有限元三角形单元程序设计

合集下载

Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参单元的有限元程序

Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参单元的有限元程序

Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参单元的有限元程序:c--------------------------------------------------------------------------c.....FEA2DP---A finite element analysis program for2D elastic problemscc Tangent matrix is stored with varioud band methodc This program is used to demonstrte the usage of vrious bandc Storage schem of symmetric and unsymmetric tangent matrixcc Wang shunjinc At chongqing vniversity(06/06/2013)c-------------------------------------------------------------------------program FEA2DPcc a(1)-a(n1-1):x(ndm,nummnp);a(n1)-a(n2-1):f(ndf,numnp)c a(n2)-a(n3-1):b(neq);a(n3)-a(n4-1):ad(neq)c a(n4)-a(n5-1):al(nad);a(n5)-a(n6-1):nu(nad)cc ia(1)-ia(n1-1):ix(nen1,numel);ia(n1)-ia(n2-1):id(ndf,numnp)c ia(n2)-ia(n3-1):jd((ndf*numnp);ia(n3)-ia(n4-1):idl(nen*numel*ndf)cimplicit real*8(a-h,o-z)dimension a(100000),ia(1000)character*80headcommon/cdata/numnp,numel,nummat,nen,neqcommon/sdata/ndf,ndm,nen1,nstcommon/iofile/ior,iowcnmaxm=100000imaxm=1000ior=1iow=2cc Open files for data input and outputcopen(ior,file='input.dat',form='formatted')open(iow,file='output.dat')cc.....Read titlecread(ior,'(a)')headwrite(iow,'(a)')headcc.....Read and print control informationcc numnp:number of nodesc numel:number of elementsc nummat:number of material typesc nload:number of loadsc ndm:number of coordinats of each nodec ndf:number of degrees of freedomc nen:number of nodes in each elementcread(ior,'(7i5)')numnp,numel,nummat,nload,ndm,ndf,nenwrite(iow,2000)numnp,numel,nummat,nload,ndm,ndf,nen cc.....Set poiters for allocation of data arrayscnen1=nen+4nst=nen*ndfnneq=ndf*numnpcn1=ndm*numnp+1n2=n1+ndf*numnp+1ci1=nen1*numel+1i2=i1+ndf*numnp+1i3=i2+ndf*numnp+1i4=i3+numel*nen*ndf+1cc.....Call mesh input subroutine to read all mesh dataccall pmesh(a(1),a(n1),ia(1),ia(i1),ndf,ndm,nen1,nload)cpute profileccall profil(ia(i2),ia(i3),ia(i1),ia(1),ndf,nen1,nad)cn3=n2+neq+1n4=n3+neq+1n5=n4+nad+1n6=n5+nad+1cc The lengthes of real and integer arrayscwrite(iow,2222)n6,i4cc The lengthes of array exceeds the limitationcif(n6>nmaxm.or.i4>imaxm)thenif(n6>nmaxm)write(iow,3333)n6,nmaxmif(i4>nmaxm)write(iow,4444)i4,imaxmstopend ifctute and aseemble element arraysccall assem(nad,ia(1),ia(i1),ia(i2),a(1),a(n2),a(n3),1a(n4),a(n5))cc Form load vectorccall pload(ia(i1),a(n1),a(n2),nneq,neq)cc.....Triangular decomposition of a matrix stored in profile formccall datri(ndf,numnp,ia(i2),neq,nad,.false.,a(n3),a(n5),a(n5))cc For unsymmtric tangent matirxc Call datri(ndf,numnp,ia(i2),neq,nad,.true.,a(n3),a(n4),a(n5))cc Solve equationsccall dasol(ndf,numnp,a(n2),ia(i2),neq,nad,aengy,a(n3),a(n5),a(n5)) cc For unsymmetric tangent matrixc Call dasol(ndf,numnp,a(n2),ia(i2),neq,nad,aengy,a(n3),a(n5),a(n5)) cc Output nodal displacementsccall prtdis(ia(i1),a(n2),ndf,numnp,neq)cc.....Close input and output files;destroy temporary disk filescclose(ior)close(iow)cc.....Input/output formatsc1000format(20a4)2000format(//x5x,'number of nodal points=',i6/15x,'number of elements=',i6/25x,'number of material sets=',i6/35x,'number of nodal loads=',i6/45x,'dimension of coordinate space=',i6/55x,'degree of freedoms/node=',i6/65x,'nodes per element(maximum)=',i6)2222format(//,10x,'the lengthe of real array is',i10,/,110x,'the lengthe of integer array is',i10)3333format(//,10x,'the lengthe of real array',i10,'exceed the',1'maximun value',i10)4444format(//,10x,'the lengthe of integer array',i10,'exceed the',1'maximun value',i10)cstopendccsubroutine pmesh(x,f,ix,id,ndf,ndm,nen1,nload)cc......Data input routine for mesh descriprioncimplicit real*8(a-h,o-z)dimension x(ndm,numnp),f(ndf,numnp),id(ndf,numnp),ix(nen1,numel)common/bdata/head(20)common/cdata/numnp,numel,nummat,nen,neqcommon/mater/ee,xnu,itypecommon/iofile/ior,iowcc.....Input constrain codes and nodal coordinate datacc id(k,j):constrain code of kth degree of freedom of node j,=0:free,=1:fixed c x(k,j):kth coordinate of node jcdo i=1,numnpread(ior,'(3i5,2f10.4)')j,(id(k,j),k=1,ndm),(x(k,j),k=1,ndm) end docwrite(iow,'(//17hnodal coordinates,/)')do i=1,numnpwrite(iow,'(3i5,2f10.4)')i,(id(k,i),k=1,ndm),(x(k,i),k=1,ndm) end docc.....element data inputcc ix(k,j):global node number of kth node in element jcdo i=1,numelread(ior,'(9i5)')j,(ix(k,j),k=1,nen)end docwrite(iow,'(//,18helement definition,/)')do i=1,numelwrite(iow,'(9i5)')j,(ix(k,j),k=1,nen)end docc.....Material data inputcc ee:young's modulus,xnu:poisson ratioc itype:type of problem,=1,:plane stress,=2:plane strain,=3:axi-symmetric cread(ior,'(2f10.4,i5)')ee,xnu,itypewrite(iow,'(//,19hmateial properties,/)')write(iow,'(2(e10.4,5x),i5)')ee,xnu,itypecc.....force/disp data inputcc f(k,j):concentrate load at node j in k directioncf=0.0d0do i=1,nloadread(ior,'(i5,2f10.4)')j,(f(k,j),k=1,ndf)end docwrite(iow,'(//,20happlied nodal forces,/)')do i=1,nloadwrite(iow,'(i5,2f10.4)')j,(f(k,j),k=1,ndf)end docreturncc format statementsc2000format('mesh1>',$)3000format(1x,'**warning**element connections necessary'1'to use block in macro program')4000format('**current problem valies**'/i6,'nodes,',1i5,'elmts,',i3,'matls,',i2,'dims,',i2,'dof/node,',2i3,'nodes/elmt')endccsubroutine assem(nad,ix,id,jd,x,b,ad,al,au)cc Call element subroutine and assemble global tangent matrixcimplicit real*8(a-h,o-z)dimension ilx(nen),xl(ndf,nen),ld(ndf,nen),s(nst,nst),p(nst)dimension ix(nen1,numel),id(ndf,numnp),jd(ndf*numnp)dimension x(ndm,numnp),b(neq),ad(neq),al(nad),au(nad)common/cdata/numnp,numel,nummat,nen,neqcommon/sdata/ndf,ndm,nen1,nstcnel=nencc elenment loopcdo320n=1,numels=0.0d0!element stiffness matrixp=0.0d0!nodal forcene=ndo310i=1,nenilx(i)=ix(i,ne)!current element definitiondo k=1,ndmxl(k,i)=x(k,ilx(i))!nodal coords in current elementend dokk=ilx(i)do k=1,ndfld(k,i)=id(k,kk)!equation numbersend do310continuecc Call element libccall elmt01(xl,ilx,s,p,ndf,ndm,nst)cc Asemmble tangent matrix and load vector if neededccall dasbly(ndf,nad,s,p,ld,jd,nst,b,ad,al,au)c320continue!end element loopcreturnendccsubroutine dasbly(ndf,nad,s,p,ld,jp,ns,b,ad,al,au)cc.....Assemble the symmetric or unsymmetric arrays for'dasol'cimplicit real*8(a-h,o-z)c logical alfl,aufl,bfldimension ad(neq),al(nad),au(nad)dimension ld(ns),jp(ndf*numnp),b(neq),s(ns,ns),p(ns)common/cdata/numnp,numel,nummat,nen,neqcommon/iofile/ior,iowcc alfl=true:for unsymmetric matirx assemblec alfl=false:for symmetric matirx assemblec s:element stiffness matrixc p:load or internal force vectorc ad:diagonal elementsc au:upper triangle elementsc al:lower triangle elementsc jp:pointer to last element in each row/column of al/au respectivec ld:equation numbers of each freedom degree in an element(get from id) cc.....Loop through the rows to perform the assemblycdo200i=1,nsii=ld(i)if(ii.gt.0)thenc if(aufl)then!assemble stiffness matrixcc.....Loop through the columns to perform the assemblycdo100j=1,nsif(ld(j).eq.ii)thenad(ii)=ad(ii)+s(i,j)elseif(ld(j).gt.ii)thenjc=ld(j)jj=ii+jp(jc)-jc+1au(jj)=au(jj)+s(i,j)c if(alfl)al(jj)=al(jj)+s(j,i)!unsymmetricendif100continueendifc if(bfl)b(ii)=b(ii)+p(i)!assemble nodal forcec endif200continuecreturnendccsubroutine dasol(ndf,numnp,b,jp,neq,nad,energy,ad,al,au)cc.....Solution of symmetric equations in profile formc.....Coeficient matrix must be decomposed into its triangularc.....Factor using datri beforce using dasol.cc jp:pointer to last element in each row/column of al/au respecive ccimplicit real*8(a-h,o-z)dimension ad(neq),al(nad),au(nad)dimension b(neq),jp(ndf*numnp)common/iofile/ior,iowdata zero/0.0d0/cc.....Find the first nonzero entry in the ring hand sidecdo is=1,neqif(b(is).ne.zero)go to200end dowrite(iow,2000)returnc200if(is.lt.neq)thencc.....Reduce the right hand sidecdo300j=is+1,neqjr=jp(j-1)jh=jp(j)-jrif(jh.gt.0)thenb(j)=b(j)-dot(al(jr+1),b(j-jh),jh)end if300continueend ifcc.....Multiply inverse of diagonal elementscenergy=zerodo400j=is,neqbd=b(j)b(j)=b(j)*ad(j)energy=energy+bd*b(j)400continuecc.....backsubstitutioncif(neq.gt.1)thendo500j=neq,2,-1jr=jp(j-1)jh=jp(j)-jrif(jh.gt.0)thencall saxpb(au(jr+1),b(j-jh),-b(j),jh,b(j-jh))end if500continueend ifcreturnc2000format('**dasol warning1**zero right-hand-side vector') endccsubroutine datest(au,jh,daval)cc.....test for rankcimplicit real*8(a-h,o-z)dimension au(jh)cdaval=0.0d0cdo j=1,jhdaval=daval+abs(au(j))end docreturnendccsubroutine datri(ndf,numnp,jp,neq,nad,flg,ad,al,au)cc.....Triangular decomposiontion of a matrix stored in profile form cimplicit real*8(a-h,o-z)logical flgdimension jp(ndf*numnp),ad(neq),al(nad),au(nad)common/iofile/ior,iowcc.....n.b.tol should be set to approximate half-word precision.cdata zero,one/0.0d0,1.0d0/,tol/0.5d-07/cc.....Set initial values for contditioning checkcdimx=zerodimn=zerocdo j=1,neqdimn=max(dimn,abs(ad(j)))end dodfig=zerocc.....Loop through the columns to perform the triangular decomposition cjd=1do200j=1,neqjr=jd+1jd=jp(j)jh=jd-jrif(jh.gt.0)thenis=j-jhie=j-1cc.....If diagonal is zeor compute a norm for singularity testcif(ad(j).eq.zero)call datest(au(jr),jh,daval)do100i=is,iejr=jr+1id=jp(i)ih=min(id-jp(i-1),i-is+1)if(ih.gt.0)thenjrh=jr-ihidh=id-ih+1au(jr)=au(jr)-dot(au(jrh),al(idh),ih)if(flg)al(jr)=al(jr)-dot(al(jrh),au(idh),ih)end if100continueend ifcc.....Reduce the diagonalcif(jh.ge.0)thendd=ad(j)jr=jd-jhjrh=j-jh-1call dredu(al(jr),au(jr),ad(jrh),jh+1,flg,ad(j))cc.....Check for possible errors and print warningscif(abs(ad(j)).lt.tol*abs(dd))write(iow,2000)jif(dd.lt.zero.and.ad(j).gt.zero)write(iow,2001)jif(dd.gt.zero.and.ad(j).lt.zero)write(iow,2001)jif(ad(j).eq.zero)write(iow,2002)jif(dd.eq.zero.and.jh.gt.0)thenif(abs(ad(j)).lt.tol*daval)write(iow,2003)jendifendifcc.....Stroe reciprocal of diagonal,compute condition checkscif(ad(j).ne.zero)thendimx=max(dimx,abs(ad(j)))dimn=min(dimn,abs(ad(j)))dfig=max(dfig,abs(dd/ad(j)))ad(j)=one/ad(j)end if200continuecc.....Print conditioning informationcdd=zeroif(dimn.ne.zero)dd=dimx/dimnifig=dlog10(dfig)+0.6write(iow,2004)dimx,dimn,dd,ifigcreturncc.....formatsc2000format('**datri warning1**loss of at least7digits in', 1'reducing diagonal of equation',i5)2001format('**datri warning2**sign of changed when', 1'reducing equation',i5)2002format('**datri warning3**reduced diagonal is zero zeri for', 1'equation',i5)2003format('**datri warning4**rank failure ffo zero unreduced', 1'diagonal in equation',i5)2004format(//'conditon check:d-max',e11.4,';d-min',e11.4, 1';ratio',e11.4/'maximim no.diagonal digits lost:',i3) 2005format('cond ck:dmax',1p1e9.2,';dmin',1p1e9.2,1';ratio',1p1e9.2)endccsubroutine dredu(al,au,ad,jh,flg,dj)cc.....Reduce diagonal element in triangular decompositioncimplicit real*8(a-h,o-z)logical flgdimension al(jh),au(jh),ad(jh)cdo j=1,jhud=au(j)*ad(j)dj=dj-al(j)*udau(j)=udend docc.....Finish computation of column of al for unsymmetric matricescif(flg)thendo j=1,jhal(j)=al(j)*ad(j)end doend ifcreturnendccsubroutine profil(jd,idl,id,ix,ndf,nen1,nad)cpute profile of global arrayscimplicit real*8(a-h,o-z)dimension jd(ndf*numnp),idl(numel*nen*ndf),id(ndf,numnp),1ix(nen1,numel)common/cdata/numnp,numel,nummat,nen,neqcommon/frdata/maxfcommon/iofile/ior,iowcc jd:column hight(address of diagonal elements)c id:boudary condition codes before this bubroutine's runningc id:equation numbers in global array(excluded restrained nodes)after running c idl:element strech orderc nad:total number of non-zero elements except diagonal elementsc in global tangent matrixcc.....Set up the equation numberscneq=0cdo10k=1,numnpdo10n=1,ndfj=id(n,k)if(j.eq.0)thenneq=neq+1id(n,k)=neqelseid(n,k)=0endif10continuecpute column heightsccall pconsi(jd,neq,0)cdo50n=1,numelmm=0nad=0do30i=1,nenii=iabs(ix(i,n))if(ii.gt.0)thendo20j=1,ndfjj=id(j,ii)if(jj.gt.0)thenif(mm.eq.0)mm=jjmm=min(mm,jj)nad=nad+1idl(nad)=jjendif20continueend if30continueif(nad.gt.0)thendo40i=1,nadii=idl(i)jj=jd(ii)jd(ii)=max(jj,ii-mm)40continueendif50continuecpute diagongal pointers for profilecnad=0jd(1)=0if(neq.gt.1)thendo60n=2,neqjd(n)=jd(n)+jd(n-1)60continuenad=jd(neq)end ifcc.....Set element search order to sequentialcdo70n=1,numelidl(n)=n70continuecc.....equation summarycmaxf=0mm=0if(neq.gt.0)mm=(nad+neq)/neqwrite(iow,2001)neq,numnp,mm,numel,nad,nummatcreturnc2001format(5x,'neq=',i5,5x,'numnp=',i5,5x,'mm=',i5,/5x, 1'numel=',i5,5x,'nad=',i5,5x,'nummat=',i5/) endcsubroutine saxpb(a,b,x,n,c)cc.....Vector times scalar added to second vectorcimplicit real*8(a-h,o-z)dimension a(n),b(n),c(n)cdo k=1,nc(k)=a(k)*x+b(k)end docreturnendcsubroutine pconsi(iv,nn,ic)cc.....Zero integer arraycdimension iv(nn)cdo n=1,nniv(n)=icend docreturnendcsubroutine elmt01(xl,ilx,s,p,ndf,ndm,nst)cc.....plane linear elastic element routinec ityp=1:plane stressc=2:plane strainc=3:axisymmetriccimplicit real*8(a-h,o-z)dimension xl(ndm,nen),ilx(nen),sigr(6)dimension d(18),s(nst,nst),p(nst),shp(3,9),sg(16),tg(16),wg(16)character wd(3)*12common/cdata/numnp,numel,nummat,nen,neqcommon/mater/ee,xnu,itypecommon/iofile/ior,iowdata wd/'plane stress','plane strain','axisymmetric'/cc xl(ndm,nen):coords of each node in current elementc ilx(nen):element definition of current elementc d(18):materials propertiesc s(nst,nst):element stiffness matrixc p(ns):nodal force and internal forcec shp(3,9):shape function and its derivativesc sg(16),tg(16),wg(16):weight coefficients of guass intergtation c l,k:integration pointscl=2k=2e=eenel=nencc d(14):thickness;d(11),d(12):body forcesc.....Set material patameter type and flagscityp=max(1,min(ityp,3))j=min(ityp,2)cd(1)=e*(1.+(1-j)*xnu)/(1.+xnu)/(1.-j*xnu)d(2)=xnu*d(1)/(1.+(1-j)*xnu)d(3)=e/2./(1.+xnu)d(13)=d(2)*(j-1)if((d(14).le.0.0d0).or.ityp.ge.2)d(14)=1.0d(15)=itypd(16)=ed(17)=xnud(18)=-xnu/el=min(4,max(1,l))k=min(4,max(1,k))d(5)=ld(6)=kc d(9)=t0c d(10)=e*alp/(1.-j*xnu)lint=0cwrite(iow,2000)wd(ityp),d(16),d(17),d(4),l,k,d(14),1d(11),d(12)cc.....stiffness/residual computationcl=kcc Compute cordinates and weights of integtation pointc`sg,tg:cootds;wg=wp*wqcif(l*l.ne.lint)call pguass(l,lint,sg,tg,wg)cpute integrals of shape functionscdo340l=1,lintcc Compute shape function and their derivatives to local and global coordinate systemccall shape(sg(l),tg(l),xl,shp,xsj,ndm,nen,ilx,.false.)cc Compute global coordinates of integration pointscxx=0.0yy=0.0do j=1,nenxx=xx+shp(3,j)*xl(1,j)yy=yy+shp(3,j)*xl(2,j)end doxsj=xsj*wg(l)*d(14)!xsj+|j|(sp,tq)*wp*wq*tcpute jacobian correction for plane stress and strain problemscif(ityp.le.2)thendv=xsjxsj=0.0zz=0.0c sigr4=-d(11)*dv!d(11)body forceelsecc For anisymmetric problemcdv=xsj*xx*3.1415926*2.zz=1./xxc sigr4=sigr(4)*xsj-d(11)*dvendifj1=1cc.....Loop over rowscdo330j=1,nelw11=shp(1,j)*dvw12=shp(2,j)*dvw22=shp(3,j)*xsjw22=shp(3,j)*dv*zzccpute the internal forces out of balancecc p(j1)=p(j1)-(shp(1,j)*sigr(1)+shp(2,j)*sigr(2))*dvc1-shp(3,j)*sigr4c p(j1+1)=p(j1+1)-(shp(1,j)*sigr(2)+shp(2,j)*sigr(3))*dvc1+d(12)*shp(3,j)*dv!d(12)body force cc.....Loop over columns(symmetry noted)c Compute stiffness matrixck1=j1a11=d(1)*w11+d(2)*w22a21=d(2)*w11+d(1)*w22a31=d(2)*(w11+w22)a41=d(3)*w12a12=d(2)*w12a32=d(1)*w12a42=d(3)*w11do320k=j,nelw11=shp(1,k)w12=shp(2,k)w22=shp(3,k)*zzs(j1,k1)=s(j1,k1)+w11*a11+w22*a21+w12*a41s(j1+1,k1)=s(j1+1,k1)+(w11+w22)*a12+w12*a42s(j1,k1+1)=s(j1,k1+1)+w12*a31+w11*a41s(j1+1,k1+1)=s(j1+1,k1+1)+w12*a32+w11*a42k1=k1+ndf320continuej1=ndf+j1330continue340continuecc.....Make stiffness symmetriccdo360j=1,nstdo360k=j,nsts(k,j)=s(j,k)360continuecreturncc.....Formats for input-outputc1000format(3f10.0,3i10)1001format(8f10.0)2000format(/5x,a12,'linear elastic element'//110x,'modulus',e18.5/10x,'poission ratio',f8.5/10x,'density',e18.5/ 210x,'guass ptr/dir',i3/10x,'stress pts',i6/10x,'thickness',e16.5/310x,'1-gravity',e16.5/10x,'2-gtavity',e16.5/10x,'alpha',e20.5/410x,'base temp',e16.5/)2001format(5x,'element stresses'//'elmt1-coord',2x,'11-stress',2x, 1'12-stress',2x,'22-stress',2x,'33-stress',3x,'1-coord',2x,3x,2'2-stress'/'matl2-coord',2x,'11-strain',2x,'12-strain'2x,3'22-strain',2x,'33-strain',6x,'angle'/39('-'))2002format(i4,0p1f9.3,1p6e11.3/i4,0p1f9.3,1p4e11.3,0p1f11.2/) 5000format('input:e,nu,rho,pts/stiff,pts/stre',1',type(1=stress,2=strain,3=axism)',/3x,'>',$)5001format('input:thickness,1-body force,1-body force,alpha,' 1,'temp-base'/3x,'>',$)endcsubroutine shape(ss,tt,xl,shp,xsj,ndm,nel,ilx,flg)cc.....Shape function routine for two dimension elementscimplicit real*8(a-h,o-z)logical flgdimension xl(ndm,nel),s(4),t(4),x(nel)dimension shp(3,nel),xs(2,2),sx(2,2)data s/-0.5d0,0.5d0,0.5d0,-0.5d0/,1t/-0.5d0,-0.5d0,0.5d0,0.5d0/cc.....Form4-node quatrilateral shape functionscc nel:nuber of nodes per elementcdo100i=1,4shp(3,i)=(0.5+s(i)*ss)*(0.5+t(i)*tt)shp(1,i)=s(i)*(0.5+t(i)*tt)shp(2,i)=t(i)*(0.5+s(i)*ss)100continuecc.....Form triangge bu adding their and fourth together for triangle element cif(nel.eq.3)thendo i=1,3shp(i,3)=shp(i,3)+shp(i,4)enddoendifcc.....Add quatratic terms if necessary for element with more than4nodes cif(nel.gt.4)call shap2(ss,tt,shp,ilx,nel)cc.....Construct jacobian and its inversecdo125i=1,2do125j=1,2xs(i,j)=0.0do120k=1,nelxs(i,j)=xs(i,j)+xl(i,k)*shp(j,k)120continue125continuecc xsj:determinate of jacob matrixcxsj=xs(1,1)*xs(2,2)-xs(1,2)*xs(2,1)cif(flg)returnc flg=false:form global derivativescif(xsj.le.0.0d0)xsj=1.0sx(1,1)=xs(2,2)/xsjsx(2,2)=xs(1,1)/xsjsx(1,2)=-xs(1,2)/xsjsx(2,1)=-xs(2,1)/xsjcc....Form global derivativescdo130i=1,neltp=shp(1,i)*sx(1,1)+shp(2,i)*sx(2,1)shp(2,i)=shp(1,i)*sx(1,2)+shp(2,i)*sx(2,2)shp(1,i)=tp130continuecreturnendcsubroutine shap2(s,t,shp,ilx,nel)cc....Add quadtatic function as necessarycimplicit real*8(a-h,o-z)dimension shp(3,9),ilx(nel)cs2=(1.-s*s)/2.t2=(1.-t*t)/2.do100i=5,9do100j=1,3shp(j,i)=0.0100continuecc.....Midsize nodes(serenipity)cif(ilx(5).eq.0)go to101shp(1,5)=-s*(1.-t)shp(2,5)=-s2shp(3,5)=s2*(1.-t)101if(nel.lt.6)go to107if(ilx(6).eq.0)go to102shp(1,6)=t2shp(2,6)=-t*(1.+s)shp(3,6)=t2*(1.+s)102if(nel.lt.7)go to107if(ilx(7).eq.0)go to103shp(1,7)=-s*(1.+t)shp(2,7)=s2shp(3,7)=s2*(1.+t)103if(nel.lt.8)go to107if(ilx(8).eq.0)go to104shp(1,8)=-t2shp(2,8)=-t*(1.-s)shp(3,8)=t2*(1.-s)cc.....Interior node(lagragian)c104if(nel.lt.9)go to107if(ilx(9).eq.0)go to107shp(1,9)=-4.*s*t2shp(2,9)=-4.*t*s2shp(3,9)=4.*s2*t2cc.....Correct edge nodes for interior node(lagrangian) cdo106j=1,3do105i=1,4105shp(j,i)=shp(j,i)-0.25*shp(j,9)do106i=5,8106if(ilx(i).ne.0)shp(j,i)=shp(j,i)-.5*shp(j,9)cc.....Correct corner nodes for presense of midsize nodes c107do108i=1,4k=mod(i+2,4)+5l=i+4do108j=1,3108shp(j,i)=shp(j,i)-0.5*(shp(j,k)+shp(j,l))returnendcsubroutine pguass(l,lint,r,z,w)cc.....Guass points and weights for two dimensionscimplicit real*8(a-h,o-z)dimension lr(9),lz(9),lw(9),r(16),z(16),w(16)c common/eldtat/dm,n,ma,mct,iel,neldata lr/-1,1,1,-1,0,1,0,-1,0/,lz/-1,-1,1,1,-1,0,1,0,0/data lw/4*25,4*40,64/cc lint:number of integration pointsc r,z:coordinates of integration pointsc w:wp*wq,product of the two weightsclint=l*lcc.....1x1integerationc1r(1)=0.z(1)=0.w(1)=4.creturncc.....2x2integerationc2g=1.0/sqrt(3.d0)do i=1,4r(i)=g*lr(i)z(i)=g*lz(i)w(i)=1.end docreturncc.....3x3integerationc3g=sqrt(0.60d0)h=1.0/81.0d0cdo i=1,9r(i)=g*lr(i)z(i)=g*lz(i)w(i)=h*lw(i)enddocreturncendcsubroutine pload(id,f,b,nneq,neq) cc.....Form load vector in compact formcimplicit real*8(a-h,o-z)dimension f(nneq),b(neq),id(nneq)common/iofile/ior,iowcb=0.0d0cj=id(n)if(j.gt.0)thenb(j)=f(n)endifenddocreturnendcsubroutine prtdis(id,b,ndf,numnp,neq)cc Print out nodal displacementscimplicit real*8(a-h,o-z)dimension id(ndf,numnp),b(neq),u(ndf,numnp)common/iofile/ior,iowcu=0.0d0do100i=1,numnpdo j=1,ndfn=id(j,i)if(n>0)u(j,i)=b(n)end do100continuecc Out nodal displacementscwrite(iow,'(//,19hnodal displacements,/)')do i=1,numnpwrite(iow,'(5x,i5,2x,3(e12.4,3x))')i,(u(k,i),k=1,ndf) end docreturnendcdouble precision function dot(a,b,n)implicit real*8(a-h,o-z)dimension a(n),b(n)cc.....Dot product functioncdot=0.0d0do10k=1,ndot=dot+a(k)*b(k)10continuereturn end。

有限元中三角形单元源程序

有限元中三角形单元源程序

附录:平面问题三角形单元源程序******************************************************************* * ANALYSIS PROGTAM OF FINITE ELEMENT METHOD * * FOR PLANE STRESS/STRAIN OF TRIANGULAR ELEMENT * * ----- FEMT3.FOR ----- * *------------------------------------------------------------- * * Subroutines: 1-SDATA, 2-STE, 3-ATE, 4-DTE, 5-BTE, 6-STIFF * * 7-EQUPE, 8-INSCD, 9-BGSMT, 10-SIGME * ******************************************************************* DIMENSION LND(50,3),X(100),Y(100),JR(20,3),PJ(20,3),P(200) REAL KS(200,100)OPEN(5,FILE='FEMT3.DAT')OPEN(6,FILE='FEMT3.OUT',STATUS='NEW')READ(5,*) NJ,NE,NS,NPJ,IPS(结点、单元、支承、荷载、类型)WRITE(6,*)' FINITE ELEMENT ANALYSIS IN PLANE PROBLEM'WRITE(6,*)' SOURCE DATA OUTPUT'WRITE(6,20) NJ,NE,NS,NPJ,IPS20 FORMAT(4X,'NJ',3X,'NE',3X,'NS',3X,'NPJ',2X,'IPS'/1X,5I5)IF(IPS.EQ.0) WRITE(6,*)' PLANE STRESS PROBLEM'IF(IPS.EQ.1) WRITE(6,*)' PLANE STRAIN PROBLEM'CALL SDATA(NJ,NE,NS,NW,NPJ,IPS,E,PR,T,V,LND,X,Y,JR,PJ)NJ2=2*NJWRITE(6,50) NJ250 FORMAT(/1X,'DEGREES OF FREEDOM=',I5)WRITE(6,60) NW60 FORMAT(1X,'BAND WIDTH=',I5)CALL STIFF(NJ,NE,NJ2,NW,LND,X,Y,E,PR,T,KS)(总刚6)CALL EQUPE(NJ,NE,NPJ,NJ2,T,V,LND,X,Y,PJ,P)({P}7)CALL INSCD(NS,NW,NJ2,JR,KS,P)(引入支承条件8)CALL BGSMT(NJ,NJ2,NW,KS,P)(解方程9)CALL SIGME(NE,NJ,NJ2,E,PR,LND,X,Y,P)(求应力10)CLOSE(5)CLOSE(6)END*--------------------------------------------------------C SUBPROGRAM-1C INPUT STRUCTURAL DATASUBROUTINE SDATA(NJ,NE,NS,NW,NPJ,IPS,E,PR,* T,V,LND,X,Y,JR,PJ)DIMENSION LND(NE,3),X(NJ),Y(NJ),JR(NS,3),PJ(NPJ,3)READ(5,*) E,PR,T,V(弹性模量、泊松比、厚度、容重)WRITE(6,10) E,PR,T,V10 FORMAT(/6X,'E',10X,'PR',9X,'T',9X,'V'/,4F10.2)READ(5,*)((LND(I,J),J=1,3),I=1,NE)(结点编码)WRITE(6,20)20 FORMAT(/1X,'ELEMENT INFORMATION'/3X,'ELEM',3X,* 'I J K'/)WRITE(6,30)(I,(LND(I,J),J=1,3),I=1,NE)30 FORMAT(1X,4I5)READ(5,*)(X(I),Y(I),I=1,NJ)(结点坐标)WRITE(6,40)40 FORMAT(/1X,'COORDINATES OF NODES'/3X,'NODES',* 8X,'X',13X,'Y')WRITE(6,50)(I,X(I),Y(I),I=1,NJ)50 FORMAT(1X,I5,2E15.6)READ(5,*)((JR(I,J),J=1,3),I=1,NS)(约束信息)WRITE(6,60)60 FORMAT(/1X,'CONSTRAINED NODES'/3X,'NODE',3X,'X',4X,'Y') WRITE(6,70)((JR(I,J),J=1,3),I=1,NS)70 FORMAT(1X,3I5)READ(5,*)((PJ(I,J),J=1,3),I=1,NPJ)(荷载信息)WRITE(6,80)80 FORMAT(/1X,'LOAD CASES'/3X,'NODE',8X,'X',13X,'Y')WRITE(6,90)((PJ(I,J),J=1,3),I=1,NPJ)90 FORMAT(1X,F5.0,2E15.6)100 NW=0(半带宽)DO 110 IE=1,NEDO 110 I=1,3DO 110 J=1,3IW=IABS(LND(IE,I)-LND(IE,J))IF(NW.LT.IW) THENNW=IWENDIF110 CONTINUENW=(NW+1)*2IF(IPS.NE.0) THENE=E/(1.0-PR*PR)PR=PR/(1.0-PR)ENDIFEND*---------------------------------------------------------C SUBPROGRAM-2C CALCULATE ELEMENT STIFFNESS MATRIXSUBROUTINE STE(IE,NJ,NE,LND,X,Y,E,PR,T,KE)DIMENSION LND(NE,3),X(NJ),Y(NJ),B(3,6),D(3,3)REAL KE(6,6)CALL ATE(IE,NJ,NE,LND,X,Y,AE)CALL DTE(E,PR,D)CALL BTE(IE,NJ,NE,LND,X,Y,AE,B)DO 10 I=1,6DO 10 J=1,6KE(I,J)=0.DO 10 K=1,3DO 10 K1=1,310 KE(I,J)=KE(I,J)+B(K,I)*D(K,K1)*B(K1,J)C=AE*TDO 30 I=1,6DO 30 J=1,630 KE(I,J)=KE(I,J)*CEND*------------------------------------------------ C SUBPROGRAM-3C CALCULATE ELEMENT AREASUBROUTINE ATE(IE,NJ,NE,LND,X,Y,AE)DIMENSION LND(NE,3),X(NJ),Y(NJ)I=LND(IE,1)J=LND(IE,2)K=LND(IE,3)XIJ=X(J)-X(I)YIJ=Y(J)-Y(I)XIK=X(K)-X(I)YIK=Y(K)-Y(I)AE=.5*(XIJ*YIK-XIK*YIJ)END*----------------------------------------------C SUBPROGRAM-4C CALCULATE ELASTICITY MATRIXSUBROUTINE DTE(E,PR,D)DIMENSION D(3,3)DO 10 I=1,3DO 10 J=1,310 D(I,J)=0.D(1,1)=E/(1.-PR*PR)D(1,2)=E*PR/(1.-PR*PR)D(2,1)=D(1,2)D(2,2)=D(1,1)D(3,3)=.5*E/(1.+PR)END*------------------------------------------------ C SUBPROGRAM-5C CALCULATE MATRIX [B]SUBROUTINE BTE(IE,NJ,NE,LND,X,Y,AE,B)DIMENSION LND(NE,3),X(NJ),Y(NJ),B(3,6)I=LND(IE,1)J=LND(IE,2)K=LND(IE,3)DO 10 II=1,3DO 10 JJ=1,610 B(II,JJ)=0.B(1,1)=Y(J)-Y(K)B(1,3)=Y(K)-Y(I)B(1,5)=Y(I)-Y(J)B(2,2)=X(K)-X(J)B(2,4)=X(I)-X(K)B(2,6)=X(J)-X(I)B(3,1)=B(2,2)B(3,2)=B(1,1)B(3,3)=B(2,4)B(3,4)=B(1,3)B(3,5)=B(2,6)B(3,6)=B(1,5)DO 20 I1=1,3DO 20 J1=1,620 B(I1,J1)=.5/AE*B(I1,J1)END*------------------------------------------------------- C SUBPROGRAM-6C CALCULATE GLOBAL STIFFNESS MATRIXSUBROUTINE STIFF(NJ,NE,NJ2,NW,LND,X,Y,E,PR,T,KS) DIMENSION LND(NE,3),X(NJ),Y(NJ)REAL KS(NJ2,NW),KE(6,6)DO 5 I=1,NJ2DO 5 J=1,NW5 KS(I,J)=0.DO 10 IE=1,NECALL STE(IE,NJ,NE,LND,X,Y,E,PR,T,KE)DO 10 I=1,3IZ=LND(IE,I)DO 10 II=1,2IH =2*(I -1)+IIIDH=2*(IZ-1)+IIDO 10 J=1,3JZ=LND(IE,J)DO 10 JJ=1,2L =2*(J -1)+JJIL=2*(JZ-1)+JJIF(IL.GE.IDH) THENIDL=IL-IDH+1KS(IDH,IDL)=KS(IDH,IDL)+KE(IH,L)ENDIF10 CONTINUEEND*-------------------------------------------------------- C SUBPROGRAM-7C CALCULATE NODAL LOAD VECTORSUBROUTINE EQUPE(NJ,NE,NPJ,NJ2,T,V,LND,X,Y,PJ,P) DIMENSION LND(NE,3),X(NJ),Y(NJ),PJ(NPJ,3),P(NJ2) DO 10 I=1,NJ210 P(I)=0.DO 20 I=1,NPJII=PJ(I,1)P(2*II-1)=PJ(I,2)20 P(2*II)=PJ(I,3)30 IF(V.EQ.0.) GOTO 50DO 40 IE=1,NECALL ATE(IE,NJ,NE,LND,X,Y,AE)PE=-V*AE*T/3.DO 40 I=1,3II=LND(IE,I)40 P(2*II)=P(2*II)+PE50 RETURNEND*---------------------------------------------C SUBPROGRAM-8C INTRODUCE BOUNDARY CONDITIONSUBROUTINE INSCD(NS,NW,NJ2,JR,KS,P)DIMENSION P(NJ2),JR(NS,3)REAL KS(NJ2,NW)DO 30 I=1,NSIR=JR(I,1)DO 30 J=2,3IF(JR(I,J).EQ.0) GOTO 30II=2*IR+J-3KS(II,1)=1.DO 10 JJ=2,NW10 KS(II,JJ)=0.IF(II.GT.NW) JO=NWIF(II.LE.NW) JO=IIDO 20 JJ=2,JO20 KS(II-JJ+1,JJ)=0.P(II)=0.30 CONTINUEEND*-------------------------------------------C SUBPROGRAM-9C SOLVE EQUATIONS BY GS METHODSUBROUTINE BGSMT(NJ,NJ2,NW,KS,P)DIMENSION P(NJ2)REAL KS(NJ2,NW)NJ1=NJ2-1DO 20 K=1,NJ1IF(NJ2.GT.K+NW-1) IM=K+NW-1IF(NJ2.LE.K+NW-1) IM=NJ2K1=K+1DO 20 I=K1,IML=I-K+1C=KS(K,L)/KS(K,1)IW=NW-L+1DO 10 J=1,IWM=J+I-K10 KS(I,J)=KS(I,J)-C*KS(K,M)20 P(I)=P(I)-C*P(K)P(NJ2)=P(NJ2)/KS(NJ2,1)DO 40 I1=1,NJ1I=NJ2-I1IF(NW.GT.NJ2-I+1) JO=NJ2-I+1IF(NW.LE.NJ2-I+1) JO=NWDO 30 J=2,JOK=J+I-130 P(I)=P(I)-KS(I,J)*P(K)40 P(I)=P(I)/KS(I,1)WRITE(6,50)50 FORMAT(/1X,'NODAL DISPLACEMENTS'/3X,* 'NODE',5X,'X-DISP.',8X,'Y-DISP.')DO 60 I=1,NJ60 WRITE(6,70) I,P(2*I-1),P(2*I)70 FORMAT(1X,I5,2E15.6)END*---------------------------------------------------C SUBPROGRAM-10C CALCULATE ELEMENT STRESS MATRIXSUBROUTINE SIGME(NE,NJ,NJ2,E,PR,LND,X,Y,P)DIMENSION LND(NE,3),X(NJ),Y(NJ),D(3,3),B(3,6), * S(3,6),ST(3),P(NJ2),DE(6)WRITE(6,*)WRITE(6,*)' ELEMENT STRESSES'CALL DTE(E,PR,D)DO 50 IE=1,NECALL ATE(IE,NJ,NE,LND,X,Y,AE)CALL BTE(IE,NJ,NE,LND,X,Y,AE,B)DO 10 I=1,3DO 10 J=1,6S(I,J)=0.DO 10 K=1,310 S(I,J)=S(I,J)+D(I,K)*B(K,J)DO 20 I=1,3DO 20 J=1,2IH=2*(I-1)+JIW=2*(LND(IE,I)-1)+J20 DE(IH)=P(IW)DO 30 I=1,3ST(I)=0.DO 30 J=1,630 ST(I)=ST(I)+S(I,J)*DE(J)SGX=ST(1)SGY=ST(2)TXY=ST(3)ASG=(SGX+SGY)*.5RSG=SQRT(.25*(SGX-SGY)**2+TXY*TXY)SGMA=ASG+RSGSGMI=ASG-RSGIF(SGY.EQ.SGMI) CETA=0.IF(SGY.NE.SGMI) CETA=90.-57.29578*ATAN* (TXY/(SGY-SGMI))50 WRITE(6,60) IE,SGX,SGY,TXY,SGMA,SGMI,CETA60 FORMAT(1X,'ELEMENT NO.=',I4/2X,'SIGX=',E10.4, * 2X,'SIGY=',E10.4,2X,'TXY =',E10.4/2X,'SGMA=', * E10.4,2X,'SGMI=',E10.4,2X,'CETA=',E10.4)END。

有限元程序设计--第五章 线性三角形单元

有限元程序设计--第五章 线性三角形单元
03:25
16
单元应变和应力矩阵
由于同一单元中的D、B矩阵都是常数矩阵,所以S矩阵也是常 数矩阵。也就是说,三角形三节点单元内的应力分量也是常 量。 当然,相邻单元的E, , A和bi、ci(i,j, m)一般不完全相同, 因而具有不同的应力,这就造成在相邻单元的公共边上存在 着应力突变现象。但是随着网格的细分,这种突变将会迅速 减小。
b2 B2 0 c2
b1 , c1 , b2 , c2 , b3 , c3 与x、y无关,都是常量,因此B矩
阵也是常量。单元中任一点的应变分量是 B矩阵与单元节点位
移的乘积,因而也都是常量。因此,这种单元被称为常应变单
元。
03:25
15
单元应变和应力矩阵
平面应力: x σ ( x, y ) y
03:25
12
形函数的性质
当单元的位移函数满足完备性要求时,称单元是完备的(通
常较容易满足)。当单元的位移函数满足协调性要求时,称 单元是协调的。
当势能泛函中位移函数的导数是2阶时,要求位移函数在单元
的交界面上具有C1或更高的连续性,这时构造单元的插值函 数往往比较困难。在某些情况下,可以放松对协调性的要求 ,只要单元能够通过分片试验 (Patch test),有限元分析的解 答仍然可以收敛于正确的解。这种单元称为非协调单元。
3
平面三角形单元
显然,三角形三个节点的的位移可由下列方程给出,在各节点上 的水平位移方程为: u1=1+2 x1 +3 y1 u2=1+2 x2 +3 y2 u3=1+2 x3 +3 y3
1 1 x1 解出 2 1 x2 1 x 3 3 y1 y2 y3

平面三角形单元有限元程序设计

平面三角形单元有限元程序设计

平面三角形单元有限元程序设计P9 m 9 m一、题目如图1所示,一个厚度均匀的三角形薄板,在顶点作用沿板厚方向均匀分布的竖向载荷。

已知:P=150N/m,E=200GPa,=0、25,t=0、1m,忽略自重。

试计算薄板的位移及应力分布。

要求:1.编写有限元计算机程序,计算节点位移及单元应力。

(划分三角形单元,单元数不得少于30个);2.采用有限元软件分析该问题(有限元软件网格与程序设计网格必须一致),详细给出有限元软件每一步的操作过程,并将结果与程序计算结果进行对比(任选取三个点,对比位移值);3.提交程序编写过程的详细报告及计算机程序;4.所有同学参加答辩,并演示有限元计算程序。

有限元法中三节点三角形分析结构的步骤如下:1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。

2)单元分析,建立单元刚度矩阵。

3)整体分析,建立总刚矩阵。

4)建立整体结构的等效节点荷载与总荷载矩阵5)边界条件处理。

6)解方程,求出节点位移。

7)求出各单元的单元应力。

8)计算结果整理。

一、程序设计网格划分如图,将薄板如图划分为6行,并建立坐标系,则刚度矩阵的集成建立与总刚度矩阵等维数的空矩阵,已变单元刚度矩阵的集成。

由单元分析已知节点、单元的排布规律,继而通过循环计算求得每个单元对应的节点序号。

通过循环逐个计算:(1)每个单元对应2种单元刚度矩阵中的哪一种; (2)该单元对应总刚度矩阵的那几行哪几列 (3)将该单元的单元刚度矩阵加入总刚度矩阵的对应行列循环又分为3层循环:(1)最外层:逐行计算(2)中间层:该行逐个计算(3)最里层:区分为第 奇/偶 数个计算XYPXYP节点编号单元编号单元刚度的集成:[][][][][][]''''''215656665656266256561661eZeeeZeZeeeekkkKkkkkkk+⋯++=⇓=⇒==⇒==⇒=⨯⨯⨯⨯⨯⨯M边界约束的处理:划0置1法适用:这种方法适用于边界节点位移分量为已知(含为0)的各种约束。

matlab有限元三角形单元编程

matlab有限元三角形单元编程

matlab有限元三角形单元编程
在MATLAB中进行有限元分析,可以使用其自带的有限元分析工具箱(FEATool)进行编程。

以下是一个简单的例子,演示如何使用三角形单元进行有限元分析:
1. 打开MATLAB,进入FEATool环境。

2. 创建新的有限元模型。

选择“Model”菜单下的“New Model”选项,进入“Model Builder”界面。

3. 在“Model Builder”界面中,选择“2D Triangle”单元类型,并在绘图区域中绘制出三角形网格。

4. 在“Model Builder”界面中,设置材料属性、边界条件和载荷等参数。

5. 运行有限元分析。

选择“Model”菜单下的“Solve”选项,进行有限元求解。

6. 查看结果。

选择“Model”菜单下的“Results”选项,可以查看位移、应力、应变等结果。

以上是一个简单的例子,演示了如何使用三角形单元进行有限元分析。

在实际应用中,还需要根据具体问题进行详细的建模和计算。

有限元-用三角形单元分析

有限元-用三角形单元分析

(e 1,2,3,4) 分块形式如下:
k e
(4-28)
页码: 9
材料成形数值模拟
School of Materials Science and engineering, WHUT 平面三角形单元整体分析
第4章 平面单元有限元法
2) 求各单元的贡献矩阵 K e 以单元②为例,贡献矩阵 K 2 由式(4-41)求出:
F K
F1 k11 F k 2 21 F6 k 61
分块形式
k12 k 22 k 62


k 66 6
解题步骤:先进行单元分析,得出单元矩阵; 考虑单元综合,得出整体矩阵。因此,平面问题有限元法步骤:
离散化→单元分析→整体分析
页码: 1
材料成形数值模拟
School of Materials Science and engineering, WHUT
4.4 平面三角形单元分析
第4章 平面单元有限元法
u1 1 v 1
则三角形单元结点位移向量为:
u1 v 1 1 u 2 e 2 v 2 3 u 3 v3 以 6 个结点位移分量作为基本未知量,对应的物理量是六个结点力分量, U 1 V F1 1 U 2 F e F2 V 2 F3 U 3 V3
Str 1 2 3 4 1 2 1 0 1 1 0 2 0 2 3 Et 1 0 3 1 4 4 1 2 1 3 5 0 0 2 0 1 0 1 1 6 1 2 6 0 1 1 0 0 2 1 2 0 1 2 0 3 0 1 3 E 5

有限元单元法程序设计

有限元单元法程序设计

有限元单元法程序设计有限元单元法是一种用于工程结构分析和设计的计算方法,它将大型结构分解为许多小的离散单元,通过分析单元之间的相互作用来预测结构的力学行为。

有限元单元法程序设计是指针对特定工程问题,编写计算机程序来实现有限元分析的过程。

下面将介绍有限元单元法程序设计的基本流程和关键要点。

一、问题建模和网格划分有限元单元法程序设计的第一步是对工程结构进行合理的建模和网格划分。

建模的目的是将实际结构抽象为适用于有限元分析的数学模型,包括定义结构的几何特征、材料属性、边界条件等。

网格划分是将结构分解为许多小的单元,每个单元具有一定的形状和尺寸,以便于数值计算。

常用的单元形状包括三角形、四边形、四面体、六面体等,根据结构的特点选择合适的单元形状和尺寸。

二、单元刚度矩阵和载荷矩阵的求解在有限元单元法程序设计中,需要编写算法来求解每个单元的刚度矩阵和载荷矩阵。

单元刚度矩阵描述了单元内部的力学性能,包括刚度、弹性模量、泊松比等,它们通常通过数学公式或有限元理论推导得到。

载荷矩阵描述了单元受到的外部荷载,可以是均匀分布载荷、集中载荷或者边界条件引起的约束力。

通过合适的数值积分方法,可以计算得到每个单元的刚度矩阵和载荷矩阵。

三、组装全局刚度矩阵和载荷向量在有限元单元法程序设计中,需要将所有单元的刚度矩阵和载荷向量组装成整个结构的全局刚度矩阵和载荷向量。

这涉及到单元之间的连接关系以及边界条件的处理。

采用适当的组装算法,可以将各个单元的刚度矩阵和载荷向量叠加在一起,形成整个结构的刚度矩阵和载荷向量。

四、求解位移和应力有限元单元法程序设计的最后一步是求解结构的位移和应力。

通过斯蒂芬-泰勒算法或者其他迭代算法,可以得到整个结构的位移分布,然后根据位移场计算各个点的应变和应力。

这一过程涉及到对整个结构刚度矩阵的求解和对位移的后处理。

有限元单元法程序设计是一个复杂而又精密的工作,需要深入理解有限元原理、结构力学知识和数学方法。

matlab有限元三角形单元程序

matlab有限元三角形单元程序

matlab有限元三角形单元程序以下是一个简单的 MATLAB 有限元三角形单元程序的示例:```matlab% 定义模型参数E = 1000; % 弹性模量nu = 0.3; % 泊松比thickness = 1; % 板的厚度% 定义节点坐标nodes = [0, 0; 1, 0; 1, 1; 0, 1; 0.5, 0.5];% 定义单元连接关系connectivity = [1, 2, 5; 2, 3, 5; 3, 4, 5; 4, 1, 5];% 计算总节点数和总单元数numNodes = size(nodes, 1);numElements = size(connectivity, 1);% 初始化全局刚度矩阵和载荷向量K = zeros(numNodes);F = zeros(numNodes, 1);% 循环遍历每个单元for i = 1:numElements% 查找当前单元的节点编号nodesIndex = connectivity(i, :);% 根据节点编号从全局坐标矩阵中取出节点坐标coordinates = nodes(nodesIndex, :);% 计算当前单元的局部刚度矩阵localK = calculateLocalStiffness(E, nu, thickness, coordinates);% 组装局部刚度矩阵到全局刚度矩阵中K(nodesIndex, nodesIndex) = K(nodesIndex, nodesIndex) + localK;% 计算当前单元的局部载荷向量localF = calculateLocalLoad(thickness, coordinates);% 组装局部载荷向量到全局载荷向量中F(nodesIndex) = F(nodesIndex) + localF;end% 边界条件:节点1固定K(1, :) = 0;K(1, 1) = 1;F(1) = 0;% 解线性方程组U = K \ F;% 输出位移结果disp('节点位移:');disp(U);% 计算应力结果stress = calculateStress(E, nu, thickness, nodes, connectivity, U);% 输出应力结果disp('节点应力:');disp(stress);% 计算局部刚度矩阵的函数function localK = calculateLocalStiffness(E, nu, thickness, coordinates)% 计算单元的雅可比矩阵J = (1/2) * [coordinates(2,1)-coordinates(1,1), coordinates(3,1)-coordinates(1,1);coordinates(2,2)-coordinates(1,2), coordinates(3,2)-coordinates(1,2)];% 计算雅可比矩阵的逆矩阵invJ = inv(J);% 计算单元刚度矩阵B = invJ * [-1, 1, 0; -1, 0, 1];D = (E/(1-nu^2)) * [1, nu, 0; nu, 1, 0; 0, 0, (1-nu)/2]; localK = thickness * abs(det(J)) * (B' * D * B);end% 计算局部载荷向量的函数function localF = calculateLocalLoad(thickness, coordinates) localF = zeros(3, 1);midPoint = [sum(coordinates(:,1))/3,sum(coordinates(:,2))/3];localF(3) = thickness * 1 * det([coordinates(1,:); coordinates(2,:); midPoint]);end% 计算各节点应力的函数function stress = calculateStress(E, nu, thickness, nodes, connectivity, U)stress = zeros(size(nodes, 1), 3);for i = 1:size(connectivity, 1)nodesIndex = connectivity(i, :);coordinates = nodes(nodesIndex, :);Ke = calculateLocalStiffness(E, nu, thickness, coordinates);Ue = U(nodesIndex);stress(nodesIndex, :) = stress(nodesIndex, :) + (Ke * Ue)';endstress = stress / thickness;end```这个程序实现了一个简单的平面三角形单元有限元分析,包括定义节点坐标和单元连接关系、计算全局刚度矩阵和载荷向量、施加边界条件、解线性方程组、计算节点位移和应力等。

三角形单元有限元程序设计

三角形单元有限元程序设计

三角形单元有限元程序设计一、引言
⑴文档背景
⑵文档目的
⑶读者对象
⑷名词解释
二、程序结构设计
⑴程序流程图
⑵程序组成模块描述
⑶主要数据结构设计
⑷代码逻辑设计
三、数据预处理
⑴数据输入格式与读取
⑵数据清洗与去噪
⑶数据预处理方法
⑷数据分割与划分
四、网格
⑴网格算法介绍
⑵网格质量评估与改善
⑶网格的实现方法
五、有限元方法
⑴有限元离散的原理
⑵有限元单元的选择
⑶有限元离散的网格节点选取
⑷有限元插值函数的计算六、模型求解
⑴线性方程组的求解方法
⑵模型参数的设置与调整
⑶迭代算法的选择与实现七、模型评估与验证
⑴结果评估指标的选择
⑵模型验证方法
⑶结果可视化与分析
八、性能优化
⑴程序性能分析与评估
⑵程序高效化的方法与技巧
⑶并行计算与优化
九、实例与案例
⑴实例介绍与问题描述
⑵实例数据处理过程
⑶实例模型求解与结果分析十、总结与展望
⑴工作总结
⑵程序改进与优化展望
⑶研究方向与发展趋势
十一、附件
●附件1、程序源代码
●附件2、输入数据样例文件
●附件3、网格结果数据文件附录:法律名词及注释
●法律名词1、注释1
●法律名词2、注释2
●法律名词3、注释3
请注意,附件的具体文件名和数据内容将根据你的实际情况进行调整。

法律名词及注释部分需要根据实际需要进行扩充和修改。

请合理对文档结构和章节内容进行调整,以符合你的具体要求。

简支梁的有限单元法分析-三角形三节点单元

简支梁的有限单元法分析-三角形三节点单元
简支梁的有限单元法分析
三角形三节点平面单元
王 峰
有限元分析的基本步骤:
结构离散化
单元分析
整体分析
1 结构离散化
图示为简支梁,梁的厚度为t,泊松比m =0.3,弹性 模量为E=2e+5Mpa,用三节点三角形单元进行离散, 直角三角形边长为2。
2 单元分析
单元分析的主要内容:由节点位移求内部任一点的
物理方程
{s }=[D]{} 而 { }=[B]{}e (求应力的表达式) {s }=[D][B]{ }e
记 [S]=[D][B]
[S]应力矩阵: [S]=[Si Sj Sm]
2.5节点力与节点位移的关系
令实际受力状态在虚位移状态上做虚功,虚功方程:
({ *}e )T {F}e { *}T tdxdy s
位移,由节点位移求单元应变、应力和节点力。
单元分析的步骤:
节点 (1) 位移
单元内部 各点位移
(2)
单元 (3) 应变
单元 应力
(4)
节点 力
单元分析
2.1 形函数
形函数反映了单元的位移形态,是坐标的函数。 三节点三角形单元的形函数为:
1 Ni ( x, y ) (ai bi x ci y )(i , j , m) 2A ai x j ym xm y j (i , j , m) bi y j ym ci xm x j
Ni 1 Ni 1 bi , ci x 2 A y 2 A
因此,三角形单元的应变矩阵[B]是常量,
(i , j , m)
代入数据得到:
1 0 0 0 1 0 1 B 0 0 0 1 0 1 2 0 1 1 0 1 1

abaqus三角形单元创建

abaqus三角形单元创建

abaqus三角形单元创建
带有3个节点的三角形是最基础的二维有限元单元。

相比起其他单元,3节点三角形最大的特点是应变和应力在单元上的分布是相同的,所以也被称为Constant Strain Triangular (CST) 单元。

本文介绍如何通过用户自定义单元子程序UEL在ABAQUS环境中开发CST单元。

单元为平面应变单元,对标ABAQUS中的CPE3。

由于ABAQUS不支持显示用户自己开发的单元,所以需要通过UMAT辅助显示UEL计算得到的结果。

大致的流程为:
(1)在input中定义两种单元,一种是用户自己开发的“真”单元(UEL),另一种是“假”单元(abaqus内置的单元,但是材料用UMAT),用于后处理显示。

这两种单元享用相同的节点标号,但是有不同的单元标号;
(2)在UEL和UMAT中都定义COMMON block,比如: common/KUSER/ UVAR;
(3)UEL计算得到结果,将需要显示的结果赋值给SVARS (UEL中的场变量);
(4)在UEL中把SVARS 的数值赋予UVAR;
(5)UMAT中的SDV接收UVAR,另外需要写一个弹性的本构,弹性模量 E 可以设置得很小.。

有限元2-弹性力学平面问题(24矩形单元,25六节点三角形单元)

有限元2-弹性力学平面问题(24矩形单元,25六节点三角形单元)

u 1 1 2 3 4 u 2 1 2 3 4
u 3 1 2 3 4
u 4 1 2 3 4
有限单元法
土木工程学院
P-9/44
解方程组便可求得待定常数。将这些参数代回式 (2-4-4),经整理得:
(1,1)
有限单元法
土木工程学院
P-6/44
二、结点位移列阵和结点力列阵
每个结点2个位移分量,共8个位移分量, 设结点位移和结点力列阵分别为:
d u v u v u v u v
e
2 4 2 e T F X Y X Y X Y X Y 1 1 2 2 3 3 4 4 2 4 3
有限单元法
土木工程学院
P-18/44
第2章 弹性力学平面问题有限单元法
2.1 三角形单元 2.2 三角形单元中几个问题的讨论 2.3 平面问题有限元程序设计 2.4 矩形单元 2.5 六结点三角形单元 2.6 四结点四边形单元 2.7 八结点曲线四边形等参元 2.8 几个问题的补充
有限单元法
土木工程学院
3

1
2
(1 ,1 )
(1,1)
有限单元法
土木工程学院
P-11/44
如果引进参数: ξ0=ξiξ, η0=ηiη(i=1, 2, 3, 4), (ξi, ηi)是矩形单元4个结点的局部坐标。结点i(ξi, ηi)的 坐标值分别是 (-1,-1), (1,-1),(1,1), (-1,-1)。代入 上式,则可将上式简记成:
Ai Li A
Lj Aj A
Am Lm A
i
m
Aj

有限元平面问题三角形实例

有限元平面问题三角形实例

有限元平面问题三角形实例有限元法是一种常用的计算方法,可以用来解决各种工程问题。

其中,有限元平面问题是有限元法的一种应用,常用于分析三角形结构。

在有限元平面问题中,我们通常会将结构划分成许多小的单元,每个单元由节点和单元刚度矩阵组成。

而三角形结构则是有限元平面问题中常用的一种单元形状。

三角形结构的特点是简单而且易于处理,因此广泛应用于各种领域,如土木工程、机械工程、航空航天等。

下面我们就以一个实际的例子来说明如何应用有限元平面问题分析三角形结构。

假设我们要分析一个三角形钢板在受力作用下的变形情况。

首先,我们需要将钢板划分为许多小的三角形单元。

每个单元由三个节点组成,节点之间通过边连接。

在有限元分析中,我们需要对每个单元进行网格划分,并确定节点的坐标和边的长度。

然后,通过求解节点的位移和应力分布,可以得到钢板在受力作用下的变形情况。

具体来说,我们可以通过求解线性方程组来得到节点的位移。

而节点的应力则可以通过应变-位移关系来计算。

通过这种方式,我们可以得到钢板在受力作用下各个节点的位移和应力分布情况。

有限元平面问题的分析结果可以帮助我们了解结构的强度和刚度情况,为设计和优化提供依据。

例如,在钢板的设计中,我们可以通过有限元分析来确定合适的材料和尺寸,以满足结构的强度和刚度要求。

除了钢板,有限元平面问题还可以应用于其他类型的三角形结构。

例如,在土木工程中,我们可以使用有限元分析来分析三角形桥梁或者三角形支撑结构的变形和应力分布情况。

有限元平面问题是一种常用的分析方法,可以应用于各种三角形结构的分析。

通过对节点的位移和应力分布的求解,我们可以得到结构在受力作用下的变形情况。

这对于工程设计和优化至关重要,可以帮助我们提高结构的强度和刚度,确保其安全可靠。

有限元作业:三角形单元求解

有限元作业:三角形单元求解

《有限元作业》年级2015级学院机电工程学院专业名称班级学号学生2016年05月如下图所示为一受集中力P作用的结构,弹性模量E为常量,泊松比V=1/6,厚度为I=1。

按平面应力问题计算,运用有限元方法,分别采用三角形及四边形单元求解,求节点位移及单元应力(要求三角形单元数量不少于4个,四边形单元不少于2个)图(一)图(二)三角形单元求解图(三)四边形单元求解(1)如图划分三角形单元,工分成四个分别为④(2)如图分别进行编号1、2、3、4、5、6,并建立坐标系(3)编程进行求解,得出结果,其中假设力P=2000N调用Triangle2D3Node_Stiffness函数,求出单元刚度矩阵k1 =1.0e+06 *7.2857 -3.0000 -2.1429 0.8571 -5.1429 2.1429-3.0000 7.2857 2.1429 -5.1429 0.8571 -2.1429 -2.1429 2.1429 2.1429 0 0 -2.14290.8571 -5.1429 0 5.1429 -0.8571 0-5.1429 0.8571 0 -0.8571 5.1429 02.1429 -2.1429 -2.1429 0 0 2.1429k2 =1.0e+06 *5.1429 0 -5.1429 0.8571 0 -0.85710 2.1429 2.1429 -2.1429 -2.1429 0-5.1429 2.1429 7.2857 -3.0000 -2.1429 0.85710.8571 -2.1429 -3.0000 7.2857 2.1429 -5.14290 -2.1429 -2.1429 2.1429 2.1429 0-0.8571 0 0.8571 -5.1429 0 5.1429 k3 =1.0e+06 *2.1429 0 -2.1429 -2.1429 0 2.14290 5.1429 -0.8571 -5.1429 0.8571 0-2.1429 -0.8571 7.2857 3.0000 -5.1429 -2.1429 -2.1429 -5.1429 3.0000 7.2857 -0.8571 -2.14290 0.8571 -5.1429 -0.8571 5.1429 02.1429 0 -2.1429 -2.1429 0 2.1429 k4 =1.0e+06 *2.1429 0 -2.1429 -2.1429 0 2.14290 5.1429 -0.8571 -5.1429 0.8571 0-2.1429 -0.8571 7.2857 3.0000 -5.1429 -2.1429 -2.1429 -5.1429 3.0000 7.2857 -0.8571 -2.14290 0.8571 -5.1429 -0.8571 5.1429 02.1429 0 -2.1429 -2.1429 0 2.1429 调用Triangle2D3Node_Assembly函数,求出总体刚度矩阵求出的节点位移U =-0.00040.00080.00050.00100.00070.0023-0.00070.0026调用Triangle2D3Node_Stress函数,求出应力,S1、S2、S3、中求出的分别为Sx,Sy,SxyS1 =1.0e+03 *-4.4086-0.73483.5914S2 =1.0e+03 *4.4086-0.64050.4086S3 =1.0e+03 *1.8907-1.06012.1093S4 =1.0e+03 *-1.89072.10931.8907二、(1)如图划分四边形单元,工分成四个分别为(2)如图分别进行编号1、2、3、4、5、6,并建立坐标系(3)编程进行求解,得出结果,其中假设力P=2000N调用Quad2D4Node_Stiffness函数,求出单元刚度矩阵调用Quad2D4Node_Assembly函数,求出求出总体刚度矩阵求出节点位移U =0.00120.0017-0.00120.00170.00160.0049-0.00170.0052调用Quad2D4Node_Stress函数,求出单元应力中的的S1、S2、S3分别为Sx,Sy,Sxy应力分量S1 =1.0e+03 *0.0000-0.24782.0000S2 =1.0e+07 *0.68564.1135-1.7137程序附录一、1、三角形单元总程序:E=1e7;NU=1/6;t=1;ID=1;%调用Triangle2D3Node_Stiffness函数,求出单元刚度矩阵k1=Triangle2D3Node_Stiffness(E,NU,t,0,1,0,0,1,1,ID)k2=Triangle2D3Node_Stiffness(E,NU,t,0,0,1,0,1,1,ID)k3=Triangle2D3Node_Stiffness(E,NU,t,1,1,1,0,2,0,ID)k4=Triangle2D3Node_Stiffness(E,NU,t,2,0,2,1,1,1,ID)%调用Triangle2D3Node_Assembly函数,求出总体刚度矩阵KK = zeros(12,12);KK=Triangle2D3Node_Assembly(KK,k1,1,2,3);KK=Triangle2D3Node_Assembly(KK,k2,2,4,3);KK=Triangle2D3Node_Assembly(KK,k3,3,4,5);KK=Triangle2D3Node_Assembly(KK,k4,5,6,3)% 边界条件的处理及刚度方程求解k=KK(5:12,5:12)p=[0;0;0;0;0;0;0;2000]u=k\p%支反力的计算U=[0;0;0;0;u] %为节点位移P=KK*U%调用Triangle2D3Node_Strain函数,求出应变SN1、SN2、SN3中求出的分别为SNx,SNy,SNxyu1=[U(1);U(2);U(3);U(4);U(5);U(6)];u2=[U(3);U(4);U(7);U(8);U(5);U(6)];u3=[U(5);U(6);U(7);U(8);U(9);U(10)];u4=[U(9);U(10);U(11);U(12);U(5);U(6)];SN1=Triangle2D3Node_Strain(0,1,0,0,1,1,u1)SN2=Triangle2D3Node_Strain(0,0,1,0,1,1,u2)SN3=Triangle2D3Node_Strain(1,1,1,0,2,0,u3)SN4=Triangle2D3Node_Strain(2,0,2,1,1,1,u4)%调用Triangle2D3Node_Stress函数,求出应力,S1、S2、S3、中求出的分别为Sx,Sy,Sxyu1=[U(1);U(2);U(3);U(4);U(5);U(6)];u2=[U(3);U(4);U(7);U(8);U(5);U(6)];u3=[U(5);U(6);U(7);U(8);U(9);U(10)];u4=[U(9);U(10);U(11);U(12);U(5);U(6)];S1=Triangle2D3Node_Stress(E,NU,0,1,0,0,1,1,u1,ID)S2=Triangle2D3Node_Stress(E,NU,0,0,1,0,1,1,u2,ID)S3=Triangle2D3Node_Stress(E,NU,1,1,1,0,2,0,u3,ID)S4=Triangle2D3Node_Stress(E,NU,2,0,2,1,1,1,u4,ID)2、求刚度矩阵程序function k=Triangle2D3Node_Stiffness(E,NU,t,xi,yi,xj,yj,xm,ym,ID)%该函数计算单元的刚度矩阵%输入弹性模量E,泊松比NU,厚度t%输入三个节点i、j、m的坐标xi,yi,xj,yj,xm,ym%输入平面问题性质指示参数ID(1为平面应力,2为平面应变)%输出单元刚度矩阵k(6X6)%---------------------------------------------------------------A = (xi*(yj-ym) + xj*(ym-yi) + xm*(yi-yj))/2;betai = yj-ym;betaj = ym-yi;betam = yi-yj;gammai = xm-xj;gammaj = xi-xm;gammam = xj-xi;B = [betai 0 betaj 0 betam 0 ;0 gammai 0 gammaj 0 gammam ;gammai betai gammaj betaj gammam betam]/(2*A);if ID == 1D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];elseif ID == 2D = (E/(1+NU)/(1-2*NU))*[1-NU NU 0 ; NU 1-NU 0 ; 0 0 (1-2*NU)/2]; endk= t*A*B'*D*B;3、求整体刚度矩阵function z = Triangle2D3Node_Assembly(KK,k,i,j,m)%该函数进行单元刚度矩阵的组装%输入单元刚度矩阵k%输入单元的节点编号I、j、m%输出整体刚度矩阵KK%---------------------------------------------------------------DOF(1)=2*i-1;DOF(2)=2*i;DOF(3)=2*j-1;DOF(4)=2*j;DOF(5)=2*m-1;DOF(6)=2*m;for n1=1:6for n2=1:6KK(DOF(n1),DOF(n2))= KK(DOF(n1),DOF(n2))+k(n1,n2);endendz=KK;4、求应变程序function strain=Triangle2D3Node_Strain(xi,yi,xj,yj,xm,ym,u)%该函数计算单元的应变%输入三个节点i、j、m的坐标xi,yi,xj,yj,xm,ym%输入单元的位移列阵u(6X1)%输出单元的应力strain(3X1),由于它为常应变单元,则单元的应变分量为SNx,SNy,SNz%---------------------------------------------------------------A = (xi*(yj-ym) + xj*(ym-yi) + xm*(yi-yj))/2;betai = yj-ym;betaj = ym-yi;betam = yi-yj;gammaj = xi-xm;gammam = xj-xi;B = [betai 0 betaj 0 betam 0 ;0 gammai 0 gammaj 0 gammam ;gammai betai gammaj betaj gammam betam]/(2*A);strain = B*u;5、求应力程序function stress=Triangle2D3Node_Stress(E,NU,xi,yi,xj,yj,xm,ym,u,ID)%该函数计算单元的应力%输入弹性模量E,泊松比NU,厚度t%输入三个节点i、j、m的坐标xi,yi,xj,yj,xm,ym%输入平面问题性质指示参数ID(1为平面应力,2为平面应变),单元的位移列阵u(6X1)%输出单元的应力stress(3X1),由于它为常应力单元,则单元的应力分量为Sx,Sy,Sxy%---------------------------------------------------------------A = (xi*(yj-ym) + xj*(ym-yi) + xm*(yi-yj))/2;betai = yj-ym;betaj = ym-yi;betam = yi-yj;gammai = xm-xj;gammam = xj-xi;B = [betai 0 betaj 0 betam 0 ;0 gammai 0 gammaj 0 gammam ;gammai betai gammaj betaj gammam betam]/(2*A);if ID == 1D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];elseif ID == 2D = (E/(1+NU)/(1-2*NU))*[1-NU NU 0 ; NU 1-NU 0 ; 0 0 (1-2*NU)/2]; endstress = D*B*u;二、1、四边形单元总程序:E=1e7;NU=1/6;h=1;ID=1;%调用Quad2D4Node_Stiffness函数,求出单元刚度矩阵k1= Quad2D4Node_Stiffness(E,NU,h,0,1,0,0,1,0,1,1,ID)k2= Quad2D4Node_Stiffness(E,NU,h,1,0,2,0,2,1,1,1,ID)%调用Quad2D4Node_Assembly函数,求出求出总体刚度矩阵KK=zeros(12,12);KK= Quad2D4Node_Assembly(KK,k1,1,2,3,4);KK= Quad2D4Node_Assembly(KK,k2,3,5,6,4)% 边界条件的处理及刚度方程求解k=KK(5:12,5:12)p=[0;0;0;0;0;0;0;2000]u=k\p%支反力的计算U=[0;0;0;0;u] %为节点位移P=KK*U%调用Quad2D4Node_Stress函数,求出单元应力中的的S1、S2、S3分别为Sx,Sy,Sxy应力分量u1=[U(1);U(2);U(3);U(4);U(5);U(6);U(7);U(8)];u2=[U(5);U(6);U(9);U(10);U(11);U(12);U(7);(8)];S1= Quad2D4Node_Stress(E,NU,0,1,0,0,1,0,1,1,u1,ID)S2= Quad2D4Node_Stress(E,NU,1,0,2,0,2,1,1,1,u2,ID)2、求刚度矩阵程序function k= Quad2D4Node_Stiffness(E,NU,h,xi,yi,xj,yj,xm,ym,xp,yp,ID) %该函数计算单元的刚度矩阵%输入弹性模量E,泊松比NU,厚度h%输入4个节点i、j、m、p的坐标xi,yi,xj,yj,xm,ym,xp,yp%输入平面问题性质指示参数ID(1为平面应力,2为平面应变)%输出单元刚度矩阵k(8X8)%---------------------------------------------------------------syms s t;a = (yi*(s-1)+yj*(-1-s)+ym*(1+s)+yp*(1-s))/4;b = (yi*(t-1)+yj*(1-t)+ym*(1+t)+yp*(-1-t))/4;c = (xi*(t-1)+xj*(1-t)+xm*(1+t)+xp*(-1-t))/4;d = (xi*(s-1)+xj*(-1-s)+xm*(1+s)+xp*(1-s))/4;B1 = [a*(t-1)/4-b*(s-1)/4 0 ; 0 c*(s-1)/4-d*(t-1)/4 ;c*(s-1)/4-d*(t-1)/4 a*(t-1)/4-b*(s-1)/4];B2 = [a*(1-t)/4-b*(-1-s)/4 0 ; 0 c*(-1-s)/4-d*(1-t)/4 ;c*(-1-s)/4-d*(1-t)/4 a*(1-t)/4-b*(-1-s)/4];B3 = [a*(t+1)/4-b*(s+1)/4 0 ; 0 c*(s+1)/4-d*(t+1)/4 ;c*(s+1)/4-d*(t+1)/4 a*(t+1)/4-b*(s+1)/4];B4 = [a*(-1-t)/4-b*(1-s)/4 0 ; 0 c*(1-s)/4-d*(-1-t)/4 ;c*(1-s)/4-d*(-1-t)/4 a*(-1-t)/4-b*(1-s)/4];Bfirst = [B1 B2 B3 B4];Jfirst = [0 1-t t-s s-1 ; t-1 0 s+1 -s-t ;s-t -s-1 0 t+1 ; 1-s s+t -t-1 0];J = [xi xj xm xp]*Jfirst*[yi ; yj ; ym ; yp]/8;B = Bfirst/J;if ID == 1D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];elseif ID == 2D = (E/(1+NU)/(1-2*NU))*[1-NU NU 0 ; NU 1-NU 0 ; 0 0 (1-2*NU)/2]; endBD = J*transpose(B)*D*B;r = int(int(BD, t, -1, 1), s, -1, 1);z = h*r;k = double(z);3、求总体刚度矩阵程序function z = Quad2D4Node_Assembly(KK,k,i,j,m,p)%该函数进行单元刚度矩阵的组装%输入单元刚度矩阵k,单元的节点编号i、j、m、p%输出整体刚度矩阵KK%---------------------------------------------------------------DOF(1)=2*i-1;DOF(2)=2*i;DOF(3)=2*j-1;DOF(4)=2*j;DOF(5)=2*m-1;DOF(6)=2*m;DOF(7)=2*p-1;DOF(8)=2*p;for n1=1:8for n2=1:8KK(DOF(n1),DOF(n2))= KK(DOF(n1),DOF(n2))+k(n1,n2);endendz=KK;4、求应力程序function stress= Quad2D4Node_Stress(E,NU,xi,yi,xj,yj,xm,ym,xp,yp,u,ID) %该函数计算单元的应力%输入弹性模量E,泊松比NU,厚度h,%输入4个节点i、j、m、p的坐标xi,yi,xj,yj,xm,ym,xp,yp,%输入平面问题性质指示参数ID(1为平面应力,2为平面应变)%输入单元的位移列阵u(8X1)%输出单元的应力stress(3X1)%由于它为常应力单元,则单元的应力分量为Sx,Sy,Sxy%---------------------------------------------------------------syms s t;a = (yi*(s-1)+yj*(-1-s)+ym*(1+s)+yp*(1-s))/4;b = (yi*(t-1)+yj*(1-t)+ym*(1+t)+yp*(-1-t))/4;c = (xi*(t-1)+xj*(1-t)+xm*(1+t)+xp*(-1-t))/4;d = (xi*(s-1)+xj*(-1-s)+xm*(1+s)+xp*(1-s))/4;B1 = [a*(t-1)/4-b*(s-1)/4 0 ; 0 c*(s-1)/4-d*(t-1)/4 ;c*(s-1)/4-d*(t-1)/4 a*(t-1)/4-b*(s-1)/4];B2 = [a*(1-t)/4-b*(-1-s)/4 0 ; 0 c*(-1-s)/4-d*(1-t)/4 ;c*(-1-s)/4-d*(1-t)/4 a*(1-t)/4-b*(-1-s)/4];B3 = [a*(t+1)/4-b*(s+1)/4 0 ; 0 c*(s+1)/4-d*(t+1)/4 ;c*(s+1)/4-d*(t+1)/4 a*(t+1)/4-b*(s+1)/4];B4 = [a*(-1-t)/4-b*(1-s)/4 0 ; 0 c*(1-s)/4-d*(-1-t)/4 ;c*(1-s)/4-d*(-1-t)/4 a*(-1-t)/4-b*(1-s)/4];Bfirst = [B1 B2 B3 B4];Jfirst = [0 1-t t-s s-1 ; t-1 0 s+1 -s-t ;s-t -s-1 0 t+1 ; 1-s s+t -t-1 0];J = [xi xj xm xp]*Jfirst*[yi ; yj ; ym ; yp]/8;B = Bfirst/J;if ID == 1D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];elseif ID == 2D = (E/(1+NU)/(1-2*NU))*[1-NU NU 0 ; NU 1-NU 0 ; 0 0 (1-2*NU)/2]; endstr1 = D*B*u;str2 = subs(str1, {s,t}, {0,0});stress = double(str2);。

有限元 2-弹性力学平面问题有限单元法(2.1三角形单元,2.2几个问题的讨论)

有限元 2-弹性力学平面问题有限单元法(2.1三角形单元,2.2几个问题的讨论)

第2章 弹性力学平面问题有限单元法2.1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。

一、结点位移和结点力列阵设图为从某一结构中取出的一典型三角形单元。

在平面应力问题中,单元的每个结点上有沿x、y两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1){}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。

即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。

构造位移函数的方法是:以结点(i,j,m)为定点。

以位移(u i ,v i ,…u m v m 3)为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。

在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)12u u x y x yααα+46y ==+ 5(,)v v x y x ααα+==+ (2-1-2)a式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。

将13个结点坐标(x i,3iy y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程: 12i i u x ααα+3=+12j j j x y u αα=+α+3m y (a)12m m u x ααα=++46i y和5i i v x αα=+α+465j j j x y v αα=+α+46m y (b)5m m v x ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :211A Aα=22A 3A Aα=3Aα=式中行列式:2111i i 1i i i j m j j m m u x y A u x y u x y =j jm mu y A u y u y =3111i i j jm mx u A 2111i i j j m mAx y A x y x y x u x u ===A为△ijm 的面积,只要A不为0,则可由上式解出:112i i j j a u a u ()m m a u A α=++21(2i ij j bu b u )m m b u A α=++ (C)312i i j j c u c u ()m mc u A α=++i j a x y =−j i y x y =−m i j j i y x y 式中:m m j x y a x a x m m i =−y m y y =−m i j y ym i j b y =− b b j i =− (d)3c m i j x x =− j i c m x x =−m j i c x x =−m iy x y =−m为了书写方便,可将上式记为: a xm i j b i jy y =−(,,) i u j m uu u ruuu u r i jc m x x =−(,,)i j m uuu u r uuu u r)m m N x y u N x y u N x y u =++)m x y v 表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。

三角形单元有限元程序设计

三角形单元有限元程序设计

三角形单元有限元程序设计%*******************************************************************% NNODE 单元节点数NPION 总结点数% NELEM 单元数NVFIX 受约束边界点数% FIXED 约束信息数组NFORCE 节点力数% FORCE 节点力数组COORD 结构节点坐标数组% LNODS 单元定义数组% YOUNG 弹性模量POISS 泊松比% THICK 厚度 B 单元应变矩阵(3*6)% D 单元弹性矩阵(3*3) S 单元应力矩阵(3*6)% A 单元面积ESTIF 单元刚度矩阵% ASTIF 总体刚度矩阵ASLOD 总体荷载向量% ASDISP 节点位移向量ELEDISP 单元节点位移向量% STRESS 单元应力FP1 数据文件指针%*******************************************************************format short e %设定输出类型clear %清除内存变量FP1=fopen('1-1.txt','rt'); %打开输入数据文件存放初始数据%读入控制数据NELEM=fscanf(FP1,'%d',1), %单元个数(单元编码总数)NPION=fscanf(FP1,'%d',1), %结点个数(结点编码总数)NVFIX=fscanf(FP1,'%d',1) %受约束边界点数NFORCE=fscanf(FP1,'%d',1), %结点荷载个数YOUNG=fscanf(FP1,'%e',1), %弹性模量POISS=fscanf(FP1,'%f',1), %泊松比THICK=fscanf(FP1,'%f',1) %厚度LNODS=fscanf(FP1,'%d',[3,NELEM])' %单元定义数组(单元结点号)%相应为单元结点号(编码)、按逆时针顺序输入COORD=fscanf(FP1,'%f',[2,NPION])' %结点坐标数组%坐标:x,y坐标(共NPOIN组)FORCE=fscanf(FP1,'%f',[3,NFORCE])' %结点力数组%(n,3) n:受力结点数目,(n,1):作用点,(n,2):x方向,(n,3):y方向FIXED=fscanf(FP1,'%d',[3,NVFIX])' %约束信息数组% (n,1):约束点(n,2)与(n,3)分别为约束点x方向和y方向的约束情况,受约束为1否则为0%*******************************************************************%生成单元刚度矩阵并组成总体刚度矩阵ASTIF=zeros(2*NPION,2*NPION); %生成特定大小总体刚度矩阵并置0%*******************************************************************for i=1:NELEM%生成弹性矩阵DD= [1 POISS 0;POISS 1 0;0 0 (1-POISS)/2]*YOUNG/(1-POISS^2)%*******************************************************************%计算当前单元的面积A=det([1 COORD(LNODS(i,1),1) COORD(LNODS(i,1),2);1 COORD(LNODS(i,2),1) COORD(LNODS(i,2),2);1 COORD(LNODS(i,3),1) COORD(LNODS(i,3),2)])/2%*******************************************************************%生成应变矩阵Bfor j=0:2b(j+1)= COORD(LNODS(i,(rem((j+1),3))+1),2)-COORD(LNODS(i,(rem((j+2),3))+1),2);c(j+1)=-COORD(LNODS(i,(rem((j+1),3))+1),1)+COORD(LNODS(i,(rem((j+2),3))+1),1); endB=[b(1) 0 b(2) 0 b(3) 0;...0 c(1) 0 c(2) 0 c(3);...c(1) b(1) c(2) b(2) c(3) b(3)]/(2*A);B1( :,:,i)=B;%*******************************************************************%求应力矩阵S=D*BS=D*B;ESTIF=B'*S*THICK*A; %求解单元刚度矩阵a=LNODS(i,:); %临时向量,用来记录当前单元的节点编号for j=1:3for k=1:3ASTIF((a(j)*2-1):a(j)*2,(a(k)*2-1):a(k)*2)...=ASTIF((a(j)*2-1):a(j)*2,(a(k)*2-1):a(k)*2)+ESTIF(j*2-1:j*2,k*2-1:k*2);%根据节点编号对应关系将单元刚度分块叠加到总刚矩阵中endendend%**************************************************************************%将约束信息加入总体刚度矩阵(对角元素改一法)for i=1:NVFIXif FIXED(i,2)==1ASTIF(:,(FIXED(i,1)*2-1))=0; %一列为零ASTIF((FIXED(i,1)*2-1),:)=0; %一行为零ASTIF((FIXED(i,1)*2-1),(FIXED(i,1)*2-1))=1;%对角元素为1endif FIXED(i,3)==1ASTIF( :,FIXED(i,1)*2)=0; %一列为零ASTIF(FIXED(i,1)*2,:)=0; %一行为零ASTIF(FIXED(i,1)*2 ,FIXED(i,1)*2)=1; %对角元素为1 endend%************************************************************************** %生成荷载向量ASLOD(1:2*NPION)=0; %总体荷载向量置零for i=1:NFORCEASLOD((FORCE(i,1)*2-1):FORCE(i,1)*2)=FORCE(i,2:3);end%************************************************************************** %求解内力ASDISP=ASTIF\ASLOD' %计算节点位移向量ELEDISP(1:6)=0; %当前单元节点位移向量for i=1:NELEMfor j=1:3ELEDISP(j*2-1:j*2)=ASDISP(LNODS(i,j)*2-1:LNODS(i,j)*2);%取出当前单元的节点位移向量endiSTRESS=D*B1(:, :, i)*ELEDISP' %求内力endfclose(FP1); %关闭数据文件程序应用举例 134212yxFF F=100NF=100N如上图所示,矩形平板,一端固支,一端受集中力,划分为两个三角形单元,共4个结点。

1 三角形单元有限元

1 三角形单元有限元

1 [(ai bi x ci y)ui (a j b j x c j y)u j (am bm x cm y)u m ] 2A (1-16) 1 [(ai bi x ci y) i (a j b j x c j y) j (am bm x cm y) m ] 2A u
i { } j [ui i u j j um m ]T m (1-11)
y
vm
m
um
v
u j
vj uj x
(4)位移函数中必须包含单元的刚体位移。 (5)位移函数中必须包含单元的常应变。 (6)位移函数在单元内要连续。相邻单元间要尽 量协调。 条件(4)、(5)构成单元的完备性准则。 条件(6)是单元的位移协调性条件。 理论和实践都已证明,完备性准则是有限元解收 敛于真实解的必要条件。单元的位移协调条件构成有 限元解收敛于真实解的充分条件。 容易证明,三角形三节点常应变单元满足以上必 要与充分条件。
112有限元法分析思路流程解综合方程k求结构节点位移计算结构内力和应力系统分析把单元刚度矩阵集合成结构刚度矩阵k形成等价节点荷载p离散剖分结构为若干单元单元分析建立单元刚度矩阵k形成单元等价节点力11sysxsysxvyvxvyvx12基本力学量矩阵表示图11134单元内任意点的应变列阵156几何方程147物理方程矩阵式e弹性模量泊松比
{ } [ x y xy ]T (1-4)
qVx {qV } [qVx qVy ]T qVy
(1-6)
各种类型结构的弹性物理方程都可用式(1-8)描 述。但结构类型不同,力学性态 (应力分量、应变分 量)有区别, 弹性矩阵[D]的体积和元素是不同的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sdof=nnode*ndof; %total system dofs
edof=nnel*ndof; %degrees of freedom per element %-------------------------------------------------------
%input data for nodal coordinate values
%--------------------------------------------
lengthx=4;
%length of x-axis side of problem
lengthy=2;
%length of y-axis side of problem
A(0, 0)
emodule=1.0;
kk=sparse(sdof,sdof);
%system matrix
disp=sparse(sdof,1);
%system displacement vector
eldisp=sparse(edof,1);
%element displacement vector
stress=zeros(nel,3);
D(4, 0) F 1
B(0, 2)
C(4, 1)
21:16
三角形单元程序
clear all
first_time=cputime;
format long
%--------------------------------------------
%input data for control parameters
%matrix containing stress components
strain=zeros(nel,3);
%matrix containing strain components
index=sparse(edof,1);
%index vector
kinmtx=sparse(3,edof);
%kinematic matrix
matmtx=sparse(3,3);
%constitutive matrix
%-------------------------------------------------
%compute material matrices
%-------------------------------------------------
%-------------------------------------------------------
x0=[];
for i=1:lx+1
for j=1:ly+1
x0=[x0; (i-1)*lengthx/lx -0.5*lengthy*(1+(lx+1-i)/lx)*(1-(j-1)/ly)];
bcdof=[bcdof 1+2*(i-1) 2+2*(i-1)]; bcval=[bcval 0 0]; end
A(0, 0) B(0, 2)
D(4, 0) C(4, 1)
21:16
三角形单元程序
%-------------------------------------------------
%initialization of matrices and vectors
%-------------------------------------------------
ff=sparse(sdof,1);
%system force vector
k=sparse(edof,edof);
%initialization of element matrix
%eln=0.0;
%Poisson's ratio
fload=-1;
% the total load
B(0, 2)
21:16
D(4, 0) F 1 C(4, 1)
三角形单元程序
lx=16;
% number of element in x-axis
ly=8;
% number of element in y-axis
end
end
21:16
三角形单元程序
%---------------------------------------------------------------------%input data for nodal connectivity for each element %nodes(i,j) where i->element no. and j->connected nodes %---------------------------------------------------------------------nodes=[]; for i=1:lx
nel=2*lx*ly;
% number of element
nnel=3;
%number of nodes per element
ndof=2;
%number of dofs per node
nnode=(lx+1)*(ly+1); %total number of nodes in system
for j=1:ly nodes=[nodes; (ly+1)*(i-1)+j (ly+1)*i+j (ly+1)*(i-1)+j+1;]; nodes=[nodes; (ly+1)*i+j (ly+1)*i+j+1 (ly+1)*(i-1)+j+1;];
end end
21:16
三角形单元程序
%---------------------------------%input data for boundary conditions %---------------------------------bcdof=[]; bcval=[]; for i=1:ly+1
三角形单元程序设计
问题描述
考虑一个平面应力问题如图所示,假设厚度h=1,材料为各项 同性,杨氏模量为E=1,泊松比为ν=0,相关力和位移边界条 件如图中所示,问题左端为固定约束。试用两个三角形单元 分析此问题,三角形单元的网格划分如图所示。试求问题各 节点位移u、v和应力σx,σy和σxy。
A(0, 0)
相关文档
最新文档