大学物理静电场深刻复知识题
大学物理第八章静电场(答案)
第八章 静电场8.1 真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ C ]8.2 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电通量必不为零.[ D ]8.3有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03εq . (B) 04επq (C) 03επq . (D) 06εq[ D ]q8.4面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)Sq 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ B ]8.5一个带正电荷的质点,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示中正确的是:[ D ]8.6如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ D ]-8.7静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ C ]8.8已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N .(C) 电势能W M <W N . (D) 电场力的功A >0.[ C ]A8.9 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷置于x 处所受合力为零,即该点场强为零.()()0142142020=+π-+-πx qx q εε 2分 得 x 2-6x +1=0, ()223±=x m因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m3分8.10 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.L解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε 2分d EO总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε 3分 方向沿x 轴,即杆的延长线方向.8.11 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π。
大学大学物理习题解答参考答案-一、真空中的静电场
20XX年复习资料大学复习资料专业:班级:科目老师:一、日期:真空中的静电场一、 选择题:1.下列几个说法哪一个是正确的?(A ) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B ) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C ) 场强方向可由/F E =q 定出,其中q 为试验电荷的电量,q 可正可负,F 为试验电荷所受的电场力。
(D ) 以上说法都不正确。
[ ]2.关于静电场中某点电势值的正负,下列说法中正确的是:(A ) 电势值的正负取决于置于该点的试验电荷的正负。
(B ) 电势值的正负取决于电场力对试验电荷作功的正负。
(C ) 电势值的正负取决于电势零点的选取。
(D ) 电势值的正负取决于产生电场的电荷的正负。
[ ]3、某电场的电力线分布情况如图所示。
一负电荷从M 点移到N 点。
有人根据这个图作出下列几点结论,其中哪点是正确的?(A ) 电场强度N M E E <。
(B )电势N M U U <。
(C )电势能N M W W <。
(D )电场力的功A>0。
[ ]4、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F .若考虑到电量q 0不是足够小,则(A)F /q 0 比P 点处原先的场强数值大.(B)F /q 0 比P 点处原先的场强数值小.(C)F /q 0 等于原先P 点处场强的数值.(D)F /q 0 P 点处场强数值关系无法确定,[ ]5、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F 和合力矩M 为:(A) F =0,M =0, (B) F =0,M ≠0,(C) F ≠0,M =0, (D) F ≠0,M ≠0, [ ]6、已知一高斯面所包围的体积内电量代数和∑i q =0,则可肯定:(A ) 高斯面上各点场强均为零。
(B ) 穿过高斯面上每一面元的电通量均为零。
大学物理-静电场(一)(带答案)
一、库仑定律和电场力1.关于摩擦一物体后,物体呈现正电性的一种解释是:在摩擦过程中,[ ]A.物体获得了中子。
B.物体获得了质子。
C.物体失去了电子。
D.物体失去了中子。
【答案】:C2.两条平行的无限长直均匀带电线,相距为d,线电荷密度分别为±λ,若已知一无限长均匀带电直线的场强分布为λ2πε0r方向垂直于带电直线,则其中一带电直线上的单位长度电荷受到另一带电直线的静电作用力大小为[ ]A.λ24πε0d2B.λ24πε0dC.λ22πε0d2D.λ22πε0d【答案】:D3.关于电荷与电场,有下列几种说法,其中正确的是[]A.点电荷的附近空间一定存在电场;B.电荷间的相互作用与电场无关;C.若电荷在电场中某点受到的电场力很大,则表明该点的电场强度一定很大;D.在某一点电荷附近的任一点,若没放试验电荷,则该点的电场强度为零。
【答案】:A4. 两个静止不动的点电荷的带电总量为2q,为使它们间的排斥力最大,各自所带的电荷量分别为[]A.q2,3q 2B.q3,5q 3C.q,qD.−q2,5q 2【答案】:C5.关于电场力和电场强度,有下列几种说法,其中正确的是[]A.静电场的库仑力的叠加原理和电场强度的叠加原理彼此独立、没有联系;B.两静止点电荷之间的相互作用力遵守牛顿第三定律;C.在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同;D.以上说法都不正确。
【答案】:B6.—点电荷对放在相距d处的另一个点电荷的作用力为F,若两点电荷之间的距离减小一半,此时它们之间的静电力为[ ]A.4FB.2FC.0.5FD.0.25F【答案】:A7.如图所示为一竖直放置的无穷大平板,其上均匀分布着面电荷密度为σ的正电荷,周围激发的电场强度大小为σ2ε0,方向沿水平方向向外且垂直于平板。
在其附近有一水平放置的、长度为l的均匀带电直线,直线与平板垂直,其线电荷密度为λ,则该带电直线所受到的电场力大小为[ ]A.σλ2πε0ln lB.σλ2ε0ln lC.σλl2πε0D.σλl2ε0【答案】:D8.质量为m、电荷为-e的电子以圆轨道绕静止的氢原子核旋转,其轨道半径为r,旋转频率为γ,动能为E,则下列几种关系中正确的是[]A.E=e8πε0rB.γ2=32ε02E3me4C.E=e 24πε0rD.γ2=32ε0E3me2【答案】:B9.电偶极子在非均匀电场中的运动状态[ ]A.只可能有转动运动;B.不可能有转动运动;C.只可能有平动运动;D.既可能有转动运动,也可能有平动运动。
大学物理期中考试静电场复习题
第八章 静电场 一.库仑定律1.电量很小的正点电荷,可作为检验电荷。
( √ ) 2.A 、B 两个点电荷间距离恒定,当其它电荷移到A 、B 附近时,A 、B 之间的库仑力将A .可能变大B .可能变小C .一定不变D .不能确定3.两个质量都是m 的相同小球,用等长的细线悬挂于同一点,如图所示,若使它们带上等值同号的电荷,平衡时两线之间的平角为θ2,当小球的半径可以忽略不计时,则每个小球所受的库仑力为:A .θmgtgB .θsin mgC .θcos mgD .mg4. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点,如果在这三角形的中心放一个电荷电量Q = q q 33-=' C ,就可以使这四个电荷都达到平衡。
5.有四个点电荷,电量都是+Q ,放在正方形的四个顶点,若要使这四个点电荷都能达到平衡,需要在正方形 中心 位置放一个电量为 Q 4122+-点电荷。
二.场强的定义1.电场强度的方向与正的检验电荷在该点所受的电场力方向相同。
( √ ) 2.如果把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电场线运动。
(√)3.下列几种说法中哪一个是正确的? ( ) A .电荷在电场中受到的电场力越大,该点的电场强度一定越大B .在某一点电荷附近的任一点,如果没有把试验电荷放进去,则该点的电场强度为零C .如果把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电力线运动D .电力线上任意一点的切线方向,代表点电荷q 在该点处获得的加速度方向4.电场线越密的地方,同一电荷所受电场力越大。
( √ ) 5.离点电荷越近的地方,电场线越密。
( √ ) 6.在无电荷的地方,任意两条电场线永远不会相交。
( √ )mm三.电通量、高斯定理1.如图所示均匀电场E 和半径为a 的半球面的轴线平行,通过此半球面的电通量为( )A .π4E a 2B .π2E a 2C .πE a 2D .02.由高斯定理可知,下列说法中正确的是:( )A .高斯面内不包围电荷,则面上各点的E处处为零B .高斯面上各点的E与面内电荷有关,与面外电荷无关C .穿过高斯面的E通量,仅与面内电荷有关D .穿过高斯面的E 通量为零,则面上各点的E必为零3.如果高斯面内无电荷,则高斯面上E处处为零。
大学静电场试题及答案
大学静电场试题及答案一、选择题1. 静电场中的电场线是从正电荷出发,终止于负电荷。
A. 正确B. 错误答案:A2. 电场强度的方向是正电荷所受电场力的方向。
A. 正确B. 错误答案:A3. 电场中某点的电势与该点的电场强度大小无关。
A. 正确B. 错误答案:A4. 电容器的电容与两极板间的距离成反比。
A. 正确B. 错误答案:B5. 电场中某点的电势与该点的电场强度方向无关。
A. 正确B. 错误答案:A二、填空题1. 电场强度的定义式为_______,其中E表示电场强度,F表示电场力,q表示试探电荷。
答案:E = F/q2. 电势差的定义式为_______,其中U表示电势差,W表示电场力做的功,q表示试探电荷。
答案:U = W/q3. 电容器的电容公式为_______,其中C表示电容,Q表示电荷量,V表示电势差。
答案:C = Q/V4. 电场力做功的公式为_______,其中W表示功,q表示电荷量,U表示电势差。
答案:W = qU5. 电场中某点的电势与该点的电场强度大小_______关系。
答案:无关三、简答题1. 简述电场强度和电势的概念及其物理意义。
答案:电场强度是描述电场强弱和方向的物理量,其大小等于单位正电荷在该点所受的电场力,方向与正电荷所受电场力的方向相同。
电势是描述电场能的性质的物理量,它表示单位正电荷在电场中从某点移到参考点(通常取无穷远处)所做的功。
2. 电容器的电容与哪些因素有关?请简述其关系。
答案:电容器的电容与电容器的几何尺寸、两极板间的距离以及介质的介电常数有关。
电容与两极板的面积成正比,与两极板间的距离成反比,与介质的介电常数成正比。
四、计算题1. 一个平行板电容器,其极板面积为0.05平方米,两极板间的距离为0.01米,介质为空气(介电常数ε₀=8.85×10^-12 F/m)。
求该电容器的电容。
答案:C = ε₀ * A / d = 8.85×10^-12 * 0.05 / 0.01 =4.425×10^-11 F2. 已知电场中某点的电势为100V,试探电荷为-2C,求该点的电场强度。
大学物理知识总结习题答案(第四章)静电场
第四章 静电场本章提要1.电荷的基本性质两种电荷,量子性,电荷首恒,相对论不变性。
2.库仑定律两个静止的点电荷之间的作用力12122204kq q q q r r==F r r πε 其中922910(N m /C )k =⨯⋅122-1-2018.8510(C N m )4k -==⨯⋅επ3.电场强度q =F E 0q 为静止电荷。
由10102204kq q q q r r==F r r πε 得112204kq q r r ==E r r πε4.场强的计算(1)场强叠加原理电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。
i =∑E E(2)高斯定理电通量:在电场强度为E 的某点附近取一个面元,规定S ∆=∆S n ,θ为E 与n 之间的夹角,通过S ∆的电场强度通量定义为e cos E S ∆ψ=∆=⋅∆v S θ取积分可得电场中有限大的曲面的电通量ψd e sS =⋅⎰⎰E Ò高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。
即i 01d sq=∑⎰⎰E S g Ò内ε5.典型静电场(1)均匀带电球面0=E (球面)204q r πε=E r (球面外)(2)均匀带电球体304q R πε=E r (球体) 204q r πε=E r (球体外)(3)均匀带电无限长直线场强方向垂直于带电直线,大小为02E r λπε=(4)均匀带电无限大平面场强方向垂直于带电平面,大小为2E σε=6.电偶极矩电偶极子在电场中受到的力矩=⨯M P E思考题4-1 020 4qq r ==πεr 与FE E 两式有什么区别与联系。
答:公式q FE =是关于电场强度的定义式,适合求任何情况下的电场。
而公式0204q rπε=E r是由库仑定理代入定义式推导而来,只适于求点电荷的电场强度。
4-2一均匀带电球形橡皮气球,在气球被吹大的过程中,下列各场点的场强将如何变化?(1) 气球部 (2) 气球外部 (3) 气球表面答:取球面高斯面,由00d ni i q ε=⋅=∑⎰⎰ÒE S 可知(1)部无电荷,而面积不为零,所以E = 0。
高考物理新电磁学知识点之静电场知识点总复习附答案解析(5)
高考物理新电磁学知识点之静电场知识点总复习附答案解析(5)一、选择题1.如图,P为固定的点电荷,虚线是以P为圆心的两个圆.带电粒子Q在P的电场中运动.运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点.若Q仅受P的电场力作用,其在a、b、c点的加速度大小分别为a a、a b、a c,速度大小分别为v a、v b、v c,则A.a a>a b>a c,v a>v c>v bB.a a>a b>a c,v b> v c> v aC.a b> a c> a a,v b> v c> v aD.a b> a c> a a,v a>v c>v b2.在如图所示的电场中, A、B两点分别放置一个试探电荷, F A、F B分别为两个试探电荷所受的电场力.下列说法正确的是A.放在A点的试探电荷带正电B.放在B点的试探电荷带负电C.A点的电场强度大于B点的电场强度D.A点的电场强度小于B点的电场强度3.如图所示,三条平行等间距的虚线表示电场中的三个等势面,电势分别为10V、20V、30V,实线是一带电粒子(不计重力)在该区域内的运动轨迹,a、b、c是轨迹上的三个点,下列说法正确的是()A.粒子在三点所受的电场力不相等B.粒子必先过a,再到b,然后到cC.粒子在三点所具有的动能大小关系为E kb>E ka>E kcD.粒子在三点的电势能大小关系为E pc<E pa<E pb4.图中展示的是下列哪种情况的电场线()A .单个正点电荷B .单个负点电荷C .等量异种点电荷D .等量同种点电荷5.如图所示的电场中,虚线a 、b 、c 为三个等势面,相邻等势面之间的电势差相等,即ab BC U U ,一带负电的质点仅在电场力的作用下通过该区域时的运动轨迹如实线所示,P 、Q 是这条轨迹上的两点,由此可知A .a 、b 、c 三个等势面中,a 的电势最高B .带电质点在P 点的动能比在Q 点大C .带电质点在P 点的电势能比在Q 点小D .带电质点在P 点时的加速度比在Q 点小6.如图所示,在空间坐标系Oxyz 中有A 、B 、M 、N 点,且AO =BO =MO =NO ;在A 、B 两点分别固定等量同种点电荷+Q 1与+Q 2,若规定无穷远处电势为零,则下列说法正确的是( )A .O 点的电势为零B .M 点与N 点的电场强度相同C .M 点与N 点的电势相同D .试探电荷+q 从N 点移到无穷远处,其电势能增加7.如图所示,水平放置的平行板电容器,上板带负电,下板带正电,断开电源后一带电小球以速度0v 水平射入电场,且沿下板边缘飞出,若下板不动,将上板上移一小段距离,小球仍以相同的速度0v 从原处飞入,则带电小球( )A .将打在下板中央B.仍沿原轨迹由下板边缘飞出C.不发生偏转,沿直线运动D.若上板不动,将下板下移一段距离,小球可能打在下板的中央8.在某电场中,把电荷量为2×10-9C的负点电荷从A点移到B点,克服静电力做功4×10-8J,以下说法中正确的是()A.电荷在B点具有的电势能是4×10-8JB.点电势是20VC.电荷的电势能增加了4×10-8JD.电荷的电势能减少了4×10-8J9.某电场的电场线分布如图所示,M、N、Q是以电场线上一点O为圆心的同一圆周上的三点,OQ连线与直线MN垂直.以下说法正确的是A.O点电势与Q点电势相等B.M、O间的电势差大于O、N间的电势差C.将一负电荷由M点移到Q点,电荷的电势能减少D.正电荷在Q点所受电场力的方向与OQ垂直且竖直向上10.如图甲,倾角为θ的光滑绝缘斜面,底端固定一带电量为Q的正点电荷.将一带正电小物块(可视为质点)从斜面上A点由静止释放,小物块沿斜面向上滑动至最高点B处,此过程中小物块的动能和重力势能随位移的变化图象如图乙(E1和x1为已知量).已知重力加速度为g,静电力常量为k,由图象可求出( )A.小物块的带电量B.A、B间的电势差C.小物块的质量D.小物块速度最大时到斜面底端的距离11.如图所示,实线为不知方向的三条电场线,从电场中M点以相同速度垂直于电场线、两个带电粒子,仅在电场力作用下的运动轨迹如图中虚线所示。
静电场习题及答案
静电场习题及答案静电场习题及答案静电场是物理学中的一个重要概念,它描述了由电荷引起的力的作用。
在学习静电场的过程中,我们常常会遇到一些习题来巩固所学的知识。
本文将介绍一些常见的静电场习题,并给出相应的答案和解析。
习题一:两个点电荷之间的力问题描述:两个点电荷Q1和Q2之间的距离为r,它们之间的电力为F,若将Q1的电荷加倍,Q2的电荷减半,它们之间的电力变为多少?答案与解析:根据库仑定律,两个点电荷之间的电力与它们的电荷量和距离的平方成反比。
设Q1的电荷为q1,Q2的电荷为q2,则有F = k * q1 * q2 / r^2,其中k为电磁力常数。
将Q1的电荷加倍,Q2的电荷减半后,新的电力为F' =k * (2q1) * (0.5q2) / r^2 = 2F。
所以,它们之间的电力变为原来的2倍。
习题二:电场强度的计算问题描述:一均匀带电球体的半径为R,总电荷量为Q,求球心处的电场强度E。
答案与解析:由于球体带电,所以球体上每一点都有电荷。
根据对称性,球心处的电场强度与球体上的电荷分布无关,只与总电荷量和球心距离有关。
根据库仑定律,球心处的电场强度E = k * Q / R^2,其中k为电磁力常数。
所以,球心处的电场强度与球体上的电荷分布无关,只与总电荷量和球心距离有关。
习题三:电势差的计算问题描述:在一个静电场中,一个带电粒子从A点移动到B点,A点的电势为V1,B点的电势为V2,求带电粒子在移动过程中所受的电势差ΔV。
答案与解析:电势差ΔV定义为电势的变化量,即ΔV = V2 - V1。
根据电势的定义,电势是单位正电荷所具有的势能,所以电势差表示单位正电荷从A点移动到B点所具有的势能变化量。
所以,带电粒子在移动过程中所受的电势差为ΔV = V2 - V1。
习题四:电场线的性质问题描述:在一个静电场中,电场线的性质有哪些?答案与解析:电场线是描述电场的一种图形表示方法。
电场线的性质包括以下几点:1. 电场线的方向与电场强度的方向相同,即电场线从正电荷指向负电荷。
(完整版)大学物理静电场试题库
真空中的静电场一、选择题1、下列关于高斯定理的说法正确的是(A )A 如果高斯面上E 处处为零,则面内未必无电荷。
B 如果高斯面上 E 处处不为零,则面内必有静电荷。
C 如果高斯面内无电荷,则高斯面上 E 处处为零。
D 如果高斯面内有净电荷,则高斯面上 E 处处不为零。
2、以下说法哪一种是正确的(B )A 电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B 电场中某点电场强度的方向可由E F q确定,其中q0 为试验电荷的电荷量,可负,Fq0 可正为试验电荷所受的电场力C 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D 以上说法都不正确3、如图所示,有两个电2、下列说法正确的是(D)A 电场强度为零处,电势一定为零。
电势为零处,电场强度一定为零。
B 电势较高处电场强度一定较大,电场强度较小处电势一定较低。
C 带正电的物体电势一定为正,带负电的物体电势一定为负。
D 静电场中任一导体上电势一定处处相等。
3、点电荷q 位于金属球壳中心,球壳内外半径分别为R1, R2 ,所带静电荷为零A, B为球壳内外两点,试判断下说法的正误(C)A 移去球壳,B 点电场强度变大B 移去球壳,A 点电场强度变大C 移去球壳,A 点电势升高D 移去球壳,B 点电势升高4、下列说法正确的是(D )A 场强相等的区域,电势也处处相等B 场强为零处,电势也一定为零C 电势为零处,场强也一定为零D 场强大处,电势不一定高10、如图所示,在半径为 R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度 大小与距轴线的距离 r 关系曲线为( A )5、如图所示,一个点电荷60B12 0 24 06、如图所示,在电场强度 E 的均匀电场中,有一半径为 R 的半球面, 场强 E 的方向与半球面的对称抽平行,穿过此半球面的电通量为( C )A 2 R 2 EB 2 R 2EC R 2ED 1 R 2E27、如图所示两块无限大的铅直平行平面A 和B ,均匀带电,其电荷密2度均为 ( 0C ?m 2),在如图所示的 a 、b 、c 三处的电场强度分别 为(D ) A 0, ,0,0B 0,2 ,0,0D ,0,008、如图所示为一具有球对称性分布的静电场的 E ~ r 关系曲线. 请指出该静电场是由下列哪种带电体产生的. (B ) A 半径为 R 的均匀带电球面. B 半径为 R 的均匀带电球体. C 半径为 R 的、电荷体密度为Ar ( A 为常数)的非均匀带电球体 A/r ( A 为常数)的非均匀带电球体9、设无穷远处电势为零, 则半径为 R 的均匀带电球体产生的电场的电势分布规律为 (图中的U 0和b 皆为常量 ):(C )E 的q 位于立方体一顶点xA 沿逆时针方向旋转直到电偶极距 P 水平指向棒尖端而停止。
大学物理(下)试题库
大学物理(下)试题库第九章 静电场知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是:A : 只要有电荷存在,电荷周围就一定存在电场;B :电场是一种物质;C :电荷间的相互作用是通过电场而产生的;D :电荷间的相互作用是一种超距作用。
2、【 】 电场中有一点P ,下列说法中正确的是:A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半;B :若P 点没有试探电荷,则P 点场强为零;C : P 点的场强越大,则同一电荷在P 点受到的电场力越大;D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止;C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在:D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。
4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性;C :涡旋性;D :对其中的电荷有力的作用。
5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上0<x<1.(C) x 轴上x<0. (D) y 轴上y>06、真空中一点电荷的场强分布函数为:E= ___________________。
7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。
8、【 】两个点电荷21q q 和固定在一条直线上。
相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与2q 相距为d ,故使3q 保持静止,则(A )212q q = (B )212q q -=(C )214q q -= (D )2122q q -=9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R), 环上均匀带有正电,电荷为q ,则圆心O 处的场强大小E =__________,场强方向为___________ 。
大学物理2试题库
大学物理(下)试题库第九章 静电场知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是:A : 只要有电荷存在,电荷周围就一定存在电场;B :电场是一种物质;C :电荷间的相互作用是通过电场而产生的;D :电荷间的相互作用是一种超距作用。
2、【 】 电场中有一点P ,下列说法中正确的是:A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半;B :若P 点没有试探电荷,则P 点场强为零;C : P 点的场强越大,则同一电荷在P 点受到的电场力越大;D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止;C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在:D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。
4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性;C :涡旋性;D :对其中的电荷有力的作用。
5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E .现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零?(A) x 轴上x>1. (B) x 轴上0<x<1. (C) x 轴上x<0. (D) y 轴上y>06、真空中一点电荷的场强分布函数为:E= ___________________。
7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。
8、【 】两个点电荷21q q 和固定在一条直线上。
相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与2q 相距为d ,故使3q 保持静止,则(A )212q q = (B )212q q -=(C )214q q -= (D )2122q q -=9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R),环上均匀带有正电,电荷为q ,则圆心O 处的场强大小E =__________,场强方向为___________ 。
《大学物理》静电场练习题及答案
《大学物理》静电场练习题及答案一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。
答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。
0ε∑⎰=⋅内S SqS d E3、写出静电场的环路定理,并分别说明其物理意义。
答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E),静电场是保守场。
4、感生电场与静电场有哪些区别和联系?5、在电场中某一点的电场强度定义为0q F E=.若该点没有试验电荷,那么该点的电场强度又如何? 为什么?答案: 电场中某一点的电场强度是由该电场自身性质所决定,与这一点有无试验电荷没有任何关系。
6、在点电荷的电场强度公式中,如果0→r ,则电场强度E 将趋于无限大。
对此,你有什么看法? 答案: 这表明,点电荷只是我们抽象出来的一个物理模型,当带电体较小而作用距离较大时使用点电荷模型较为方便、精确。
但当作用距离r 很小时,点电荷模型的误差会变大,这时我们不能再用点电荷的电场强度公式而要采用更精确的模型。
二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A 、20214r Q Q επ+B 、()()2202210144R r Q R r Q -π+-πεε C 、()2120214R R Q Q -+επ D 、2024r Q επ2、A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。
大学物理第05章 静电场习题解答
第5章 静电场习题解答5.1一带电体可作为点电荷处理的条件是( C ) (A )电荷必须呈球形分布。
(B )带电体的线度很小。
(C )带电体的线度与其它有关长度相比可忽略不计。
(D )电量很小。
5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( B ) ( A ) 0 ( B )02aλπεi ( C )04a λπεi ( D ) ()02aλπε+i j 5.3 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( d )(C) (D)5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( d )(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。
5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( c ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。
5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( c )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。
5.7 下面说法正确的是 [ D ](A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处.5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ C ] (A )高斯面上各点场强均为零。
《静电场》基础复习及测试题[含答案解析]
《静电场》基础复习及测试题[含答案解析]第⼀章静电场⼀、电荷及其守恒定律1. 下列说法正确的是()A.摩擦起电和静电感应都是使物体的正负电荷分开,⽽总电荷量并未变化B.⽤⽑⽪摩擦过的硬橡胶棒带负电,是摩擦过程中硬橡胶棒上的正电荷转移到了⽑⽪上C.⽤丝绸摩擦过的玻璃棒带正电荷是摩擦过程中玻璃棒得到了正电荷D.物体不带电,表明物体中没有电荷2.带电微粒所带电量不可能是下列值中的 ( )A.2.4×10-19CB.-6.4×10-19CC.-1.6×10-18CD.4.0×10-17C3.关于摩擦起电现象,下列说法中正确的是 ( )A.摩擦起电是⽤摩擦的⽅法将其他物质变成了电荷B.摩擦起电是通过摩擦将⼀个物体中的电⼦转移到另⼀个物体C.通过摩擦起电的两个原来不带电的物体,⼀定带有等量异种电荷D.通过摩擦起电的两个原来不带电的物体,可能带有同种电荷4.如图1-3所⽰,将带正电的球C移近不带电的枕形⾦属导体时,枕形导体上电荷的移动情况是( )A.枕形导体中的正电荷向B端移动,负电荷不移动B.枕形导体中电⼦向A端移动,正电荷不移动C.枕形导体中的正、负电荷同时分别向B端和A端移动图1-3D.枕形导体中的正、负电荷同时分别向A端和B端移动⼆、库仑定律1.关于点电荷的说法,正确的是 ( )A.只有体积很⼩的带电体,才能作为点电荷B.体积很⼤的带电体⼀定不能看作点电荷C.点电荷⼀定是电量很⼩的电荷D.两个带电的⾦属⼩球,不⼀定能将它们作为电荷集中在球⼼的点电荷处理2.真空中有两个点电荷,它们间的静电⼒为F,如果保持它们所带的电量不变,将它们之间的距离增⼤为原来的2倍,它们之间作⽤⼒的⼤⼩等于( )A.FC.F/2D.F/43.A、B两个点电荷之间的距离恒定,当其它电荷移到A、B附近时,A、B之间的库仑⼒将( )A.可能变⼤ B.可能变⼩C.⼀定不变 D.不能确定4.两个半径均为1cm的导体球,分别带上+Q和-3Q的电量,两球⼼相距90cm,相互作⽤⼒⼤⼩为F,现将它们碰⼀下后,放在两球⼼间相距3cm处,则它们的相互作⽤⼒⼤⼩变为( )A.3000F B.1200F C.900F D.⽆法确定5.真空中有两个固定的带正电的点电荷,其电量Q1>Q2,点电荷q置于Q1、Q2连线上某点时,正好处于平衡,则 ( ) A.q⼀定是正电荷 B.q⼀定是负电荷C.q离Q2⽐离Q1远 D.q离Q2⽐离Q1近6.关于点电荷的概念,下列说法正确的是()A.当两个带电体的形状对它们之间相互作⽤⼒的影响可忽略时,这两个带电体可看作点电荷B.只有体积很⼩的带电体才能看作点电荷C.体积很⼤的带电体⼀定不能看作点电荷D.对于任何带电球体,总可把它看作电荷全部集中在球⼼的点电荷8.两个完全相同的⾦属⼩球相距为r(可视为点电荷),带有同种电荷,所带电量不等,电荷间相互作⽤⼒为F,若将它们接触后放回到原来的位置,这时的相互作⽤⼒为F′,则()A.F′⼀定⼤于F B.F′可能等于FC.F′⼀定⼩于F D.不能确定9.将两个半径极⼩的带电⼩球(可视为点电荷),置于⼀个绝缘的光滑⽔平⾯上,相隔⼀定的距离从静⽌开始释放,那么下列叙述中正确的是(忽略两球间的万有引⼒作⽤)()A.它们的加速度⼀定在同⼀直线上,⽽且⽅向可能相同B.它们的加速度可能为零C.它们的加速度⽅向⼀定相反它们加速度的⼤⼩⼀定越来越⼩10.如图1-7所⽰,质量、电量分别为m1、m2、q1、q2的两球,⽤绝缘丝线悬于同⼀点,静⽌后它们恰好位于同⼀⽔平⾯上,细线与竖直⽅向夹⾓分别为α、β,则()A.若m1=m2,q1B.若m1=m2,q1βC.若q1=q2,m1>m2,则α>βD.若m1>m2,则α<β,与q1、q2 是否相等⽆关三、电场强度1.电场中A、B、C三点的电场强度分别为:E A=-5V/m、E B=4V/m、E C = -1 V/m,则这三点的电场由强到弱的顺序是()A.ABCB.BCAC.CABD.ACB2.由电场强度的定义E= F/q可知()A.E和F成正⽐,F越⼤E越⼤B.E和q成反⽐,q越⼤E越⼩C.E的⽅向与F的⽅向相同D.E的⼤⼩可由F/q确定3.A为已知电场中的⼀个固定点,在A点放⼀电量为q的电荷,所受电场⼒为F,A点的电场强度为E,则()A.若在A点换上–q,A点的电场强度将发⽣变化B.若在A点换上电量为2q的电荷,A点的电场强度将变为2EC.若A点移去电荷q,A点的电场强度变为零D.A点电场强度的⼤⼩、⽅向与q的⼤⼩、正负、有⽆均⽆关4.由电场强度的定义E= F/q可知()A.这个定义只适于点电荷电场B.式中的F是放⼊电场中的电荷所受的电场⼒,q是电荷所带的电荷量C.式中的F是放⼊电场中的电荷所受的电场⼒,q是产⽣电场的电荷的电荷量D.库仑定律F = KQ1Q2 /r2中,KQ2 /r2是点电荷Q2产⽣的电场在Q1所在处的场强⼤⼩5.如图1-11所⽰是电场中某⼀条电场线,下列说法中正确的是()A.A、B两点电场⽅向相同B.A、B两点电场⼤⼩关系是 E A>E BC.电场线是直线,则 E A=E BA B12图1-7D.不知附近的电场线分布, E A 、E B 的⼤⼩不确定6.下列情况中,A 、B 两点的电场强度⽮量相等的是()A.与孤⽴正点电荷距离相等的A 、B 两点B.与孤⽴负点电荷距离相等的A 、B 两点C.两个等量异种点电荷连线的中垂线上,与两点电荷的连线距离相等的A 、B 两点D.两个等量同种点电荷连线的中垂线上,与两点电荷的连线距离相等的A 、B 两点7.把质量为m 的点电荷q 在电场中释放,在它运动过程中,如果不计重⼒,下列说法中正确的是()A.点电荷运动轨迹必和电场线重合B.若电场线是直线,则点电荷运动轨迹必和电场线重合C.点电荷的速度⽅向必定和点所在的电场线的切线⽅向⼀致D.点电荷的加速度⽅向必定和点所在的电场线的切线⽅向在⼀直线上8.在电场中某点放⼀检验电荷,其电量为q ,检验电荷受到的电场⼒为F ,则该点电场强度为E=F/q ,那么下列说法正确的是()A.若移去检验电荷q ,该点的电场强度就变为零B.若在该点放⼀个电量为2q 的检验电荷,该点的场强就变为E/2C.若在该点放⼀个电量为-2q 的检验电荷,则该点场强⼤⼩仍为E ,但电场强度的⽅向变为原来相反的⽅向D.若在该点放⼀个电量为-2q 的检验电荷,则该点的场强⼤⼩仍为E ,电场强度的⽅向也还是原来的场强⽅向9.对于由点电荷Q 产⽣的电场,下列说法正确的是()A.电场强度的表达式仍成⽴,即E =F /Q ,式中的Q 就是产⽣电场的点电荷所带电量B.在真空中,点电荷产⽣电场强度的表达式为E =k Q /r 2,式中Q 就是产⽣电场的点电荷所带电量C.在真空中E =2rkQ ,式中Q 是试探电荷 D.上述说法都不对10.当在电场中某点放⼊正点电荷时, 正点电荷受到的电场⼒向右;当放⼊负点电荷时它受到的电场⼒向左,下列说法正确的是()A.当放⼊正电荷时,该点场强⽅向向右;当放⼊负电荷时,该点场强⽅向向左B.只有在该点放⼊电荷时,该点才有场强C.该点场强⽅向⼀定向右D.以上说法均不正确11.如图1-12所⽰,四个电场线图,⼀正电荷在电场中由P 到Q 做加速运动且加速度越来越⼤,那么它是在哪个图⽰电场中运动. ( )图1-12A B C D12.在点电荷Q 形成的电场中,已测出A 点场强为100N/C,C 点场强为36 N/C,B点为A 、C 两点连线的中点(如图1-13所⽰),那么B 点的场强为______13.如图1-14所⽰,在真空中相距为l 的A 、B 两点分别放置电量⼤⼩均为Q的正负点电荷,那么在离A 、B 两点距离都等于L 的点的电场强度⽅向为___________,该点的场强⼤⼩为14. 如图1-15所⽰,⼀个粒⼦质量为m 、带电量为+Q ,以初速度v 0与⽔平⾯成45 ⾓射向空间匀强电场区域,粒⼦恰做直线运动,则这匀强电场的强度最⼩值为;⽅向是。
物理静电场试题及答案
物理静电场试题及答案一、选择题1. 两个点电荷之间的距离为r,它们之间的库仑力大小为F,如果将它们之间的距离增加到2r,则它们之间的库仑力大小为:A. F/2B. F/4C. F/8D. 2F答案:B2. 电场强度的方向是:A. 正电荷所受电场力的方向B. 负电荷所受电场力的方向C. 正电荷所受电场力的反方向D. 与电场线的方向垂直答案:C3. 电容器的电容与下列哪个因素无关?A. 电容器两极板的面积B. 电容器两极板之间的距离C. 电容器两极板的材料D. 电容器两极板之间的电压答案:D二、填空题4. 一个电荷量为q的点电荷在电场中受到的电场力大小为F,则该点电荷所在位置的电场强度E等于______。
答案:F/q5. 两个相同大小的点电荷,分别带有+Q和-Q的电荷,它们之间的距离为r,若将它们之间的距离增加到原来的2倍,则它们之间的库仑力大小将变为原来的______。
答案:1/4三、计算题6. 一个半径为R的均匀带电球体,其电荷量为Q,求球体外距离球心r处的电场强度。
答案:若r > R,则电场强度E = kQ/r^2;若r < R,则电场强度E = 0。
7. 一个平行板电容器,其电容为C,两极板间的电压为U,求电容器所带的电荷量Q。
答案:Q = CU四、简答题8. 简述电场线的特点。
答案:电场线从正电荷出发,指向负电荷;电场线不相交;电场线越密集,电场强度越大。
9. 电容器在充电过程中,其电场能如何变化?答案:电容器在充电过程中,电场能逐渐增加,因为电容器存储了更多的电荷,两极板之间的电势差也随之增大。
大学物理静电场习题问题详解
第12章 静电场P35.12.3 如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强.[解答]根据点电荷的场强大小的公式22014q qE kr r ==πε, 其中1/(4πε0) = k = 9.0×109N ·m 2·C -2.点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯, 方向向下.点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε 994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯,方向向右.C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.12.4 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强.[解答]在带正电的圆弧上取一弧元 d s = R d θ,电荷元为d q = λd s ,在O 点产生的场强大小为220001d 1d d d 444q s E R R R λλθπεπεπε===,场强的分量为d E x = d E cos θ,d E y = d E sin θ.对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/6000sin d (cos )22R R ==-⎰ππλλθθθπεπε0(12R=λπε.12.5 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C ·m -1,求:(1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;(2)棒的垂直平分线上与棒的中点相距d 2 = 8cm 处的场强.[解答](1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1 = 0.18(m).在细棒上取一线元d l ,图13.1所带的电量为d q = λd l ,根据点电荷的场强公式,电荷元在P 1点产生的场强的大小为1220d d d 4()q lE k r x l ==-λπε场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得120d 4()L L l E x l λπε-=-⎰ 014LLx lλπε-=-011()4x L x Lλπε=--+ 220124L x Lλπε=-. ① 将数值代入公式得P 1点的场强为8912220.13109100.180.1E -⨯⨯⨯=⨯⨯-= 2.41×103(N ·C -1),方向沿着x 轴正向.(2)建立坐标系,y = d 2. 在细棒上取一线元d l ,所带的电量为 d q = λd l ,在棒的垂直平分线上的P 2点产生的场强的大小为2220d d d 4q lE kr rλπε==, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.由图可知:r = d 2/sin θ,l = d 2cot θ,所以 d l = -d 2d θ/sin 2θ,因此 02d sin d 4y E d λθθπε-=,总场强大小为02sin d 4Ly l LE d λθθπε=--=⎰02cos 4Ll Ld λθπε=-=LL=-==. ②将数值代入公式得P 2点的场强为89221/220.13109100.08(0.080.1)y E -⨯⨯⨯=⨯⨯+= 5.27×103(N ·C -1). 方向沿着y 轴正向.[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得1011011144/1a E d d a d d a λλπεπε==++,保持d 1不变,当a →∞时,可得1014E d λπε→, ③这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小.(2)由②式得y E ==,当a →∞时,得 022y E d λπε→, ④这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1.12.6 一均匀带电无限长细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强.在圆弧上取一弧元 d s =R d φ, 所带的电量为d q = λd s ,在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E R πθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1, 因此 θ/2 = π/4, 所以 θ = π/2.12.7 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如图所示.试求:(1)平板所在平面内,距薄板边缘为a 处的场强.(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强.[解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x , 根据直线带电线的场强公式02E rλπε=, 得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-,其方向沿x 轴正向.由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰ 图13.4图13.5/20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+. ① 场强方向沿x 轴正向.(2)为了便于观察,将薄板旋转建立坐标系.仍然在平面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为d λ = σd x ,带电直线在Q 点产生的场强为221/200d d d 22()xE rb x λσπεπε==+,沿z 轴方向的分量为221/20cos d d d cos 2()z xE E b x σθθπε==+,设x = d tan θ,则d x = d d θ/cos 2θ,因此d d cos d 2z E E σθθπε==积分得arctan(/2)0arctan(/2)d 2b d z b d E σθπε-=⎰ 0arctan()2bdσπε=. ② 场强方向沿z 轴正向.[讨论](1)薄板单位长度上电荷为λ = σb ,①式的场强可化为0ln(1/)2/b a E a b aλπε+=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02E aλπε→, ③ 这正是带电直线的场强公式.(2)②也可以化为0arctan(/2)2/2z b d E d b dλπε=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02z E dλπε→,这也是带电直线的场强公式.当b →∞时,可得2z E σε→, ④ 这是无限大带电平面所产生的场强公式.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少?[解答]点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.9 面电荷密度为σ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如图所示.求通过此半球面的电通量.[解答]设想在平板下面补一个半球面,与上面的半球面合成一个球面.球面内包含的电荷为q = πR 2σ, 通过球面的电通量为Φe = q /ε0, 通过半球面的电通量为Φ`e = Φe /2 = πR 2σ/2ε0.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性.(1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl , 穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`.在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0, 可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES , 高斯面在板内的体积为V = Sd ,包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0, 可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法. (1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0, 积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为图13.7/2200d ()222d ry dE r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.1212.13 一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`<R 的小球体,如图所示,试求两球心O 与O`处的电场强度,并证明小球空腔内的电场为均强电场.[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的叠加.对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r r ππρε=P 点场强大小为3E r ρε=. 当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r R ππρε=P 点场强大小为3203R E rρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为320`3O R E aρε=, 方向由O 指向O `.O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为`03O E a ρε=, 方向也由O 指向O `.[证明]在小球内任一点P ,大球和小球产生的场强大小分别为 03r E r ρε=,`0`3r E r ρε=,方向如图所示.设两场强之间的夹角为θ,合场强的平方为222``2cos r r r r E E E E E θ=++2220()(`2`cos )3r r rr ρθε=++, 根据余弦定理得222`2`cos()a r r rr πθ=+--, 所以 03E a ρε=, 可见:空腔内任意点的电场是一个常图13.10量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.12.14 如图所示,在A 、B 两点处放有电量分别为+q 和-q 的点电荷,AB 间距离为2R ,现将另一正试验电荷q 0从O 点经过半圆弧路径移到C点,求移动过程中电场力所做的功.[解答]正负电荷在O 点的电势的和为零:U O = 0;在C 点产生的电势为0004346C q q q U RRRπεπεπε--=+=,电场力将正电荷q 0从O 移到C 所做的功为W = q 0U OD = q 0(U O -U D ) = q 0q /6πε0R .12.15 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2σ,B 平面的电荷面密度为σ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少?[解答]两平面产生的电场强度大小分别为E A = 2σ/2ε0 = σ/ε0,E B = σ/2ε0, 两平面在它们之间产生的场强方向相反,因此,总场强大小为E = E A - E B = σ/2ε0, 方向由A 平面指向B 平面.两平面间的电势差为U = Ed = σd /2ε0,当点电荷q 从A 面移到B 面时,电场力做的功为W = qU = q σd /2ε0.12.16 一半径为R 的均匀带电球面,带电量为Q .若规定该球面上电势值为零,则无限远处的电势为多少?[解答]带电球面在外部产生的场强为204Q E r πε=,由于d d R RRU U E r ∞∞∞-=⋅=⎰⎰E l200d 44RR QQr r r πεπε∞∞-==⎰04Q Rπε=,当U R = 0时,04Q U Rπε∞=-.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明]球的体积为343V R π=, 电荷的体密度为 334Q QV Rρπ==. 利用13.10题的方法可求球内外的电场强度大小为30034Q E r r Rρεπε==,(r ≦R ); 204Q E r πε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Q r r r Rrπεπε∞=+⎰⎰图13.11230084RrRQ Q rRrπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r Rπε-=.12.18 在y = -b 和y = b 两个“无限大”平面间均匀充满电荷,电荷体密度为ρ,其他地方无电荷.(1)求此带电系统的电场分布,画E-y 图;(2)以y = 0作为零电势面,求电势分布,画E-y 图.[解答]平板电荷产生的场强的方向与平板垂直且对称于中心面:E = E`,但方向相反.(1)在板内取一底面积为S ,高为2y 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E Sd d d 2S S S ES=⋅+⋅+⋅=⎰⎰⎰E S E S E S 12.高斯面内的体积为 V = 2yS ,包含的电量为 q = ρV = 2ρSy , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρy/ε0, (-b ≦y ≦b ).穿过平板作一底面积为S ,高为2y 的圆柱形高斯面,通过高斯面的电通量仍为地Φe = 2ES ,高斯面在板内的体积为 V = S 2b , 包含的电量为 q = ρV = ρS 2b , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρb/ε0, (b ≦y );E = -ρb/ε0, (y ≦-b ).E-y 图如左图所示.(2)对于平面之间的点,电势为d d yU y ρε=-⋅=-⎰⎰E l 202y C ρε=-+,在y = 0处U = 0,所以C = 0,因此电势为22y U ρε=-,(-b ≦y ≦b ). 这是一条开口向下的抛物线.当y ≧b 时,电势为00d d nqb nqbU y y Cεε=-⋅=-=-+⎰⎰E l ,在y = b 处U = -ρb 2/2ε0,所以C = ρb 2/2ε0,因此电势为2002b b U y ρρεε=-+,(b ≦y ). 当y ≦-b 时,电势为00d d b bU y y C ρρεε=-⋅==+⎰⎰E l ,在y = -b 处U = -ρb 2/2ε0,所以C = ρd 2/2ε0,因此电势为2002b b U y ρρεε=+, 两个公式综合得200||2b b U y ρρεε=-+,(|y |≧d ). 这是两条直线.U-y 图如右图所示.U-y 图的斜率就形成E-y 图,在y = ±b 点,电场强度是连续的,因此,在U-y 图中两条直线与抛物线在y = ±b 点相切.[注意]根据电场求电势时,如果无法确定零势点,可不加积分的上下限,但是要在积分之后加一个积分常量.根据其他关系确定常量,就能求出电势,不过,线积分前面要加一个负号,即d U =-⋅⎰E l这是因为积分的起点位置是积分下限.12.19 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设A 和B 两板相隔5.0cm ,板上各带电荷σ=3.3×10-6C ·m -2,求: (1)在两板之间离A 板1.0cm 处P 点的电势;(2)A 板的电势.[解答]两板之间的电场强度为E=σ/ε0,方向从A 指向B .以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m . (1)P 点和B 板间的电势差为d d BBPPr r P B r r U U E r -=⋅=⎰⎰E l()B P r r σε=-, 由于U B = 0,所以P 点的电势为6123.3100.048.8410P U --⨯=⨯⨯=1.493×104(V).(2)同理可得A 板的电势为()A B A U r r σε=-=1.866×104(V).12.20 电量q 均匀分布在长为2L 的细直线上,试求:(1)带电直线延长线上离中点为r 处的电势;(2)带电直线中垂线上离中点为r 处的电势;(3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L . (1)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为10d 4L L l U r lλπε-=-⎰ln()4Ll Lr l λπε=--=-0ln8q r LLr Lπε+=-. (2)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,在线的垂直平分线上的P 2点产生的电势为2221/20d d 4()lU r l λπε=+,积分得2221/201d 4()LLU l r l λπε-=+⎰)4Ll Ll λπε=-=08q Lπε=04q Lπε=.(3)P 1点的场强大小为11U E r∂=-∂ 011()8qL r L r L πε=--+22014qr L πε=-, ①方向沿着x 轴正向.P 2点的场强为22U E r∂=-∂01[4qL r πε==, ②方向沿着y 轴正向.[讨论]习题13.3的解答已经计算了带电线的延长线上的场强为1220124L E x L λπε=-, 由于2L λ = q ,取x = r ,就得公式①.(2)习题13.3的解答还计算了中垂线上的场强为y E =取d 2 = r ,可得公式②.由此可见,电场强度可用场强叠加原理计算,也可以用电势的关系计算.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强.[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为d V = 4πr 2d r ,包含的电量为 d q = ρd V = 4πρr 2d r ,在球心处产生的电势为00d d d 4O q U r r rρπεε==, 球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得图13.1822120()2B U R r ρε=-.球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-, 包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--. (2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r rρε∂=-=-∂. [讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空腔中A 点场强为E = 0, (r ≦R 1).过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为3314()3V r R π=-,包含的电量为 q = ρV ,根据高斯定理得方程 4πr 2E = q/ε0, 可得B 点的场强为3120()3R E r rρε=-, (R 1≦r ≦R 2).这两个结果与上面计算的结果相同.在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为33214()3V R R π=-,包含的电量为 q = ρV ,根据高斯定理得可得球壳外的场强为33212200()43R R qE r r ρπεε-==,(R 2≦r ). A 点的电势为d d AAA r r U E r ∞∞=⋅=⎰⎰E l12131200d ()d 3AR R r RR r r r r ρε=+-⎰⎰2332120()d 3RR R r r ρε∞-+⎰ 22210()2R R ρε=-. B 点的电势为d d BBB r r U E r ∞∞=⋅=⎰⎰E l23120()d 3BR r R r r r ρε=-⎰2332120()d 3R R R r r ρε∞-+⎰ 322120(32)6B BR R r r ρε=--.A 和B 点的电势与前面计算的结果相同.12.21 (1)设地球表面附近的场强约为200V ·m -1,方向指向地球中心,试求地球所带有的总电量.(2)在离地面1400m 高处,场强降为20V ·m -1,方向仍指向地球中心,试计算在1400m 下大气层里的平均电荷密度.[解答]地球的平均半径为R =6.371×106m .(1)将地球当作导体,电荷分布在地球表面,由于场强方向指向地面,所以地球带负量.根据公式 E = -σ/ε0,电荷面密度为 σ = -ε0E ;地球表面积为 S = 4πR 2, 地球所带有的总电量为Q = σS = -4πε0R 2E =-R 2E /k ,k 是静电力常量,因此电量为629(6.37110)200910Q ⨯⨯=-⨯=-9.02×105(C).(2)在离地面高为h = 1400m 的球面内的电量为2()``R h E Q k+=-=-0.9×105(C), 大气层中的电荷为q = Q - Q` = 8.12×105(C).由于大气层的厚度远小于地球的半径,其体积约为V = 4πR 2h = 0.714×1018(m 3), 平均电荷密度为ρ = q /V = 1.137×10-12(C ·m -3).。
《大学物理》真空中的静电场练习题及答案解析
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(每题3分)1.如图所示,各图中所有电荷均与原点等距,且电量相等。
设无穷远为零电势,则各图中电势和场强均为零的是( )+q +q +q +q+q -q –q-q –q -q +q +q-q -q +q +q (A )图1(B )图2(C )图3(D )图42.一均匀带电球面,若球内电场强度处处为零, 则球面上带电量为σds 的面元在球面内产生的电场强度是( )(A )处处为零 (B )不一定为零 (C )一定不为零 (D )是常数3.在一个点电荷+Q 的电场中,一个检验电荷+q ,从A 点分别移到B ,C ,D 点,B ,C ,D 点在+Q 为圆心的圆周上,如图所示,则电场力做功是( ) (A ) 从A 到B 电场力做功最大。
(B ) 从A 到C 电场力做功最大。
(C ) 从A 到D 电场力做功最大。
B (D ) 电场力做功一样大。
D C4.空心导体球壳,外半径为R 2,内半径为R 1,中心有点电荷q ,球壳上总电荷q ,以无穷远处为电势零点,则导体壳的电势为( ) (A )0114q R πε(B )0214q R πε (C )01124q R πε (D )02124q R πε5.等腰三角形三个顶点上分别放置+q ,-q 和2q 三个点电荷,顶角平分线上一点P 与三个顶点的距离分别为d 1 ,d 1和d ,如图所示,把电荷Q 从无穷远处移到P 点最少需要做功( )2qP-q d 1 d 1 +q (A )0114qQ d πε (B )01124qQ d πε (C )0124qQ d πε (D )0112()4qQ qQd d πε+ 6、如图所示,一点电荷q 位于一边长为a 的立方体的 q A顶点A ,则通过立方体B 表面的电通量各为( ) B (A )6q ε (B )012εq (C )024εq (D )0εq7、两金属球A 和B 的半径之比为1∶4,都带等量的同号电荷Q .若将两球接触一下再移回原处,则A 球所带的电量变为( ) (A)Q 32 (B) Q 51 (C) Q 31 (D) Q 528、下列说法中,正确的是( )(A )电场强度不变的空间,电势必为零;(B )电势不变的空间,电场强度必为零; (C )电场强度为零的地方,电势必为零;(D )电势为零的地方,电场强度必为零。
9、真空中两平行带电平板相距为d ,面积为S ,且有2d <<S ,带电量分别 为+q 和-q ,则两板间的作用力大小为( )(A )2024d q F πε=;(B )S q F 02ε=;(C )Sq F 022ε=;(D )S q F 022ε=。
10、一平行板电容器充电后保持与电源连接,若改变两极板间的距离,则下述 物理量中哪个保持不变?( )(A )电容器的电容; (B )两极板间的电场强度;(C )电容器储存的能量;(D )两极板间的电势差。
二.填空题(每题3分)1. 静电场中有一立方形均匀导体,边长为a 。
已知立 方导体中心O 处的电势为U 0,则立方体顶点A 的电势为 。
2. 如图所示,一点电荷q 位于一边长为a 的立方体内的中心,通过立方体各表面的电通量各为 。
qA3. 一空气平行板电容器,两极板间距为d ,电容为C 0,若在两平行板中间平行地插入一块厚度为d/3的金属板,则其电容值变为。
d/3 d4.一平行板电容器C 0充电Q 后切断电源,若使两极板间的距离增大到原来的两倍,则外力做的功为 。
5.在边长为a 的正六角形的六个顶点和中心都放有电荷,如图所示。
若以无穷远处为零电势能点,则电荷Q 的电势能为 ,电荷的受力大小为。
+σ 1 2-q Q -q +q -q5题图 6题图6.如图所示,一无限大均匀带电平面的电荷面密度为+σ,现在其附近平行地放置一无限大平面导体板,则导体板两表面 1,2上的感应电荷面密度分别为σ1=,σ2 =。
7.半径为R ,带电 Q (Q> 0)的圆环有一缺口d (d<<2πR ), 则圆环圆心O 处的电场强度大小为E=,方向。
8、一空气平行板电容器,两极板间距为d ,电容为C 0,若在两平行板中间平行地插入一块厚度为d/3的电介质板,介质的相对介电常数r ε,则其电容值变为 。
9、两个点电荷分别带电q 和q 2,相距l ,试问将第三个点电荷Q 放在离点电荷q 的距离为 x = 处,它所受合力为零?10、真空中一半径为R 的的均匀带电球面,总电量为q (q <0).今在球面面上挖去非常小的一块面积S ∆ (连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处的电场强度大小为E=,方向。
11. 有一边长为a 的正方形平面,在其中垂线上距中心O 点2/a 处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为 。
12、两个相距很远的导体,半径分别为cm 0.61=r ,cm 0.122=r ,都带有q =C 1038-⨯的电量,如果用一导线将两球连接起来,则最终每个球上的电量为1q = ;2q = 。
13、有一外半径为1R ,内半径2R 的金属球壳,在壳内有一半径为3R 的金属球,球壳和内球均带电量q ,则球心处的电场强度E O = 。
14、一电量为q 的点电荷位于导体球壳中心,壳的内外半径分别为1R 、2R .则球壳上的电场强度E= ;电势U= 。
15、在边长为a 的正六角形的六个顶点都放有电荷,如图q + q -所示,则正六角形中心O 处的电场强度为E= 。
q + ·O q +q - q -16、设均匀电场的电场强度E 与半径为R 的圆平面的法线平行,则通过曲面S 1的电通量为 ; R S 1 S 2 通过曲面S 2的电通量为 。
E17、如图所示的球形电容器的电容C= 。
18、等势面是由电势相等的点组成的曲面。
等势面应满足两个条件:(1) ;(2) 。
19、静电场中金属导体的静电平衡条件是(1) ;(2) ;(3) 。
20、两块带有异号电荷的金属板A 和B ,相距mm 0.5,两板面积都是2cm 150,电量分别为C 1066.28-⨯±,则AB 两板间的电势差U AB = 。
三、简答题(每题3分)1、无限长均匀带电直线的电势零点能取在无穷远吗? 为什么?2、一平行板电容器,两导体板不平行,今使两板分别带有q +和q -的电荷,有人将两板的电场线画成如图所示,你认为这种画法正确吗?你认为电场线应如何分布.Q+AR BR Q-ε3、在一个原来不带电的外半径为1R ,内半径2R 的金属球壳A 内,有一半径为3R ,带有电荷为Q +的带电导体金属球B ,则比较空腔导体A 的电势A U 和导体B 的电势B U 时,可得什么结论?4、有人说电场中某一点的电场强度方向,就是将点电荷放在该点所受电场力的方向,这种说法正确吗?为什么?5.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带的电量都相等,则它们的静电能是否相等?为什么?6.如果一高斯面所包围的体积内的电量的代数和∑q=0,则可肯定高斯面上各点的电场强度均为零,这种说法正确吗?为什么?如果上述说法不正确,你的正确结论是什么?。
四、计算题(每题10分)1.一均匀带电球体的半径为R ,带电量为Q ,试用高斯定理求球内、外及球面上的电场强度;然后画出r E ~关系曲线。
Q· RE0 R r2. 一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体中挖去半径为r 的一个小球体,球心为O ',两球心间距离d O O =',如图所示. 求:(1) 在球形空腔内,球心O '处的电场强度0E .(2) 在球体内P 点处的电场强度E .设O '、O 、P 三点在同一直径上,且d OP =.3. 一圆柱形电容器,外柱的直径为cm 4,内柱的直径为cm 2,若其间充满各向同性的均匀电介质,该介质的击穿电场强度大小为kV /cm 2000=E .试求:该电容器可能承受的最高电压.4. 图示为一个均匀带电的球壳,其电荷体密度为ρ,球壳内表面半径为1R ,外表面半径为2R .设无穷远处为电势零点,求空腔内任一点的电势.5、有一外半径为1R ,内半径2R 的金属球壳,在壳内有一半径为3R 的金属球,球壳和内球均带电量q ,求球心的电势.6、一电量为q 的点电荷位于导体球壳中心,壳的内外半径分别为1R 、2R .求球壳内外和球壳上场强和电势的分布.7、. 计算均匀带电球体的静电能,设球体半径为R , 带电量为Q . 8、设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.9、两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求: 各区域电势分布. 10、两个很长的共轴圆柱面(R 1 =3.0×10-2 m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.参考答案 一. 选择题1C 2C 3D 4D 5C 6C 7 D 8B 9D 10D 二.填空题1.U 02.06q ε3.032C4.202Q C 5. 0 , 22qQ a πε 6.2σ- ,2σ 7. 2024QdR d R ππε- ,从圆心指向缺口 8、123r0+r C εε 9、)12(-=l x 10.204R πεS ΔσE =方向指向球心11.6qε 12. C q 81102-⨯= C q 82104-⨯= 13、E 0 = 0 14、E = 0 204R q U πε=15、202a q πε 16、E R 2π;E R 2π 17、AB BA R R R R C -=πε418、(1)电力线与等势面处处垂直(正交);(2)顺着电力线的方向电势不断减小。
19、(1)导体内部的场强处处为零,0=内E ; (2)导体为等势体,表面为等势面;(3)净电荷只分布在表面,内部各处无净电荷存在。
20、V U AB 1000= 三、简答题1、答:不能 ………1分对于无限长均匀带电直线,若单位长度所带电荷λ为常量,则P 点电场强度rE 0π2 ελ== ………1分若电势零点取在无穷远,则∞==⎰∞rdr rU 02πελ不成立。
………1分2、答:不正确。
………1分应该垂直板面。
………2分3、答:A U 和B U 都是等势体………1分 104R Q U A πε=………1分⎪⎪⎭⎫⎝⎛-+=230101144R R Q R Q U B πεπε………1分 4、答:不正确。