十年高考真题分类汇编 数学 专题 函数
专题03 基本函数及其性质-十年(2012-2021)高考数学真题分项详解(全国通用)(解析版)

2
=
f
−
5 2
+
2
=
f
−
1 2
f
−
1 2
=
f
−
3 2
+1
=
−
f
3 2
+ 1
=
−
f
5 2
−
f
5 2
=
−
f
1 2
+
2
=
−
f
−
1 2
+
2
=
−
f
3 2
所以
f
9 2
=
−
f
3 2
=
5 2
.
思路二:从周期性入手
由两个对称性可知,函数 f ( x) 的周期T = 4 .
列命题中为真命题的是( )
A. p q
B. p q
C. p q
D. ( p q)
【答案】A
【分析】由于 −1 sin x 1 ,所以命题 p 为真命题; 由于 x 0 ,所以 e|x| 1 ,所以命题 q 为真命题;
所以 p q 为真命题, p q 、 p q 、 ( p q) 为假命题. 故选:A.
4.(2021 年全国高考甲卷数学(文)试题)下列函数中是增函数的为( )
A. f ( x) = −x
B.
f
(x)
=
2 3
x
C. f ( x) = x2
D. f ( x) = 3 x
【答案】D
【分析】对于 A, f ( x) = −x 为 R 上的减函数,不合题意,舍.
对于
B,
f
(x)
专题08 三角函数选择题丨十年(2014-2023)高考数学真题分项汇编(原卷版)(共14页)

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!1十年(2014-2023)年高考真题分项汇编三角函数选择题目录题型一:三角函数的概念..............................................................................................1题型二:三角恒等变换..................................................................................................1题型三:三角函数的图像与性质.................................................................................3题型四:正余弦定理....................................................................................................11题型五:三角函数的综合应用 (13)题型一:三角函数的概念一、选择题1.(2020年高考课标Ⅱ卷理科·第2题)若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<02.(2020年高考课标Ⅰ卷理科·第9题)已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A .53B .23C .13D .593.(2021年高考全国甲卷理科·第9题)若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()4.(2020年高考课标Ⅲ卷理科·第9题)已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .2题型二:三角恒等变换一、选择题1.(2023年新课标全国Ⅰ卷·第8题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A .79B .19C .19-D .79-2.(2023年新课标全国Ⅱ卷·第7题)已知α为锐角,15cos 4α=,则sin 2α=().A .38B .18-C .34D .14-3.(2021年高考浙江卷·第8题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是()A .0B .1C .2D .34.(2021年新高考Ⅰ卷·第6题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .655.(2022新高考全国II 卷·第6题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+⎪⎝⎭,则()A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-6.(2019·上海·第16题)已知)tan(tan tan βαβα+=⋅.①存在α在第一象限,角β在第三象限;②存在α在第二象限,角β在第四象限;A.①②均正确;B .①②均错误;C .①对,②错;D .①错,②对7.(2019·全国Ⅱ·理·第10题)已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos 21αα=+,则sin α=()A .15B .5C .3D .58.(2018年高考数学课标Ⅲ卷(理)·第4题)若1sin 3α=,则cos 2α=()A .89B .79C .79-D .89-9.(2014高考数学课标1理科·第8题)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则()A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=10.(2015高考数学重庆理科·第9题)若tan 2tan 5πα=,则3cos()10sin()5παπα-=-()A .1B .2C .3D .411.(201512题)sin 20cos10cos160sin10︒︒-︒︒=()A .2-B .2C .12-D .1212.(2015高考数学陕西理科·第6题)“sin cos αα=”是“cos 20α=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2016高考数学课标Ⅲ卷理科·第5题)若3tan 4α=,则2cos 2sin 2αα+=()A .6425B .4825C .1D .162514.(2016高考数学课标Ⅱ卷理科·第9题)若π3cos 45α⎛⎫-=⎪⎝⎭,则sin 2α=()A .725B .15C .15-D .725-题型三:三角函数的图像与性质一、选择题1.(2023年全国乙卷理科·第6题)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A .B .12-C .12D .22.(2023年全国甲卷理科·第10题)函数()y f x =的图象由函数πcos 26y x ⎛⎫=+⎪⎝⎭的图象向左平移π6个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A .1B .2C .3D .43.(2021年新高考Ⅰ卷·第4题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭4.(2017年高考数学新课标Ⅰ卷理科·第9题)已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C B .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C C .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C D .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 5.(2020年高考课标Ⅰ卷理科·第7题)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()()A .10π9B .7π6C .4π3D .3π26.(2022高考北京卷·第5题)已知函数22()cos sin f x x x =-,则()A .()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减B .()f x 在,412ππ⎛⎫- ⎪⎝⎭上单调递增C .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D .()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增7.(2022年高考全国甲卷数学(理)·第12题)已知3111,cos ,4sin 3244a b c ===,则()A .c b a>>B .b a c>>C .a b c >>D .a c b>>8.(2022年浙江省高考数学试题·第6题)为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x ⎛⎫=+⎪⎝⎭图象上所有的点()A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移π15个单位长度D .向右平移π15个单位长度9.(2022新高考全国I 卷·第6题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A .1B .32C .52D .310.(2021高考北京·第7题)函数()cos cos 2f x x x =-是()A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为9811.(2020天津高考·第8题)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是()A .①B .①③C .②③D .①②③12.(2019·天津·理·第7题)已知函数()sin()(0,0,)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭()A .2-B .CD .213.(2019·全国Ⅱ·理·第9题)下列函数中,以2π为周期且在区间,42ππ⎛⎫⎪⎝⎭单调递增的是()()A .()cos 2f x x =B .()sin 2f x x =C .()cos f x x =D .()sin f x x=14.(2019·全国Ⅰ·理·第11题)关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增③()f x 在[,]ππ-有4个零点④()f x 的最大值为2其中所有正确结论的编号是()A .①②④B .②④C .①④D .①③15.(2018年高考数学天津(理)·第6题)将函数sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数()A .在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递增B .在区间3,4ππ⎡⎤⎢⎥⎣⎦上单调递减C .在区间53,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间3,22ππ⎡⎤⎢⎥⎣⎦上单调递减16.(2018年高考数学课标Ⅱ卷(理)·第10题)若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是()A .π4B .π2C .3π4D .π17.已知函数()sin cos f x a x b x =-(a b ,为常数,0a x ≠∈R ,)的图象关于直线π4x =对称,则函数3π()4y f x =-是A.偶函数且它的图象关于点(π0),对称B .偶函数且它的图象关于点3π02⎛⎫⎪⎝⎭,对称()C.奇函数且它的图象关于点3π02⎛⎫⎪⎝⎭对称D.奇函数且它的图象关于点(π0),对称18.设ππ22αβ⎛⎫∈- ⎪⎝⎭,,,那么“αβ<”是“tan tan αβ<”的A.充分而不必要条件B.必要而不充分条件()C.充分必要条件D.既不充分也不必要条件19.(2014高考数学浙江理科·第4题)为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像()A .向右平移4π个单位B .向左平移4π个单位C .向右平移12π个单位D .向左平移12π个单位20.(2014高考数学四川理科·第3题)为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图像上所有的点()A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度21.(2014高考数学陕西理科·第2题)函数()cos(26f x x π=-的最小正周期是()A .2πB .πC .2πD .4π22.(2014高考数学辽宁理科·第9题)将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数()A .在区间7[,1212ππ上单调递减B .在区间7[,1212ππ上单调递增C .在区间[,63ππ-上单调递减D .在区间[,63ππ-上单调递增23.(2014高考数学课标2理科·第12题)设函数xf x m()sinπ=.若存在f x ()的极值点x 0满足x f x m 22200[()]+<,则m 的取值范围是()A .(,6)(6,)-∞-⋃+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-⋃+∞D .(,1)(4,)-∞-⋃+∞24.(2014高考数学湖南理科·第9题)已知函数()()ϕ-=x x f sin ,且()0320=⎰dx x f π则函数()f x 的图象的一条对称轴是()A .65π=x B .127π=x C .3π=x D .6π=x 25.(2014高考数学大纲理科·第3题)设sin 33,cos55,tan 35,a b c =︒=︒=︒则()A .a b c >>B .b c a >>C .c b a >>D .c a b>>26.(2015高考数学新课标1理科·第8题)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为()A .13(,),k 44k k ππ-+∈Z B .13(2,2),k 44k k ππ-+∈Z C .13(,),k 44k k -+∈Z D .13(2,2),k 44k k -+∈Z27.(2015高考数学四川理科·第4题)下列函数中,最小正周期为π且图象关于原点对称的函数是()(A)cos(2)2y x π=+(B)sin(22y x π=+(C)sin 2cos 2y x x =+(D)sin cos y x x=+28.(2015高考数学陕西理科·第3题)如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m)的最大值为()A .5B .6C .8D .1029.(2015高考数学山东理科·第3题)要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需要将函数sin 4y x =的图象()A .向左平移12π个单位B .向右平移12π个单位C .向左平移3π个单位D .向右平移3π个单位30.(2015高考数学湖南理科·第9题)将函数()sin 2f x x =的图像向右平移(02πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=()A .512πB .3πC .4πD .6π31.(2015高考数学安徽理科·第10题)已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是()A .()()()220f f f <-<B .()()()022f f f <<-C .()()()202f f f -<<D .()()()202f f f <<-32.(2017年高考数学天津理科·第7题)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则()A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=33.(2017年高考数学课标Ⅲ卷理科·第6题)设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线83x π=对称C .()f x π+的一个零点为6x π=D .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减34.(2016高考数学浙江理科·第5题)设函数2()sin sin f x x b x c =++,则()f x 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关35.(2016高考数学四川理科·第3题)为了得到sin(23y x π=-的图像,只需把函数sin 2y x =的图像上所有的点()A .向左平行移动3π个单位B .向右平行移动3π个单位C .向左平行移动6π个单位D .向右平行移动6π个单位36.(2016高考数学山东理科·第7题)函数()cos sin )f x x x x x =+-的最小正周期是()A .2πB .πC .32πD .2π37.(2016高考数学课标Ⅱ卷理科·第7题)若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()A .()26k x k Z ππ=-∈B .()26k x k Z ππ=+∈C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈38.(2016高考数学课标Ⅰ卷理科·第12题)已知函数()sin()(024f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为()(A)11(B)9(C)7(D)539.(2016高考数学北京理科·第7题)将函数sin(2)3y x π=-图像上的点(,)4P t π向左平移(0)s s >个单位长度得到点'P ,若'P 位于函数sin 2y x =的图像上,则()A .12t =,s 的最小值为6πB .32t =,s 的最小值为6πC .12t =,s 的最小值为3πD .32t =,s 的最小值为3π二、多选题1.(2020年新高考全国Ⅰ卷(山东)·第10题)下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -2.(2020年新高考全国卷Ⅱ数学(海南)·第11题)下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -3.(2022新高考全国II 卷·第9题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则()A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线2y x =-是曲线()y f x =的切线题型四:正余弦定理1.(2023年北京卷·第7题)在ABC 中,()(sin sin )(sin sin )a c A C b A B +-=-,则C ∠=()A .π6B .π3C .2π3D .5π62.(2020年高考课标Ⅲ卷理科·第7题)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A .19B .13C .12D .233.(2018年高考数学课标Ⅲ卷(理)·第9题)ABC △的内角,,A B C 的对边分别为,,a b c ,若ABC △的面积为2224a b c +-,则C =()A .π2B .π3C .π4D .π64.(2018年高考数学课标Ⅱ卷(理)·第6题)在ABC △中,5cos25C =,1BC =,5AC =,则AB =()A .B C D .5.(2014高考数学重庆理科·第10题)已知ABC ∆的内角,,A B C 满足1sin 2sin()sin()2A ABC C A B +-+=--+,面积满足12,S ≤≤记,,a b c 分别为,,A B C 所对的边,则下列不等式成立的是()A .()8bc b c +>B .()ac a c +>C .612abc ≤≤D .1224abc ≤≤6.(2014高考数学课标2理科·第4题)钝角三角形ABC 的面积是12,AB=1,,则AC=()A .5B C .2D .17.(2014高考数学江西理科·第4题)在ABC ∆中,内角A .B .C 所对应的边分别为,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积()A .3B .239C .233D .338.(2017年高考数学山东理科·第9题)在ABC ∆中,角,,A B C 的对边分别为,,a b c .若ABC ∆为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则下列等式成立的是()A .2a b=B .2b a=C .2A B=D .2B A=9.(2016高考数学天津理科·第3题)在ABC △中,若3,120AB BC C ==∠=︒,则AC =()A .1B .2C .3D .410.(2016高考数学课标Ⅲ卷理科·第8题)在△ABC 中,4B π=,BC 边上的高等于13BC ,则cos A =()A .31010B .1010C .1010-D .31010-11.(2023年全国甲卷理科·第11题)已知四棱锥P ABCD -的底面是边长为4的正方形,3,45PC PD PCA ==∠=︒,则PBC 的面积为()A .B .C .D .12.(2021年高考全国乙卷理科·第9题)魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =()()A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距13.(2021年高考全国甲卷理科·第8题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A .B .C 三点,且A .B .C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A .C 两点到水平面A B C '''的高度差AA CC ''-约为 1.732≈)()A .346B .373C .446D .473题型五:三角函数的综合应用一、选择题1.(2022年高考全国甲卷数学(理)·第11题)设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A .513,36⎡⎫⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦2.(2019·全国Ⅲ·理·第12题)设函数()sin()5f x x ωπ=+(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在0,2π)(有且仅有3个极大值点②()f x 在0,2π)(有且仅有2个极小值点③()f x 在(0,10π单调递增④ω的取值范围是1229[)510,其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④3.(2020北京高考·第10题)2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A .30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B .30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C .60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D .60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭。
函数-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版)

专题02函数
一、选择题
1.(2022年全国乙卷理科·第12题)已知函数 的定义域均为R,且 .若 的图像关于直线 对称, ,则 ()
A. B. C. D.
2.(2022新高考全国II卷·第8题)已知函数 的定义域为R,且 ,则 ()
A. B. C.0D.1
A. B. C. D.
12.(2021年高考全国甲卷理科·第4题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足 .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( )
A.1.5B.1.2C.0.8D.0.6
27.(2018年高考数学课标Ⅱ卷(理)·第3题)函数 的图象大致为()
A. B. C. D.
24.(2019年高考数学课标全国Ⅰ卷理科·第5题)函数 在 的图象大致为()
25.(2018年高考数学课标Ⅲ卷(理)·第7题)函数 的图象大致为()
26.(2018年高考数学课标Ⅱ卷(理)·第11题)已知 是定义域为 的奇函数,满足 .若 ,则 ()
A. B.0C.2D.50
13.(2020年高考数学课标Ⅰ卷理科·第12题)若 ,则()
A. B. C. D.
14.(2020年高考数学课标Ⅰ卷理科·第5题)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()
3.(2021年新高考全国Ⅱ卷·第8题)已知函数 的定义域为 , 为偶函数, 为奇函数,则()
2010全国各地高考数学文科试题分类汇编函数与导数

2010全国各地高考数学文科试题分类汇编函数与导数2010安徽文(20)(本小题满分12分)设函数()sin cos 1 , 02f x x x x x π=-++<<,求函数()f x 的单调区间与极值。
2010北京文(18) (本小题共14分) 设定函数32()(0)3a f x x bx cx d a =+++ ,且方程'()90f x x -=的两个根分别为1,4。
(Ⅰ)当a=3且曲线()y f x =过原点时,求()f x 的解析式; (Ⅱ)若()f x 在(,)-∞+∞无极值点,求a 的取值范围。
2010湖南文21.(本小题满分13分) 已知函数()(1)ln 15,af x x a x a x=++-+其中a<0,且a ≠-1. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设函数332(23646),1(),1(){x x ax ax a a e x e f x x g x -++--≤⋅>=(e 是自然数的底数)。
是否存在a ,使()g x 在[a,-a]上为减函数?若存在,求a 的取值范围;若不存在,请说明理由。
2010辽宁文(21)(本小题满分12分)已知函数2()(1)ln 1f x a x ax =+++. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2a ≤-,证明:对任意12,(0,)x x ∈+∞,1212|()()|4||f x f x x x -≥-。
(21)(本小题满分12分) 已知函数1()ln 1()af x x ax a R x-=-+-∈ (I )当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;(II )当12a ≤时,讨论()f x 的单调性. 2010陕西文21、(本小题满分14分)已知函数f (x )g (x )=alnx ,a ∈R 。
(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a 的值及该切线的方程; (2)设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值ϕ(a )的解析式; (3) 对(2)中的ϕ(a ),证明:当a ∈(0,+∞)时, ϕ(a )≤1.2010天津文(20)(本小题满分12分)已知函数f (x )=3231()2ax x x R -+∈,其中a>0.(Ⅰ)若a=1,求曲线y=f (x )在点(2,f (2))处的切线方程;(Ⅱ)若在区间11,22⎡⎤-⎢⎥⎣⎦上,f (x )>0恒成立,求a 的取值范围.2010新课标全国卷文 (21)本小题满分12分) 设函数()()21x x f x e ax =-- (Ⅰ)若a=12,求()x f 的单调区间; (Ⅱ)若当x ≥0时()x f ≥0,求a 的取值范围(19)(本小题满分12分。
专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。
十年高考真题分类汇编(2010-2019) 数学 专题05 三角函数(含解析)

十年高考真题分类汇编(2010—2019)数学专题05 三角函数1.(2019·全国2·理T10文T11)已知α∈0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15 B.√55C.√33D.2√55【答案】B【解析】∵2sin 2α=cos 2α+1, ∴4sin αcos α=2cos 2α.∵α∈(0,π2),∴cos α>0,sin α>0, ∴2sin α=cos α. 又sin 2α+cos 2α=1, ∴5sin 2α=1,即sin 2α=15. ∵sin α>0,∴sin α=√55. 故选B.2.(2019·全国2·文T8)若x 1=π4,x 2=3π4是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω=( ) A.2 B.32C.1D.12【答案】A【解析】由题意,得f(x)=sin ωx 的周期T=2πω=23π4−π4=π,解得ω=2,故选A.3.(2019·全国2·理T9)下列函数中,以π2为周期且在区间π4,π2单调递增的是( ) A.f(x)=|cos 2x| B.f(x)=|sin 2x| C.f(x)=cos|x| D.f(x)=sin|x| 【答案】A【解析】y=|cos 2x|的图象为,由图知y=|cos 2x|的周期为π2,且在区间(π4,π2)内单调递增,符合题意;y=|sin 2x|的图象为,由图知它的周期为π2,但在区间(π4,π2)内单调递减,不符合题意;因为y=cos|x|=cos x,所以它的周期为2π,不符合题意;y=sin |x|的图象为,由图知其不是周期函数,不符合题意.故选A.4.(2019·天津·理T7)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g(π4)=√2,则f(3π8)=()A.-2B.-√2C.√2D.2 【答案】C【解析】已知函数为奇函数,且|φ|<π,故φ=0. f(x)=Asin ωx.∴g(x)=Asin x.∵g(x)的最小正周期为2π,∴2πω=2π,∴ω=1. ∴g(x)=Asin x.由g(π4)=√2,得Asin π4=√2,∴A=2.∴f(x)=2sin 2x.∴f(3π8)=2sin 3π4=√2.故选C.5.(2019·北京·文T8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β【答案】B【解析】(方法一)如图,设圆心为O,连接OA,OB,半径r=2,∠AOB=2∠APB=2β,阴影部分Ⅰ(扇形)的面积S1=βr2=4β为定值,S△OAB=12|OA||OB|sin 2β=2sin 2β为定值,全部阴影部分的面积S=S△PAB+S1-S△OAB.当P为弧AB的中点时S△PAB最大,最大值为12(2|OA|sin β)(OP+|OA|cos β)=2sin β(2+2cos β)=4sin β+2sin 2β,所以全部阴影部分的面积S的最大值为4β+4sin β,故选B.(方法二)观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP=∠AOP=π-β,面积S 的最大值为βr 2+S △POB +S △POA =4β+12|OP||OB|sin(π-β)+12|OP||OA|sin(π-β)=4β+2sin β+2sin β=4β+4sin β,故选B.6.(2019·全国3·理T 12)设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点 ②f(x)在(0,2π)有且仅有2个极小值点 ③f(x)在(0,π10)单调递增 ④ω的取值范围是[125,2910) 其中所有正确结论的编号是( ) A.①④ B.②③ C.①②③ D.①③④【答案】D【解析】∵f(x)=sin (ωx +π5)(ω>0)在区间[0,2π]上有且仅有5个零点, ∴5π≤2πω+π5<6π, 解得125≤ω<2910,故④正确.画出f(x)的图像(图略),由图易知①正确,②不正确. 当0<x<π10时,π5<ωx+π5<ωπ10+π5,又125≤ω<2910,∴ωπ10+π5<29π100+20π100=49π100<π2, ∴③正确.综上可知①③④正确.故选D.7.(2018·北京·文T7)在平面直角坐标系中,AB⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( ) A.AB⏜ B.CD⏜C.EF ⏜ D.GH⏜【答案】C【解析】若P 在AB⏜上,则由角α的三角函数线知,cos α>sin α,排除A;若P 在CD ⏜上,则tan α>sin α,排除B;若P 在GH⏜上,则tan α>0,cos α<0,sin α<0,排除D;故选C. 8.(2018·全国1·文T11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=23,则|a-b|=( ) A.15 B.√55C.2√55D.1【答案】B【解析】因为cos 2α=2cos 2α-1=23,所以cos 2α=56,sin 2α=16.所以tan 2α=15,tan α=±√55. 由于a,b 的正负性相同,不妨设tan α>0,即tan α=√55, 由三角函数定义得a=√55,b=2√55,故|a-b|=√55. 9.(2018·全国3·T4)若sin α=13,则cos 2α=( ) A.89B.79C.-79D.-89【答案】B【解析】cos 2α=1-2sin 2α=1-2×(13)2=79. 10.(2018·全国3·文T6)函数f(x)=tanx1+tan 2x的最小正周期为( )A.π4 B.π2 C.π D.2π【答案】C【解析】f(x)=tanx1+tan 2x =sinx cosx1+sin 2x cos 2x=sinxcosxcos 2x+sin 2x =12sin 2x,∴f(x)的最小正周期是π.故选C.11.(2018·全国1·文T8)已知函数f(x)=2cos 2x-sin 2x+2,则( ) A.f(x)的最小正周期为π,最大值为3 B.f(x)的最小正周期为π,最大值为4 C.f(x)的最小正周期为2π,最大值为3 D.f(x)的最小正周期为2π,最大值为4 【答案】B【解析】因为f(x)=2cos 2x-(1-cos 2x)+2=3cos 2x+1=3×1+cos2x 2+1=32cos 2x+52,所以函数f(x)的最小正周期为2π2=π,当cos 2x=1时,f(x)max =4.12.(2018·天津·理T 6)将函数y=sin (2x +π5)的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间[3π4,5π4]上单调递增B.在区间[3π4,π]上单调递减 C.在区间[5π4,3π2]上单调递增D.在区间[3π2,2π]上单调递减 【答案】A【解析】函数y=sin (2x +π5)y=sin [2(x -π10)+π5]=sin 2x.当-π2+2k π≤2x≤π2+2k π,k ∈Z,即-π4+k π≤x≤π4+k π,k ∈Z 时,y=sin 2x 单调递增. 当π2+2k π≤2x≤3π2+2k π,k ∈Z,即π4+k π≤x≤3π4+k π,k ∈Z 时,y=sin 2x 单调递减, 结合选项,可知y=sin 2x 在[3π4,5π4]上单调递增.故选A. 13.(2018·全国2·理T 10)若f(x)=cos x-sin x 在[-a,a]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D .π【答案】A【解析】f(x)=cos x-sin x=-√2sin x ·√22-cos x ·√22=-√2sin x-π4,当x ∈[-π4,34π],即x-π4∈[-π2,π2]时,y=sin x-π4单调递增,y=-√2sin x-π4单调递减.∵函数f(x)在[-a,a]是减函数,∴[-a,a]⊆[-π4,34π],∴0<a≤π4,∴a 的最大值为π4.14.(2017·全国3·文T4)已知sin α-cos α=43,则sin 2α=( ) A.-79B.-29C.29D.79【答案】A【解析】∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α=169,∴sin 2α=-79. 15.(2017·山东·文T4)已知cos x=34,则cos 2x=( ) A.-14 B.14C.-18D.18【答案】D【解析】cos 2x=2cos2x-1=2×(34)2-1=18.16.(2017·全国3·理T6)设函数f(x)=cos (x +π3),则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=8π3对称 C.f(x+π)的一个零点为x=π6D.f(x)在(π2,π)单调递减 【答案】D【解析】由f (x )=cos (x +π3)的【解析】式知-2π是它的一个周期,故A 中结论正确;将x=8π3代入f (x )=cos (x +π3),得f (8π3)=-1,故y=f (x )的图象关于直线x=8π3对称,故B 中结论正确;f (x+π)=cos (x +4π3),当x=π6时,f (x+π)=cos (π6+4π3)=0,故C 中结论正确;当x ∈(π2,π)时,x+π3∈(5π6,4π3),显然f (x )先单调递减再单调递增,故D 中结论错误. 17.(2017·全国2·文T3)函数f(x)=sin (2x +π3)的最小正周期为( ) A.4π B.2π C .πD.π2【答案】C【解析】T=2π2=π,故选C .18.(2017·天津·T7)设函数f(x)=2sin(ωx+φ),x ∈R,其中ω>0,|φ|<π,若f (5π8)=2,f (11π8)=0,且f(x)的最小正周期大于2π,则( ) A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24 D .ω=13,φ=7π24 【答案】A 【解析】∵f (5π8)=2,f (11π8)=0,且f (x )的最小正周期大于2π,∴f (x )的最小正周期为4(11π8−5π8)=3π. ∴ω=2π3π=23,∴f (x )=2sin (23x+φ). ∴2sin (23×5π8+φ)=2,∴φ=2k π+π12,k ∈Z . 又|φ|<π,∴取k=0,得φ=π12.19.(2017·山东·文T7)函数y=√3sin 2x+cos 2x 的最小正周期为( ) A.π2 B.2π3C .π D.2π【答案】C【解析】因为y=√3sin 2x+cos 2x=2(√32sin2x +12cos2x)=2sin (2x +π6),所以其最小正周期T=2π2=π. 20.(2017·全国1·理T 9)已知曲线C 1:y=cos x,C 2:y=sin (2x +2π3),则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】曲线C 1的方程可化为y=cos x=sin (x +π2),把曲线C 1上各点的横坐标缩短到原来的12,纵坐标不变,得曲线y=sin (2x +π2)=sin 2(x +π4),为得到曲线C 2:y=sin 2(x +π3),需再把得到的曲线向左平移π12个单位长度.21.(2017·全国3·文T 6)函数f(x)=15sin (x +π3)+cos (x -π6)的最大值为( ) A.65 B.1C.35D.15【答案】A【解析】因为cos (x -π6)=cos [π2-(x +π3)]=sin (x +π3),所以f (x )=15sin (x +π3)+sin (x +π3)=65sin (x +π3),故函数f (x )的最大值为65.故选A .22.(2016·全国2·理T9)若cos (π4-α)=35,则sin 2α=( ) A.725B.15C.-15D.-725【答案】D【解析】cos [2(π4-α)]=2cos 2(π4-α)-1=2×(35)2-1=-725,且cos [2(π4-α)]=cos (π2-2α)=sin 2α,故选D .23.(2016·全国3·理T5)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825C.1D.1625【答案】A 【解析】由tan α=34,得cos2α+2sin 2α=cos 2α+4sinαcosαcos 2α+sin 2α=1+4tanα1+tan 2α=1+4×341+(34)2=42516=6425.故选A .24.(2016·全国3·文T6)若tan θ=-13,则cos 2θ=( ) A.-45B.-15C.15D.45【答案】D【解析】cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-(-13)21+(-13)2=45.故选D .25.(2016·全国1·理T12)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤π2),x=-π4为f (x)的零点,x=π4为y=f(x)图象的对称轴,且f(x)在(π18,5π36)单调,则ω的最大值为( )A.11B.9C.7D.5【答案】B【解析】由题意知π4--π4=T4+kT2,k ∈Z,即π2=2k+14T=2k+14·2πω,k ∈Z,又ω>0,所以ω=2k+1,k ∈Z .又因为f (x )在(π18,5π36)单调, 所以5π36−π18≤T2,T ≥π6,即2πω≥π6,ω≤12.因为ω>0,所以0<ω≤12.若ω=11,又|φ|≤π2,则φ=-π4,此时f (x )=sin 11x-π4,f (x )在π18,3π44单调递增,在3π44,5π36单调递减,不满足条件;若ω=9,又|φ|≤π2,则φ=π4,此时f (x )=sin 9x+π4,满足f (x )在π18,5π36单调的条件,由此得ω的最大值为9.26.(2016·山东·理T7)函数f(x)=(√3sin x+cos x)(√3cos x-sin x)的最小正周期是( ) A.π2 B .πC.3π2D.2π【答案】B【解析】f (x )=2sin (x +π6)×2cos (x +π6)=2sin (2x +π3),故最小正周期T=2π2=π,应选B .27.(2016·浙江·理T5)设函数f(x)=sin 2x+bsin x+c,则f(x)的最小正周期( ) A.与b 有关,且与c 有关 B.与b 有关,但与c 无关 C.与b 无关,且与c 无关 D.与b 无关,但与c 有关 【答案】B【解析】f (x )=sin 2x+b sin x+c=1-cos2x2+b sin x+c =-12cos 2x+b sin x+12+c.当b=0时,f (x )=-12cos 2x+12+c ,周期T=π; 当b ≠0时,f (x )=-12cos 2x+b sin x+12+c ,∵y=-12cos 2x 的周期为π,y=b sin x 的周期为2π, ∴f (x )的周期T=2π.∴f (x )的最小正周期与b 有关,但与c 无关.故选B .28.(2016·全国2·文T3)函数y=Asin(ωx+φ)的部分图象如图所示,则( ) A.y=2sin (2x -π6) B.y=2sin (2x -π3)C.y=2sin (x +π6)D.y=2sin (x +π3)【答案】A【解析】由题图知,A=2,周期T=2[π3-(-π6)]=π, 所以ω=2ππ=2,y=2sin(2x+φ). 因为函数图象过点(π3,2), 所以2=2sin (2×π3+φ).所以2π3+φ=2k π+π2(k ∈Z).令k=0,得φ=-π6,所以y=2sin (2x -π6),故选A .29.(2016·全国2·理T 7)若将函数y=2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( ) A.x=kπ2−π6(k ∈Z) B.x=kπ2+π6(k ∈Z) C.x=kπ2−π12(k ∈Z) D.x=kπ2+π12(k ∈Z)【答案】B【解析】由题意可知,将函数y=2sin 2x 的图象向左平移π12个单位长度得函数y=2sin [2(x +π12)]=2sin (2x +π6)的图象,令2x+π6=π2+k π(k ∈Z),得x=kπ2+π6(k ∈Z).故选B .30.(2016·全国1·文T 6)将函数y=2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( ) A.y=2sin (2x +π4) B .y=2sin (2x +π3)C.y=2sin (2x -π4) D.y=2sin (2x -π3) 【答案】D【解析】由已知周期T=π,右移14T=π4后得y=2sin [2(x -π4)+π6]=2sin (2x -π3)的图象,故选D .31.(2016·四川·理T 3)为了得到函数y=sin (2x -π3)的图象,只需把函数y=sin 2x 的图象上所有的点( ) A.向左平行移动π3个单位长度 B.向右平行移动π3个单位长度 C.向左平行移动π6个单位长度 D.向右平行移动π6个单位长度 【答案】D【解析】y=sin (2x -π3)=sin [2(x -π6)].32.(2016·北京·理T 7)将函数y=sin (2x -π3)图象上的点P (π4,t)向左平移s(s>0)个单位长度得到点P'.若P'位于函数y=sin 2x 的图象上,则( ) A.t=12,s 的最小值为π6B.t=√32,s 的最小值为π6C.t=12,s 的最小值为π3 D.t=√32,s 的最小值为π3【答案】A【解析】设P'(x ,y ).由题意得t=sin (2×π4-π3)=12,且P'的纵坐标与P 的纵坐标相同,即y=12.又P'在函数y=sin 2x 的图象上,则sin 2x=12,故点P'的横坐标x=π12+k π(k ∈Z)或5π12+k π(k ∈Z),结合题意可得s 的最小值为π4−π12=π6.33.(2016·全国2·文T 11)函数f(x)=cos 2x+6cos (π2-x)的最大值为( ) A.4 B.5 C.6 D.7 【答案】B【解析】因为f (x )=1-2sin 2x+6sin x=-2sin x-322+112,而sin x ∈[-1,1],所以当sin x=1时,f (x )取最大值5,故选B .34.(2015·福建·文T6)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A.125B.-125C.512 D.-512【答案】D【解析】∵sin α=-513,且α为第四象限角,∴cos α=√1-sin 2α=1213.∴tan α=sinαcosα=-512.35.(2015·全国1·理T 2,)sin 20°cos 10°-cos 160°sin 10°=( ) A.-√32 B.√32C.-12D.12【答案】D【解析】sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(10°+20°)=sin 30°=12.36.(2015·重庆·理T9)若tan α=2tan π5,则cos (α-3π10)sin (α-π5)=( )A.1B.2C.3D.4 【答案】C【解析】因为tan α=2tan π5,所以cos (α-3π10)sin (α-π5)=sin (α-3π10+π2)sin (α-π5)=sin (α+π5)sin (α-π5)=sinαcos π5+cosαsin π5sinαcos π5-cosαsin π5=tanα+tan π5tanα-tan π5=3tan π5tan π5=3.37.(2015·重庆·文T6)若tan α=13,tan(α+β)=12,则tan β=( ) A.17 B.16C.57D.56【答案】A【解析】tan β=tan[(α+β)-α]=tan (α+β)-tanα1+tan (α+β)tanα=12-131+12×13=17.38.(2015·安徽·理T10)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=2π3时,函数f(x)取得最小值,则下列结论正确的是( ) A.f(2)<f(-2)<f(0) B.f(0)<f(2)<f(-2) C.f(-2)<f(0)<f(2) D.f(2)<f(0)<f(-2) 【答案】A【解析】将要比较的函数值化归到函数的同一单调区间内.∵f (x )的最小正周期为π,∴f (-2)=f (π-2).又当x=2π3时,f (x )取得最小值, 故当x=π6时,f (x )取得最大值,π6,2π3是函数f (x )的一个递减区间.又∵π6<π-2<2<2π3,∴f (π-2)>f (2),即f (-2)>f (2).再比较0,π-2与对称轴x=π6距离的大小.∵π-2-π6-0-π6=5π6-2-π6=2π3-2>0, ∴f (0)>f (π-2),即f (0)>f (-2),综上,f (0)>f (-2)>f (2).故选A .39.(2015·全国1·T8)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( ) A.(kπ-14,kπ+34),k ∈ZB.(2kπ-14,2kπ+34),k ∈Z C.(k -14,k +34),k ∈ZD.(2k -14,2k +34),k ∈Z 【答案】D【解析】不妨设ω>0,由函数图象可知,其周期为T=2×(54-14)=2,所以2πω=2,解得ω=π.所以f (x )=cos(πx+φ).由图象可知,当x=12(14+54)=34时,f (x )取得最小值,即f (34)=cos (3π4+φ)=-1, 解得3π4+φ=2k π+π(k ∈Z),解得φ=2k π+π4(k ∈Z). 令k=0,得φ=π4,所以f (x )=cos (πx +π4). 令2k π≤πx+π4≤2k π+π(k ∈Z), 解得2k-14≤x ≤2k+34(k ∈Z).所以函数f (x )=cos (πx +π4)的单调递减区间为[2k -14,2k +34](k ∈Z).结合选项知选D .40.(2015·陕西·理T 3文T 14)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin (π6x +φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为( )A.5B.6C.8D.10 【答案】C【解析】因为sin (π6x +φ)∈[-1,1],所以函数y=3sin (π6x +φ)+k 的最小值为k-3,最大值为k+3.由题图可知k-3=2,解得k=5. 所以y 的最大值为k+3=5+3=8.故选C .41.(2015·山东·理T 3文T 4)要得到函数y=sin (4x -π3)的图象,只需将函数y=sin 4x 的图象( ) A.向左平移π12个单位B.向右平移π12个单位C.向左平移π3个单位 D.向右平移π3个单位【答案】B【解析】∵y=sin (4x -π3)=sin [4(x -π12)],∴只需将函数y=sin 4x 的图象向右平移π12个单位即可.42.(2014·全国1·T 文2)若tan α>0,则( ) A.sin α>0 B.cos α>0 C.sin 2α>0 D.cos 2α>0【答案】C【解析】由tan α>0知角α是第一或第三象限角,当α是第一象限角时,sin 2α=2sin αcos α>0;当α是第三象限角时,sin α<0,cos α<0,仍有sin 2α=2sin αcos α>0,故选C . 43.(2014·大纲全国·文T2)已知角α的终边经过点(-4,3),则cos α=( ) A.45B.35C.-35D.-45【答案】D【解析】设角α的终边上点(-4,3)到原点O 的距离为r ,r=√(-4)2+32=5,∴由余弦函数的定义,得cos α=x r =-45,故选D .44.(2014·全国1·理T8)设α∈(0,π2),β∈(0,π2),且tan α=1+sinβcosβ,则( ) A.3α-β=π2 B.3α+β=π2 C.2α-β=π2 D.2α+β=π2【答案】C 【解析】由已知,得sinαcosα=1+sinβcosβ, ∴sin αcos β=cos α+cos αsin β. ∴sin αcos β-cos αsin β=cos α. ∴sin(α-β)=cos α, ∴sin(α-β)=sin (π2-α). ∵α∈(0,π2),β∈(0,π2), ∴-π2<α-β<π2,0<π2-α<π2,∴α-β=π2-α,∴2α-β=π2.故选C .45.(2014·大纲全国·理T3)设a=sin 33°,b=cos 55°,c=tan 35°,则( )A.a>b>cB.b>c>aC.c>b>aD.c>a>b 【答案】C【解析】∵a=sin 33°,b=cos 55°=sin 35°,c=tan 35°=sin35°cos35°, ∴sin35°cos35°>sin 35°>sin 33°.∴c>b>a.故选C .46.(2014·全国1·文T7)在函数①y=cos|2x|,②y=|cos x|,③y=cos (2x +π6),④y=tan (2x -π4)中,最小正周期为π的所有函数为( ) A.①②③ B.①③④ C.②④ D.①③【答案】A【解析】由于y=cos|2x|=cos 2x,所以该函数的周期为2π2=π;由函数y=|cos x|的图象易知其周期为π;函数y=cos (2x +π6)的周期为2π2=π;函数y=tan (2x-π4)的周期为π2,故最小正周期为π的函数是①②③,故选A.47.(2014·全国1·理T 6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 作直线OA 的垂线,垂足为M,将点M 到直线OP 的距离表示成x 的函数f(x),则y=f(x)在[0,π]的图象大致为( )【答案】C【解析】由题意知|OM|=|cos x|,f(x)=|OM||sin x|=|sin xcos x|=12|sin 2x|,由此可知C 项中图符合.故选C .48.(2014·浙江·理T 4)为了得到函数y=sin 3x+cos 3x 的图象,可以将函数y=√2cos 3x 的图象 ( ) A.向右平移π4个单位 B.向左平移π4个单位 C.向右平移π12个单位 D.向左平移π12个单位【答案】C【解析】y=sin 3x+cos 3x=√2cos (3x -π4)=√2cos [3(x -π12)],因此需将函数y=√2cos 3x 的图象向右平移π12个单位.故选C .49.(2013·浙江·理T6)已知α∈R,sin α+2cos α=√102,则tan 2α=( ) A.43B.34C.-34 D.-43【答案】C【解析】由sin α+2cos α=√102,得sin α=√102-2cos α. ① 把①式代入sin 2α+cos 2α=1中可解出cos α=√1010或cos α=3√1010, 当cos α=√1010时,sin α=3√1010; 当cos α=3√1010时,sin α=-√1010. ∴tan α=3或tan α=-13,∴tan 2α=-34.50.(2013·大纲全国·文T2)已知α是第二象限角,sin α=513,则cos α=( ) A.-1213B.-513C.513D.1213【答案】A 【解析】∵α是第二象限角,∴cos α=-√1-sin 2α=-√1-(513)2=-1213.故选A . 51.(2013·广东·文T4)已知sin (5π2+α)=15,那么cos α=( ) A.-25 B.-15C.15 D.25【答案】C【解析】∵sin (5π2+α)=sin (π2+α)=cos α=15,∴cos α=15.52.(2013·全国2·文T6)已知sin 2α=23,则cos 2(α+π4)=( )A.16 B.13C.12D.23【答案】A【解析】由降幂公式变形,可得cos 2(α+π4)=1+cos (2α+π2)2=1-sin2α2=1-232=16.53.(2012·全国·理T9)已知ω>0,函数f(x)=sin(ωx+π4)在(π2,π)单调递减,则ω的取值范围是()A.[12,54] B.[12,34] C.(0,12] D.(0,2]【答案】A【解析】结合y=si n ωx的图象可知y=sin ωx在[π2ω,3π2ω]单调递减,而y=sin(ωx+π4)=sin[ω(x+π4ω)],可知y=sin ωx的图象向左平移π4ω个单位之后可得y=sin(ωx+π4)的图象,故y=sin(ωx+π4)在[π4ω,5π4ω]单调递减,故应有[π2,π]⊆[π4ω,5π4ω],解得12≤ω≤54.54.(2012·全国·文T9)已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.π4B.π3C.π2D.3π4【答案】A【解析】由题意可知函数f(x)的周期T=2×(5π4-π4)=2π,故ω=1,∴f(x)=sin(x+φ).令x+φ=kπ+π2,将x=π4代入可得φ=kπ+π4,∵0<φ<π,∴φ=π4.55.(2011·全国·理T5文T7)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos 2θ=( )A.-45B.-35C.35D.45【答案】B【解析】由三角函数的定义知tan θ=2,且θ为第一或第三象限角,故由“1”的代换得cos2θ=cos2θ-sin2θ=cos 2θ-sin2θcos2θ+sin2θ=1-tan2θ1+tan2θ=1-221+22=-35.56.(2011·全国·理T11)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<π2)的最小正周期为π,且f(-x)=f(x),则()A.f(x)在(0,π2)单调递减B.f(x)在(π4,3π4)单调递减C.f(x)在(0,π2)单调递增D.f(x)在(π4,3π4)单调递增【答案】A【解析】∵f (x )=sin(ωx+φ)+cos(ωx+φ)=√2sin ωx+φ+π4,又∵f (x )的最小正周期为π,∴2πω=π,即ω=2.又f (-x )=f (x ),故f (x )是偶函数,即φ+π4=π2+k π(k ∈Z),φ=k π+π4(k ∈Z).因|φ|<π2,取k=0,则φ=π4,从而f (x )=√2cos 2x ,且在(0,π2)上单调递减,故选A .57.(2011·全国·文T11)设函数f(x)=sin (2x +π4)+cos (2x +π4),则( ) A.y=f(x)在(0,π2)单调递增,其图象关于直线x=π4对称B.y=f(x)在(0,π2)单调递增,其图象关于直线x=π2对称C.y=f(x)在(0,π2)单调递减,其图象关于直线x=π4对称D.y=f(x)在(0,π2)单调递减,其图象关于直线x=π2对称 【答案】D【解析】∵f (x )=sin (2x +π4)+cos (2x +π4)=√2sin (2x +π4+π4)=√2cos 2x ,∴f (x )在(0,π2)内单调递减,且图象关于直线x=π2对称.故选D . 58.(2010·全国·理T9)若cos α=-45,α是第三象限的角,则1+tan α21-tanα2=( )A.-12B.12C.2D.-2【答案】A【解析】∵cos α=-45,α为第三象限角,∴sin α=-35.1+tan α21-tan α2=1+sin α2cos α21-sin α2cos α2=cos α2+sin α2cos α2-sin α2=(cos α2+sin α2) 2(cos α2+sin α2)(cos α2-sin α2)=1+sinαcos 2α2-sin 2α2=1+sinαcosα=-12.59.(2010·全国·文T10)若cos α=-45,α是第三象限的角,则sin (α+π4)等于( )A.-7√210B.7√210C.-√210 D.√210【答案】A【解析】因为α是第三象限的角,所以sin α<0.sin α=-√1-cos 2α=-√1-(-45)2=-35.故sin (α+π4)=sin αcos π4+cos αsin π4=√22(sin α+cos α)=√22(-35-45)=-7√210.60.(2010·全国·文T 6)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(√2 ,-√2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数大致图象为( )【答案】C【解析】因为d 是圆周上的点P 到x 轴的距离,所以每转半周,即π弧度,d 的值就会周期性出现,又质点P 的角速度为1,可知,该函数的周期为T=π1=π.起始点为P 0(√2,-√2)在第四象限,对应的d=√2,逆时针旋转到x 轴时,d 的值逐渐减小到0且此时t=π4.综上,只有C 项满足,故选C .61.(2019·江苏·T13)已知tanαtan (α+π4)=-23,则sin 2α+π4的值是 .【答案】√210 【解析】由tanαtan (α+π4)=tanαtanα+11-tanα=tanα(1-tanα)tanα+1=-23,得3tan 2α-5tan α-2=0,解得tan α=2或tan α=-13.又sin (2α+π4)=sin 2αcos π4+cos 2αsin π4=√22(sin 2α+cos 2α)=√22×2sinαcosα+cos 2α-sin 2αsin 2α+cos 2α=√22×2tanα+1-tan 2αtan 2α+1. (*) ①当tan α=2时,(*)式=√22×2×2+1-2222+1=√22×15=√210;②当tan α=-13时,(*)式=√22×2×(-13)+1-(-13)2(-13)2+1=√22×13-19109=√210.综上,sin (2α+π4)=√210.62.(2019·全国1·文T 15)函数f(x)=sin (2x +3π2)-3cos x 的最小值为.【答案】-4【解析】f(x)=sin (2x +3π2)-3cos x =-cos 2x-3cos x =-2cos 2x-3cos x+1=-2(cosx +34)2+178. ∵-1≤cos x≤1,∴当cos x=1时,f(x)min =-4. 故函数f(x)的最小值是-4.63.(2018·全国2·理T15)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= . 【答案】—12【解析】∵(sin α+cos β)2+(cos α+sin β)2=1,∴sin 2α+cos 2β+cos 2α+sin 2β+2sin αcos β+2sin βcos α=1+1+2sin(α+β)=1. ∴sin(α+β)=−12.64.(2018·全国2·文T15)已知tan α-5π4=15,则tan α=_________.【答案】32【解析】∵tan (α-54π)=tanα-tan 54π1+tanαtan 54π=tanα-11+tanα=15,∴5tan α-5=1+tan α.∴tan α=32.65.(2018·北京·理T11)设函数f(x)=cos (ωx -π6)(ω>0).若f(x)≤f (π4)对任意的实数x 都成立,则ω的最小值为____________. 【答案】23【解析】∵f(x)≤f (π4)对任意的实数x 都成立,∴当x=π4时,f(x)取得最大值,即f (π4)=cos (π4ω-π6)=1, ∴π4ω-π6=2k π,k ∈Z,∴ω=8k+23,k ∈Z. ∵ω>0,∴当k=0时,ω取得最小值23.66.(2018·全国3·理T 15)函数f(x)=cos (3x +π6)在[0,π]的零点个数为 . 【答案】3【解析】令f(x)=cos (3x +π6)=0,得3x+π6=π2+k π,k ∈Z,∴x=π9+kπ3=(3k+1)π9,k ∈Z.则在[0,π]的零点有π9,4π9,7π9.故有3个.67.(2018·全国1·理T 16)已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是 . 【答案】3√32【解析】由题意可得T=2π是f(x)=2sin x+sin 2x 的一个周期,所以求f(x)的最小值可考虑求f(x)在[0,2π)上的值域.由f(x)=2sin x+sin 2x,得f'(x)=2cos x+2cos 2x=4cos 2x+2cos x-2. 令f'(x)=0,可得cos x=12或cos x=-1,x ∈[0,2π)时,解得x=π3或x=5π3或x=π. 因为f(x)=2sin x+sin 2x 的最值只能在x=π3,x=5π3,x=π或x=0时取到,且f (π3)=3√32,f (5π3)=-3√32,f(π)=0,f(0)=0,所以函数f(x)的最小值为-3√32.68.(2018·江苏·T 7)已知函数y=sin(2x+φ)-π2<φ<π2的图象关于直线x=π3对称,则φ的值为_______. 【答案】−π6【解析】由题意可得sin (2π3+φ)=±1,解得2π3+φ=π2+k π(k ∈Z),即φ=-π6+k π(k ∈Z). 因为-π2<φ<π2,所以k=0,φ=-π6.69.(2017·北京·文T9)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β= 【答案】13【解析】由角α与角β的终边关于y 轴对称,得α+β=2k π+π,k ∈Z,即β=2k π+π-α,k ∈Z,故sinβ=sin(2k π+π-α)=sin α=13.70.(2017·全国1·文T15)已知α∈(0,π2),tan α=2,则cos (α-π4)=__________.【答案】3√1010【解析】由tan α=2,得sin α=2cos α. 又sin 2α+cos 2α=1,所以cos 2α=15.因为α∈(0,π2),所以cos α=√55,sin α=2√55.因为cos (α-π4)=cos αcos π4+sin αsin π4,所以cos (α-π4)=√55×√22+2√55×√22=3√1010.71.(2017·北京·理T12)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________________. 【答案】-79【解析】由角α与角β的终边关于y 轴对称可得β=(2k+1)π-α,k ∈Z,则cos(α-β)=cos[2α-(2k+1)π]=-cos 2α=2sin 2α-1=2×(13)2-1=-79.72.(2017·江苏·T5)若tan (α-π4)=16,则tan α=________.【答案】75【解析】因为tan (α-π4)=tanα-tan π41+tanα·tan π4=tanα-11+tanα=16,所以tan α=75.73.(2017·全国2·理T 14)函数f(x)=sin 2x+√3cos x-34(x ∈[0,π2])的最大值是________. 【答案】1【解析】由题意可知f (x )=1-cos2x+√3cos x-34=-cos 2x+√3cos x+14=-(cosx -√32)2+1.因为x ∈[0,π2],所以cos x ∈[0,1]. 所以当cos x=√32时,函数f (x )取得最大值1.74.(2017·全国2·文T 13)函数f(x)=2cos x+sin x 的最大值为 . 【答案】√5【解析】因为f (x )=2cos x+sin x=√5sin(x+φ)(其中tan φ=2),所以f (x )的最大值为√5. 75.(2016·全国1·文T14)已知θ是第四象限角,且sin (θ+π4)=35,则tan (θ-π4)= . 【答案】-43【解析】∵sin (θ+π4)=35,∴cos (θ-π4)=cos [(θ+π4)-π2]=35.又θ是第四象限角,∴θ-π4是第三或第四象限角.∴sin (θ-π4)=-45.∴tan (θ-π4)=-43.76.(2016·四川·文T 11)sin 750°= . 【答案】12【解析】sin 750°=sin(720°+30°)=sin 30°=12. 77.(2016·四川·理T11)cos 2π8-sin 2π8=_________. 【答案】√22【解析】cos 2π8-sin 2π8=cos π4=√22.78.(2016·浙江·T10)已知2cos 2x+sin 2x=Asin(ωx+φ)+b(A>0),则A=√2,b= . 【答案】1【解析】因为2cos 2x+sin 2x=1+cos 2x+sin 2x=√2sin (2x +π4)+1,所以A=√2,b=1.79.(2016·全国3·理T 14)函数y=sin x-√3cos x 的图象可由函数y=sin x+√3cos x 的图象至少向右平移_______个单位长度得到. 【答案】2π3【解析】因为y=sin x+√3cos x=2sin (x +π3),y=sin x-√3cos x=2sin (x-π3)=2sin[(x-2π3)+π3],所以函数y=sin x-√3cos x 的图象可由函数y=sin x+√3cos x 的图象至少向右平移2π3个单位长度得到.80.(2015·江苏·理T8)已知tan α=-2,tan(α+β)=17,则tan β的值为 . 【答案】3【解析】tan β=tan[(α+β)-α]=tan (α+β)-tanα1+tanαtan (α+β)=17+21-27=3.81.(2015·四川·理T 12)sin 15°+sin 75°的值是_____________. 【答案】√62【解析】sin 15°+sin 75°=sin(45°-30°)+sin(45°+30°)=sin 45°cos 30°-cos 45°sin 30°+sin 45°cos 30°+cos 45°sin 30°=2sin 45°cos 30°=2×√22×√32=√62. 82.(2015·四川·文T13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是 . 【答案】-1【解析】由sin α+2cos α=0,得tan α=-2.所以原式=2sinαcosα-cos 2αsin 2α+cos 2α=2tanα-1tan 2α+1=2×(-2)-1(-2)2+1=-55=-1. 83.(2015·天津·文T14)已知函数f(x)=sin ωx+cos ωx (ω>0),x ∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为 . 【答案】√π2【解析】f (x )=sin ωx+cos ωx=√2sin ωx+π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x=ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z,所以ω2=π4+2k π,k ∈Z . 又ω-(-ω)≤2πω2,即ω2≤π2,所以ω=√π2.84.(2015·湖南·文T15)已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图象的交点中,距离最短的两个交点的距离为2√3,则ω=____________. 【答案】π2【解析】如图所示,在同一直角坐标系中,作出函数y=2sin ωx 与y=2cos ωx 的图象,A ,B 为符合条件的两交点.则A (π4ω,√2),B (-3π4ω,-√2), 由|AB|=2√3,得√(πω)2+(2√2)2=2√3,解得πω=2,即ω=π2.85.(2014·全国2·理T14)函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为 . 【答案】1【解析】∵f (x )=sin(x+2φ)-2sin φcos(x+φ)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sin φ-2sin φcos(x+φ)=sin(x+φ)cosφ-cos(x+φ)sin φ=sin[(x+φ)-φ]=sin x.∴f(x)max=1.86.(2014·全国2·文T14)函数f(x)=sin(x+φ)-2sin φcos x的最大值为. 【答案】1【解析】∵f(x)=sin(x+φ)-2sin φcos x=sin x cos φ+cos x sin φ-2sin φcos x=sin x cos φ-cos x sin φ=sin(x-φ),∴f(x)max=1.87.(2014·重庆·文T13)将函数f(x)=sin(ωx+φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y=sin x的图象,则f(π6)=______.【答案】√22【解析】本题可逆推,将y=sin x的图象向左平移π6个单位长度得到y=sin(x+π6)的图象,再保持纵坐标不变,横坐标伸长为原来的两倍,得到f(x)=sin(12x+π6)的图象.所以f(π6)=sin(π12+π6)=sinπ4=√22.88.(2014·全国2·理T14)函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为. 【答案】1【解析】∵f(x)=sin(x+2φ)-2sin φcos(x+φ)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sin φ-2sin φcos(x+φ)=sin(x+φ)cosφ-cos(x+φ)sin φ=sin[(x+φ)-φ]=sin x.∴f(x)max=1.89.(2014·全国2·文T14)函数f(x)=sin(x+φ)-2sin φcos x的最大值为. 【答案】1【解析】∵f(x)=sin(x+φ)-2sin φcos x=sin x cos φ+cos x sin φ-2sin φcos x=sin x cos φ-cos x sin φ=sin(x-φ),∴f (x )max =1.90.(2013·全国2·理T15)设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ= . 【答案】-√105【解析】由tan (θ+π4)=1+tanθ1-tanθ=12,得tan θ=-13,即sin θ=-13cos θ.将其代入sin 2θ+cos 2θ=1,得109cos 2θ=1.因为θ为第二象限角,所以cos θ=-3√1010,sin θ=√1010,sin θ+cos θ=-√105.91.(2013·全国2·文T 16)函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y=sin (2x +π3)的图象重合,则φ=_________. 【答案】A【解析】由降幂公式变形,可得cos 2(α+π4)=1+cos (2α+π2)2=1-sin2α2=1-232=16.92.(2013·全国1·理T 15文T 16)设当x=θ时,函数f(x)=sin x-2cos x 取得最大值,则cos θ= . 【答案】−2√55【解析】∵f (x )=sin x-2cos x=√5sin(x-φ), 其中sin φ=2√55,cos φ=√55.当x-φ=2k π+π2(k ∈Z)时,f (x )取最大值. 即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z).∴cos θ=cos (π2+φ)=-sin φ=-2√55. 93.(2011·江西·理T14)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-2√55,则y= . 【答案】-8【解析】∵sin θ=-2√55<0及P (4,y )是角θ终边上一点,∴θ为第四象限角.又由三角函数的定义得√4+y 2=-2√55,且y<0,∴y=-8(合题意),y=8(舍去).故y=-8.94.(2019·浙江·T18)设函数f(x)=sin x,x ∈R. (1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值; (2)求函数y=f x+π122+f x+π42的值域.【解析】(1)因为f(x+θ)=sin(x+θ)是偶函数,所以,对任意实数x 都有sin(x+θ)=sin(-x+θ),。
专题15 三角函数解答题【2023高考必备】2013-2022十年全国高考数学真题分类汇编

(2)若 ,求b.
【答案】(1)
(2)
解析:(1)由题意得 ,则 ,
即 ,由余弦定理得 ,整理得 ,则 ,又 ,
则 , ,则 ;
(2)由正弦定理得: ,则 ,则 , .
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2022新高考全国II卷·第18题
3.(2022新高考全国I卷·第18题)记 的内角A,B,C的对边分别为a,b,c,已知 .
可得 , ,
与条件 矛盾,则问题中的三角形不存在.
解法二:∵ ,
∴ ,
,
∴ ,∴ ,∴ ,∴ ,
若选①, ,∵ ,∴ ,∴c=1;
若选②, ,则 , ;
若选③,与条件 矛盾.
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2020新高考II卷(海南卷)·第17题
8.(2020年高考数学课标Ⅱ卷理科·第17题) 中,sin2A-sin2B-sin2C=sinBsinC.
【题目栏目】三角函数\正弦定理和余弦定理\三角形中的面积问题
【题目来源】2017年高考数学新课标Ⅰ卷理科·第17题
13.(2017年高考数学课标Ⅲ卷理科·第17题)(12分) 的内角 的对边分别为 .已知 , , .
(1)求 ;
(2)设 为 边上一点,且 ,求 的面积.
【答案】(1) ;(2)
【解析】(1)由 可得 ,因为 ,故 .
问题:是否存在 ,它的内角 的对边分别为 ,且 , ,________?
注:如果选择多个条件分别解答,按第一个解答计分.
【答案】解法一:
由 可得: ,
不妨设 ,
则: ,即 .
2010年高考数学试题分类汇编——三角函数填空

2010年高考数学试题分类汇编——三角函数(2010浙江理数)(11)函数2()sin(2)4f x x x π=--的最小正周期是__________________ .解析:()242sin 22-⎪⎭⎫⎝⎛+=πx x f 故最小正周期为π,本题主要考察了三角恒等变换及相关公式,属中档题(2010全国卷2理数)(13)已知a 是第二象限的角,4tan(2)3a π+=-,则tan a = . 【答案】12-【命题意图】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程,考查考生的计算能力. 【解析】由4tan(2)3a π+=-得4tan 23a =-,又22t a n 4t a n 21t a n 3a αα==--,解得1tan tan 22αα=-=或,又a 是第二象限的角,所以1tan 2α=-.(2010全国卷2文数)(13)已知α是第二象限的角,tan α=1/2,则cos α=__________【解析】5-:本题考查了同角三角函数的基础知识 ∵1tan 2α=-,∴cos α=(2010重庆文数)(15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311coscossin sin3333αααααα++-=____________ . 解析:232312311coscossinsincos33333ααααααααα++++-=又1232αααπ++=,所以1231cos 32ααα++=-(2010浙江文数)(12)函数2()sin (2)4f x x π=-的最小正周期是 。
答案:2π(2010山东文数)(15) 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +则角A 的大小为 . 答案:(2010北京文数)(10)在ABC ∆中。
专题14 三角函数选填题-【2023高考必备】2013-2022十年全国高考数学真题分类汇编

()
A. 表高B. 表高
A.346B.373C.446D.473
11.(2020年高考数学课标Ⅰ卷理科·第9题)已知 ,且 ,则 ()
A. B. C. D.
12.(2020年高考数学课标Ⅰ卷理科·第7题)设函数 在 的图像大致如下图,则f(x)的最小正周期为()
()
A. B. C. D.
13.(2020年高考数学课标Ⅱ卷理科·第2题)若α为第四象限角,则()
C. D.
34.(2014高考数学课标2理科·第4题)钝角三角形ABC的面积是 ,AB=1,BC= ,则AC=()
A.5B. C.2D.1
35.(2014高考数学课标1理科·第8题)设 , ,且 ,则()
A. B. C. D.
二、多选题
36.(2022新高考全国II卷·第9题)已知函数 的图像关于点 中心对称,则()
B.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
C.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线
D.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
25.(2017年高考数学课标Ⅲ卷理科·第6题)设函数 ,则下列结论错误的是()
A. 的一个周期为 B. 的图像关于直线 对称
C. 的一个零点为 D. 在 单调递减
专题04 导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

当 时, ,当 时, ,
故 在 上为减函数,在 上为增函数,
所以 ,
而 , ,
有两个不同的零点即 的解的个数为2.
当 ,由(1)讨论可得 、 仅有一个零点,
当 时,由(1)讨论可得 、 均无零点,
故若存在直线 与曲线 、 有三个不同的交点,
则 .
设 ,其中 ,故 ,
设 , ,则 ,
故 在 上为增函数,故 即 ,
【题目栏目】导数\导数的综合应用
【题目来源】2021年高考全国甲卷文科·第20题
10.(2021年全国高考乙卷文科·第21题)已知函数 .
(1)讨论 的单调性;
(2)求曲线 过坐标原点的切线与曲线 的公共点的坐标.
【答案】(1)答案见解析;(2) .
解析:(1)由函数的解析式可得: ,
导函数的判别式 ,
即曲线 过坐标原点的切线与曲线 的公共点的坐标为 .
【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
故 为方程 的解,同理 也为方程 的解,
所以 ,而 ,
故 即 .
【题目栏目】导数\导数的综合应用
【题目来源】2022新高考全国I卷·第22题
5.(2021年新高考全国Ⅱ卷·第22题)已知函数 .
(1)讨论 的单调性;
(2)从下面两个条件中选一个,证明: 有一个零点
历年(2019-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(函数及其基本性质)汇编考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f <D .(20)10000f <2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.4.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .535.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a .考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞3.(2019∙江苏∙高考真题)函数y =的定义域是 .考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减8.(2019∙北京∙高考真题)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x =B .y =2x -C .12log y x =D .1y x=9.(2019∙全国∙高考真题)设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x xy +=2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .25.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1-B .0C .12D .16.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .538.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x x x a f x -=⋅-是偶函数,则=a .10.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减13.(2019∙北京∙高考真题)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件14.(2019∙全国∙高考真题)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .12.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称参考答案考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f < D .(20)10000f <【答案】B【详细分析】代入得到(1)1,(2)2==f f ,再利用函数性质和不等式的性质,逐渐递推即可判断. 【答案详解】因为当3x <时()f x x =,所以(1)1,(2)2==f f , 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2==f f ,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = .【详细分析】利用分段函数的形式可求()3f .【答案详解】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭ .【答案】1【详细分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答.【答案详解】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:14.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【详细分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.5.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a . 【答案】2【详细分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【答案详解】()()642233f f f f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 【答案】()(],00,1-∞⋃【详细分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞【答案】B【详细分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可. 【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠. 所以函数定义域为()()0,11,+∞ . 故选:B3.(2019∙江苏∙高考真题)函数y =的定义域是 . 【答案】[1,7]-.【详细分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【答案详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点评】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞ B .[1,0]- C .[1,1]- D .[0,)+∞【答案】B【详细分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-.故选:B.2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =- B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【详细分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可. 【答案详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减, 所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减, 所以()12xf x =在()0,∞+上单调递减,故B 错误; 对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减, 所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫=== ⎪⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>【答案】A【详细分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可. 【答案详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,4112⎛-= ⎝⎭,而22491670-=+=>,所以41102222⎛⎫---=-> ⎪ ⎪⎝⎭,即1122->-由二次函数性质知g g <,因为4112222⎛⎫---=- ⎪ ⎪⎝⎭,而22481682)0-=+-=-=-<,即1122-<-,所以()(22g g >,综上,(((222g g g <<, 又e x y =为增函数,故a c b <<,即b c a >>. 故选:A.4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【详细分析】利用指数型复合函数单调性,判断列式计算作答. 【答案详解】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞. 故选:D5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 【答案】D【详细分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意, 故选:D.6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数【答案】C【详细分析】利用函数单调性定义即可得到答案.【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <. 所以函数()f x 一定是增函数. 故选:C7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A【详细分析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x-==在()0,+?上单调递减,在(),0-?上单调递减,所以函数()331f x x x =-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点评】本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8.(2019∙北京∙高考真题)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A【详细分析】由题意结合函数的解析式考查函数的单调性即可.【答案详解】函数122,log xy y x -==, 1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .【名师点评】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.9.(2019∙全国∙高考真题)设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C【解析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小.【答案详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【名师点评】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+ C .e 1x xy x -=+D .||sin 4e x x xy +=【答案】B【详细分析】根据偶函数的判定方法一一判断即可.【答案详解】对A ,设()22e 1x xf x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R , 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141eϕ+=,()sin141e ϕ---=, 则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误. 故选:B.2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【详细分析】根据奇函数的性质可求参数a .【答案详解】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =, 故答案为:0.3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【详细分析】利用偶函数的性质得到ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解.【答案详解】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++, 所以()()()()221cos s 1co f x x x x x f x -=-++++-==, 又定义域为R ,故()f x 为偶函数, 所以2a =. 故答案为:2.4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .2【答案】D【详细分析】根据偶函数的定义运算求解.【答案详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---, 又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=, 则()1x a x =-,即11a =-,解得2a =. 故选:D.5.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1- B .0C .12D .1【答案】B【详细分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可. 【答案详解】因为()f x 为偶函数,则 1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =, 当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-, 故此时()f x 为偶函数. 故选:B.6.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 【答案】 12-; ln 2.【详细分析】根据奇函数的定义即可求出. 【答案详解】[方法一]:奇函数定义域的对称性 若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称0a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠- 1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参 111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+--- 1()1ax a f x lnb x++-=++函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=- 22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【详细分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.8.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【详细分析】根据幂函数的性质可得所求的()f x .【答案详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x ¢>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a .【答案】1【详细分析】利用偶函数的定义可求参数a 的值.【答案详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:110.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【详细分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++,对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点评】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【详细分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点评】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D【详细分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点评】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.13.(2019∙北京∙高考真题)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【答案详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【名师点评】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.14.(2019∙全国∙高考真题)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+【答案】D【详细分析】先把x <0,转化为‐x>0,代入可得()f x -,结合奇偶性可得()f x . 【答案详解】()f x 是奇函数, 0x ≥时,()1x f x e =-.当0x <时,0x ->,()()1x f x f x e -=--=-+,得()e 1x f x -=-+.故选D .【名师点评】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A【详细分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=,所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=, 由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【详细分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D【详细分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点评】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD【详细分析】A 选项,先详细分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行详细分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【答案详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增, (0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值, 由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <, 根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确; B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减, ,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-, 即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立, 于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误; D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a -=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由题意(1,(1))f 也是对称中心,故122aa =⇔=, 即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 故选:AD【名师点评】结论名师点评:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心 2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【详细分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确; 对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222fx f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC. 故选:BC. [方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解. 3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D【详细分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【答案详解】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=- , ()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-. 因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【名师点评】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题. 4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称【答案】D【详细分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D. 【答案详解】sin x 可以为负,所以A 错; 1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点评】本题考查函数定义域与最值、奇偶性、对称性,考查基本详细分析判断能力,属中档题.。
十年真题(2010_2019)高考数学真题分类汇编专题17不等式选讲(理)(含解析)

专题17不等式选讲历年考题细目表题型年份考点试题位置解答题2019 不等式选讲2019年新课标1理科23解答题2018 综合测试题2018年新课标1理科23解答题2017 综合测试题2017年新课标1理科23解答题2016 综合测试题2016年新课标1理科24解答题2014 综合测试题2014年新课标1理科24解答题2013 综合测试题2013年新课标1理科24解答题2012 综合测试题2012年新课标1理科24解答题2011 综合测试题2011年新课标1理科24解答题2010 综合测试题2010年新课标1理科24历年高考真题汇编1.【2019年新课标1理科23】已知a,b,c为正数,且满足abc=1.证明:(1)a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.【解答】证明:(1)分析法:已知a,b,c为正数,且满足abc=1.要证(1)a2+b2+c2;因为abc=1.就要证:a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即:2bc+2ac+2ab≤2a2+2b2+2c2;2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.故a2+b2+c2得证.(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;即:已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.(a+b)≥2;(b+c)≥2;(c+a)≥2;当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a)≥3×8••24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.2.【2018年新课标1理科23】已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|,由f(x)>1,∴或,解得x,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x,∴a∵2,∴0<a≤2,故a的取值范围为(0,2].3.【2017年新课标1理科23】已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x的二次函数,g(x)=|x+1|+|x﹣1|,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].4.【2016年新课标1理科24】已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x),由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x时,|3x﹣2|>1,解得x>1或x,即有﹣1<x或1<x;当x时,|4﹣x|>1,解得x>5或x<3,即有x>5或x<3.综上可得,x或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).5.【2014年新课标1理科24】若a>0,b>0,且.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【解答】解:(Ⅰ)∵a>0,b>0,且,∴2,∴ab≥2,当且仅当a=b时取等号.∵a3+b3 ≥224,当且仅当a=b时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥22,当且仅当2a=3b时,取等号.而由(1)可知,2246,故不存在a,b,使得2a+3b=6成立.6.【2013年新课标1理科24】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)≤g(x),求a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对x∈[,]都成立.故a﹣2,解得a,故a的取值范围为(﹣1,].7.【2012年新课标1理科24】已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为 {x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].8.【2011年新课标1理科24】设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得1,故a=29.【2010年新课标1理科24】设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f (x )≤ax 的解集非空,求a 的取值范围. 【解答】解:(Ⅰ)由于f (x ),函数y =f (x )的图象如图所示.(Ⅱ)由函数y =f (x )与函数y =ax 的图象可知,极小值在点(2,1)当且仅当a <﹣2或a 时,函数y =f (x )与函数y =ax 的图象有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(﹣∞,﹣2)∪[,+∞).考题分析与复习建议本专题考查的知识点为:解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.求解的一般方法是去掉绝对值,也可以借助数形结合求解.历年考题主要以解答题题型出现,重点考查的知识点为解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.预测明年本考点题目会比较稳定,备考方向以知识点解绝对值不等式、利用不等式恒成立求参数的值或范围,证明不等式为重点较佳.最新高考模拟试题1.已知函数()22()f x x a x a R =-+-∈. (1)当2a =时,求不等式()2f x >的解集;(2)若[2,1]x ∈-时不等式()32f x x ≤-成立,求实数a 的取值范围. 【答案】(1)2{|3x x <或()4cos(2)6f x x π=-;(2)空集. 【解析】解:(1)不等式()2f x >,即2222x x -+->.可得22222x x x ≥⎧⎨-+->⎩,或122222x x x <<⎧⎨-+->⎩或12222x x x ≤⎧⎨--+>⎩,解得23x <或2x >,所以不等式的解集为2{|2}3x x x <>或.(2)当[2,1]x ∈-时,220x -<,所以()22f x x a x =-+-, 由()32f x x ≤-得1x a -≤,即11a x a -≤≤+,则1211a a -≤-⎧⎨+≥⎩,该不等式无解,所以实数a 的取值范围是空集(或者∅). 2.已知()221f x x x =-++. (1)求不等式()6f x <的解集;(2)设m 、n 、p 为正实数,且()3m n p f ++=,求证:12mn np pm ++≤. 【答案】(1) ()1,3- (2)见证明 【解析】(1)①2x ≥时,()24133f x x x x =-++=-, 由()6f x <,∴336x -<,∴3x <,即23x ≤<,②12x -<<时,()4215f x x x x =-++=-,由()6f x <,∴56x -<,∴1x >-,即12x -<<, ③1x ≤-时,()42133f x x x x =---=-,由()6f x <,∴336x -<,∴1x >-,可知无解, 综上,不等式()6f x <的解集为()1,3-; (2)∵()221f x x x =-++,∴()36f =,∴()36m n p f ++==,且,,m n p 为正实数∴()222222236m n p m n p mn mp np ++=+++++=, ∵222m n mn +≥,222m p mp +≥,222n p np +≥, ∴222m n p mn mp np ++≥++,∴()()2222222363m n p m n p mn mp np mn mp np ++=+++++=≥++ 又,,m n p 为正实数,∴可以解得12mn np pm ++≤. 3.[选修4—5:不等式选讲]已知函数()|||2|(0)f x x m x m m =--+>. (1)当1m =,求不等式()1f x ≥的解集;(2)对于任意实数,x t ,不等式()21f x t t <++-恒成立,求实数m 的取值范围. 【答案】(1)113x x ⎧⎫-≤≤-⎨⎬⎩⎭;(2)()0,2 【解析】(1)当1m =时,()1f x ≥为:1211x x --+≥当1x ≥时,不等式为:1211x x ---≥,解得:3x ≤-,无解当112x -≤<时,不等式为:1211x x -+--≥,解得:13x ≤-,此时1123x -≤≤- 当12x <-时,不等式为:1211x x -+++≥,解得:1x -≥,此时112x -≤<-综上所述,不等式的解集为113x x ⎧⎫-≤≤-⎨⎬⎩⎭(2)对于任意实数x ,t ,不等式()21f x t t <++-恒成立等价于()()max min |2||1|f x t t <++- 因为|2||1||(2)(1)|3t t t t ++-≥+--=,当且仅当(2)(1)0t t +-≤时等号成立 所以()min |2||1|3t t ++-=因为0m >时,()2f x x m x m =--+=2,23,22,m x m x m x x m x m x m ⎧+<-⎪⎪⎪--≤≤⎨⎪-->⎪⎪⎩,函数()f x 单调递增区间为(,)2m -∞-,单调递减区间为(,)2m-+∞ ∴当2m x =-时,()max 322m mf x f ⎛⎫=-= ⎪⎝⎭332m∴<,又0m >,解得:02m << ∴实数m 的取值范围()0,24.选修4-5不等式选讲已知关于x 的不等式20x m x -+≤的解集为{|2}x x ≤-,其中0m >. (1)求m 的值;(2)若正数a ,b ,c 满足a b c m ++=,求证:2222b c aa b c++≥.【答案】(1)2m =(2)见证明 【解析】(1)由题意知:20x m x -+≤即20x m x m x ≥⎧⎨-+≤⎩或20x mm x x ≤⎧⎨-+≤⎩化简得:3x mm x ≥⎧⎪⎨≤⎪⎩或x m x m ≤⎧⎨≤-⎩ 0m >Q ∴不等式组的解集为{}x x m ≤- 2m ∴-=-,解得:2m =(2)由(1)可知,2a b c ++=由基本不等式有:22b a b a +≥,22c b c b+≥,22a c a c +≥三式相加可得:222222b c a a b c b c a a b c +++++≥++222b c a a b c a b c ∴++≥++,即:2222b c a a b c++≥ 5.选修4-5:不等式选讲 已知函数()13f x x x a =+++ (1)当1a =-时,解不等式()2f x ≥;(2)若存在0x 满足00()211f x x ++<,求实数a 的取值范围. 【答案】(1) 1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或 (2) 24a << 【解析】(1)当1a =-时,()|1||31|f x x x =++-,当13x ≥时,不等式等价于1312x x ++-≥,解得12x ≥,12x ∴≥; 当113x -<<时,不等式等价于1312x x +-+≥,解得0x ≤,10x ∴-<≤;当1x ≤-时,不等式等价于1312x x ---+≥,解得12x ≤-,1x -∴≤.综上所述,原不等式的解集为1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或. (2)由()00211f x x ++<,得003131x x a +++<,而()()000000313333333|3|x x a x x a x x a a +++=+++≥+-+=-, (当且仅当()()003330x x a ++≤时等号成立) 由题可知min (()2|1|)1f x x ++<,即31a -<, 解得实数a 的取值范围是24a <<. 6.已知函数()|2|f x ax =-.(Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围.【答案】(I )(,1][1,)-∞-+∞U ;(II )[1,2]- 【解析】(I )当4a =时,原不等式即|42||42|8x x -++≥,即|21||21|4x x -++≥.当12x ≥时,21214x x -++≥,解得1x ≥,∴1x ≥; 当1122x -≤≤时,12214x x -++≥,无解;当12x ≤-时,12214x x ---≥,解得1x ≤-,∴1x ≤-;综上,原不等式的解集为(,1][1,)-∞-+∞U(II )由()|3|3f x x x +-≤+得|2||3|3ax x x -+-≤+(*) 当[2,3]x ∈时,(*)等价于|2|33|2|2ax x x ax x -+-≤+⇔-≤即22a x -≤,所以2222a x x -+≤≤+恒成立,所以813a -≤≤ 当(3,4]x ∈时,(*)等价于|2|33|2|6ax x x ax -+-≤+⇔-≤ 即48ax -≤≤,所以48a x x-≤≤恒成立,所以12a -≤≤ 综上,a 的取值范围是[1,2]-7.已知函数()21f x x x a =-++,()2g x x =+. (1)当1a =-时,求不等式()()f x g x <的解集;(2)设12a >-,且当1,2x a ⎡⎫∈-⎪⎢⎣⎭,()()f x g x ≤,求a 的取值范围.【答案】(1)()0,2;(2)11,23⎛⎤- ⎥⎝⎦ 【解析】(1)当1a =-时,不等式()()f x g x <化为:21120x x x -+---<当12x ≤时,不等式化为12120x x x -+---<,解得:102x <≤当112x <≤时,不等式化为21120x x x -+---<,解得:112x <≤当1x >时,不等式化为21120x x x -+---<,解得:12x << 综上,原不等式的解集为()0,2 (2)由12a x -≤<,得221a x -≤<,21210a x --≤-< 又102x a a ≤+<+ 则()()211f x x x a x a =--++=-++∴不等式()()f x g x ≤化为:12x a x -++≤+得21a x ≤+对1,2x a ⎡⎫∈-⎪⎢⎣⎭都成立 21a a ∴≤-+,解得:13a ≤又12a >-,故a 的取值范围是11,23⎛⎤- ⎥⎝⎦8.已知函数()|2|f x x =-.(Ⅰ)求不等式()|1|f x x x <++的解集;(Ⅱ)若函数5log [(3)()3]y f x f x a =++-的定义域为R ,求实数a 的取值范围.【答案】(I )1,3⎛⎫+∞ ⎪⎝⎭(II )(,1)-∞【解析】解:(I )由已知不等式()|1|f x x x <++,得|2||1|x x x -<++, 当2x ≥时,不等式为21x x x -<++,解得3x >-,所以2x ≥; 当12x -<<时,不等式为21x x x -<++,解得13x >,所以123x <<; 当1x ≤-时,不等式为21x x x -<--,解得3x >,此时无解. 综上:不等式的解集为1,3⎛⎫+∞ ⎪⎝⎭.(II )若5log [(3)()3]y f x f x a =++-的定义域为R ,则(3)()30f x f x a ++->恒成立. ∵|1||2|3|12|333x x a x x a a ++--≥+-+-=-,当且仅当[1,2]x ∈-时取等号. ∴330a ->,即1a <.所以实数a 的取值范围是(,1)-∞. 9.已知函数()123f x x x =-+-. (Ⅰ)解关于x 的不等式()4f x ≤;(Ⅱ)若()20f x m m -->恒成立,求实数m 的取值范围.【答案】(Ⅰ)111,3⎡⎤⎢⎥⎣⎦;(Ⅱ)()2,1-.【解析】解:(I )当1x ≤时,不等式为:()1234x x -+-≤,解得1x ≥,故1x =. 当13x <<时,不等式为:()1234x x -+-≤,解得1x ≥,故13x <<1<x <3, 当3x ≥时,不等式为:()1234x x -+-≤,解得113x ≤,故1133x ≤≤. 综上,不等式()4f x ≤的解集为111,3⎡⎤⎢⎥⎣⎦.(II )由()20f x m m -->恒成立可得()2m m f x +<恒成立.又()37,35,1337,1x x f x x x x x -≥⎧⎪=-+<<⎨⎪-+≤⎩,故()f x 在(],1-∞上单调递减,在()1,3上单调递减,在[)3,+∞上单调递增,∴()f x 的最小值为()32f =. ∴22m m +<,解得21m -<<. 即m 的最值范围是()2,1-.10.已知函数()211f x x x =-++. (Ⅰ)解不等式()3f x ≥;(Ⅱ)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且232a b c m ++=,求222a b c ++的最小值. 【答案】(Ⅰ){}11x x x ≤-≥或;(Ⅱ)914. 【解析】(Ⅰ)由题意, 3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩,所以()3f x ≥等价于133x x ≤-⎧⎨-≥⎩或11223x x ⎧-<<⎪⎨⎪-≥⎩或1233x x ⎧≥⎪⎨⎪≥⎩.解得:1x ≤-或1x ≥,所以不等式的解集为{}11x x x ≤-≥或; (Ⅱ)由(1)可知,当12x =时, ()f x 取得最小值32,所以32m =,即233a b c ++=, 由柯西不等式得2222222()(123)(23)9a b c a b c ++++≥++=, 整理得222914a b c ++≥, 当且仅当123a b c ==时, 即369,,141414a b c ===时等号成立.所以222a b c ++的最小值为914.11.已知函数()12f x x a x =+++. (Ⅰ)求1a =时,()3f x ≤的解集;(Ⅱ)若()f x 有最小值,求a 的取值范围,并写出相应的最小值. 【答案】(Ⅰ)[3,0]-; (Ⅱ)见解析. 【解析】(Ⅰ)当1a =时,232()12121231x x f x x x x x x --≤-⎧⎪=+++=-<<-⎨⎪+≥-⎩∵()3f x ≤当2x -≤时()233f x x =--≤解得32x -≤≤-当21x -<<-时()13f x =≤恒成立当1x -≥时()233f x x =+≤解得10x -≤≤ 综上可得解集[3,0]-.(Ⅱ)(1)212()12(1)2121(1)211a x a x f x x a x a x a x a x a x -+--≤-⎧⎪=+++=-+--<<-⎨⎪+++≥-⎩当(1)0a -+>,即1a <-时,()f x 无最小值; 当(1)0a -+=,即1a =-时,()f x 有最小值1-;当(1)0a -+<且10a -≤,即11a -<≤时, min ()(1)f x f a =-= 当(1)0a -+<且10a ->,即1a >时, min ()(2)1f x f =-= 综上:当1a <-时,()f x 无最小值; 当1a =-时,()f x 有最小值1-;当11a -<≤时, min ()(1)f x f a =-= ; 当1a >时, min ()(2)1f x f =-=; 12.选修4-5:不等式选讲 已知函数()|23||1|f x x x =--+. (1)求不等式()6f x ≤的解集;(2)设集合M 满足:当且仅当x M ∈时,()|32|f x x =-,若,a b M ∈,求证:228223a b a b -++≤. 【答案】(1) {}210x x -≤≤;(2)见解析. 【解析】(1)()4,1323132,1234,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=-+-≤≤⎨⎪⎪->⎪⎩当1x <- 时,46x -+≤ ,得2x -≥ ,故21x -≤<-; 当312x -≤≤时,326x -+≤ ,得43x ≥- ,故312x -≤<;当32x >时,46x -≤ ,得10x ≤ ,故3102x <≤; 综上,不等式()6f x ≤的解集为{}210x x -≤≤(2)由绝对值不等式的性质可知()231(23)(1)32f x x x x x x =--+≤-++=- 等价于23(1)32x x x -≤-++-,当且仅当(23)(1)0x x -+≤,即213x -≤≤时等号成立,故21,3M ⎡⎤=-⎢⎥⎣⎦所以221,133a b -≤≤-≤≤, 所以222510(1),4(1)99a b ≤-≤-≤--≤-, 即228(1)(1)3a b ---≤.13.[选修4—5:不等式选讲] 已知函数()31f x x m x m =---- (1)若1m =,求不等式()1f x <的解集.(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围. 【答案】(1)(,3)-∞;(2)1123m -≤≤ 【解析】(1)()141f x x x =---<,所以11441(4)11(4)1141x x x x x x x x x <≤≤>⎧⎧⎧⎨⎨⎨---<---<--+<⎩⎩⎩或或解之得不等式()1f x <的解集为(,3)-∞. (2)当131,2m m m +>>-时,由题得2必须在3m+1的右边或者与3m+1重合, 所以1231,3m m ≥+∴≤,所以1123m -<≤,当131,2m m m +==-时,不等式恒成立,当131,2m m m +<<-时,由题得2必须在3m+1的左边或者与3m+1重合,由题得1231,3m m ≤+≥,所以m 没有解.综上,1123m -≤≤. 14.已知()21f x x x =+-. (1)证明()1f x x +≥; (2)若,,a b c +∈R ,记33311134abc a b c +++的最小值为m ,解关于x 的不等式()f x m <. 【答案】(1)见证明;(2) 2433x x ⎧⎫-<<⎨⎬⎩⎭【解析】(1)()2212211f x x x x x x +=+-≥-+=.当且仅当()2x 2x 10-≤,等号成立(2)∵333333311131333333234444abc abc abc abc m a b c a b c abc abc +++≥+=+≥⋅==,当且仅当a=b=c 等号成立由不等式()3f x <即()213f x x x =+-<.由()31,01211,02131,2x x f x x x x x x x ⎧⎪-+≤⎪⎪=+-=-<<⎨⎪⎪-≥⎪⎩得:不等式()3f x <的解集为2433x x ⎧⎫-<<⎨⎬⎩⎭.15.选修4—5:不等式选讲已知函数()11f x x mx =++-,m R ∈。
2012年-2021年(10年)全国高考数学真题分类汇编(理科) 不等式选讲(精解精析版)

2012-2021十年全国高考数学真题分类汇编(理科)不等式选讲(精解精析版)1.(2021年高考全国乙卷理科)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞ .(2)3,2⎛⎫-+∞ ⎪⎝⎭.解析:(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,故4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞ .(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,故3a a +>-,所以3a a +>-或3a a +<,解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.【点睛】解绝对值不等式的方法有零点分段法、几何意义法.2.(2020年高考数学课标Ⅰ卷理科)已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.【答案】(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭.【解析】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.3.(2020年高考数学课标Ⅱ卷理科)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .解析:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.4.(2020年高考数学课标Ⅲ卷理科)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c 【答案】(1)证明见解析(2)证明见解析.解析:(1)2222()2220a b c a b c ab ac bc ++=+++++= ,()22212ab bc ca a b c ∴++=-++.1,,,abc a b c =∴ 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.5.(2019年高考数学课标Ⅲ卷理科)设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a -≤或1a -≥.【答案】【答案】(1)43;(2)见详解.【官方解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤-++++⎣⎦故由已知得232(1)(1)143()x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以232(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦故由已知得2222(2)(2)(1)()3a x y z a +-+-+-,当且仅当4122,,333aa a x y z ---===时等号成立.因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +由题设知2(2)133a +,解得3a -≤或1a -≥.【解法2】柯西不等式法(1)22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++-++++=+++=≥,故2224(1)(1)(1)3x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43.(2)2221(2)(1)()3x y z a -+-+-≥,所以222222[(2)(1)()](111)1x y z a -+-+-++≥.当且仅当4122,,333aa a x y z ---===时等号成立.22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立.所以2(2)1a +≥成立,所以有3a -≤或1a -≥.【点评】本题两问思路一样,既可用基本不等式,也可用柯西不等式求解,属于中档题型.6.(2019年高考数学课标全国Ⅱ卷理科)已知函数()()2f x x a x x x a =-+--.()1当1a =时,求不等式()0f x <的解集;()2当(),1x ∈-∞时,()0f x <,求a 的取值范围.【答案】()1(),1-∞;()2[)1,+∞【官方解析】()1当1a =时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞.()2因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----所以,a 的取值范围是[1,)+∞.【分析】()1根据1a =,将原不等式化为()1210x x x x -+--<,分别讨论1x <,12x <≤,2x ≥三种情况,即可求出结果;()2分别讨论1a ≥和1a <两种情况,即可得出结果.【解析】()1当1a =时,原不等式可化为()1210x x x x -+--<;当1x <时,原不等式可化为,即()210x ->,显然成立,此时解集为(),1-∞;当12x <≤时,原不等式可化为()()()1210x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为()()()1210x x x x -+--<,即()210x -<,显然不成立;此时解集为空集;综上,原不等式的解集为(),1-∞;()2当1a ≥时,因为(),1x ∈-∞,所以由()0f x <可得()()()20a x x x x a -+--<,即()()10x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,()()()2,1()21,x a a x f x x a x x a-<⎧⎪=⎨--<⎪⎩≤,因为1a x <≤时,()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[)1,+∞.【点评】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.7.(2019年高考数学课标全国Ⅰ卷理科)已知a ,b ,c 为正数,且满足1abc =.证明:(1)222111a b c a b c++++≤;(2)333()()()24a b b c c a +++++≥.【答案】解:(1)因为2222222,2,2a b ab b c bc c a ac +++≥≥≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++++==++≥.所以222111a b c a b c++++≤.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥3(+)(+)(+)a b b c a c=324⨯⨯⨯=≥所以333()()()24a b b c c a +++++≥.8.(2018年高考数学课标Ⅲ卷(理))【选修4—5:不等式选讲】(10分)设函数()211f x x x =++-.(1)画出()y f x =的图象;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值.【答案】【官方解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[)0,+∞成立,因此a b +的最小值为5.【民间解析】(1)()211f x x x =++-3,112,12132x x x x x x ⎧⎪>⎪⎪=+-≤≤⎨⎪⎪-<-⎪⎩,可作出函数()f x的图象如下图(2)依题意可知()f x ax b ≤+在[)1,+∞上恒成立,在[)0,1上也恒成立当1x ≥时,()3f x x ax b =≤+恒成立即()30a x b -+≥在[)1,+∞上恒成立所以30a -≥,且30a b -+≥,此时3a ≥,3a b +≥当01x ≤<时,()2f x x ax b =+≤+即()120a x b -+-≥恒成立结合3a ≥,可知20b -≥即2b ≥综上可知32a b ≥⎧⎨≥⎩,所以当3a =,2b =时,a b +取得最小值5.9.(2018年高考数学课标Ⅱ卷(理))[选修4-5:不等式选讲](10分)设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案】解析:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +-⎧⎪=-<⎨⎪-+>⎩≤ ≤可得()0≥f x 的解集为{}|23≤≤x x -.(2)()1f x ≤等价于|||2|4≥x a x ++-.而|||2||2|≥x a x a ++-+,且当2x =时等号成立,故()1f x ≤等价于|2|4≥a +.由|2|4≥a +可得6≤a -或2≥a ,所以a 的取值范围是(][),62,-∞-+∞ .10.(2018年高考数学课标卷Ⅰ(理))[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【答案】解析:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤.综上,a 的取值范围为(0,2].11.(2017年高考数学新课标Ⅰ卷理科)[选修4—5:不等式选讲]已知函数()24f x x ax =-++,()11g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围2017年高考数学新课标Ⅰ卷理科【答案】(1)112x x ⎧-+⎪-≤≤⎨⎬⎪⎪⎩⎭;(2)[]1,1-.【分析】(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[]1,1x ∈-时,()2f x ≥,则()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤,所以a的取值范围为[]1,1-.【解析】(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--<①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤所以不等式()()f x g x ≥的解集为11712x x ⎧-+⎪-≤≤⎨⎪⎪⎩⎭(2)当[]1,1x ∈-时,()2g x =所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时,()2f x ≥又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()()1212f f -≥⎧⎪⎨≥⎪⎩,得11a -≤≤.所以a 的取值范围为[]1,1-.【考点】绝对值不等式的解法,恒成立问题【点评】零点分段法是解答绝对值不等式问题的常用方法,也可以将绝对值函数转化为分段函数,借助图像解题.12.(2017年高考数学课标Ⅲ卷理科)[选修4—5:不等式选讲](10分)已知函数()12f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【答案】(Ⅰ){}1x x ≥;(Ⅱ)5-,4⎛⎤∞ ⎥⎝⎦【解析】(1)因为()3, 11221, 123, 2x f x x x x x x -<-⎧⎪=+--=-≤≤⎨⎪>⎩所以不等式()1f x ≥等价于131x <-⎧⎨-≥⎩或12211x x -≤≤⎧⎨-≥⎩或231x >⎧⎨≥⎩由131x <-⎧⎨-≥⎩⇒x 无解;由1222x x -≤≤⎧⎨≥⎩12x ⇒≤≤;由231x >⎧⎨≥⎩2x ⇒≥综上可得不等式()1f x ≥的解集为[)1,+∞.(2)解法一:先求不等式()2f x x x m ≥-+的解集为空集时m 的取值范围不等式()2f x x x m ≥-+的解集为空集等价于不等式()2m f x x x >-+恒成立记()()2F x f x x x =-+2223, 131, 123, 2x x x x x x x x x ⎧-+-<-⎪-+-≤≤⎨⎪-++>⎩,则()maxm F x >⎡⎤⎣⎦当1x <-时,()()2211131524F x x x x F ⎛⎫=-+-=---<-=- ⎪⎝⎭当12x -≤≤时,()223535312424F x x x x F ⎛⎫⎛⎫=-+-=--+≤=⎪ ⎪⎝⎭⎝⎭当2x >时,()()2211332124F x x x x F ⎛⎫=-++=--+<= ⎪⎝⎭所以()max 3524F x F ⎛⎫==⎡⎤⎪⎣⎦⎝⎭所以不等式()2f x x x m ≥-+的解集为空集时,54m >所以不等式()2f x x x m ≥-+的解集非空时,m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.解法二:原式等价于存在x R ∈,使2()f x x x m -+≥成立,即2max [()]f x x x m-+≥设2()()g x f x x x=-+由(1)知2223,1()31,123,2x x x g x x x x x x x ⎧-+-≤-⎪=-+--<<⎨⎪-++≥⎩当1x ≤-时,2()3g x x x =-+-,其开口向下,对称轴112x =>-所以()()11135g x g ≤-=---=-当12x -<<时,()231g x x x =-+-,其开口向下,对称轴为32x =所以()399512424g x g ⎛⎫≤=-+-=⎪⎝⎭当2x ≥时,()23g x x x =-++,其开口向下,对称轴为12x =所以()()24231g x g ≤=-++=综上()max 54g x =⎡⎤⎣⎦所以m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.【考点】绝对值不等式的解法【点评】绝对值不等式的解法有三种:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.13.(2017年高考数学课标Ⅱ卷理科)[选修4-5:不等式选讲](10分)已知330,0,2a b a b >>+=,证明:(1)33()()4a b a b ++≥;(2)2a b +≤.【答案】【命题意图】不等式证明,柯西不等式【基本解法】(1)解法一:由柯西不等式得:55222222332()()))()4a b a b a b a b⎡⎤⎡⎤++=+⋅+≥+=⎣⎦⎣⎦解法二:5566553325533()()()2a b a b a b ab a b a b ab a b a b++=+++=+++-33233332()2()4a b a b a b ≥++-=+=解法三:()()()()()2555533553342a b a b a b a b a bab a b a b ++-=++-+=+-又0,0a b >>,所以()255332220ab a b a b ab a b +-=-≥.当a b =时,等号成立.所以,()()5540a b a b++-≥,即55()()4a b ab ++≥.(2)解法一:由332a b +=及2()4a b ab +≤得2222()()()()3a b a b ab a b a b ab ⎡⎤=+⋅+-=+⋅+-⎣⎦2233()()()4()4a b a b a b a b ⎡⎤+≥+⋅+-⎢⎥⎣⎦+=所以2a b +≤.解法二:(反证法)假设2a b +>,则2a b >-,两边同时立方得:3323(2)8126a b b b b >-=-+-,即3328126a b b b +>-+,因为332a b +=,所以261260b b -+<,即26(1)0b -<,矛盾,所以假设不成立,即2a b +≤.解法三:因为332a b +=,所以:()()()3333322333843344a b a b a baa b ab b a b +-=+-+=+++--()()()()222333a b a b a b a b a b =-+-=-+-.又0,0a b >>,所以:()()230a b a b -+-≤。
十年高考真题分类汇编 数学 专题 导数与定积分

8.(2016·四川·理 T9)设直线 l 1,l 2 分别是函数 f(x)={lnx ,x > 1十年高考真题分类汇编(2010—2019)数学专题 04 导数与定积分1.(2019·全国 2·T 文 T10)曲线 y=2sin x+cos x 在点(π,-1)处的切线方程为()A.x-y-π-1=0B.2x-y-2π-1=0C.2x+y-2π+1=0D.x+y-π+1=02.(2019·全国 3·T 理 T6 文 T7)已知曲线 y=ae x +xln x 在点(1,ae)处的切线方程为 y=2x+b,则 ()A.a=e,b=-1B.a=e,b=1C.a=e -1,b=1D.a=e -1,b=-13.(2018·全国 1·理 T5 文 T6)设函数 f(x)=x 3+(a-1)x 2+ax,若 f(x)为奇函数,则曲线 y=f(x)在点(0,0)处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x4.(2017·全国 2·理 T11)若 x=-2 是函数 f(x)=(x 2+ax-1)e x-1 的极值点,则 f(x)的极小值为()A.-1B.-2e -3C.5e -3D.15.(2017·浙江·T7)函数 y=f(x)的导函数 y=f'(x)的图象如图所示,则函数 y=f(x)的图象可能是 ()6.(2016·山东·理 T10)若函数 y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称 y=f(x)具有 T 性质.下列函数中具有 T 性质的是()A.y=sin xB.y=ln xC.y=e xD.y=x 37.(2016·全国 1·文 T12)若函数 f(x)=x-1sin 2x+asin x 在(-∞,+∞)单调递增,则 a 的取值范围是( )3A.[-1,1]C.[- 1 , 1]3 3B.[-1, 1]3D.[-1,- 1]3-lnx ,0 < x < 1, 图象上点 P 1,P 2 处的切线,l 1 与 l 2 垂直相交于点 P,且 l 1,l 2 分别与 y 轴相交于点 A,B,则△PAB 的面积的取值范围是()A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)m 29.(2015·全国 2·理 T12)设函数 f'(x)是奇函数 f(x)(x∈R)的导函数,f(-1)=0,当 x>0 时,xf'(x)-f(x)<0,则使得 f(x)>0 成立的 x 的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)10.(2015·全国 1·理 T12)设函数 f(x)=e x (2x-1)-ax+a,其中 a<1,若存在唯一的整数 x 0 使得 f(x 0)<0,则 a的取值范围是( )A.[- 3 ,1)2eC.[ 3 , 3)2e 4B.[- 3 , 3)2e 4D.[ 3 ,1)2e11.(2014·全国 1·理 T11 文 T12)已知函数 f(x)=ax 3-3x 2+1,若 f(x)存在唯一的零点 x 0,且 x 0>0,则 a 的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)12.(2014·江西,理 8)若 f(x)=x 2+2∫1 f(x)dx,则∫1 f(x)dx=()A.-1B.-13C.13D.113.(2014·全国 2·理 T8)设曲线 y=ax-ln(x+1)在点(0,0)处的切线方程为 y=2x,则 a=()A.0B.1C.2D.314.(2014·全国 2·文 T11)若函数 f(x)=kx-ln x 在区间(1,+∞)单调递增,则 k 的取值范围是()A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)15.(2014·全国 2·理 T12)设函数 f(x)=√3sin πx .若存在 f(x)的极值点 x 0 满足x 0+[f(x 0)]2<m 2,则 m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)16.(2014·湖北·理 T6)若函数 f(x),g(x)满足∫1f(x)g(x)dx=0,则称 f(x),g(x)为区间[-1,1]上的一组-1正交函数.给出三组函数:①f(x)=sin 1x,g(x)=cos 1x;22②f(x)=x+1,g(x)=x -1;3B.2C.83D.16√25 B.4③f(x)=x,g(x)=x 2.其中为区间[-1,1]上的正交函数的组数是()A.0B.1C.2D.317.(2014·山东,理 6)直线 y=4x 与曲线 y=x 3 在第一象限内围成的封闭图形的面积为()A.2√2B.4√2C.2D.418.(2013·北京,理 7)直线 l 过抛物线 C:x 2=4y 的焦点且与 y 轴垂直,则 l 与 C所围成的图形的面积等于() A.4319.(2013·全国 2·理 T10 文 T11)已知函数 f(x)=x 3+ax 2+bx+c,下列结论中错误的是()A.∃x 0∈R,f(x 0)=0B.函数 y=f(x)的图象是中心对称图形C.若 x 0 是 f(x)的极小值点,则 f(x)在区间(-∞,x 0)单调递减D.若 x 0 是 f(x)的极值点,则 f'(x 0)=020.(2013·湖北,理 7)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度 v(t)=7-3t+ 25 (t 的单1+t位:s,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是()A.1+25ln 5C.4+25ln 5B.8+25ln 113D.4+50ln 221.(2012·湖北·理 T3)已知二次函数 y=f(x)的图象如图所示,则它与 x 轴所围图形的面积为()A.2π3C.32D.π222.(2011·全国,理 9)由曲线 y=√x ,直线 y=x-2 及 y 轴所围成的图形的面积为()A.10B.4C.16D.63323.(2010·全国,理 3)曲线 y= x 在点(-1,-1)处的切线方程为()x+2A.y=2x+1B.y=2x-1C.y=-2x-3D.y=-2x-224.(2010·全国·文 T4)曲线 y=x 3-2x+1 在点(1,0)处的切线方程为()A.y=x-1B.y=-x+1C.y=2x-2D.y=-2x+225.(2019·全国1·T13)曲线y=3(x2+x)e x在点(0,0)处的切线方程为.26.(2019·天津·文T11)曲线y=cos x-x在点(0,1)处的切线方程为.227.(2019·江苏,11)在平面直角坐标系xOy中,点A在曲线y=ln x上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是.28.(2018·天津·文T10)已知函数f(x)=e x ln x,f'(x)为f(x)的导函数,则f'(1)的值为.29.(2018·全国2·理T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为.30.(2018·全国2·文T13)曲线y=2ln x在点(1,0)处的切线方程为.31.(2018·全国3,理14)直线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.32.(2018·江苏·T11)若函数f(x)=2x3-ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为.33.(2017·全国1,文14)曲线y=x2+在点(1,2)处的切线方程为.34.(2017·天津,文10)已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为.35.(2017·山东·理T15)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2-x②f(x)=3-x③f(x)=x3④f(x)=x2+236.(2017·江苏·T11)已知函数f(x)=x3-2x+e x-1,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数ae x的取值范围是.37.(2016·全国2·理T16)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=.38.(2015·全国1·文T14)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.39.(2015·全国2·文T16)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.40.(2015·陕西·理T15)设曲线y=e x在点(0,1)处的切线与曲线y=1(x>0)上点P处的切线垂直,则P的坐x标为.41.(2015·天津,理11)曲线y=x2与直线y=x所围成的封闭图形的面积为______________.42.(2015·陕西·理T16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大, 42时,证明f(x)+g(x)2-x≥0;(3)设xn 为函数u(x)=f(x)-1在区间2nπ+π,2nπ+π内的零点,其中n∈N,证明2nπ+π-xn<sinx0-cosx0流量的比值为.43.(2012·上海·理T13)已知函数y=f(x)的图象是折线段ABC,其中A(0,0),B(1,5),C(1,0).函数2y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为________________.44.(2012·全国·文T13)曲线y=x(3ln x+1)在点(1,1)处的切线方程为.45.(2012·山东·理T15)设a>0.若曲线y=√x与直线x=a,y=0所围成封闭图形的面积为a2,则a=.46.(2019·全国3·文T20)已知函数f(x)=2x3-ax2+2.(1)讨论f(x)的单调性;(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M-m的取值范围.47.(2019·浙江·T22)已知实数a≠0,设函数f(x)=aln x+√1+x,x>0.(1)当a=-3时,求函数f(x)的单调区间;4(2)对任意x∈1,+∞均有f(x)≤√x,求a的取值范围.e22a注:e=2.71828…为自然对数的底数.48.(2019·全国2,文21,12分,难度)已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.49.(2019·江苏,19,16分,难度)设函数f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f'(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f'(x)的零点均在集合{-3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤4.2750.(2019·全国3·理T20)已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.51.(2019·天津·理T20)设函数f(x)=e x cos x,g(x)为f(x)的导函数.(1)求f(x)的单调区间;(2)当x∈πππ42252.(2019·全国1·理T20)已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明:e-2nπ.(3)证明当 a≥e e 时,存在直线 l,使 l 是曲线 y=f(x)的切线,也是曲线 y=g(x)的切线.(1)f'(x)在区间(-1,π)存在唯一极大值点;2(2)f(x)有且仅有 2 个零点.53.(2019·全国 1·文 T20)已知函数 f(x)=2sin x-xcos x-x,f'(x)为 f(x)的导数.(1)证明:f'(x)在区间(0,π)存在唯一零点;(2)若 x∈[0,π]时,f(x)≥ax,求 a 的取值范围.54.(2019·全国 2·理 T20)已知函数 f(x)=ln x-x+1.x -1(1)讨论 f(x)的单调性,并证明 f(x)有且仅有两个零点;(2)设 x 0 是 f(x)的一个零点,证明曲线 y=ln x 在点 A(x 0,ln x 0)处的切线也是曲线 y=e x 的切线.55.(2019·天津·文 T20)设函数 f(x)=ln x-a(x-1)e x ,其中 a∈R.(1)若 a≤0,讨论 f(x)的单调性;(2)若 0<a<1,e①证明 f(x)恰有两个零点;②设 x 0 为 f(x)的极值点,x 1 为 f(x)的零点,且 x 1>x 0,证明 3x 0-x 1>2.56.(2018·全国 2·理 T21)已知函数 f(x)=e x -ax 2.(1)若 a=1,证明:当 x≥0 时,f(x)≥1;(2)若 f(x)在(0,+∞)只有一个零点,求 a.57.(2018·全国 2·文 T21 度)已知函数 f(x)=1x 3-a(x 2+x+1).3(1)若 a=3,求 f(x)的单调区间;(2)证明:f(x)只有一个零点.58.(2018·天津·理 T20)已知函数 f(x)=a x ,g(x)=log a x,其中 a>1.(1)求函数 h(x)=f(x)-xln a 的单调区间;(2)若曲线 y=f(x)在点(x 1,f(x 1))处的切线与曲线 y=g(x)在点(x 2,g(x 2))处的切线平行,证明 x 1+g(x 2)=-2lnlna ;159.(2018·天津·文 T20)设函数 f(x)=(x-t 1)(x-t 2)(x-t 3),其中 t 1,t 2,t 3∈R,且 t 1,t 2,t 3 是公差为 d 的等差数列.(1)若 t 2=0,d=1,求曲线 y=f(x)在点(0,f(0))处的切线方程;(2)若 d=3,求 f(x)的极值;(3)已知函数 f(x)=-x 2be +a,g(x)= .对任意 a>0,判断是否存在 b>0,使函数 f(x)与 g(x)在区间(0,+∞)内存在(2)若 f(x)存在两个极值点 x 1,x 2,证明:f (x 1)-f (x 2)<a-2. 65.(2018·全国 3,文 21,12 分,难度)已知函数 f(x)=ax +x -1.(3)若曲线 y=f(x)与直线 y=-(x-t 2)-6 √3有三个互异的公共点,求 d 的取值范围.60.(2018·北京·理 T18 文 T19)设函数 f(x)=[ax 2-(4a+1)x+4a+3]e x .(1)若曲线 y=f(x)在点(1,f(1))处的切线与 x 轴平行,求 a;(2)若 f(x)在 x=2 处取得极小值,求 a 的取值范围.61.(2018·江苏·T19)记 f'(x),g'(x)分别为函数 f(x),g(x)的导函数.若存在 x 0∈R,满足 f(x 0)=g(x 0),且f'(x 0)=g'(x 0),则称 x 0 为函数 f(x)与 g(x)的一个“S 点”. (1)证明:函数 f(x)=x 与 g(x)=x 2+2x-2 不存在“S 点”;(2)若函数 f(x)=ax 2-1 与 g(x)=ln x 存在“S 点”,求实数 a 的值;xx“S 点”,并说明理由.62.(2018·全国 1·理 T21)已知函数 f(x)=1-x+aln x.x(1)讨论 f(x)的单调性;x 1-x 263.(2018·全国 1·文 T21)已知函数 f(x)=ae x -ln x-1.(1)设 x=2 是 f(x)的极值点,求 a,并求 f(x)的单调区间;(2)证明:当 a≥ 时,f(x)≥0.64.(2018·全国 3·理 T21)已知函数 f(x)=(2+x+ax 2)ln(1+x)-2x.(1)若 a=0,证明:当-1<x<0 时,f(x)<0;当 x>0 时,f(x)>0;(2)若 x=0 是 f(x)的极大值点,求 a.2 e x(1)求曲线 y=f(x)在点(0,-1)处的切线方程;(2)证明:当 a≥1 时,f(x)+e≥0.66.(2018·浙江·T22)已知函数 f(x)=√x -ln x.(1)若 f(x)在 x=x 1,x 2(x 1≠x 2)处导数相等,证明:f(x 1)+f(x 2)>8-8ln 2;(2)若 a≤3-4ln 2,证明:对于任意 k>0,直线 y=kx+a 与曲线 y=f(x)有唯一公共点.67.(2018·江苏·T17)某农场有一块农田,如图所示,它的边界由圆 O 的一段圆弧 MPN(P 为此圆弧的中点)和线段 MN 构成.已知圆 O 的半径为 40 米,点 P 到 MN 的距离为 50 米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形 ABCD,大棚Ⅱ内的地块形状为△CDP,要求 A,B 均在线段 MN 上,C,D 均在圆弧上.设OC 与 MN 所成的角为 θ .2 2n11q q1(1)用 θ 分别表示矩形 ABCD 和△CDP 的面积,并确定 sin θ 的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为 4∶3.求当 θ 为何值时,能使甲、乙两种蔬菜的年总产值最大.68.(2017·全国 3·理 T21)已知函数 f(x)=x-1-aln x.(1)若 f(x)≥0,求 a 的值;(2)设 m 为整数,且对于任意正整数 n,(1 + 1) (1 + 2 ) … (1 + 2 )<m,求 m 的最小值.69.(2017·全国 2·文 T21)设函数 f(x)=(1-x 2)e x .(1)讨论 f(x)的单调性;(2)当 x≥0 时,f(x)≤ax+1,求 a 的取值范围.70.(2017·天津·文 T19)设 a,b∈R,|a|≤1.已知函数 f(x)=x 3-6x 2-3a(a-4)x+b,g(x)=e x f(x).(1)求 f(x)的单调区间;(2)已知函数 y=g(x)和 y=e x 的图象在公共点(x 0,y 0)处有相同的切线,①求证:f(x)在 x=x 0 处的导数等于 0;②若关于 x 的不等式 g(x)≤e x 在区间[x 0-1,x 0+1]上恒成立,求 b 的取值范围. 71.(2017·全国 3·文 T21)已知函数 f(x)=ln x+ax 2+(2a+1)x.(1)讨论 f(x)的单调性;(2)当 a<0 时,证明 f(x)≤- 3 -2.4a72.(2017·天津·理 T20)设 a∈Z,已知定义在 R 上的函数 f(x)=2x 4+3x 3-3x 2-6x+a 在区间(1,2)内有一个零点x 0,g(x)为 f(x)的导函数.(1)求 g(x)的单调区间;(2)设 m∈[1,x 0)∪(x 0,2],函数 h(x)=g(x)(m-x 0)-f(m),求证:h(m)h(x 0)<0;(3)求证:存在大于 0 的常数 A,使得对于任意的正整数 p,q,且p ∈[1,x 0)∪(x 0,2],满足|p -x 0| ≥ Aq 4.73.(2017·全国 1·理 T21)已知函数 f(x)=ae 2x +(a-2)e x -x.(1)讨论 f(x)的单调性;(2)若 f(x)有两个零点,求 a 的取值范围.(2)证明:当 a∈[0,1)时,函数 g(x)=e -ax -a (x>0)有最小值.设 g(x)的最小值为 h(a),求函数 h(a)的值域.(3)设 a>0,函数 g(x)=|f(x)|,求证:g(x)在区间[0,2]上的最大值不小于 .1... 74.(2017·全国 1·文 T21)已知函数 f(x)=e x (e x -a)-a 2x.(1)讨论 f(x)的单调性;(2)若 f(x)≥0,求 a 的取值范围.75.(2017·全国 2·理 T21)已知函数 f(x)=ax 2-ax-xln x,且 f(x)≥0.(1)求 a;(2)证明:f(x)存在唯一的极大值点 x 0,且 e -2<f(x 0)<2-2.76.(2017·山东·理 T20)已知函数 f(x)=x 2+2cos x,g(x)=e x (cos x-sin x+2x-2),其中 e≈2.718 28…是自然对数的底数.(1)求曲线 y=f(x)在点(π,f(π))处的切线方程.(2)令 h(x)=g(x)-af(x)(a∈R),讨论 h(x)的单调性并判断有无极值,有极值时求出极值.77.(2017·江苏·T20)已知函数 f(x)=x 3+ax 2+bx+1(a>0,b∈R)有极值,且导函数 f'(x)的极值点是 f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求 b 关于 a 的函数关系式,并写出定义域;(2)证明:b 2>3a;(3)若 f(x),f'(x)这两个函数的所有极值之和不小于-7,求 a 的取值范围.278.(2017·北京·理 T19)已知函数 f(x)=e x cos x-x.(1)求曲线 y=f(x)在点(0,f(0))处的切线方程;(2)求函数 f(x)在区间[0, π]上的最大值和最小值.279.(2017·浙江·T20)已知函数 f(x)=(x-√2x -1)e -x (x ≥ 1).2(1)求 f(x)的导函数;(2)求 f(x)在区间[1 , + ∞)上的取值范围.280.(2016·全国 2·理 T21)(1)讨论函数 f(x)= x -2 e x 的单调性,并证明当 x>0 时,(x-2)e x +x+2>0;x+2xx 281.(2016·天津,理 20,12 分,难度)设函数 f(x)=(x-1)3-ax-b,x∈R,其中 a,b∈R.(1)求 f(x)的单调区间;(2)若 f(x)存在极值点 x 0,且 f(x 1)=f(x 0),其中 x 1≠x 0,求证:x 1+2x 0=3;482.(2016·全国 2·文 T20)已知函数 f(x)=(x+1)ln x-a(x-1).(1)当 a=4 时,求曲线 y=f(x)在(1,f(1))处的切线方程;(2)若当 x∈(1,+∞)时,f(x)>0,求 a 的取值范围.83.(2016·四川·文 T21)设函数 f(x)=ax 2-a-ln x,g(x)=1 − e 其中 a∈R,e=2.718…为自然对数的底数.xe x(1)讨论 f(x)的单调性;(2)证明:当 x>1 时,g(x)>0;(3)确定 a 的所有可能取值,使得 f(x)>g(x)在区间(1,+∞)内恒成立.84.(2016·全国 3·理 T21)设函数 f(x)=αcos 2x+(α-1)(cos x+1),其中 α>0,记|f(x)|的最大值为 A.(1)求 f'(x);(2)求 A;(3)证明|f'(x)|≤2A.85.(2016·全国 3·文 T21)设函数 f(x)=ln x-x+1.(1)讨论 f(x)的单调性;(2)证明当 x∈(1,+∞)时,1<x -1<x;lnx(3)设 c>1,证明当 x∈(0,1)时,1+(c-1)x>c x .86.(2016·全国 1,理 21,12 分,难度)已知函数 f(x)=(x-2)e x +a(x-1)2 有两个零点.(1)求 a 的取值范围;(2)设 x 1,x 2 是 f(x)的两个零点,证明:x 1+x 2<2.87.(2016·全国 1·文 T21)已知函数 f(x)=(x-2)e x +a(x-1)2.(1)讨论 f(x)的单调性;(2)若 f(x)有两个零点,求 a 的取值范围.88.(2016·北京·理 T18)设函数 f(x)=xe a-x +bx,曲线 y=f(x)在点(2,f(2))处的切线方程为 y=(e-1)x+4.(1)求 a,b 的值;(2)求 f(x)的单调区间.89.(2016·山东·文 T20)设 f(x)=xln x-ax 2+(2a-1)x,a∈R.(1)令 g(x)=f'(x),求 g(x)的单调区间;(2)已知 f(x)在 x=1 处取得极大值.求实数 a 的取值范围.90.(2015·山东·理 T21)设函数 f(x)=ln(x+1)+a(x 2-x),其中 a∈R.(1)讨论函数 f(x)极值点的个数,并说明理由;97.(2015·北京·文 T19)设函数x f(x)= -kln x,k a (1)当 b= +1 时,求函数 f(x)在[-1,1]上的最小值 g(a)的表达式; a (2)若∀x>0,f(x)≥0 成立,求 a 的取值范围.91.(2015·全国 2·文 T21)已知函数 f(x)=ln x+a(1-x).(1)讨论 f(x)的单调性;(2)当 f(x)有最大值,且最大值大于 2a-2 时,求 a 的取值范围.92.(2015·全国 2·理 T21)设函数 f(x)=e mx +x 2-mx.(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意 x 1,x 2∈[-1,1],都有|f(x 1)-f(x 2)|≤e -1,求 m 的取值范围.93.(2015·全国 1·文 T21)设函数 f(x)=e 2x -aln x.(1)讨论 f(x)的导函数 f'(x)零点的个数;(2)证明:当 a>0 时,f(x)≥2a+aln 2.a94.(2015·天津·理 T20)已知函数 f(x)=nx-x n ,x∈R,其中 n∈N *,且 n≥2.(1)讨论 f(x)的单调性;(2)设曲线 y=f(x)与 x 轴正半轴的交点为 P,曲线在点 P 处的切线方程为 y=g(x),求证:对于任意的正实数 x,都有 f(x)≤g(x);(3)若关于 x 的方程 f(x)=a(a 为实数)有两个正实数根 x 1,x 2,求证:|x 2-x 1|<1-n +2.95.(2015·全国 1·理 T21)已知函数 f(x)=x 3+ax+1,g(x)=-lnx. 4(1)当 a 为何值时,x 轴为曲线 y=f(x)的切线;(2)用 min{m,n}表示 m,n 中的最小值,设函数 h(x)=min{f(x),g(x)}(x>0),讨论 h(x)零点的个数.96.(2015·江苏·理 T19)已知函数 f(x)=x 3+ax 2+b(a,b∈R).(1)试讨论 f(x)的单调性;(2)若 b=c-a(实数 c 是与 a 无关的常数),当函数 f(x)有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪(1, 3) ∪ (3 , + ∞),求 c 的值. 2 22 2 (1)求 f(x)的单调区间和极值;(2)证明:若 f(x)存在零点,则 f(x)在区间(1,√e ]上仅有一个零点.98.(2015·浙江·文 T20)设函数 f(x)=x 2+ax+b(a,b∈R).2 4(2)已知函数 f(x)在[-1,1]上存在零点,0≤b -2a≤1.求 b 的取值范围.x 102.(2014·全国 1 ·理 T21) 设函数 f(x)=ae ln x+be x , 曲线 y=f(x) 在点 (1,f(1)) 处的切线方程为 a 99.(2014·全国 2·文 T21)已知函数 f(x)=x 3-3x 2+ax+2,曲线 y=f(x)在点(0,2)处的切线与 x 轴交点的横坐标为-2.(1)求 a;(2)证明:当 k<1 时,曲线 y=f(x)与直线 y=kx-2 只有一个交点.100.(2014·全国 2·理 T21)已知函数 f(x)=e x -e -x -2x.(1)讨论 f(x)的单调性;(2)设 g(x)=f(2x)-4bf(x),当 x>0 时,g(x)>0,求 b 的最大值;(3)已知 1.414 2<√2<1.414 3,估计 ln 2 的近似值(精确到 0.001).101.(2014·全国 1·文 T21)设函数 f(x)=aln x+1-a x 2-bx(a≠1),曲线 y=f(x)在点(1,f(1))处的切线斜率为 20.(1)求 b;(2)若存在 x 0≥1,使得 f(x 0)<a -1,求 a 的取值范围.x -1y=e(x-1)+2.(1)求 a,b;(2)证明:f(x)>1.103.(2013·全国 2·理 T21)已知函数 f(x)=e x -ln(x+m).(1)设 x=0 是 f(x)的极值点,求 m,并讨论 f(x)的单调性;(2)当 m≤2 时,证明 f(x)>0.104.(2013·全国 2·文 T21)已知函数 f(x)=x 2e -x .(1)求 f(x)的极小值和极大值;(2)当曲线 y=f(x)的切线 l 的斜率为负数时,求 l 在 x 轴上截距的取值范围.105.(2013·重庆·文 T20)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为 r米,高为 h 米,体积为 V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为 100 元/平方米,底面的建造成本为 160 元/平方米,该蓄水池的总建造成本为 12000π 元(π 为圆周率).(1)将 V 表示成 r 的函数 V(r),并求该函数的定义域;(2)讨论函数 V(r)的单调性,并确定 r 和 h 为何值时该蓄水池的体积最大.106.(2013·全国 1·理 T21)设函数 f(x)=x 2+ax+b,g(x)=e x (cx+d).若曲线 y=f(x)和曲线 y=g(x)都过点 P(0,2),且在点 P 处有相同的切线 y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.107.(2013·全国1·文T20)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.108.(2012·全国·理T21)已知函数f(x)满足f(x)=f'(1)e x-1-f(0)x+1x2.2(1)求f(x)的解析式及单调区间;(2)若f(x)≥1x2+ax+b,求(a+1)b的最大值.2109.(2012·全国·文T21)设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值.110.(2012·全国·文T21)设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值.111.(2011·山东·理T21)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π立方米,且l≥2r.假设该容器的建造费用仅与其表3面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.112.(2011·全国·理T21)已知函数f(x)=alnx+b,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.x+1x(1)求a,b的值;(2)如果当x>0,且x≠1时,f(x)>lnx+k,求k的取值范围.x-1x113.(2011·全国·文T21)已知函数f(x)=(1)若a=>,求f(x)的单调区间;x+1+,曲线b alnxx(1)求a,b的值;(2)证明:当x>0,且x≠1时,f(x)>lnx.x-1114.(2010·全国·理T21)设函数f(x)=e x-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.115.(2010·全国·文T21)设函数f(x)=x(e x-1)-ax2.12(2)若当x≥0时f(x)≥0,求a的取值范围.y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.。
高考数学真题分类汇编三角函数专题(综合题)

高考数学真题分类汇编三角函数专题(综合题)1.在中,内角所对的边分别为a,b,c,已知.(Ⅰ)求B;(Ⅱ)若,求sinC的值.2.钝角ΔABC中,角A,B,C所对的边分别为a,b,c, .(1)求角C的大小;(2)若ΔABC的BC边上中线AD的长为,求ΔABC的周长.3.已知函数,将函数的图像上每个点的纵坐标扩大到原来的2倍,再将图像上每个点的横坐标缩短到原来的,然后向左平移个单位,再向上平移个单位,得到的图像.(1)当时,求的值域;(2)已知锐角△的内角、、的对边分别为、、,若,,,求△的面积.4.在△ABC中,AB=2,且sinA(1-2cosB)+sinB(1-2cosA)=0.以AB所在直线为x轴,AB中点为坐标原点建立平面直角坐标系.(I)求动点C的轨迹E的方程;(II)已知定点P(4,0),不垂直于AB的动直线l与轨迹E相交于M、N两点,若直线MP、NP关于直线AB对称,求△PMN面积的取值范围。
5.在中,内角A,B,C的对边分别为a,b,c,若.(1)求A的大小;(2)若,,求的面积.6.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=,( ,).(1)当cos =时,求小路AC的长度;(2)当草坪ABCD的面积最大时,求此时小路BD的长度.7.的内角的对边分别为,已知.(1)求角;(2)若,,求.8.在锐角中, 分别为角所对的边,且.(1)确定角的大小;(2)若,且的面积为,求的值.答案1. 解:(Ⅰ)在中,由,可得,又由,得,所以,得;(Ⅱ)由,可得,则.2.(1)解:由正弦定理可得,故,又,或.若,则,三角形为直角三角形,舍去;若,则,符合,故.(2)解:法1:由余弦定理可得即,故,,又,故,所以周长为.法2:因为,所以,故,因,故即,,所以周长为3. (1)解:,将函数的图像上每个点的纵坐标扩大到原来的2倍,得;再将图像上每个点的横坐标缩短到原来的,得到;然后向左平移个单位,得到;再向上平移个单位,得到,当,,,(2)解:或(由题意三角形为锐角三角形,故舍去),,①,②又,,代入①②得bc=3,则4. 解:(Ⅰ)由,得,根据正弦定理,所以轨迹是以为焦点的椭圆(除轴上的点),由于,所以轨迹的方程为;(Ⅱ)由题,设的方程为, 将直线的方程代入的方程得: .所以又直线与轨迹相交于不同的两点,所以,即,直线关于轴对称,可以得到,化简得,,得,那么直线过点, ,所以三角形面积:设,,在上单调递减,5. (1)解:,根据正弦定理,将上式中的a,b,c替换为,得:,而,,,,,又,(2)解:由余弦定理可得,,,,,6. (1)解:在中,由,得,又,∴.∵∴由得:,解得:,∵是以为直角顶点的等腰直角三角形∴且∴在中,,解得:(2)解:由(1)得:,,此时,,且当时,四边形的面积最大,即,此时,∴,即答:当时,小路的长度为百米;草坪的面积最大时,小路的长度为百米.7.(1)解:由正弦定理,得,在三角形中,得因为所以;(2)解:,,。
历年(2020-2023)全国高考数学真题分类(函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(函数)汇编【2023年真题】1.(2023·新课标I 卷 第4题) 设函数()()2x x a f x -=在区间(0,1)单调递减,则a 的取值范围是( ) A. (,2]-∞-B. [2,0)-C. (0,2]D. [2,)+∞2.(2023·新课标II 卷 第4题)若21()()ln 21x f x x a x -=++为偶函数,则a =( ) A. 1-B. 0C.12D. 13.(2023·新课标I 卷 第10题)(多选) 噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级020lgp pL p =⨯,其中常数00(0)p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级: 声源 与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为1p ,2p ,3p ,则( ) A. 12p p …B. 2310p p >C. 30100p p =D. 12100p p …4. (2023·新课标I 卷 第11题)(多选)已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点【2022年真题】5.(2022·新高考I 卷 第12题)(多选)已知函数()f x 及其导函数()f x '的定义域为R ,记()().g x f x ='若3(2)2f x -,(2)g x +均为偶函数,则( )A. (0)0f =B. 1()02g -=C. (1)(4)f f -=D. (1)(2)g g -=6.(2022·新高考II 卷 第8题)若函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,(1)1f =,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【2021年真题】7.(2021·新高考I 卷 第13题)已知函数3()(22)x x f x x a -=⋅-是偶函数,则a =__________. 8.(2021·新高考II 卷 第7题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A. c b a << B. b a c << C. a c b << D. a b c <<9.(2021·新高考II 卷 第8题)设函数()f x 的定义域为R ,且(2)f x +为偶函数,(21)f x +为奇函数,则 ( )A. 102f ⎛⎫-= ⎪⎝⎭B. (1)0f -=C. (2)0f =D. (4)0f =10.(2021·新高考II 卷 第14题)写出一个同时具有下列性质①②③的函数()f x :_________. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【2020年真题】11.(2020·新高考I 卷 第6题)基本再生数0R 与世代间隔T 是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()rt I t e =描述累计感染病例数()I t 随时间(t 单位:天)的变化规律,指数增长率 r 与0R ,T 近似满足01.R rT =+有学者基于已有数据估计出0 3.28R =, 6.T =据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 20.69)≈( ) A. 1.2天B. 1.8天C. 2.5天D. 3.5天12.(2020·新高考I 卷、II 卷 第8题)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -…的x 的取值范围是( ) A. [1,1][3,)-⋃+∞ B. [3,1][0,1]--⋃ C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃13.(2020·新高考II 卷 第7题)已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( ) A. (2,)+∞ B. [2,)+∞ C. (5,)+∞ D. [5,)+∞14.(2020·新高考I 卷 第12题)(多选)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2, ,n ,且()0(1,2,,)i P X i p i n ==>= ,11ni i p ==∑,定义X 的信息熵21()logni i i H X p p ==-∑( )A. 若1n =,则()0H x =B. 若2n =,则()H x 随着1p 的增大而增大C. 若i p =1n(1,2,i =,)n ,则()H x 随着n 的增大而增大 D. 若2n m =,随机变量Y 的所有可能取值为1,2, ,m ,且()P Y j ==j p +21j m p +-(1,2,j = ,)m ,则()H X ()H Y参考答案1.(2023·新课标I 卷 第4题)解:结合复合函数单调性的性质,易得12a …,所以a 的取值范围是[2,);+∞故选.D 2.(2023·新课标II 卷 第4题)解:()f x 为偶函数,(1)(1)f f =-,1(1)ln(1)ln 33a a ∴+=-+,0a ∴=,故选.B 3.(2023·新课标I 卷 第10题)(多选) 解:1211200220lg20lg 20lg 0p p p L L p p p -=⨯-⨯=⨯> ,121pp ∴>,12p p ∴>,所以A 正确; 223320lg 10p L L p -=⨯ …,231lg 2p p ∴…,1223p e p ∴…,所以B 错误;33020lg40p L p =⨯= ,30100pp ∴=,所以C 正确; 112220lg 905040p L L p -=⨯-= …,12lg 2p p ∴…,12100pp ∴…,所以D 正确. 故选ACD4. (2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确;选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+,而常函数没有极值点,故D 错误. 故选:.ABC5.(2022·新高考I 卷 第12题)(多选)解:由3(2)2f x -为偶函数可知()f x 关于直线32x =对称,由(2)g x +为偶函数可知()g x 关于直线2x =对称,结合()()g x f x =',根据()g x 关于直线2x =对称可知()f x 关于点(2,)t 对称, 根据()f x 关于直线32x =对称可知:()g x 关于点3(,0)2对称,综上,函数()f x 与()g x 均是周期为2的周期函数,所以有(0)(2)f f t ==,所以A 不正确;(1)(1)f f -=,(4)(2)f f =,(1)(2)f f =,故(1)(4)f f -=,所以C 正确.13()()022g g -==,(1)(1)g g -=,所以B 正确;又(1)(2)0g g +=,所以(1)(2)0g g -+=,所以D 不正确. 6.(2022·新高考II 卷 第8题)解:令1y =得(1)(1)()(1)()(1)()(1)f x f x f x f f x f x f x f x ++-=⋅=⇒+=-- 故(2)(1)()f x f x f x +=+-,(3)(2)(1)f x f x f x +=+-+, 消去(2)f x +和(1)f x +得到(3)()f x f x +=-,故()f x 周期为6; 令1x =,0y =得(1)(1)(1)(0)(0)2f f f f f +=⋅⇒=,(2)(1)(0)121f f f =-=-=-, (3)(2)(1)112f f f =-=--=-, (4)(3)(2)2(1)1f f f =-=---=-, (5)(4)(3)1(2)1f f f =-=---=, (6)(5)(4)1(1)2f f f =-=--=,故221()3[(1)(2)(6)](19)(20)(21)(22)k f k f f f f f f f ==+++++++∑(1)(2)(3)(4)1(1)(2)(1)3f f f f =+++=+-+-+-=-即7.(2021·新高考I 卷 第13题)解: 函数3()(22)x x f x x a -=⋅-是偶函数;33()(22)=()()(22)x x x x f x x a f x x a --∴=⋅--=-⋅-, 化简可得3(2222)0x x x x x a a --⋅-+⋅-=, 解得1a =,故答案为1.8.(2021·新高考II 卷 第7题)解:5881log 2log log log 32a b =<==<=, 即.a c b << 故选.C9.(2021·新高考II 卷 第8题)解:因为函数为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数为奇函数,则()()1221f x f x -=-+,所以()()11f x f x -=-+, 所以,(3)(1)f x f x +=-+,即(4)(2)()f x f x f x +=-+=, 故函数是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选.B10.(2021·新高考II 卷 第14题)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①,()2f x x '=,0x >时有,满足②, ()2f x x '=的定义域为R ,又()2()f x x f x ''-=-=-,故是奇函数,满足③.故答案为:2()(f x x =答案不唯一,()()2*nf x x n N =∈均满足)11.(2020·新高考I 卷 第6题)解:将0 3.28R =,6T =代入01R rT =+, 得01 3.2810.386R r T--===,(2)f x +(21)f x +()f x ()0f x '>由()0.38tI t e=得()()ln 0.38I t t =,当增加1倍时,,所需时间为故选.B12.(2020·新高考I 卷、II 卷 第8题)解:根据题意,不等式(1)0xf x -…可化为()010x f x ≥⎧⎨-≥⎩ 或()010x f x ≤⎧⎨-≤⎩, 由奇函数性质得(2)-(2)0f f -==,()f x 在(0,)+∞上单调递减,所以或,解得13x 剟或10.x -剟 满足(1)0xf x -…的x 的取值范围是[1,0][1,3].x ∈-⋃ 故选.D13.(2020·新高考II 卷 第7题) 解:由2450x x -->,得1x <-或 5.x > 令245t x x =--,外层函数lg y t =是其定义域内的增函数,∴要使函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则需内层函数245t x x =--在(,)a +∞上单调递增且恒大于0,则(,)(5,)a +∞⊆+∞,即 5.a …a ∴的取值范围是[5,).+∞故选:.D14.(2020·新高考I 卷 第12题)(多选)解:A 选项中,由题意知11p =,此时2()1log 10H X =-⨯=,故A 正确; B 选项中,由题意知121p p +=,且1(0,1)p ∈,121222121121()log log log (1)log (1)H X p p p p p p p p =--=----,设22()log (1)log (1)f x x x x x =----,(0,1)x ∈ ,则222111()log log (1)log (1)ln 2ln 2f x x x x '=--+-+=-,当1(,1)2x ∈时,()0f x '<,当1(0,)2x ∈时,()0f x '>,故当11(0,2p ∈ 时,()H X 随着1p 的增大而增大,当11(,1)2p ∈ 时,()H X 随着1p 的增大而减小,故B 错误;C 选项中,由题意知2211()(log H X n log n n n=⨯-=,故()H X 随着n 的增大而增大,故C 正确;D 选项中,由题意知j21j2j 21j j 1()()log ()mm m H Y p pp p +-+-==-++∑,2j 2j j 2j 21j 221j j 1j 1()log (log log )mmm m H X p p p p p p +-+-===-=-+∑∑,j 21jj 21j2j 21j 2j 221jj 1j 1()()log ()(log log )m m mmp p pp m m H X H Y p p p p +-+-++-+-==-=+-+∑∑j 21j j 21jj 21jj 21jj 21j j 21j j 21j 22j 1j 1j 21j j 21j()()()=log log m m m m p p pp mmm m m pp pp m m p p p p p p p p p p +-+-+-+-++-+-+-==+-+-+++=∑∑j 21j21j j 2j 1j21j=log (1)(1)0,m mpp m m p p p p +-+-=+-++>∑故D 错误. 故答案为: .AC。
2012年-2021年(10年)全国高考数学真题分类汇编 导数客观题(精解精析版)

2012-2021十年全国高考数学真题分类汇编导数客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A .a b <B .a b >C .2ab a <D .2ab a >【答案】D解析:若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.2.(2020年高考数学课标Ⅰ卷理科)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为()A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【解析】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题3.(2020年高考数学课标Ⅲ卷理科)若直线l 与曲线y x 和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D解析:设直线l 在曲线y x =上的切点为(00x x ,则00x >,函数y x =的导数为12y x'=,则直线l 的斜率02k x =,设直线l 的方程为)0002y x x x x =-,即000x x x -+=,由于直线l 与圆2215x y +=相切,则=,两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.4.(2019年高考数学课标Ⅲ卷理科)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则()A .,1a e b ==-B .,1a eb ==C .1,1a e b -==D .1,1a eb -==-【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e -=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =-,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十年高考真题分类汇编(2010—2019)数学专题03函数1.(2019•天津•理T8)已知a ∈R,设函数f(x)={x 2-2ax +2a ,x ≤1,x -alnx ,x >1.若关于x 的不等式f(x)≥0在R 上恒成立,则a 的取值范围为( )A.[0,1]B.[0,2]C.[0,e]D.[1,e]【答案】C【解析】(1)当a ≤1时,二次函数的对称轴为x=a.需a 2-2a 2+2a ≥0.a 2-2a ≤0.∴0≤a ≤2.而f(x)=x-aln x,f'(x)=1-a x =x -a x >0此时要使f(x)=x-aln x 在(1,+∞)上单调递增,需1-aln 1>0.显然成立.可知0≤a ≤1.(2)当a>1时,x=a>1,1-2a+2a ≥0,显然成立.此时f'(x)=x -a x ,当x ∈(1,a),f'(x)<0,单调递减,当x ∈(a,+∞),f'(x)>0,单调递增.需f(a)=a-aln a ≥0,ln a ≤1,a ≤e,可知1<a ≤e.由(1)(2)可知,a ∈[0,e],故选C.2.(2019•天津•文T8)已知函数f(x)={2√x ,0≤x ≤1,1x,x >1.若关于x 的方程f(x)=-14x+a(a ∈R)恰有两个互异的实数解,则a 的取值范围为( )A.54,94B.54,94C.54,94∪{1} D.54,94∪{1} 【答案】D【解析】当直线过点A(1,1)时,有1=-14+a,得a=54.当直线过点B(1,2)时,有2=-14+a,a=94.故当54≤a≤94时,有两个相异点.当x>1时,f'(x 0)=-1x 02=-14,x 0=2.此时切点为2,12,此时a=1.故选D.3.(2019•浙江•T9)设a,b ∈R,函数f(x)={x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y=f(x)-ax-b 恰有3个零点, 则( )A.a<-1,b<0B.a<-1,b>0C.a>-1,b<0D.a>-1,b>0【答案】C【解析】当x<0时,由x=ax+b,得x=b 1-a ,最多一个零点取决于x=b 1-a 与0的大小,所以关键研究当x≥0时,方程13x 3-12(a+1)x 2+ax=ax+b 的解的个数,令b=13x 3-12(a+1)x 2=13x 2x-32(a+1)=g(x).画出三次函数g(x)的图象如图所示,可以发现分类讨论的依据是32(a+1)与0的大小关系. ①若32(a+1)<0,即a<-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,显然在x≥0时g(x)单调递增,故与y=b 最多只能有一个交点,不符合题意.②若32(a+1)=0,即a=-1,0处为3次零点穿过,也不符合题意.③若32(a+1)>0,即a>-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,当b<0时g(x)与y=b 可以有两个交点,且此时要求x=b 1-a <0,故-1<a<1,b<0,选C.4.(2019•北京•文T3)下列函数中,在区间(0,+∞)上单调递增的是( )A.y=x 12B.y=2-xC.y=lo g 12xD.y=1x 【答案】A【解析】函数y=2-x ,y=lo g 12x,y=1x 在区间(0,+∞)上单调递减,函数y=x 12在区间(0,+∞)上单调递增,故选A.5.(2019•全国1•理T11)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数 ②f(x)在区间(π2,π)内单调递增 ③f(x)在[-π,π]有4个零点 ④f(x)的最大值为2其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③【答案】C【解析】因为函数f(x)的定义域为R,关于原点对称,且f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),所以f(x)为偶函数,故①正确;当π2<x<π时,f(x)=2sin x,它在区间(π2,π)内单调递减,故②错误;当0≤x ≤π时,f(x)=2sin x,它有两个零点0和π;当-π≤x ≤0时,f(x)=sin(-x)-sin x=-2sin x,它有两个零点-π和0;故f(x)在区间[-π,π]上有3个零点-π,0和π,故③错误;当x ∈[2k π,2k π+π](k ∈N *)时,f(x)=2sin x;当x ∈(2k π+π,2k π+2π](k ∈N *)时,f(x)=sin x-sin x=0.又f(x)为偶函数,所以f(x)的最大值为2,故④正确;综上可知①④正确,故选C.6.(2019•全国3•理T11文T12)设f(x)是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )A.f (log 314)>f(2-32)>f(2-23)B.f (log 314)>f(2-23)>f(2-32)C.f(2-32)>f(2-23)>f (log 314)D.f(2-23)>f(2-32)>f (log 314)【答案】C【解析】∵f(x)是R 上的偶函数,∴f (log 314)=f(-log 34)=f(log 34).又y=2x 在R 上单调递增,∴log 34>1=20>2-23>2-32. 又f(x)在区间(0,+∞)内单调递减,∴f(log 34)<f(2-23)<f(2-32),∴f(2-32)>f(2-23)>f (log 314).故选C.7.(2019•全国1•理T3文T3)已知a=log 20.2,b=20.2,c=0.20.3,则( )A.a<b<cB.a<c<bC.c<a<bD.b<c<a【答案】B【解析】因为a=log 20.2<0,b=20.2>20=1,又0<c=0.20.3<0.20<1,所以a<c<b.故选B.8.(2019•天津•理T6)已知a=log 52,b=log 0.50.2,c=0.50.2,则a,b,c 的大小关系为( ) A.a<c<b B.a<b<cC.b<c<aD.c<a<b【答案】A【解析】∵a=log 52<log 5√5=12,b=log 0.50.2>log 0.50.5=1,c=0.50.2=(12)0.2>(12)1,∴b>c>a.故选A.9.(2019•天津•文T5)已知a=log 27,b=log 38,c=0.30.2,则a,b,c 的大小关系为()A.c<b<aB.a<b<cC.b<c<aD.c<a<b命题点比较大小,指、对数函数的单调性.解题思路利用指、对数函数的单调性比较.【答案】A【解析】a=log 27>log 24=2.b=log 38<log 39<2,且b>1.又c=0.30.2<1,故c<b<a,故选A.10.(2019•全国1•T5)函数f(x)=sinx+xcosx+x 2在[-π,π]的图像大致为( )【答案】D【解析】由f(-x)=-f(x)及区间[-π,π]关于原点对称,得f(x)是奇函数,其图像关于原点对称,排除A. 又f (π2)=1+π2(π2)2=4+2ππ2>1,f(π)=π-1+π2>0,排除B,C.故选D. 11.(2019•全国3•理T7)函数y=2x 32x +2-x 在[-6,6]的图像大致为( )【答案】B【解析】设y=f(x)=2x 32x +2-x ,则f(-x)=2(-x )32-x +2x =-2x 32x +2-x =-f(x),故f(x)是奇函数,图像关于原点对称,排除选项C.f(4)=2×4324+2-4>0,排除选项D.f(6)=2×6326+2-6≈7,排除选项A.故选B.12.(2019•浙江•T6)在同一直角坐标系中,函数y=1a x ,y=log a x+12(a>0,且a ≠1)的图象可能是 ( )【答案】D【解析】当0<a<1时,函数y=a x 的图象过定点(0,1)且单调递减,则函数y=1a x 的图象过定点(0,1)且单调递增,函数y=log a (x+12)的图象过定点(12,0)且单调递减,D 选项符合;当a>1时,函数y=a x 的图象过定点(0,1)且单调递增,则函数y=1a x 的图象过定点(0,1)且单调递减,函数y=log a (x+12)的图象过定点(12,0)且单调递增,各选项均不符合.故选D.13.(2019•全国2•理T12)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x ∈(0,1]时,f(x)=x(x-1).若对任意x ∈(-∞,m],都有f(x)≥-89,则m 的取值范围是( )A.-∞,94B.-∞,73C.-∞,52D.-∞,83 【答案】B 【解析】∵f (x+1)=2f(x),∴f (x)=2f(x-1).∵当x ∈(0,1]时,f(x)=x(x-1),∴f (x)的图象如图所示.∵当2<x ≤3时,f(x)=4f(x-2)=4(x-2)(x-3),∴令4(x-2)(x-3)=- ,整理得9x 2-45x+56=0,即(3x-7)(3x-8)=0,解得x 1=73,x 2=83.∵当x ∈(-∞,m]时,f(x)≥-89恒成立,即m≤73,故m ∈-∞,73.14.(2018•全国1•文T12)设函数f(x)={2-x ,x ≤0,1,x >0,则满足f(x+1)<f(2x)的x 的取值范围是( ) A.(-∞,-1] B.(0,+∞)C.(-1,0)D.(-∞,0) 【答案】D【解析】画出函数f(x)的图象如图所示,由图可知:①当x+1≥0且2x ≥0,即x ≥0时,f(2x)=f(x+1),不满足题意;②当x+1>0且2x<0,即-1<x<0时,f(x+1)<f(2x)显然成立;③当x+1≤0时,x ≤-1,此时2x<0,若f(x+1)<f(2x),则x+1>2x,解得x<1.故x ≤-1.综上所述,x 的取值范围为(-∞,0).15.(2018•全国2•理T11文T12)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)= ( )A.-50B.0C.2D.50【答案】C【解析】∵f(-x)=f(2+x)=-f(x),∴f(x+4)=f[(x+2)+2]=-f(x+2)=f(x).∴f(x)的周期为4.∵f(x)为奇函数,∴f(0)=0.∵f(2)=f(1+1)=f(1-1)=f(0)=0,f(3)=f(-1)=-f(1)=-2,f(4)=f(0).∴f(1)+f(2)+f(3)+f(4)=0. ∴f(1)+f(2)+…+f(50)=f(49)+f(50)=f(1)+f(2)=2.16.(2018•全国3•文T7)下列函数中,其图像与函数y=ln x 的图像关于直线x=1对称的是( )A.y=ln(1-x)B.y=ln(2-x)C.y=ln(1+x)D.y=ln(2+x)【答案】B【解析】设所求函数的图像上点P(x,y)关于x=1对称的点为Q(2-x,y),由题意知Q 在y=ln x 上, ∴y=ln(2-x),故选B.17.(2018•上海•T16)设D 是函数1的有限实数集,f(x)是定义在D 上的函数.若f(x)的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,f(1)的可能取值只能是( )A.√3B.√32C.√33D.0 【答案】B【解析】若f(1)=√3,则f(√3)=1,f(1)=-√3,与函数的定义矛盾,舍去;若f(1)=√33,则f (2√33)=0,f(1)=-√33,与函数的定义矛盾,舍去; 若f(1)=0,则f (12)=√32,f (12)=-√32,与函数的定义矛盾,舍去. 因此f(1)的可能取值只能是√32,故选B.18.(2018•全国3•理T12)设a=log 0.20.3,b=log 20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b【答案】B【解析】∵a=log 0.20.3>0,b=log 20.3<0,∴ab<0.又a+b=lg0.3lg0.2+lg0.3lg2=lg3-1lg2-1+lg3-1lg2=(lg3-1)(2lg2-1)(lg2-1)•lg2而lg 2-1<0,2lg 2-1<0,lg 3-1<0,lg 2>0,∴a+b<0.a+b ab =1b +1a =log 0.32+log 0.30.2=log 0.30.4<log 0.30.3=1.∴ab<a+b.故选B.19.(2018•天津•理T5)已知a=log 2e,b=ln 2,c= lo g 1213,则a,b,c 的大小关系为( )A.a>b>cB.b>a>cC.c>b>aD.c>a>b【答案】D【解析】因为c=lo g 1213=log 23,a=log 2e,且y=log 2x 在(0,+∞)上单调递增,所以log 23>log 2e>log 22=1,即c>a>1.因为y=ln x 在(0,+∞)上单调递增,且b=ln 2,所以ln 2<ln e=1,即b<1.综上可知,c>a>b.故选D.20.(2018•天津•文T5)已知a=log 372,b=(14)13,c=lo g 1315,则a,b,c 的大小关系为( ) A.a>b>c B.b>a>c C.c>b>a D.c>a>b【答案】D【解析】∵c=lo g 1315=log 35>log 372>log 33=1,∴c>a>1.又b=(14) 13<(14)0=1,∴c>a>b. 21.(2018•全国2•T3)函数f(x)=e x -e -xx 2的图像大致为( )【答案】B【解析】∵f(-x)=e -x -e xx 2=-f(x),∴f(x)为奇函数,排除A,令x=10,则f(10)=e 10-1e 10100>1,排除C 、D,故选B. 22.(2018•全国3•理T7文T9)函数y=-x 4+x 2+2的图像大致为( )【答案】D【解析】当x=0时,y=2>0,排除A,B;当x=12时,y=-(12)4+(12)2+2>2.排除C.故选D.23.(2018•浙江•T5)函数y=2|x|sin 2x 的图象可能是( )【答案】D【解析】因为在函数y=2|x|sin 2x 中,y 1=2|x|为偶函数,y 2=sin 2x 为奇函数,所以y=2|x|sin 2x 为奇函数.所以排除选项A,B.当x=0,x=π2,x=π时,sin 2x=0,故函数y=2|x|sin 2x 在[0,π]上有三个零点,排除选项C,故选D.24.(2018•全国1•理T9)已知函数f(x)={e x ,x ≤0,lnx ,x >0,g(x)=f(x)+x+a,若g(x)存在2个零点,则a 的取值范围是( )A.[-1,0)B.[0,+∞)C.[-1,+∞)D.[1,+∞)【答案】C【解析】要使得方程g(x)=f(x)+x+a 有两个零点,等价于方程f(x)=-x-a 有两个实根,即函数y=f(x)的图象与直线y=-x-a 的图象有两个交点,从图象可知,必须使得直线y=-x-a 位于直线y=-x+1的下方,所以-a ≤1,即a ≥-1.故选C.25.(2017•山东•理T1)设函数y=√4-x 2的定义域为A,函数y=ln(1-x)的定义域为B,则A ∩B=( )A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)【答案】D【解析】由4-x 2≥0,得A=[-2,2],由1-x>0,得B=(-∞,1),故A ∩B=[-2,1).故选D.26.(2017•山东•文T9)设f(x)={√x ,0<x <1,2(x -1),x ≥1.若f(a)=f(a+1),则f (1a )=( ) A.2 B.4 C.6 D.8【答案】C【解析】由x≥1时,f(x)=2(x-1)是增函数可知,若a≥1,则f(a)≠f(a+1),所以0<a<1,a+1>1,由f(a)=f(a+1)得√a =2(a+1-1),解得a=14,则f 1a =f(4)=2(4-1)=627.(2017•全国1•理T5)函数f(x)在(-∞,+∞)单调递减,且为奇函数,若f(1)=-1,则满足-1≤f(x-2)≤1的x 的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]【答案】D【解析】因为f(x)为奇函数,所以f(-1)=-f(1)=1,于是-1≤f(x-2)≤1等价于f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,所以-1≤x-2≤1,即1≤x ≤3.所以x 的取值范围是[1,3].28.(2017•天津•理T6)已知奇函数f(x)在R 上是增函数,g(x)=xf(x).若a=g(-log 25.1),b=g(20.8),c=g(3),则a,b,c 的大小关系为( )A.a<b<cB.c<b<aC.b<a<cD.b<c<a【答案】C【解析】∵f(x)是R 上的奇函数,∴g(x)=xf(x)是R 上的偶函数.∴g(-log 25.1)=g(log 25.1).∵奇函数f(x)在R 上是增函数,∴当x>0时,f(x)>0,f'(x)>0.∴当x>0时,g'(x)=f(x)+xf'(x)>0恒成立,∴g(x)在(0,+∞)上是增函数.∵2<log 25.1<3,1<20.8<2,∴20.8<log 25.1<3.结合函数g(x)的性质得b<a<c.故选C.29.(2017•北京•理T5)已知函数f(x)=3x -(13)x ,则f(x)( )A.是奇函数,且在R 上是增函数B.是偶函数,且在R 上是增函数C.是奇函数,且在R 上是减函数D.是偶函数,且在R 上是减函数【答案】A【解析】因为f(x)的定义域为R,f(-x)=3-x-(13)-x=(13)x-3x=-f(x),所以函数f(x)是奇函数.又y=3x和y=-(13)x在R 上都是增函数,所以函数f(x)在R 上是增函数.故选A.30.(2017•全国1•理T11)设x,y,z 为正数,且2x=3y=5z,则( ) A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【答案】D【解析】由2x=3y=5z,同时取自然对数,得xln 2=yln 3=zln 5.由2x 3y =2ln33ln2=ln9ln8>1,可得2x>3y;再由2x 5z =2ln55ln2=ln25ln32<1,可得2x<5z;所以3y<2x<5z,故选D.31.(2017•全国2•文T8)函数f(x)=ln(x 2-2x-8)的单调递增区间是( ) A.(-∞,-2) B.(-∞,1) C.(1,+∞) D.(4,+∞) 【答案】D【解析】由题意可知x 2-2x-8>0,解得x<-2或x>4.故定义域为(-∞,-2)∪(4,+∞),易知t=x 2-2x-8在(-∞,-2)内单调递减,在(4,+∞)内单调递增.因为y=ln t 在t ∈(0,+∞)内单调递增,依据复合函数单调性的同增异减原则,可得函数f(x)的单调递增区间为(4,+∞).故选D. 32.(2017•全国1•文T9)已知函数f(x)=ln x+ln(2-x),则( ) A.f(x)在(0,2)单调递增 B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称 【答案】C【解析】f(x)=ln x+ln(2-x)=ln(-x 2+2x),x ∈(0,2).当x ∈(0,1)时,x 增大,-x 2+2x 增大,ln(-x 2+2x)增大,当x ∈(1,2)时,x 增大,-x 2+2x 减小,ln(-x 2+2x)减小,即f(x)在(0,1)单调递增,在(1,2)单调递减,故排除选项A,B;因为f(2-x)=ln(2-x)+ln[2-(2-x)]=ln(2-x)+ln x=f(x),所以y=f(x)的图象关于直线x=1对称,故排除选项D.故选C.33.(2017•山东•理T7)若a>b>0,且ab=1,则下列不等式成立的是( ) A.a+1b <b2a <log 2(a+b) B.b 2a <log 2(a+b)<a+1b C.a+1b <log 2(a+b)<b2aD.log 2(a+b)<a+1b <b2a【答案】B【解析】不妨令a=2,b=12,则a+1b=4,b 2a=18,log 2(a+b)=log 252∈(log 22,log 24)=(1,2),即b 2a <log 2(a+b)<a+1b.故选B.34.(2017•浙江•理T5)若函数f(x)=x 2+ax+b 在区间[0,1]上的最大值是M,最小值是m,则M-m( ) A.与a 有关,且与b 有关 B.与a 有关,但与b 无关 C.与a 无关,且与b 无关 D.与a 无关,但与b 有关 【答案】B【解析】因为最值在f(0)=b,f(1)=1+a+b,f (-a2)=b-a 24中取,所以最值之差一定与a 有关,与b 无关,故选B.35.(2017•全国1•文T8)函数y=sin2x1-cosx 的部分图象大致为( )【答案】C 【解析】令f(x)=sin2x 1-cosx,因为f(-x)=sin (-2x )1-cos (-x )=-sin2x1-cosx=-f(x),所以f(x)为奇函数,其图象关于原点对称,故排除选项B;因为f(π)=sin2π1-cosπ=0,故排除选项D;因为f(1)=sin21-cos1>0,故排除选项A.故选C.36.(2017•全国3•文T7)函数y=1+x+sinx x 2的部分图象大致为( )【答案】D【解析】当x=1时,y=1+1+sin 1=2+sin 1>2,故排除A,C;当x →+∞时,y →+∞,故排除B,满足条件的只有D,故选D.37.(2017•山东•理T10)已知当x ∈[0,1]时,函数y=(mx-1)2的图象与y=√x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A.(0,1]∪[2√3,+∞)B.(0,1]∪[3,+∞)C.(0,√2]∪[2√3,+∞)D.(0,√2]∪[3,+∞)【答案】B【解析】在同一直角坐标系中,分别作出函数f(x)=(mx-1)2=m 2(x-1m )2与g(x)=√x +m 的大致图象.分两种情形:(1)当0<m≤1时,1m ≥1,如图①,当x ∈[0,1]时, f(x)与g(x)的图象有一个交点,符合题意;(2)当m>1时,0<1m <1,如图②,要使f(x)与g(x)的图象在[0,1]上只有一个交点,只需g(1)≤f(1), 即1+m≤(m -1)2,解得m≥3或m≤0(舍去). 综上所述,m ∈(0,1]∪[3,+∞).故选B.38.(2017•天津•文T8)已知函数f(x)={|x |+2,x <1,x +2x,x ≥1.设a ∈R,若关于x 的不等式f(x)≥|x2+a|在R 上恒成立,则a 的取值范围是( ) A.[-2,2] B.[-2√3,2] C.[-2,2√3] D.[-2√3,2√3]【答案】A【解析】若a=2√3,则当x=0时,f(0)=2,而x 2+a =2√3,不等式不成立,故排除选项C 、D.若a=-2√3,则当x=0时,f(0)=2,而x 2+a =2√3,不等式不成立,故排除选项B.故选A.39.(2017•全国3•理T11文T12)已知函数f(x)=x 2-2x+a(e x-1+e -x+1)有唯一零点,则a=( )A.-12 B.13C.12D.1【答案】C【解析】∵f (x)=x 2-2x+a(e x-1+e -x+1),∴f (2-x)=(2-x)2-2(2-x)+a(e2-x-1+e -(2-x)+1)=x 2-4x+4-4+2x+a(e 1-x +e x-1) =x 2-2x+a(e x-1+e-x+1),∴f (2-x)=f(x),即x=1为f(x)图象的对称轴. ∵f (x)有唯一零点,∴f (x)的零点只能为1, 即f(1)=12-2×1+a(e 1-1+e-1+1)=0,解得a=12.40.(2017•北京•理T8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( )(参考数据:lg 3≈0.48) A.1033B.1053C.1073D.1093【答案】D【解析】设MN =x=33611080,两边取对数,得lg x=lg 33611080=lg 3361-lg 1080=361×lg 3-80≈93.28,所以x ≈1093.28,即与MN最接近的是1093.故选D. 41.(2016•全国2•文T10)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是 ( )A.y=xB.y=lg xC.y=2xD.y=√x【答案】D 【解析】y=10lg x=x,定义域与值域均为(0,+∞).y=x 的定义域和值域均为R;y=lg x 的定义域为(0,+∞),值域为R; y=2x的定义域为R,值域为(0,+∞); y=√x 的定义域与值域均为(0,+∞).故选D.42.(2016•北京•文T4)下列函数中,在区间(-1,1)上为减函数的是( ) A.y=11-x B.y=cos x C.y=ln(x+1) D.y=2-x【答案】D【解析】选项A,y=11-x 在(-∞,1)和(1,+∞)上为增函数,故在(-1,1)上为增函数; 选项B,y=cos x 在(-1,1)上先增后减; 选项C,y=ln(x+1)在(-1,+∞)上递增, 故在(-1,1)上为增函数;选项D,y=2-x=12x在R 上为减函数,故在(-1,1)上是减函数.43.(2016•山东•文T9)已知函数f(x)的定义域为R.当x<0时,f(x)=x 3-1;当-1≤x≤1时,f(-x)=-f(x);当x>12时,f (x +12)=f (x -12),则f(6)= ( )A.-2B.-1C.0D.2【答案】D【解析】由题意可知,当-1≤x ≤1时,f(x)为奇函数; 所以f(6)=f(5×1+1)=f(1). 而f(1)=-f(-1)=-[(-1)3-1]=2. 所以f(6)=2.故选D.44.(2016•全国1•文T8)若a>b>0,0<c<1,则( ) A.log a c<log b cB.log c a<log c bC.a c<b cD.c a>c b【答案】B【解析】对于A,log a c=lgclga ,log b c=lgc lgb,∵0<c<1,∴lg c<0,而a>b>0,∴lg a>lg b,但不能确定lg a,lg b 的正负,故log a c 与log b c 大小不能确定,A 不正确; 对于B,在lg a>lg b 两边同乘以一个负数1lgc ,不等号改变,得log c a<log c b,B 正确;对于C,∵0<c<1,∴幂函数y=x c在(0,+∞)上为增函数. ∵a>b>0,∴a c>b c ,故C 不正确;对于D,∵0<c<1,∴指数函数y=c x在R 上为减函数.∵a>b>0,∴c a<c b,故D 不正确. 45.(2016•全国1•理T8)若a>b>1,0<c<1,则( ) A.a c<b cB.ab c<ba cC.alog b c<blog a cD.log a c<log b c 【答案】C【解析】特殊值验证法,取a=3,b=2,c=12, 因为√3>√2,所以A 错;因为3√2=√18>2√3=√12,所以B 错;因为log 312=-log 32>-1=log 212,所以D 错;因为3log 212=-3<2log 312=-2log 32,所以C 正确.故选C.46.(2016•全国3•理T6)已知a=243,b=425,c=2513,则( ) A.b<a<c B.a<b<c C.b<c<a D.c<a<b 【答案】A【解析】因为a=243=423>425=b,c=2513=523>423=a, 所以b<a<c.47.(2016•全国3•文T7)已知a=243,b=323,c=2513,则( ) A.b<a<c B.a<b<c C.b<c<a D.c<a<b 【答案】A【解析】因为a=243=423,c=2513=523,b=323, 且函数y=x 23在[0,+∞)内是增函数, 所以323<423<523,即b<a<c.故选A.48.(2016•全国2•文T12)已知函数f(x)(x ∈R)满足f(x)=f(2-x),若函数y=|x 2-2x-3|与y=f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1mx i =( )A.0B.mC.2mD.4m【答案】B【解析】由题意可知,y=f(x)与y=|x 2-2x-3|的图象都关于x=1对称,所以它们的交点也关于x=1对称. 当m 为偶数时,∑i=1mx i =2×m2=m;当m 为奇数时,∑i=1m x i =2×m -12+1=m,故选B.49.(2016•全国1•T9)函数y=2x 2-e |x|在[-2,2]的图象大致为( )【答案】D【解析】特殊值验证法,取x=2,则y=2×4-e 2≈8-2.7182≈0.6∈(0,1),排除A,B;当0<x<2时,y=2x 2-e x,则y'=4x-e x,由函数零点的判定可知,y'=4x-e x在(0,2)内存在零点,即函数y=2x 2-e x在(0,2)内有极值点,排除C,故选D. 50.(2016•浙江•文T3)函数y=sin x 2的图象是( )【答案】D【解析】∵f (-x)=sin(-x)2=sin x 2=f(x), ∴y=sin x 2的图象关于y 轴对称,排除A,C; 又当x=±π2时,sin π24≠1,∴排除B,故选D.51.(2016•浙江•文T7)已知函数f(x)满足:f(x)≥|x|,且f(x)≥2x,x ∈R.( ) A.若f(a)≤|b|,则a ≤b B.若f(a)≤2b,则a ≤b C.若f(a)≥|b|,则a ≥b D.若f(a)≥2b ,则a ≥b 【答案】B【解析】∵f (x)≥|x|且f(x)≥2x,∴f (x)表示的区域如图阴影部分所示.∵对于选项A 和选项C 而言,无论f(a)≤|b|还是f(a)≥|b|,均有a ≤b 或a ≥b 都成立,∴选项A 和选项C 均不正确;对于选项B,若f(a)≤2b,只能得到a ≤b,故选项B 正确;对于选项D,若f(a)≥2b,由图象可知a ≥b 与a ≤b 均有可能,故选项D 不正确. 52.(2015•湖北•文T7)设x ∈R,定义符号函数sgnx={1,x >0,0,x =0,-1,x <0,则( )A.|x|=x|sgn x|B.|x|=xsgn |x|C.|x|=|x|sgn xD.|x|=xsgn x 【答案】D【解析】利用排除法逐项验证求解.当x<0时,|x|=-x,x|sgn x|=x;xsgn|x|=x,|x|sgn x=(-x )•(-1)=x,故排除A,B,C 项,选D.53.(2015•重庆•文T3)函数f(x)=log 2(x 2+2x-3)的定义域是( ) A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞) 【答案】D【解析】要使函数有意义,应满足x 2+2x-3>0,解得x>1或x<-3,故函数的定义域是(-∞,-3)∪(1,+∞). 54.(2015•湖北•文T6)函数f(x)= √4-|x |+lg x 2-5x+6x -3的定义域为( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6] 【答案】C【解析】要使函数有意义,需{4-|x |≥0,x 2-5x+6x -3>0,即{-4≤x ≤4,x >2且x ≠3,即2<x<3或3<x≤4. 故函数f(x)的定义域为(2,3)∪(3,4].55.(2015•全国1•文T10)已知函数f(x)={2x -1-2,x ≤1,-log 2(x +1),x >1,且f(a)=-3,则f(6-a)=( )A.-74B.-54C.-34D.-14【答案】A【解析】当a ≤1时,f(a)=2a-1-2=-3,即2a-1=-1,此等式显然不成立. 当a>1时,f(a)=-log 2(a+1)=-3,即a+1=23,解得a=7. ∴f(6-a)=f(-1)=2-1-1-2=14-2=-74.56.(2015•陕西•文T4)设f(x)={1-√x ,x ≥0,2x,x <0,则f(f(-2))=( )A.-1B.14C.12D.32【答案】C【解析】f(f(-2))=f (14)=1-√14=12.57.(2015•山东•文T10)设函数f(x)={3x -b ,x <1,2x ,x ≥1.若f (f (56))=4,则b=( )A.1B.78C.34D.12【答案】D【解析】∵f (56)=3×56-b=52-b,∴f (f (56))=f (52-b). 当52-b<1,即b>32时,f (52-b)=3×(52-b)-b=4,∴b=78(舍去).当52-b≥1,即b≤32时,f (52-b)=252-b =4,即52-b=2,∴b=12. 综上,b=1258.(2015•全国2•文T12)设函数f(x)=ln(1+|x|)-11+x ,则使得f(x)>f(2x-1)成立的x 的取值范围是( )A.(13,1)B.(-∞,13)∪(1,+∞) C.(-13,13)D.(-∞,-13)∪(13,+∞) 【答案】A【解析】函数f(x)的定义域为R,又由题意可知f(-x)=f(x),故f(x)为偶函数. 当x>0时,f(x)=ln(1+x)-11+x 2,因为y 1=ln(1+x)单调递增,y 2=-11+x 2亦为单调递增,所以f(x)在(0,+∞)为增函数.由f(x)>f(2x-1)⇔f(|x|)>f(|2x-1|),得|x|>|2x-1|,解得x ∈(13,1).59.(2015•北京•文T3)下列函数中为偶函数的是( ) A.y=x 2sin x B.y=x 2cos x C.y=|ln x| D.y=2-x【答案】B【解析】A 选项中函数为奇函数,B 选项中函数为偶函数,C 选项中函数定义域为(0,+∞)不具有奇偶性,D 选项中函数既不是奇函数也不是偶函数.故选B.60.(2015•天津•文T7)已知定义在R 上的函数f(x)=2|x-m|-1(m 为实数)为偶函数.记a=f(log 0.53),b=f(log 25),c=f(2m),则a,b,c 的大小关系为( ) A.a<b<c B.c<a<b C.a<c<b D.c<b<a 【答案】B 【解析】∵f (-x)=2|-x-m|-1=2|x+m|-1,且f(x)为偶函数,∴2|x+m|-1=2|x-m|-1对任意的x ∈R 恒成立,解得m=0.∴f (x)=2|x|-1,且f(x)在[0,+∞)上为增函数.∵a=f (log 0.53)=f(-log 23)=f(log 23),c=f(2m)=f(0),且0<log 23<log 25, ∴f (0)<f(log 23)<f(log 25),即c<a<b.61.(2015•全国2•理T5)设函数f(x)={1+log 2(2-x ),x <1,2x -1, x ≥1,则f(-2)+f(log 212)=( )A.3B.6C.9D.12 【答案】C【解析】∵f (-2)=1+log 24=3,f(log 212)=2log 212-1=2log 21221=122=6,∴f (-2)+f(log 212)=9.62.(2015•全国2•理T10文T11)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点.点P 沿着边BC,CD 与DA 运动,记∠BOP=x.将动点P 到A,B 两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为( )【答案】B【解析】当x ∈0,π4时,f(x)=tan x+√4+tan 2x ,图象不是线段,从而排除A,C; ∵fπ4=f34π=1+√5,f π2=2√2,2√2<1+√5,∴fπ2<fπ4=f34π,从而排除D.故选B.63.(2015•安徽•文T10)函数f(x)=ax 3+bx 2+cx+d 的图象如图所示,则下列结论成立的是( ) A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0 C.a<0,b<0,c>0,d>0 D.a>0,b>0,c>0,d<0 【答案】A【解析】由图象可知f(0)=d>0,f'(x)=3ax 2+2bx+c,x 1,x 2为方程3ax 2+2bx+c=0的两根,因此x 1+x 2=-2b 3a ,x 1•x 2=c3a .由图象可知x ∈(-∞,x 1)时,f'(x)>0,所以a>0.而由图象知x 1,x 2均为正数,所以-2b3a >0,c3a >0,由此可得b<0,c>0,故选A.64.(2015•浙江•文T5)函数f(x)=(x -1x )cos x(-π≤x ≤π且x ≠0)的图象可能为( )【答案】D【解析】因为f(-x)=-x+1x cos(-x)=-x-1x cos x=-f(x),所以f(x)为奇函数.排除A,B;又f(π)=(π-1π)cos π=-π+1π<0,排除C,故选D.65.(2015•天津•文T8)已知函数f(x)={2-|x |,x ≤2,(x -2)2,x >2,函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为( ) A.2 B.3 C.4 D.5 【答案】A【解析】因为f(x)={2+x ,x <0,2-x ,0≤x ≤2,(x -2)2,x >2,所以f(2-x)={2+(2-x ),2-x <0,2-(2-x ),0≤2-x ≤2,(2-x -2)2,2-x >2⇒f(2-x)={x 2,x <0,x ,0≤x ≤2,4-x ,x >2,f(x)+f(2-x)={x 2+x +2,x <0,2,0≤x ≤2,x 2-5x +8,x >2,所以函数y=f(x)-g(x)=f(x)-3+f(2-x)={x 2+x -1,x <0,-1,0≤x ≤2,x 2-5x +5,x >2.其图象如图所示.显然函数图象与x 轴有2个交点,故函数有2个零点.66.(2015•北京•理T7)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log 2(x+1)的解集是 ( ) A.{x|-1<x ≤0} B.{x|-1≤x ≤1} C.{x|-1<x ≤1} D.{x|-1<x ≤2} 【答案】C【解析】如图,作出函数f(x)与y=log 2(x+1)的图象.易知直线BC 的方程为y=-x+2,由{y =-x +2,y =log 2(x +1)得D 点坐标为(1,1).由图可知,当-1<x ≤1时,f(x)≥log 2(x+1),所以所求解集为{x|-1<x ≤1}.67.(2014•江西•理T3)已知函数f(x)=5|x|,g(x)=ax 2-x(a ∈R),若f[g(1)]=1,则a=( ) A.1 B.2 C.3 D.-1【答案】A【解析】由题意可知f[g(1)]=1=50,得g(1)=0,代入g(x),则a-1=0,即a=1.故选A. 68.(2014•山东•理T3)函数f(x)=√(log 2x )-1的定义域为( )A.(0,12)B.(2,+∞)C.(0,12)∪(2,+∞) D.(0,12]∪[2,+∞)【答案】C【解析】要使函数有意义,应有(log 2x)2>1,且x>0,即log 2x>1或log 2x<-1,解得x>2或0<x<12.所以函数f(x)的定义域为(0,12)∪(2,+∞). 69.(2014•江西•文T4,)已知函数f(x)= {a •2x ,x ≥0,2-x ,x <0 (a ∈R),若f[f(-1)]=1,则a=( )A.14B.12 C.1 D.2【答案】A【解析】由题意可知f(-1)=21=2,则f[f(-1)]=f(2)=a •22=4a=1.故a=1470.(2014•全国1•理T3文T5)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数【答案】C【解析】由题意,知f(-x)=-f(x),g(-x)=g(x), 对于A 选项,f(-x)g(-x)=-f(x)g(x), f(x)g(x)为奇函数,故A 错误;对于B 选项,|f(-x)|g(-x)=|f(x)|g(x), |f(x)|g(x)为偶函数,故B 错误; 对于C 选项,f(-x)|g(-x)|=-f(x)|g(x)|, f(x)|g(x)|为奇函数,故C 正确; 对于D 选项,|f(-x)g(-x)|=|f(x )•g(x)|, |f(x)g(x)|是偶函数,故D 错误.71.(2014•北京•文T6)已知函数f(x)=6x -log 2x.在下列区间中,包含f(x)零点的区间是( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+∞) 【答案】C【解析】由题意知f(1)=61-log 21=6>0,f(2)=62-log 22=3-1=2>0,f(4)=64-log 24=32-2=-12<0.故f(2)•f(4)<0.由零点存在性定理可知,包含f(x)零点的区间为(2,4).72.(2013•全国1•理T11)已知函数f(x)={-x 2+2x ,x ≤0,ln (x +1),x >0.若|f(x)|≥ax,则a 的取值范围是( )A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]【答案】D【解析】由y=|f(x)|的图象知:①当x>0时,y=ax 只有a ≤0时,才能满足|f(x)|≥ax,可排除B,C. ②当x ≤0时,y=|f(x)|=|-x 2+2x|=x 2-2x. 故由|f(x)|≥ax 得x 2-2x ≥ax. 当x=0时,不等式为0≥0成立. 当x<0时,不等式等价于x-2≤a. ∵x -2<-2, ∴a≥-2.综上可知,a ∈[-2,0].73.(2013•全国2•文T12)若存在正数x 使2x(x-a)<1成立,则a 的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞) 【答案】D【解析】由题意可得,a>x-(12)x(x>0).令f(x)=x-(12)x,该函数在(0,+∞)上为增函数,可知f(x)的值域为(-1,+∞),故a>-1时,存在正数x 使原不等式成立.74.(2013•全国2•理T8)设a=log 36,b=log 510,c=log 714,则( ) A.c>b>a B.b>c>a C.a>c>b D.a>b>c 【答案】D【解析】根据公式变形,a=lg6lg3=1+lg2lg3,b=lg10lg5=1+lg2lg5,c=lg14lg7=1+lg2lg7,因为lg 7>lg 5>lg 3,所以lg2lg7<lg2lg5<lg2lg3,即c<b<a.故选D.75.(2013•全国2•文T8)设a=log 32,b=log 52,c=log 23,则( ) A.a>c>b B.b>c>a C.c>b>a D.c>a>b【答案】D【解析】∵a=log 32>log 3√3=12,∴a ∈(12,1). ∵b=log 52<log 5√5=12,∴b ∈(0,12). ∵c=log 23>log 22=1,即c>1,∴c>a>b.76.(2013•全国1•文T9)函数f(x)=(1-cos x)sin x 在[-π,π]的图象大致为( )【答案】C【解析】由f(x)=(1-cos x)sin x 知其为奇函数.可排除B.当x ∈(0,π2]时,f(x)>0,排除A. 当x ∈(0,π)时,f'(x)=sin 2x+cos x(1-cos x)=-2cos 2x+cos x+1. 令f'(x)=0,得x=23π.故极值点为x=23π,可排除D,故选C.77.(2013•北京•理T5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y 轴对称,则f(x)=( ) A.e x+1B.e x-1C.e-x+1D.e-x-1【答案】D【解析】依题意,f(x)向右平移1个单位之后得到的函数应为y=e -x,于是f(x)相当于y=e -x向左平移1个单位的结果,∴f (x)=e-x-1,故选D.78.(2012•全国•文T11)当0<x≤12时,4x<log a x,则a 的取值范围是( ) A.(0,√22) B.(√22,1)C.(1,√2)D.(√2,2)【答案】B【解析】由0<x≤12,且log a x>4x>0,可得0<a<1,由412=log a 12可得a=√22.令f(x)=4x,g(x)=log a x,若4x<log a x,则说明当0<x≤12时,f(x)的图象恒在g(x)图象的下方(如下图所示),此时需a>√22.综上可得a 的取值范围是(√22,1).79.(2012•全国•理T10)已知函数f(x)=1ln (x+1)-x,则y=f(x)的图象大致为( )【答案】B【解析】当x=1时,y=1ln2-1<0,排除A;当x=0时,y 不存在,排除D;f'(x)=[1ln (x+1)-x]'=x x+1[ln (x+1)-x ]2,因定义中要求x>-1,故-1<x<0时,f'(x)<0,故y=f(x)在(-1,0)上单调递减,故选B.80.(2012•湖北•文T6)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为( )【答案】B 【解析】y=f(x)y=f(-x)y=f[-(x-2)]=f(2-x)y=-f(2-x),故选B.81.(2012•全国•理T12)设点P 在曲线y=12e x上,点Q 在曲线y=ln(2x)上,则|PQ|的最小值为 ( )A.1-ln 2B.√2(1-ln 2)C.1+ln 2D.√2(1+ln 2)【答案】B【解析】由题意知函数y=12e x与y=ln(2x)互为反函数,其图象关于直线y=x 对称,两曲线上点之间的最小距离就是y=x 与y=12e x最小距离的2倍,设y=12e x上点(x 0,y 0)处的切线与y=x 平行,有12e x 0=1,x 0=ln 2,y 0=1,∴y=x与y=12e x的最小距离是√22(1-ln 2),∴|PQ|的最小值为√22(1-ln 2)×2=√2(1-ln 2).82.(2011•全国•理T2文T3)下列函数中,既是偶函数,又在(0,+∞)单调递增的函数是( ) A.y=x 3B.y=|x|+1C.y=-x 2+1D.y=2-|x|【答案】B【解析】A 中y=x 3是奇函数不满足题意;由y=|x|+1的图象可知B 满足题意;C 中y=-x 2+1在(0,+∞)上为减函数,故不满足题意;D 中y=2-|x|在(0,+∞)上为减函数,故不满足题意,故选B.83.(2011•全国•文T10)在下列区间中,函数f(x)=e x+4x-3的零点所在的区间为( ) A.(-14,0) B.(0,14)C.(14,12)D.(12,34)【答案】C【解析】∵f(x)是R 上的增函数且图象是连续的,且f (14)=e 14+4×14-3=e 14-2<0,f (12)=e 12+4×12-3=e 12-1>0, ∴f(x)在(14,12)内存在唯一零点.84.(2011•全国•理T12)函数y=11-x 的图象与函数y=2sin πx(-2≤x ≤4)的图象所有交点的横坐标之和等于( )A.2B.4C.6D.8 【答案】D【解析】由题意知y=11-x =-1x -1的图象是双曲线,且关于点(1,0)成中心对称.又y=2sin πx 的周期为T=2ππ=2,也关于点(1,0)成中心对称,因此两图象的交点也一定关于点(1,0)成中心对称,如图所示,可知两个图象在[-2,4]上有8个交点,因此8个交点的横坐标和x 1+x 2+…+x 8=4×2=8.85.(2011•全国•文T12)已知函数y=f(x)的周期为2,当x ∈[-1,1]时f(x)=x 2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有( ) A.10个 B.9个 C.8个 D.1个【答案】A【解析】根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:可验证当x=10时,y=|lg 10|=1;0<x<10时,|lg x|<1; x>10时|lg x|>1.结合图象知y=f(x)与y=|lg x|的图象交点共有10个.86.(2010•全国•理T8)设偶函数f(x)满足f(x)=x 3-8(x ≥0),则{x|f(x-2)>0}=( ) A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2} 【答案】B【解析】f(x-2)>0等价于f(|x-2|)>0=f(2), 又∵f(x)=x 3-8(x ≥0)为增函数, ∴|x-2|>2.解得x>4或x<0.87.(2010•全国•文T9)设偶函数f(x)满足f(x)=2x-4(x ≥0),则{x|f(x-2)>0}等于( ) A.{x|x<-2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<-2或x>2} 【答案】B【解析】f(x)={2x -4,x ≥0,12x-4,x <0,f(x-2)={2x -2-4,x ≥2,12x -2-4,x <2,令f(x-2)>0⇒x>4或x<0.88.(2010•全国•理T11文T12)已知函数f(x)={|lgx|,0<x≤10,-12x+6,x>10.若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【答案】C【解析】因为-lg a=lg b⇒ab=1,所以abc=c,也就是说只需要求出c的取值范围即可,如下图所示,绘制出图象,平移一条平行于x轴的直线,可以发现c的取值范围是10<c<12,因此10<abc<12.89.(2019•全国2•理T14)已知f(x)是奇函数,且当x<0时,f(x)=-e ax.若f(ln 2)=8,则a= .【答案】-3【解析】∵ln 2∈(0,1),f(ln 2)=8,f(x)是奇函数,∴f(-ln 2)=-8.∵当x<0时,f(x)=-e ax,∴f(-ln 2)=-e-aln 2=-8,∴e-aln 2=8,∴-aln 2=ln 8,∴-a=3,∴a=-3.90.(2019•北京•T14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为. 【答案】(1)130(2)15【解析】(1)当x=10时,顾客一次购买草莓和西瓜各一盒,需要支付(60+80)-10=130元.(2)设顾客一次购买水果的促销前总价为y元,y<120元时,李明得到的金额为y•80%,符合要求.y≥120元时,有(y-x)•80%≥y•70%成立,即8(y-x)≥7y,x≤y 8,即x≤(y8)min=15.所以x 的最大值为15.91.(2019•北京•理T13)设函数f(x)=e x +ae -x(a 为常数).若f(x)为奇函数,则a= ;若f(x)是R 上的增函数,则a 的取值范围是 . 【答案】-1 (-∞,0]【解析】若函数f(x)=e x+ae -x为奇函数, 则f(-x)=-f(x),e -x+ae x=-(e x+ae -x), (a+1)(e x+e -x)=0对任意的x 恒成立,则a=-1. 若函数f(x)=e x+ae -x是R 上的增函数,则f'(x)=e x-ae -x≥0恒成立,即a ≤e 2x,故a ≤0.92.(2018•全国3•文T16)已知函数f(x)=ln(√1+x 2-x)+1,f(a)=4,则f(-a)= . 【答案】-2【解析】令g(x)=ln(√1+x 2-x),g(-x)=ln(√1+x 2+x),∴g(x)+g(-x)=ln(1+x 2-x 2)=0,∴g(x)为奇函数.∴f(x)=g(x)+1.∴f(a)+f(-a)=g(a)+1+g(-a)+1=2. ∴f(-a)=-2.93.(2018•江苏•T9)函数f(x)满足f(x+4)=f(x)(x ∈R),且在区间(-2,2]上,f(x)={cos πx2,0<x ≤2,|x +12|,-2<x ≤0,则f(f(15))的值为 .【答案】√22【解析】由f(x+4)=f(x),得函数f(x)的周期为4, 所以f(15)=f(16-1)=f(-1)=|-1+12|=12.因此f(f(15))=f (12)=cos π4=√22. 94.(2018•全国1•文T13)已知函数f(x)=log 2(x 2+a),若f(3)=1,则a= . 【答案】-7【解析】因为f(3)=log 2(9+a)=1,所以9+a=2,即a=-7.95.(2019•浙江•T16)已知a ∈R,函数f(x)=ax 3-x.若存在t ∈R,使得|f(t+2)-f(t)|≤23,则实数a 的最大值是_______________。