流体动力学测量的粒子图像测速(42)

合集下载

粒子影像测速技术概述

粒子影像测速技术概述

粒子影像测速技术概述粒子影像测速(Particle Image Velocimetry,PIV)技术是一种非侵入式流体力学测量方法,用于研究流体的运动和流场。

该技术通过在流体中悬浮微小颗粒,并利用激光照射和相机拍摄的方式,获得颗粒在不同时间间隔内的位置信息,从而推导出流体的速度场。

PIV技术的基本原理是利用流体中的颗粒作为标记物,在连续拍摄的图像序列中跟踪颗粒的运动轨迹,从而得到流体速度场的空间分布情况。

其中,激光光束被用来照射流体中的颗粒,通过相机拍摄颗粒图像,并计算相邻两幅图像中颗粒位置的变化,从而计算颗粒的位移和速度。

PIV技术的实施过程主要包括以下几个步骤:1.准备实验环境:选择合适的流场实验装置和流体介质,并在流体中悬浮微小颗粒,以便在图像中能够清晰地观察到颗粒的运动轨迹。

2.激光照射:通过激光光源照射流体,形成一个平面光束,并在流体中的颗粒上产生散射,从而在图像中形成明亮的颗粒光斑。

3.图像拍摄:使用高速相机或摄像机对照明的颗粒图像进行连续拍摄,并以一定的时间间隔记录图像序列。

4.图像处理:对连续的图像序列进行处理,包括背景校正、图像配准、颗粒定位等步骤,以获得颗粒位置信息。

5.数据分析:通过比较颗粒在不同时间间隔内的位置信息,计算颗粒的位移和速度,并进一步推导出整个流体区域的速度场分布。

PIV技术的优点在于它能够提供全场的速度信息,而不仅仅是单点或线性的数据。

这使得PIV技术在研究流体湍流、气动性能以及流体工程等领域具有广泛的应用。

同时,PIV技术还可以与其他测量技术相结合,如激光雷达、压力传感器等,以提供更加全面和准确的流体力学数据。

然而,PIV技术也存在一些局限性。

首先,要求流体中应有足够数量和密度的微小颗粒,以便在图像中清晰可见,这对于一些实验环境下的流体可能是困难的。

其次,由于颗粒在流体中的多次散射,会造成颗粒在一些位置上的位置模糊,从而影响速度计算的准确性。

总的来说,粒子影像测速(PIV)技术作为一种先进的非侵入式流体力学测量方法,具有高时空分辨率、全场测量等优点,被广泛应用于航空航天、水力学、气动学等领域的流体力学研究。

PIV原理及其应用

PIV原理及其应用

PIV原理及其应用PIV是Particle Image Velocimetry的缩写,意为“粒子图像测速”,是一种用于测量流场速度和流体运动行为的非接触式光学测量技术。

它通过将流场中的小颗粒(通常是悬浮在液体中的粒子)作为示踪物来进行测量,利用高速摄像机等设备捕捉颗粒图像,并通过图像处理和分析获取流场的速度和速度矢量分布信息。

PIV的基本原理是利用颗粒在流场中随流动变化的速度来获取流场速度信息。

具体操作过程包括以下几个步骤:1.示踪颗粒标记:在流体中添加适量的颗粒(通常是微米级的粒子),这些颗粒应具有足够的密度和散射光的特性,以便使它们能够被摄像机捕捉到。

2.图像获取:使用高速摄像机等设备对流场中的颗粒进行连续的图像捕获。

由于颗粒会在流场中运动,因此在时间序列上连续获取的图像可以反映出颗粒的运动轨迹。

3.图像处理:对连续捕获的图像进行处理,以识别和跟踪颗粒的位置。

通常使用相关算法、互相关算法或相关算法和追踪算法的组合来实现。

4.速度计算:根据颗粒在相邻图像之间的位移,计算每个颗粒的瞬时速度。

可以根据这些速度数据获取流场的速度分布和速度矢量图像。

PIV技术具有许多应用领域,以下列举其中几个典型的应用:1.流体力学研究:PIV技术可以用于测量液体和气体的粘性、湍流、湍流结构、边界层行为等流体力学性质。

通过获取流体流动的速度分布和速度矢量图像,可以对流体的流动行为进行详细的分析和研究。

2.空气动力学研究:PIV技术可以用于测量飞机、汽车、船舶等物体周围的气流速度和流场结构。

这对于设计和优化运输工具的气动外形、减少阻力和气动噪声等方面具有重要意义。

3.涡流研究:PIV技术可以用于测量涡流的速度、旋转方向和强度等特性。

涡流是流体中旋转速度明显高于周围流体的局部区域,它在空气动力学、流体力学和气象学等领域中都有重要的研究价值。

4.生物流体力学研究:PIV技术可以用于测量生物流体中的速度分布,如心脏血流、肺部气流、细胞运动等。

piv粒子测速仪技术参数

piv粒子测速仪技术参数

piv粒子测速仪技术参数
PIV(Particle Image Velocimetry)粒子测速仪是一种常用的
流体力学实验技术,用于测量流体中的速度场分布。

以下是一些常
见的 PIV 粒子测速仪的技术参数:
1. 分辨率:PIV 粒子测速仪的分辨率是指它能够检测到的最小
速度变化。

通常以像素/距离的形式表示,例如 1 pixel/mm。

2. 采样率:采样率指的是测速仪在单位时间内进行测量的次数。

它决定了测速仪对流体速度变化的响应能力。

3. 测量范围:测量范围是指测速仪可以有效测量流体速度的区
域大小。

它通常由测速仪的光学系统和图像传感器决定。

4. 粒子浓度:粒子浓度是指在测量中所使用的示踪粒子的浓度。

适当的粒子浓度可以提高图像的质量和测量的准确性。

5. 曝光时间:曝光时间是指光源照射示踪粒子的时间。

适当的
曝光时间可以保证图像清晰度和示踪粒子的轨迹清晰可见。

6. 图像处理算法:PIV 粒子测速仪通常使用图像处理算法来分析图像序列,提取流体速度信息。

常见的算法包括互相关算法和基于相关峰的算法。

这些是一些常见的 PIV 粒子测速仪的技术参数,不同型号的测速仪可能会有一些差异。

在选择和使用 PIV 粒子测速仪时,需要根据实际需求和实验条件来确定合适的技术参数。

PIV实验技术报告

PIV实验技术报告

PIV实验技术报告摘要:本文介绍了PIV(粒子图像测速)实验技术的原理、仪器设备、实验过程和数据处理方法。

通过PIV实验,可以精确地测量流体介质中的速度分布,并对流场的运动特性进行分析和研究。

实验结果表明,PIV技术是一种高精度、高分辨率的流场测量方法,对于流体力学研究和工程应用具有重要意义。

1.引言粒子图像测速(PIV)是一种用于测量流体介质中速度场分布的非接触式测量方法。

它通过在流场中添加颗粒或通过实验液体中的已有颗粒来测量流场中颗粒的运动轨迹,并利用计算算法来获得流场中的速度矢量场。

本文主要介绍PIV技术的原理、仪器设备、实验过程和数据处理方法。

2.原理PIV实验的基本原理是通过拍摄两幅连续时间间隔极短的图像,再通过计算机处理这两幅图像来获得流场速度分布。

实验中,通过成像装置将流场中的颗粒的二维图像记录下来,并通过图像处理软件对这些图像进行处理,得到颗粒运动的位移信息。

根据颗粒在两幅图像中的位置变化以及两幅图像之间的时间间隔,可以计算出流场中颗粒的平均速度。

3.仪器设备PIV实验所需的主要仪器设备有:激光器、摄像机、成像装置、实验容器和图像处理软件。

激光器用于提供激光光源,摄像机用于捕捉流场中颗粒的图像,成像装置用于将颗粒的图像传送给摄像机进行记录,实验容器用于容纳流体介质,图像处理软件用于对图像进行处理和分析。

4.实验过程PIV实验的基本步骤包括:实验准备、实验装置安装、调试系统、进行实验和数据处理。

实验前需要根据具体情况选择合适的颗粒,并进行流动性能测试以确定实验参数。

然后需要根据实验要求进行装置安装和调试,确保实验装置的稳定性和准确性。

实验过程中,通过激光照射流体中的颗粒,并通过摄像机记录颗粒的图像。

最后,通过图像处理软件对图像进行处理和分析,得到流场的速度分布数据。

5.数据处理方法PIV实验得到的数据需要经过一系列处理方法来提取有用的流场信息。

数据处理方法包括:图像预处理、图像匹配、自相关分析、位移矢量计算和速度矢量分析。

基于粒子图像测速技术(PIV)的砂箱物理模拟实验研究

基于粒子图像测速技术(PIV)的砂箱物理模拟实验研究

基于粒子图像测速技术(PIV)的砂箱物理模拟实验研究【摘要】本研究基于粒子图像测速技术(PIV),通过砂箱物理模拟实验探究颗粒在不同特定流场下的运动规律。

在实验设计中,我们搭建了流动场装置,并通过PIV技术实时捕捉颗粒运动图像。

测速原理部分介绍了PIV技术的工作原理及应用。

在数据处理方法中描述了如何处理和分析实验数据,结果分析部分详细探讨了实验结果及颗粒运动规律。

实验验证部分通过与理论模型对比进行验证。

最后结论部分总结了实验结果,展望了PIV技术在地质工程领域的应用前景。

本研究将深入探讨颗粒在复杂流场下的运动规律,为解决地质工程中的颗粒运动问题提供理论支持。

【关键词】粒子图像测速技术(PIV)、砂箱物理模拟、实验设计、测速原理、数据处理方法、结果分析、实验验证、实验结果总结、技术应用展望、研究背景、研究意义1. 引言1.1 研究背景随着科学技术的不断进步,粒子图像测速技术(PIV)在流体力学研究中得到了广泛应用。

砂箱物理模拟实验是一种常用的流体力学实验方法,通过在实验室环境中模拟真实的地质流体运动情况,可以帮助研究人员理解地下水流、地表水流、河道水流等现象的规律。

传统的砂箱物理模拟实验存在着一些局限性,比如实验数据获取困难、测速精度低等问题。

而基于粒子图像测速技术的砂箱物理模拟实验则能够更准确地获取流体速度场信息,提高实验数据的准确性和可靠性。

本研究旨在结合粒子图像测速技术和砂箱物理模拟实验,探讨如何应用PIV技术提高砂箱实验的测速精度,以及进一步揭示地下水流或地表水流等流体运动规律。

这将为地质工程领域提供更为准确的实验数据和分析方法,具有重要的理论和实践意义。

1.2 研究意义基于粒子图像测速技术(PIV)的砂箱物理模拟实验研究具有重要的理论和应用价值。

通过这种技术可以精确地测量流体中颗粒的速度和运动轨迹,从而揭示颗粒在流场中的动力学行为和相互作用规律,为颗粒物理学和流体力学等领域的研究提供重要的实验数据。

粒子影像测速(PIV)技术概述

粒子影像测速(PIV)技术概述

粒子影像测速(PIV)技术概述1.PIV技术介绍1.1.引言目前为止,人类对流体力学仍有许多疑难问题,如对湍流、非定常流动等现象了解甚少,而在许多工程应用如飞行器外形设计、内燃机燃烧室中的多相流动等中又迫切需要解决这些问题,因而使流场测量问题变得极为重要。

流场测速新方法研究中,至今已发展了激光多普勒测速LDV(Laser Doppler Velocimetry)、粒子影像测速PIV(Particle Image Velocimetry)等技术。

LDV的综合性能较高,具有高精度、高分辨率和非接触测量等优点,通常作为仪器标校技术使用,但LDV只能实现单点测量。

PIV技术是一种全场、动态、非接触测量手段,已获得广泛使用,成功应用于风洞、水洞、水槽燃烧及喷射等实验中。

PIV研究始于上个世纪80年代,随着光学和计算机图像处理技术的迅猛发展,PIV取得了长足进步,测量精度已与LDV接近。

1.2.PIV原理图1是PIV 技术应用的简单原理图。

散播在流场中的跟随性及反光性良好的示踪粒子,由激光光束首先入射到一组球面透镜上,经聚焦后通过全反射镜至一组可调的柱面透镜形成具有一定厚度的片光,照亮流场中特定的区域,此时经过此区域的示踪粒子被照亮,通过CCD(CMOS)成像设备进行成像。

对这个特定的区域在一定时间间隔内利用图1 PIV简单原理图激光脉冲连续照亮两次,就能得到粒子在第一次照亮时间t 和第二次照亮时间t’的两个图像,对这两幅图像进行互相关分析,就能得到流场内部的二维速度矢量分布。

在利用PIV 技术测量流速时,需要在二维流场中均匀散布跟随性、反光性良好且比重与流体相当的示踪粒子。

将激光器产生的光束经透镜散射后形成厚度约1 mm 的片光源入射到流场待测区域,CCD 摄像机以垂直片光源的方向对准该区域。

利用示踪粒子对光的散射作用,记录下两次脉冲激光曝光时粒子的图像,形成两幅PIV 底片(即一对相同待测区域、不同时刻的图片) ,底片上记录的是整个待测区域的粒子图像。

粒子图像测速技术的研究与应用

粒子图像测速技术的研究与应用

粒子图像测速技术的研究与应用随着科技的发展,测量粒子和流体速度的需求越来越多,而粒子图像测速技术(Particle Image Velocimetry,PIV)作为一种全息、非接触、全场测量流体速度和颗粒运动的高速精密测量方法得到了广泛的应用。

一、粒子图像测速技术的原理和方法PIV技术基于成像法,利用高速摄像机记录流体中荧光微粒的运动图像,并通过处理荧光微粒的运动轨迹获得流体速度分布。

整个测量过程被分为两个步骤:荧光微粒标记和图像处理。

荧光微粒标记可以使用洛伦兹荧光微粒、纳米颗粒或者钴青天然磁性微粒等,这些微粒被注入到流体中并随之运动,拍摄到的图像经过处理后可得到流体速度平均值和方向。

图像处理可以采用相关方法、互相关法、小波变换等不同的算法,通过处理得到流体速度分布、涡量场和剪切应力等大量的物理量,并可以得到不同时间段内的流体运动轨迹等信息。

二、 PIV技术在流体力学和气象学中的应用PIV技术作为一种高速精密测量方法,在流体动力学和气象学领域得到了广泛的应用,具体有以下几个方面。

1. 流体动力学仿真与实验流体动力学是研究流体运动规律、流体力学特性以及流体与固体或流体与液体交互作用的学科。

PIV技术可用于流场定量表征、流体运动分析和涡旋识别等方面,尤其适用于分析颗粒物在流体中的运动行为。

同时,流体动力学仿真也可用PIV技术验证和修正模型。

2. 气象学观测PIV技术可以有效地研究大气速度、潜热通量等气象学参数,对气象、环境、应急预警等领域有着重要的应用价值。

3. 环境污染监测流体动力学方法可用于水流速度、水流压力的测量、以及水中污染物浓度和扩散规律的研究。

PIV技术可以准确地测量水流中的污染物流量、污染物分布情况和扩散规律,为环境污染监测提供了一种全新的手段。

三、 PIV技术的应用展望近年来,人们对PIV技术的应用发展提出了更高要求,需要能够更加精确、快速、实用和多样化地完成测量。

在此基础上,未来可望有以下方向的发展:1. 超高速PIV技术随着科技发展,各个领域对流体速度测量的需求不断增加,比如高速列车、飞行器等高速运动物体,需要测量的速度更高。

PIV粒子图像测速系统的基本原理

PIV粒子图像测速系统的基本原理

PIV,全名:Particle Image Velocimetry,简单来说是一种二维的方式显示速度矢量,使流体可视化的一种测量技术。

该方法是七十年代末发展起来的一种瞬态、多点、无接触式的激光流体力学测速方法。

近几十年来得到了不断完善与发展,PIV技术的特点是超出了单点测速技术(如CTA、LDA)的局限性,能在同一瞬态记录下大量空间点上的速度分布信息,并可提供丰富的流场空间结构以及流动特性。

粒子图像测速系统(PIV)技术简介PIV流速测量范围为0.02~500.00m/s。

在流体力学领域中,流场测量技术与流场理论研究相辅相成,共同推进本学科的前进与发展。

但是该研究领域中湍流、涡流等复杂非定常流动的存在使得传统流场测量技术的单点测量,已经不能满足人们对流体流动认知的需求。

这就需要新的流场测量技术,实现流场测量由单点向多点、平面向空间、稳态向瞬态、单相向多相发展。

流场测量技术随着时代迅速发展,从20世纪初对湍流流动测量有开创性意义的热线热膜流速计(Hot Wire/Film Anemometer,HWFA)的出现。

到20世纪60年代,激光多普勒测速仪(Laser Doppler Velocimetry,LDV)利用流场中粒子的Mie散射。

实现流场的无接触测量。

再到20世纪80年代,粒子图像测速技术(Particle ImageVelocimetry,PIV)实现了点向面的流场测量。

PIV技术是一种瞬态、多点、无接触式的流体力学(水和空气)测速方法。

可以在同一瞬时记录下大量空间上的速度矢量分布信息,并可以提供丰富的流场空间结构和流动特性。

目前,PIV技术也是在不断的发展,从一个切面发展到一个容积空间、从平面二维速度矢量的二维切片发展到二维切片内三位速度矢量、从瞬间速度场的测量发展到一个连续时间过程内的速度场测量。

粒子图像测速系统(PIV)的基本原理PIV技术的基本原理是在待测流场中布散示踪粒子,示踪粒子代表流场空间中相应的流体质点,粒子会随着流场运动而运动,使用相机来记录不同时刻下示踪粒子的位置信息,通过计算机的图像处理算法分析相机所拍摄的粒子图片,将示踪粒子的位置信息和时间信息转换为流场流动的速度矢量信息,进而分析出流场的流动结构、涡量场等流动特性。

流体流动速度测量

流体流动速度测量

流体流动速度测量1. 引言流体流动速度的测量在科学研究和工程应用中具有重要意义。

流体的速度是指流体中质点在单位时间内通过某一截面的位移量,是流体动力学中的重要参数之一。

流体流动速度的准确测量可以帮助我们深入了解流体运动特性,为相关领域的设计和工程提供重要依据。

本文将介绍一些常用的流体流动速度测量方法及其原理,包括瞬时速度测量、平均速度测量和流速剖面测量。

2. 瞬时速度测量瞬时速度测量是指对流体在某一时刻的流动速度进行准确测量。

常用的瞬时速度测量方法有以下几种:2.1 流体力学方法流体力学方法是最常用的瞬时速度测量方法之一。

通过在流体中放置一根细长的测量探针,可以测量探针所受到的流体阻力,并由此计算出流体的速度。

常用的流体力学方法包括细管测速法、流速计和压力差法。

2.2 光学方法光学方法利用光的传播速度和干涉现象来测量流体的瞬时速度。

常见的光学方法包括激光多普勒测速法和激光干涉测速法。

激光多普勒测速法通过测量流体中散射的激光的频率变化来计算流体速度。

激光干涉测速法则是利用光的干涉现象,通过测量干涉图案的变化来计算流体速度。

2.3 声学方法声学方法是利用声波在流体中传播的时间来测量流体速度的方法。

常见的声学方法包括超声多普勒测速法和声速仪。

超声多普勒测速法通过测量流体中散射的超声波的频率变化来计算流体速度。

声速仪则是通过测量声波在流体中传播的时间来计算流体速度。

3. 平均速度测量平均速度是指在一定时间内流体通过某一截面的平均速度。

常用的平均速度测量方法有以下几种:3.1 流量计流量计是一种常用于测量流体平均速度的仪器。

常见的流量计有涡街流量计、浮子流量计和电磁流量计等。

这些流量计利用流体运动时产生的一些物理量的变化来计算流体的平均速度。

3.2 瞬时速度测量的平均瞬时速度测量方法中得到的一系列瞬时速度可以进行平均运算,得到平均速度。

这种方法适用于瞬时速度变化较小的情况。

4. 流速剖面测量流速剖面是指流体在某一截面上的速度分布情况。

流体力学影像技术分析心脏血流状态

流体力学影像技术分析心脏血流状态

流体力学影像技术分析心脏血流状态陈伟冬;陈明【摘要】流体力学影像技术用于研究血液在心脏与血管中的运动规律,主要包括计算机模拟、粒子图像测速、核磁共振成像和血流向量成像等.血流向量成像较其他技术具有安全无创、操作简单、耗时少等优势,尤其在定量分析心腔内流场与涡流大小方面有一定优势.【期刊名称】《国际心血管病杂志》【年(卷),期】2014(041)001【总页数】3页(P42-44)【关键词】超声心动描记术;心脏血流;血流向量成像技术;流体力学【作者】陈伟冬;陈明【作者单位】200120上海,同济大学附属东方医院心脏医学部;200120上海,同济大学附属东方医院心脏医学部【正文语种】中文流体力学是研究流体的机械运动规律及其应用的科学,其在生物体的应用主要用于研究血液在心脏与血管中的运动规律。

目前研究心血管流体力学的主要方法有计算机模拟(computational fluid dynamics,CFD)、粒子图像测速(particle image velocimetry,PIV)、核磁共振成像(magnetic resonance imaging,MRI)、血流向量成像(vector flow mapping,VFM)等。

VFM具有无创伤性、安全性、操作简单、耗时少等特点,在流体结构显像上具有突出优势。

1 CFD技术CFD是应用数学方法解决和分析流体问题的流体力学分支。

该技术通过体外模拟不同的心血管模型研究循环系统中的流体动力学。

Watanabe等[1]应用CFD模拟了心室充盈时的血流传播速率。

CFD实验证实了涡流是正常人理想状态下左心室的流体力学特点,但是尚未应用该技术研究病理状态下心脏的涡流现象。

2 PIV技术研究人员采用PIV观察和评价慢性心力衰竭(chronic heart failure,CHF)患者心腔内血液流场的特征。

PIV是一种瞬态、多点、无接触式的流体力学测速方法,可以在瞬时状态下记录空间上速度情况,并提供流场分布结构和流动特点。

PIV粒子图像测速系统的基本原理

PIV粒子图像测速系统的基本原理

PIV粒⼦图像测速系统的基本原理PIV,全名:Particle Image Velocimetry,简单来说是⼀种⼆维的⽅式显⽰速度⽮量,使流体可视化的⼀种测量技术。

该⽅法是七⼗年代末发展起来的⼀种瞬态、多点、⽆接触式的激光流体⼒学测速⽅法。

近⼏⼗年来得到了不断完善与发展,PIV技术的特点是超出了单点测速技术(如CTA、LDA)的局限性,能在同⼀瞬态记录下⼤量空间点上的速度分布信息,并可提供丰富的流场空间结构以及流动特性。

粒⼦图像测速系统(PIV)技术简介PIV流速测量范围为0.02~500.00m/s。

在流体⼒学领域中,流场测量技术与流场理论研究相辅相成,共同推进本学科的前进与发展。

但是该研究领域中湍流、涡流等复杂⾮定常流动的存在使得传统流场测量技术的单点测量,已经不能满⾜⼈们对流体流动认知的需求。

这就需要新的流场测量技术,实现流场测量由单点向多点、平⾯向空间、稳态向瞬态、单相向多相发展。

流场测量技术随着时代迅速发展,从20世纪初对湍流流动测量有开创性意义的热线热膜流速计(Hot Wire/Film Anemometer,HWFA)的出现。

到20世纪60年代,激光多普勒测速仪(Laser Doppler Velocimetry,LDV)利⽤流场中粒⼦的Mie散射。

实现流场的⽆接触测量。

再到20世纪80年代,粒⼦图像测速技术(Particle ImageVelocimetry,PIV)实现了点向⾯的流场测量。

PIV技术是⼀种瞬态、多点、⽆接触式的流体⼒学(⽔和空⽓)测速⽅法。

可以在同⼀瞬时记录下⼤量空间上的速度⽮量分布信息,并可以提供丰富的流场空间结构和流动特性。

⽬前,PIV技术也是在不断的发展,从⼀个切⾯发展到⼀个容积空间、从平⾯⼆维速度⽮量的⼆维切⽚发展到⼆维切⽚内三位速度⽮量、从瞬间速度场的测量发展到⼀个连续时间过程内的速度场测量。

粒⼦图像测速系统(PIV)的基本原理PIV技术的基本原理是在待测流场中布散⽰踪粒⼦,⽰踪粒⼦代表流场空间中相应的流体质点,粒⼦会随着流场运动⽽运动,使⽤相机来记录不同时刻下⽰踪粒⼦的位置信息,通过计算机的图像处理算法分析相机所拍摄的粒⼦图⽚,将⽰踪粒⼦的位置信息和时间信息转换为流场流动的速度⽮量信息,进⽽分析出流场的流动结构、涡量场等流动特性。

PIV(粒子图像测速系统)

PIV(粒子图像测速系统)

PIV(粒子图像测速)全名:Particle Image Velocimetry,简单来说是一种二维的方式显示速度矢量,使流体可视化的一种测量技术。

该方法是七十年代末发展起来的一种瞬态、多点、无接触式的激光流体力学测速方法。

近几十年来得到了不断完善与发展,PIV技术的特点是超出了单点测速技术(如CTA、LDA)的局限性,能在同一瞬态记录下大量空间点上的速度分布信息,并可提供丰富的流场空间结构以及流动特性。

PIV技术除向流场散布示踪粒子外,所有测量装置并不介入流场。

另外PIV 技术具有较高的测量精度。

由于PIV技术的上述优点,已成为当今流体力学测量研究中的热门课题,因而日益得到重视。

PIV测速方法有多种分类,无论何种形式的PIV,其速度测量都依赖于散布在流场中的示踪粒子,PIV法测速都是通过测量示踪粒子在已知很短时间间隔内的位移来间接地测量流场的瞬态速度分布。

若示踪粒子有足够高的流动跟随性,示踪粒子的运动就能够真实地反映流场的运动状态。

因此示踪粒子在PIV测速法中非常重要。

在PIV测速技术中,高质量的示踪粒子要求为:(1)比重要尽可能与实验流体相一致;(2)足够小的尺度;(3)形状要尽可能圆且大小分布尽可能均匀;(4)有足够高的光散射效率。

通常在液体实验中使用空心微珠或者金属氧化物颗粒,空气实验中使用烟雾或者粉尘颗粒(超音速测量使用纳米颗粒),微管道实验使用荧光粒子等。

通过使用西华数码影像(日本Seika公司)开发的PIV专用控制和分析软件Koncerto II,就可以完成测量与分析(详情可咨询武汉中创联达科技有限公司,网址:)。

其技术原理为:对在一定空间中的粒子使用片状激光在极短的时间内连续照射两次,并且使用高分辨率相机于继光同时拍摄,取得两个粒子群的图像。

通过PIV专有算法(互相关)分析该图像的同一区域(解析窗口)中的粒子,可以获得表示速度矢量的二维数据。

PIV不仅可以获得二次元的数据(2D2C),还可以通过使用立体拍摄来获得二维三分量(2D3C)数据。

粒子图像测速技术与应用

粒子图像测速技术与应用

粒子图像测速技术与应用粒子图像测速技术(Particle Image Velocimetry, PIV)是一种非侵入式流场测量技术,其原理是利用高速数字摄像机捕捉流体中由体积或表面轮廓的微粒所组成的图像序列,并通过计算处理来得到流体的速度场信息。

PIV技术的应用范围非常广泛,既可以用于研究天然流体运动现象,又可以用于工业流体力学领域的实验研究,还可以应用于医学、环境、生态等领域的研究。

1. PIV技术原理PIV技术主要基于两帧流场图像的匹配和计算,其中流体中的不透明微粒被认为是运动的跟踪标记。

首先,在被测流场中加入微粒探针,并用高速摄像机记录粒子在不同时刻的位置分布图像序列,然后通过图像处理技术,选定两个特定的时间点,提取出图像中的微粒位置,并进行匹配。

匹配后,根据匹配到的微粒在两个时间点的位置变化,即可得到流体中的速度矢量场分布。

最后,通过计算流体中的不同位置的速度值,得到流量、涡量、剪切应力等流体动力学参数。

2. PIV技术的应用2.1 工业流体力学领域PIV技术广泛应用于工业流体力学领域的实验研究,例如:航空、汽车等领域的气动力学研究。

在飞行器的设计和研发过程中,需要研究其外形对飞行性能的影响,包括气动阻力和升力,而PIV技术可以帮助识别飞行器表面的速度分布,为改善其性能提供参考。

同样,汽车的气动设计也需要通过PIV技术来评估不同外形对车速、空气阻力的影响。

2.2 医学、环境、生态研究PIV技术还可以应用于医学、环境、生态等领域的研究。

例如,PIV技术可以研究心脏壁的运动,进而分析心脏的收缩过程;还可以用于细菌、气溶胶等颗粒的测速和分布分析;在水流环境中,PIV技术可以帮助研究河流和海洋生态系统中的流体运动,以及水动力学问题,如洪水预警、海洋污染控制等方面。

3. PIV技术的优劣虽然PIV技术被广泛应用于流体力学领域中,但PIV技术本身存在一些局限性。

首先,由于流场中粒子的亮度和聚集程度可能受到流体物性、涡旋等因素的影响,粒子图像的质量会受到一定的影响,对测量结果的准确性产生影响。

粒子影像测速(PIV)技术概述

粒子影像测速(PIV)技术概述

粒子影像测速(PIV)技术概述1.PIV技术介绍1.1.引言目前为止,人类对流体力学仍有许多疑难问题,如对湍流、非定常流动等现象了解甚少,而在许多工程应用如飞行器外形设计、内燃机燃烧室中的多相流动等中又迫切需要解决这些问题,因而使流场测量问题变得极为重要。

流场测速新方法研究中,至今已发展了激光多普勒测速LDV(Laser Doppler Velocimetry)、粒子影像测速PIV(Particle Image Velocimetry)等技术。

LDV的综合性能较高,具有高精度、高分辨率和非接触测量等优点,通常作为仪器标校技术使用,但LDV只能实现单点测量。

PIV技术是一种全场、动态、非接触测量手段,已获得广泛使用,成功应用于风洞、水洞、水槽燃烧及喷射等实验中。

PIV研究始于上个世纪80年代,随着光学和计算机图像处理技术的迅猛发展,PIV取得了长足进步,测量精度已与LDV接近。

1.2.PIV原理图1是PIV 技术应用的简单原理图。

散播在流场中的跟随性及反光性良好的示踪粒子,由激光光束首先入射到一组球面透镜上,经聚焦后通过全反射镜至一组可调的柱面透镜形成具有一定厚度的片光,照亮流场中特定的区域,此时经过此区域的示踪粒子被照亮,通过CCD(CMOS)成像设备进行成像。

对这个特定的区域在一定时间间隔内利用图1 PIV简单原理图激光脉冲连续照亮两次,就能得到粒子在第一次照亮时间t 和第二次照亮时间t’的两个图像,对这两幅图像进行互相关分析,就能得到流场内部的二维速度矢量分布。

在利用PIV 技术测量流速时,需要在二维流场中均匀散布跟随性、反光性良好且比重与流体相当的示踪粒子。

将激光器产生的光束经透镜散射后形成厚度约1 mm 的片光源入射到流场待测区域,CCD 摄像机以垂直片光源的方向对准该区域。

利用示踪粒子对光的散射作用,记录下两次脉冲激光曝光时粒子的图像,形成两幅PIV 底片(即一对相同待测区域、不同时刻的图片) ,底片上记录的是整个待测区域的粒子图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- The repetition rate of a pulsed laser is typically 10-30Hz
10
adequate only for velocities < 1 m/s
Laser Sheet
Which Laser and for what?
- Double pulsed laser (t: 1-150 s ), 10 Hz, adequate for high-speed airflow applications. - Dual head system (t: 100 ns-1s ), over 50 Hz, adequate for time resolved PIV. - Two color Laser for two-color PIV, adequate for two phase flow measurement.
Particle
7
CCD Camera
Laser sheet
8
Laser Sheet
Upper view
Laser Sheet thickness
Side view
Laser Sheet high
Thin laser sheet
out of plane movement
9
Thick laser sheet
3
What is PIV?
Flow visualization
Particle tracking velocimetry (PTV) Particle image velocimetry (PIV) Particle soeckle velocimetry (PIV)
4
Very Basic Idea Behind Optical flow measurements
Ludwig Prandtl operating his water channel in 1904
• First scientific paper on PIV (Adrian 1984 in Appl Opt)
• First commercial PIV systems 1988 (TSI Inc.)
12
The main Point: The particles
Which particle size to choose?: the size dilemma !!!
Light diffusion by a particle: Mie’s Theory
Applied for dp >> light A part of the light is scattered at 90:
CCD captured light intensity 105 Laser light intensity
side intesity(90o ) 10 3 forward in tesity
Light diffusion ~ 1/r2: minimize the distance camera-laser sheet
11
Laser Sheet: Safety
The laser used are usually in Class 4
High power devices; hazardous to the eyes (especially from reflected beam) and skin; can be also a fire hazard
decrease in S/N
Laser Sheet
- A large amount of light (from 20 mJ to 400 mJ) must be available in a short time (~ 5ns).
- Inter-pulse (t) timing may vary from less than 1s to many ms depending upon the velocity of the flow.
- Keep all reflective materials away from the beam. - Do not place your hand or any other body part into the laser beam. - Wear a safety glasses (same wavelength as the laser beam). - Work back to the laser sheet. - Put a light to indicate that the laser is on.
• Origins: Flow visualizations
• 70’s: Laser Speckle Velocimetry
• 80’s: LSV,PTV, PIV,
• LASER development
• CCD cameras development • Computers development
Particle Image Velocimetry for Fluid Dynamics Measurements
Lyes KADEM, Ph.D; Eng
kadem@encs.concordia.ca Laboratory for Cardiovascular Fluid Dynamics MIE – Concordia University
Displacement
Velocity
Time 5
You are Here
Very Basic Idea Behind Optical flow measurements
Yasic Idea Behind Optical flow measurements
Boundary
Presentation
- A bit of history - What is PIV? - How to perform PIV measurements? - Which PIV system and for What? - How to post-process Data?
2
A Little Bit fo History
相关文档
最新文档