B C B C D C D A D⊆⊆⊆⊆【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。

在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解。

(2)函数1(1)y x x =+-≥的反函数为( ). 2()1(0)A yx x =-≥ 2()1(1)B yx x =-≥ 2()1(0)C yx x =+≥ 2()1(1)D yx x =+≥ 【考点】反函数【难度】容易【点评】本题考查反函数的求解方法,注意反函数的定义域即为原函数的值域。

在高一数学强化提高班上学期课程讲座1,第二章《函数与初等函数》中有详细讲解,在高考精品班数学(文)强化提高班中有对函数相关知识的总结讲解。

(3)若函数()s i n [0,2]3x fx ϕϕ+=∈(π)是偶函数,则ϕ=( ).()2A π 2()3B π 3()2C π 5()3D π 【考点】三角函数与偶函数的结合【难度】中等【点评】本题考查三角函数变换,及偶函数的性质。

2012年普通高等学校招生全国统一考试(新课标_)文科数学试卷及参考答案

2012年普通高等学校招生全国统一考试(新课标_)文科数学试卷及参考答案

2012年普通高等学校招生全国统一考试 (新课标文科数学试卷及参考答案)注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 2.复数z =-3+i2+i的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )(A )-1 (B )0 (C )12 (D )14.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( ) (A )12 (B )23 (C )34 (D )455.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6.如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 (D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )18 8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )(A )6π (B )43π (C )46π (D )63π 9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2 (D )3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )(A ) 2 (B )2 2 (C )4 (D )8 11.当0<x ≤12时,4x <log a x ,则a 的取值范围是 ( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( )(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。

2012年(全国卷II)(含答案)高考文科数学

2012年(全国卷II)(含答案)高考文科数学

2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .CB C .DC D .AD2.函数1y x =+x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2B .2π3C .3π2D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 BC .2D.19.△ABC中,AB边的高为CD.若CB=a ,CA=b,a·b=0,|a|=1,|b|=2,则AD=()A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则()A.x<y<z B.z<x<yC.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=13.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为() A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330, x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x x(0≤x<2π)取得最大值时,x=__________.16.已知正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.18.已知数列{a n}中,a1=1,前n项和23n nnS a+=.(1)求a2,a3;(2)求{a n}的通项公式.19.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=P A=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.20.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2) 求开始第5次发球时,甲得分领先的概率.21.已知函数f(x)=13x3+x2+ax.(1)讨论f(x)的单调性;(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x 轴的交点在曲线y=f(x)上,求a的值.22.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:1. B ∵正方形组成的集合是矩形组成集合的子集, ∴C B .2. A ∵1y x =+∴y 2=x +1, ∴x =y 2-1,x ,y 互换可得:y =x 2-1. 又∵10y x =+≥.∴反函数中x ≥0,故选A 项. 3.C ∵()sin3x f x ϕ+=是偶函数,∴f (0)=±1. ∴sin 13ϕ=±.∴ππ32k ϕ=+(k ∈Z).∴φ=3k π+3π2(k ∈Z). 又∵φ∈[0,2π],∴当k =0时,3π2ϕ=.故选C 项. 4.A ∵3sin 5α=,且α为第二象限角, ∴24cos 1sin 5αα=-=--.∴3424sin22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故选A 项. 5. C ∵焦距为4,即2c =4,∴c =2.又∵准线x =-4,∴24a c-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184x y +=,故选C 项.6.B 当n =1时,S 1=2a 2,又因S 1=a 1=1,所以21 2a=,213 122S=+=.显然只有B项符合.7.C由题意可采用分步乘法计数原理,甲的排法种数为14A,剩余5人进行全排列:55A,故总的情况有:14A·55A=480种.故选C 项.8.D连结AC交BD于点O,连结OE,∵AB=2,∴AC=又1CC=AC=CC1.作CH⊥AC1于点H,交OE于点M.由OE为△ACC1的中位线知,CM⊥OE,M为C H的中点.由BD⊥AC,EC⊥BD知,BD⊥面EOC,∴CM⊥BD.∴CM⊥面BDE.∴HM为直线AC1到平面BDE的距离.又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.9.D∵a·b=0,∴a⊥b.又∵|a|=1,|b|=2,∴||5AB=.∴||5CD==.∴2||25AD ==. ∴4544445()5555AD AB AB ===-=-a b a b .10. C 设|PF 2|=m ,则|PF 1|=2m , 由双曲线定义|PF 1|-|PF 2|=2a , ∴2m -m=.∴m 又24c ==, ∴由余弦定理可得cos ∠F 1PF 2=2221212||||432||||4PF PF c PF PF +-=.11. D ∵x =ln π>1,y =log 52>1log 2=,121e2z -==>=,且12e -<e 0=1,∴y <z <x . 12. B 如图,由题意:tan ∠BEF =12, ∴2112KX =,∴X 2为HD 中点,2312X D X D =,∴313X D =, 4312X C X C =,∴413X C =, 5412X H X H =,∴512X H =, 5612X A X A =,∴613X A =,∴X 6与E 重合,故选B 项. 13.答案:7 解析:∵(x +12x )8展开式的通项为T r +1=8C r x 8-r(12x)r =C r 82-r x 8-2r,令8-2r =2,解得r =3.∴x 2的系数为38C 2-3=7.14.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 15.答案:5π6解析:y =sin xx=1π2(sin )2sin()23x x x =-. 当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =. 16.答案:35解析:设正方体的棱长为a .连结A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角, 在△AEA 1中,2222213cos 5a a a a a AEA ⎛⎫⎛⎫+++- ⎪ ⎪∠==. 17.解:由A ,B ,C 成等差数列及A +B +C =180°,得B =60°,A +C =120°.由2b 2=3ac 及正弦定理得2sin 2B =3sin A sin C , 故1sin sin 2A C =.cos(A +C )=cos A cos C -sin A sin C =cos A cos C -12, 即cos A cos C -12=12-,cos A cos C =0, cos A =0或cos C =0,所以A =90°或A =30°.18.解:(1)由2243S a =得3(a 1+a 2)=4a 2,解得a 2=3a 1=3; 由3353S a =得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时有a n =S n -S n -1=12133n n n n a a -++-, 整理得111n n n a a n -+=-. 于是a 1=1,a 2=31a 1,a 3=42a 2,… a n -1=2nn -a n -2,a n =11n n +-a n -1.将以上n 个等式两端分别相乘,整理得(1)2n n n a +=. 综上,{a n }的通项公式(1)2n n n a +=. 19.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又P A ⊥底面ABCD , 所以PC ⊥BD . 设AC ∩BD =F ,连结EF .因为AC =P A =2,PE =2EC ,故PC =3EC =,FC = 从而PC FC =,ACEC =, 因为PC ACFC EC=,∠FCE =∠PCA , 所以△FCE ∽△PCA ,∠FEC =∠P AC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,2222PD PA AD =+=. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 2.设PD 与平面PBC 所成的角为α,则1sin 2d PD α==. 所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (220,0),D 2,b,0),其中b >0, 则P (0,0,2),E (23,0,23),B 2b,0). 于是PC =(220,-2),BE =(23,b ,23),DE =(23,-b ,23),从而0PC BE ⋅=,0PC DE ⋅=, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE .(2)AP =(0,0,2),AB =b,0). 设m =(x ,y ,z )为平面P AB 的法向量, 则m ·AP =0,m ·AB =0,即2z =0-by =0, 令x =b ,则m =(b,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b =-,n =(1,b-). 因为面P AB ⊥面PBC ,故m·n =0,即20b b-=,故b = 于是n =(1,-1),DP =(2),1cos ,2||||DP DP DP ⋅==n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP 〉互余,故PD 与平面PBC 所成的角为30°.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A , P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2) P(B0)=0.62=0.36,P(B1)=2×0.4×0.6=0.48,P(B2)=0.42=0.16,P(A2)=0.62=0.36.C=A1·B2+A2·B1+A2·B2P(C)=P(A1·B2+A2·B1+A2·B2)=P(A1·B2)+P(A2·B1)+P(A2·B2)=P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.21.解:(1)f′(x)=x2+2x+a=(x+1)2+a-1.①当a≥1时,f′(x)≥0,且仅当a=1,x=-1时,f′(x)=0,所以f(x)是R上的增函数;②当a<1时,f′(x)=0有两个根x1=-1x2=-1当x∈(-∞,-1时,f′(x)>0,f(x)是增函数;当x∈(-11时,f′(x)<0,f(x)是减函数;当x∈(-1∞)时,f′(x)>0,f(x)是增函数.(2)由题设知,x1,x2为方程f′(x)=0的两个根,故有a<1,x12=-2x1-a,x22=-2x2-a.因此f(x1)=13x13+x12+ax1=13x1(-2x1-a)+x12+ax1=13x12+23ax1=13(-2x1-a)+23ax1=23(a-1)x1-3a.同理,f(x2)=23(a-1)x2-3a.因此直线l 的方程为y =23(a -1)x -3a . 设l 与x 轴的交点为(x 0,0),得02(1)ax a =-, 22322031()[][](12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+----. 由题设知,点(x 0,0)在曲线y =f (x )上,故f (x 0)=0, 解得a =0或23a =或34a =.22.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1, 即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |=,即2r =. (2)设(t ,(t +1)2)为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M=化简得t 2(t 2-4t -6)=0,解得t 0=0,12t =22t =抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==. 将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离d ==.。

2012年高考新课标全国卷文科数学试题(附答案)(最新整理)

2012年高考新课标全国卷文科数学试题(附答案)(最新整理)

2012 年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合 A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B(D )A ∩B=∅-3 + i (2)复数 z =的共轭复数是2 + i(A ) 2 + i(B ) 2 - i(C ) -1+ i(D ) -1- i(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的1散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线 y =数据的样本相关系数为 x +1 上,则这组样本21 (A )−1(B )0(C )2(D )1x 2 y 2(4)设 F 1 , F 2 是椭圆 E : a 2 + b2 =1( a > b >0)的3a左、 右焦点, P 为直线 x = 上一点,△ F 2 PF 12是底角为300 的等腰三角形,则 E 的离心率为 1 2 3 4 (A )(B )(C )D .2345(5) 已知正三角形 ABC 的顶点 A (1,1),B (1,3),顶点 C 在第一象限,若点(x ,y )在△ABC 内部,则 z = -x + y 的取值范围是 (A )(1- 3,2)(B )(0,2)(C )( 3-1,2)(D )(0,1+ 3)(6) 如果执行右边的程序框图,输入正整数 N ( N ≥2)和实数 a 1, a 2 ,…, a N ,输出 A ,B ,则 (A ) A + B 为 a 1 , a 2 ,…, a N 的和 A + B (B )为 a , a ,…, a 的算术平均数 21 2 N(C ) A 和 B 分别为 a 1 , a 2 ,…, a N 中的最大数和最小数3 2 10 n n + n1(D ) A 和 B 分别为 a 1 , a 2 ,…, a N 中的最小数和最大数(7) 如图,网格上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18 (8)平面截球 O 的球面所得圆的半径为 1,球心 O 到平面的距离为2,则此球的体积为(A ) 6π (B )4 3π (C )4 6π(D )6 3π(9)已知>0, 0 << ,直线 x =和 x =5是函数 f (x ) = sin(x +) 图像的两条44相邻的对称轴,则=π (A )4 π (B )3 π (C )2 3π (D ) 4(10)等轴双曲线C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 2 = 16x 的准线交于 A 、B 两点, | AB | = 4 ,则C 的实轴长为(A ) (B ) 2 (11)当 0< x ≤1时, 4x< log 2 a2 (C )4 (D )8x ,则 a 的取值范围是2(A )(0, 2 ) (B )( 2,1) (C )(1, 2)(D )( 2,2)(12)数列{ a }满足 a + (-1)na = 2n -1,则{ a }的前 60 项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共 4 小题,每小题 5 分。

2012年高考文科数学试题、答案-新课标

2012年高考文科数学试题、答案-新课标

绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =-3+i 2+i的共轭复数是 (A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 (A )-1 (B )0 (C )12(D )1 (4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数 (C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ= (A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为 (A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。

2012年高考数学试卷及解析新课标卷(文科)

2012年高考数学试卷及解析新课标卷(文科)

2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A∩B=∅(2)复数z =-3+i 2+i的共轭复数是 (A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12(D )1 4、设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6、如果执行右边的程序框图,输入正整数N(N≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数 (C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )188、平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π9、已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ= (A )π4 (B )π3 (C )π2 (D )3π410、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )811、当0<x ≤124x <log a x ,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12、数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。

2012年河南高考数学试题及参考答案

2012年河南高考数学试题及参考答案

绝密★启用前2012年普通高等学校招生全国统一考试(河南卷)数 学(文史类)本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第1部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案打在答题卡上,在本试题卷、草稿纸上答题无效,满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.参考公式:如果事件A 、B 互斥,那么 球是表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n P k C P P -=-第一部分(选择题 共60分)1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本大题共12小题,每小题5分,共60分.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目的要求的.1.若全集{1,2,3,4,5}M =,{2,4}N =,则M N =ð(A )∅ (B ){1,3,5} (C ){2,4}(D ){1,2,3,4,5} 答案:B解析:∵{1,2,3,4,5}M =,则M N =ð{1,3,5},选B .2.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,大于或等于31.5的数据约占(A )211 (B ) 13(C )12 (D )23答案:B解析:大于或等于31.5的数据共有12+7+3=22个,约占221663=,选B .3.圆22460x y x y +-+=的圆心坐标是(A )(2,3) (B )(-2,3) (C )(-2,-3) (D )(2,-3)答案:D解析:圆方程化为22(2)(3)13x y -++=,圆心(2,-3),选D .4.函数1()12x y =+的图象关于直线y =x 对称的图象像大致是答案:A解析:1()12x y =+图象过点(0,2),且单调递减,故它关于直线y =x 对称的图象过点(2,0)且单调递减,选A . 5.“x =3”是“x 2=9”的(A )充分而不必要的条件 (B )必要而不充分的条件 (C )充要条件(D )既不充分也不必要的条件答案:A解析:若x =3,则x 2=9,反之,若x 2=9,则3x =±,选A . 6.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A )12l l ⊥,23l l ⊥13//l l ⇒(B )12l l ⊥,23//l l ⇒13l l ⊥(C )233////l l l ⇒1l ,2l ,3l 共面(D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面答案:B解析:由12l l ⊥,23//l l ,根据异面直线所成角知1l 与3l 所成角为90°,选B . 7.如图,正六边形ABCDEF 中,BA CD EF ++=(A )0 (B )BE (C )AD(D )CF答案:D解析:BA CD EF CD DE EF CF ++=++=,选D .8.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π (B )[,)6ππ (C )(0,]3π(D )[,)3ππ答案:C解析:由222sin sin sin sin sin A B C B C ≤+-得222a b c bc ≤+-,即222122b c a bc +-≥,∴1cos 2A ≥,∵0A π<<,故03A π<≤,选C .9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6=(A )3 × 44(B )3 × 44+1(C )44(D )44+1答案:A解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A .10.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润为 (A )4650元 (B )4700元 (C )4900元 (D )5000元 答案:C解析:设派用甲型卡车x (辆),乙型卡车y (辆),获得的利润为u (元),450350u x y =+,由题意,x 、y 满足关系式12,219,10672,08,07,x y x y x y x y +≤⎧⎪+≤⎪⎪+≥⎨⎪≤≤⎪≤≤⎪⎩作出相应的平面区域,45035050(97)u x y x y =+=+在由12,219x y x y +≤⎧⎨+≤⎩确定的交点(7,5)处取得最大值4900元,选C .11.在抛物线25(0)y x ax a =+-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)- 答案:A解析:令抛物线上横坐标为14x =-、22x =的点为(4,114)A a --、(2,21)B a -,则2AB k a =-,由22y x a a '=+=-,故切点为(1,4)a ---,切线方程为(2)60a x y ---=,该直线又和圆相切,则d ==,解得4a =或0a =(舍去),则抛物线为2245(2)9y x x x =+-=+-,定点坐标为(2,9)--,选A .12.在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b =α,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积等于2的平行四边形的个数为m ,则mn=(A )215 (B )15 (C )415 (D )13答案:B解析:∵以原点为起点的向量(,)a b =α有(2,1)、(2,3)、(2,5)、(4,1)、(4,3)、(4,5)共6个,可作平行四边形的个数2615n C ==个,结合图形进行计算,其中由(2,1)(4,1)、(2,1)(4,3)、(2,3)(4,5)确定的平行四边形面积为2,共有3个,则31155m n ==,选B .第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.13.9(1)x +的展开式中3x 的系数是_________.(用数字作答)答案:84解析:∵9(1)x +的展开式中3x 的系数是639984C C ==. 14.双曲线2216436x y -=上一点P 到双曲线右焦点的距离是4,那么P 到左准线的距离是____. 答案:16 答案:16解析:离心率54e =,设P 到右准线的距离是d ,则454d =,则165d =,则P 到左准线的距离等于2641616105⨯+=.15.如图,半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是_________. 答案:32π解析:如图,设球一条半径与圆柱相应的母线夹角为α,圆柱侧面积24sin 24cos S παα=⨯⨯⨯=32sin 2πα,当4πα=时,S 取最大值32π,此时球的表面积与该圆柱的侧面积之差为32π.16.函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如,函数()f x =2x +1(x ∈R )是单函数.下列命题:①函数2()f x x =(x ∈R )是单函数;②指数函数()2x f x =(x ∈R )是单函数;③若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠; ④在定义域上具有单调性的函数一定是单函数. 其中的真命题是_________.(写出所有真命题的编号) 答案:②③④解析:对于①,若12()()f x f x =,则12x x =±,不满足;②是单函数;命题③实际上是单函数命题的逆否命题,故为真命题;根据定义,命题④满足条件.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题共l2分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14、12;两小时以上且不超过三小时还车的概率分别为12、14;两人租车时间都不会超过四小时. (Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率; (Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率. 本小题主要考查相互独立事件、互斥事件等概念及相关概率计算,考查运用所学知识和方法解决实际问题的能力. 解:(Ⅰ)分别记甲、乙在三小时以上且不超过四小时还车为事件A 、B ,则111()1424P A =--=,111()1244P A =--=.答:甲、乙在三小时以上且不超过四小时还车的概率分别为14、14.(Ⅱ)记甲、乙两人所付的租车费用之和小于6元为事件C ,则1111111111113()()()()4244222442444P C =⨯+⨯+⨯+⨯+⨯+⨯=.答:甲、乙两人所付的租车费用之和小于6元的概率为3418.(本小题共l2分)已知函数73()sin()cos()44f x x x ππ=++-,x ∈R .(Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)已知4cos()5βα-=,4cos()5βα+=-,02παβ<<≤.求证:2[()]20f β-=.本小题考查三角函数的性质,同角三角函数的关系,两角和的正、余弦公式、诱导公式等基础知识和基本运算能力,函数与方程、化归与转化等数学思想.(Ⅰ)解析:7733()sin cos cos sin cos cos sin sin4444f x x x x x ππππ=+++x x 2sin()4x π=-,∴()f x 的最小正周期2T π=,最小值min ()2f x =-. (Ⅱ)证明:由已知得4cos cos sin sin 5αβαβ+=,4cos cos sin sin 5αβαβ-=-两式相加得2cos cos 0αβ=,∵02παβ<<≤,∴cos 0β=,则2πβ=.∴22[()]24sin 204f πβ-=-=.19.(本小题共l2分)如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .(Ⅰ)求证:PB 1∥平面BDA 1;(Ⅱ)求二面角A -A 1D -B 的平面角的余弦值;本小题主要考查直三棱柱的性质、线面关系、二面角等基本知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决问题的能力. 解法一:(Ⅰ)连结AB 1与BA 1交于点O ,连结OD ,∵C 1D ∥平面AA 1,A 1C 1∥AP ,∴AD =PD ,又AO =B 1O , ∴OD ∥PB 1,又OD ⊂面BDA 1,PB 1⊄面BDA 1, ∴PB 1∥平面BDA 1.(Ⅱ)过A 作AE ⊥DA 1于点E ,连结BE .∵BA ⊥CA ,BA ⊥AA 1,且AA 1∩AC =A ,∴BA ⊥平面AA 1C 1C .由三垂线定理可知BE ⊥DA 1. ∴∠BEA 为二面角A -A 1D -B 的平面角. 在Rt △A 1C 1D中,1A D =,又1111122AA D S AE ∆=⨯⨯=,∴AE =. 在Rt △BAE中,BE =,∴2cos 3AH AHB BH ∠==.故二面角A -A 1D -B 的平面角的余弦值为23. 解法二:如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A 1-B 1C 1A ,则1(0,0,0)A ,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B ,(0,2,0)P .(Ⅰ)在△P AA 1中有1112C D AA =,即1(0,1,)2D .∴1(1,0,1)A B =,1(0,1,)A D x =,1(1,2,0)B P =-. 设平面BA 1D 的一个法向量为1(,,)a b c =n ,则11110,10.2A B a c A D b c ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 令1c =-,则11(1,,1)2=-n . ∵1111(1)2(1)002B P ⋅=⨯-+⨯+-⨯=n ,∴PB 1∥平面BA 1D ,(Ⅱ)由(Ⅰ)知,平面BA 1D 的一个法向量11(1,,1)2=-n .又2(1,0,0)=n 为平面AA 1D 的一个法向量.∴12121212cos ,3||||312⋅<>===⋅⨯n n n n n n .故二面角A -A 1D -B 的平面角的余弦值为23. 20.(本小题共12分)已知{}n a 是以a 为首项,q 为公比的等比数列,n S 为它的前n 项和. (Ⅰ)当1S 、3S 、4S 成等差数列时,求q 的值;(Ⅱ)当m S 、n S 、l S 成等差数列时,求证:对任意自然数k ,m k a +、n k a +、l k a +也成等差数列.本小题考查等比数列和等差数列的基础知识以及基本运算能力和分析问题、解决问题的能力.解:(Ⅰ)由已知,1n n a aq -=,因此1S a =,23(1)S a q q =++,234(1)S a q q q =+++.当1S 、3S 、4S 成等差数列时,1432S S S +=,可得32aq aq aq =+.化简得210q q --=.解得q =. (Ⅱ)若1q =,则{}n a 的每项n a a =,此时m k a +、n k a +、l k a +显然成等差数列.若1q ≠,由m S 、n S 、l S 成等差数列可得2m l n S S S +=,即(1)(1)2(1)111m l na q a qa q q q q ---+=---.整理得2m l n q q q +=.因此,11()22k m l n k m k l k n k a a aq q q aq a -+-++++=+==. 所以,m k a +、n k a +、l k a +也成等差数列. 21.(本小题共l2分)过点C (0,1)的椭圆22221(0)x y a b a b+=>>,椭圆与x 轴交于两点(,0)A a 、(,0)A a -,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(I )当直线l 过椭圆右焦点时,求线段CD 的长; (Ⅱ)当点P 异于点B 时,求证:OP OQ ⋅为定值.本小题主要考查直线、椭圆的标准方程及基本性质等基本知识,考查平面解析几何的思想方法及推理运算能力.解:(Ⅰ)由已知得1,c b a ==,解得2a =,所以椭圆方程为2214x y +=.椭圆的右焦点为,此时直线l 的方程为 1y =+,代入椭圆方程得270x -=,解得120,x x ==,代入直线l 的方程得 1211,7y y ==-,所以1)7D -,故16||7CD =. (Ⅱ)当直线l 与x 轴垂直时与题意不符.设直线l 的方程为11(0)2y kx k k =+≠≠且.代入椭圆方程得22(41)80k x kx ++=.解得12280,41kx x k -==+,代入直线l 的方程得2122141,41k y y k -==+,所以D 点的坐标为222814(,)4141k k k k --++.又直线AC 的方程为12x y +=,又直线BD 的方程为12(2)24ky x k +=+-,联立得4,2 1.x k y k =-⎧⎨=+⎩ 因此(4,21)Q k k -+,又1(,0)P k-.所以1(,0)(4,21)4OP OQ k k k⋅=--+=.故OP OQ ⋅为定值. 22.(本小题共l4分)已知函数21()32f x x =+,()h x =(Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值;(Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)24f x h a x h x --=---;(Ⅲ)设*n ∈N ,证明:1()()[(1)(2)()]6f n h n h h h n -+++≥.本小题主要考查函数导数的应用、不等式的证明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力.解:(Ⅰ)223()18()[()]129(0)F x f x x h x x x x =-=-++≥,2()312F x x '∴=-+.令()0F x '∴=,得2x =(2x =-舍去).当(0,2)x ∈时.()0F x '>;当(2,)x ∈+∞时,()0F x '<,故当[0,2)x ∈时,()F x 为增函数;当[2,)x ∈+∞时,()F x 为减函数. 2x =为()F x 的极大值点,且(2)824925F =-++=.(Ⅱ)方法一:原方程可化为42233log [(1)]log ()log (4)2f x h a x h x --=---,即为4222log (1)log log log x -=,且,14,x a x <⎧⎨<<⎩①当14a <≤时,1x a <<,则14a xx--=,即2640x x a -++=, 364(4)2040a a ∆=-+=->,此时3x ==1x a <<, 此时方程仅有一解3x = ②当4a >时,14x <<,由14a xx x--=-,得2640x x a -++=,364(4)204a a ∆=-+=-,若45a <<,则0∆>,方程有两解3x =若5a =时,则0∆=,方程有一解3x =; 若1a≤或5a>,原方程无解.方法二:原方程可化为422log (1)log (4)log ()x h x h a x -+-=-, 即2221log (1)log log 2x -+=10,40,0,(1)(4).x x a x x x a x ->⎧⎪->⎪⇔⎨->⎪⎪--=-⎩214,(3) 5.x x a a x ⎧<<⎪⇔<⎨⎪=--+⎩ ①当14a <≤时,原方程有一解3x = ②当45a <<时,原方程有二解3x =± ③当5a =时,原方程有一解3x =;④当1a ≤或5a >时,原方程无解.(Ⅲ)由已知得(1)(2)()]12h h h n n +++=+++,11()()66f n h n -=.设数列{}n a 的前n 项和为n S ,且1()()6n S f n h n =-(*n ∈N )从而有111a S ==,当2100k ≤≤时,1k k k a S S -=-又1[(4(46k a k k =+-2216=106=>. 即对任意2k ≥时,有k a >,又因为11a ==,所以1212n a a a n +++≥+++.则(1)(2)()n S h h h n ≥+++,故原不等式成立.。

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ̹B (B )B ̹A (C )A=B (D )A ∩B=Æ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log x a x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为 (A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C)1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A)−1 (B )0 (C )错误! (D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A)12 (B)23 (C )34 D 。

45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-错误!,2) (B)(0,2) (C )(错误!-1,2) (D )(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )6π (B)43π (C )4错误!π (D )6错误!π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )错误! (B )错误! (C )错误! (D)错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,错误!) (B)(错误!,1) (C )(1,错误!) (D )(错误!,2)(12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。

2012年全国高考文科数学试题及答案-新课标卷(word版)

2012年全国高考文科数学试题及答案-新课标卷(word版)

绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.Ⅱ·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =-3+i 2+i的共轭复数是 (A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 (A )-1 (B )0 (C )12(D )1 (4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数 (C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ= (A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。

2012年(全国卷II)(含答案)高考文科数学

2012年(全国卷II)(含答案)高考文科数学

2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .CB C .DC D .AD2.函数1y x =+x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2 B .2π3 C .3π2 D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 BC .2D.19.△ABC中,AB边的高为CD.若CB =a,CA=b,a·b=0,|a|=1,|b|=2,则AD=()A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=1 3 .动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330, x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x x(0≤x<2π)取得最大值时,x=__________。

2012年河南高考数学真题试卷版

2012年河南高考数学真题试卷版

绝密★启用前2012年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答且卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}(){} ,,,,,5,4,3,2,1A y x A y A x y x B A ∈-∈∈==则B 中所含元素的个数为 (A )3 (B )6 (C ) 8 (D )10(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有(A )12种 (B )10种 (C )9种 (D )8种 (3)下面是关于复数iz +-=12的四个命题: 2:1=z p , i z p 2:22=, z p :3的共轭复数为i +1, z p :4的虚部为-1,其中的真命题为(A )32,p p (B ) 21,p p (C ) 42,p p (D )43,p p(4)设12F F ,是椭圆E :2222(0)x y a b a b +=>>的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为30的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 (D )45(5)已知{}n a 为等比数列,432a a +=,568a a =-,则110a a +=(A )7 (B )5 (C )-5 (D )-7 (7)如上图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为2012年普通高考理科数学 第1页 (共6页)(A )6 (B )9 (C )12 (D )18(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,43AB =,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (9)已知0ω>,函数()sin()42f x x ππωπ=+在(,)单调递减,则ω的取值范围是(A )1524⎡⎤⎢⎥⎣⎦, (B )1324⎡⎤⎢⎥⎣⎦, (C )102⎛⎤⎥⎝⎦, (D )(]02,(10) 已知函数1(=,()ln(1)f x y f x x x=+-)则的图像大致为(11)已知三棱锥S ABC -的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC为球O 的直径,且SC=2,则此棱锥的体积为 (A )26 (B )36 (C )23 (D )222012年普通高考理科数学 第2页 (共6页)(12)设点P 在曲线12x y e =上,点 Q 在曲线ln(2y x =)上,则PQ 的最小值为(A )1ln2- (Bln 2)- (C )1ln2+ (Dln 2)+第Ⅱ卷本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档