七年级上册数学《整式的加减》整式加减知识点整理

合集下载

(人教版)南京七年级数学上册第二章《整式的加减》知识点总结

(人教版)南京七年级数学上册第二章《整式的加减》知识点总结

1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律. 2.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ; D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C 解析:C 【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案. 【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意; B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意; C 选项、333541x x x x -++-+-=3724x x -++,符合题意; D 选项、337322724x x x x x -+---=-+-,不符合题意. 故选:C . 【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 4.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( ) A .(x ﹣8%)(x+10%) B .(x ﹣8%+10%) C .(1﹣8%+10%)x D .(1﹣8%)(1+10%)x D解析:D 【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润. 【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D . 【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A.﹣1﹣1=﹣2,故本选项错误;B.2(a﹣3b)=2a﹣6b,故本选项错误;C.a3÷a=a2,故本选项错误;D.﹣32=﹣9,正确;故选:D.【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 8.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解.解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项. 11.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 12.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.13.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.14.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C 【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数 【详解】根据题意列得:20(-2-23020302222a b a b a b a a b aa b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b ) =10b-10a+15a-15b =5a-5b ,则这次买卖中,张师傅赚5(a-b )元. 故选C . 【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.15.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+-C .2513a a --D .21a a -+- B解析:B 【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案. 【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3, 故选B. 【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 1.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2. 故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.2.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数1234…n正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n次时共有4+3(n-1)=3n+1试题解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.3.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x.【解析】解:系数为-2,次数为4的单项式为:-2x4.故答案为-2x4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.4.一个关于x的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x的二次三项式其中二次项是x2一次项是-x常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 5.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律 【分析】直接利用整式的加减运算法则进而得出答案. 【详解】解:原式=2a 2b+5ab+a 2b-3ab =2a 2b+a 2b+5ab-3ab =(2a 2b+a 2b )+(5ab-3ab ) =3a 2b+2ab .第②步依据是:加法交换律. 故答案为:加法交换律. 【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键. 6.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键 解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值. 【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠,∴2m =-. 故答案为:2-. 【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 7.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于 解析:8128a【分析】根据题意给出的规律即可求出答案. 【详解】由题意可知:第n 个式子为2n-1a n , ∴第8个式子为:27a 8=128a 8, 故答案为:128a 8. 【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型. 8.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案. 【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.9.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.10.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x +【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x 千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.11.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)【分析】用个位上的数字表示出十位和百位上的数然后根据数的表示列式整理即可得答案【详解】∵个位数字为n 十位数字比个位数字少2百位数字比个位数字多1∴十位数字为n-2百位数字为n+1∴这个三位数为100解析:11180n +【分析】用个位上的数字表示出十位和百位上的数,然后根据数的表示列式整理即可得答案.【详解】∵个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,∴十位数字为n-2,百位数字为n+1,∴这个三位数为100(n+1)+10(n-2)+n=111n+80.故答案为111n+80.【点睛】本题考查了列代数式,主要是数的表示,表示出三个数位上的数字是解题的关键. 1.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.2.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.3.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字.解析:22017的个位数字是2.【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,由此得到答案.【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,∵22017=450412⨯+,∴22017的个位数字是2.【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.4.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得;(3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

七年级上册的数学第二章“整式的加减”主要知识点

七年级上册的数学第二章“整式的加减”主要知识点

七年级上册的数学第二章“整式的加减”主要知识点1. 整式的概念-单项式:由数与字母的积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

-系数:单项式中的数字因数叫做单项式的系数。

-次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

-多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。

2. 整式的加减法则-同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

-合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项时,把同类项的系数相加,字母和字母的指数不变。

3. 去括号与添括号-去括号法则:如果括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;如果括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。

-添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号。

4. 整式的加减运算步骤1. 去括号:根据去括号法则去掉括号。

2. 识别同类项:找出所有同类项。

3. 合并同类项:利用合并同类项法则进行合并。

4. 整理结果:按照一定顺序(如降幂或升幂)写出最终的整式。

5. 应用题-整式的加减运算还经常出现在应用题中,如求解面积、体积、距离等问题,需要学生将实际问题抽象为整式的加减运算。

6. 注意事项-在进行整式加减时,要仔细识别同类项,避免漏项或重复计算。

-注意系数的符号,特别是负号的作用。

-运算后要进行必要的化简,使结果更加简洁明了。

七年级数学上册第二章整式的加减知识汇总笔记

七年级数学上册第二章整式的加减知识汇总笔记

(名师选题)七年级数学上册第二章整式的加减知识汇总笔记单选题1、等号左右两边一定相等的一组是()A.−(a+b)=−a+b B.a3=a+a+a C.−2(a+b)=−2a−2b D.−(a−b)=−a−b答案:C分析:利用去括号法则与正整数幂的概念判断即可.解:对于A,−(a+b)=−a−b,A错误,不符合题意;对于B,a3=a⋅a⋅a,B错误,不符合题意;对于C,−2(a+b)=−2a−2b,C正确,符合题意;对于D,−(a−b)=−a+b,D错误,不符合题意.故选:C.小提示:本题考查了去括号法则,以及正整数幂的概念,熟练掌握相关定义与运算法则是解题的关键.2、下列添括号正确的是()A.−b−c=−(b−c)B.−2x+6y=−2(x−6y)C.x−y−1=x−(y−1)D.a−b=+(a−b)答案:D分析:根据添括号的法则即可进行解答.解:A、−b−c=−(b+c),故A不正确,不符合题意;B、−2x+6y=−2(x−3y),故B不正确,不符合题意;C、x−y−1=x−(y+1),故C不正确,不符合题意;D、a−b=+(a−b),故D正确,符合题意;故选:D.小提示:本题主要考查了添括号的法则,解题的关键是熟练掌握添加括号的法则,添加括号时,括号前是正号时,括号里面符号不改变;括号前是负号时,括号里面要变号.x m+3y与2x4y n+3是同类项,则(m+n)2021的值为()3、若单项式12A.1B.2021C.-1D.-2021答案:Cx m+3y与2x4y n+3是同类项,得到m+3=4,n+3=1,从而得到m+n=-1,然后计算即可.分析:单项式−12x m+3y与2x4y n+3是同类项,解:∵单项式−12∴m+3=4,n+3=1,∴m=1,n=-2,∴m+n=-1,∴(m+n)2021=-1,故选:C.小提示:本题考查了同类项的定义即含有的字母相同且相同字母的指数相同,熟练掌握定义是解题的关键.4、一台饮水机成本价为a元,销售价比成本价高22%,因库存积压需降价促销,按销售价的80%出售,则每台实际售价为( )A.(1+22%)(1+80%)a元B.(1+22%)a·80%元C.(1+22%)(1-80%)a元D.(1+22%+80%)a元答案:B分析:先表示出销售价为(1+22%)a,再根据按销售价的80%出售可得实际售价.解:由题意得,实际售价为:(1+22%)a·80%元.故选:B.小提示:本题考查了列代数式,解题的关键是读懂题意,找到关键描述语列出代数式.5、多项式4x3−3x2y4+2m−7的项数和次数分别是()A.4,9B.4,6C.3,9D.3,6答案:B分析:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,然后根据多项式的项的定义,多项式的次数的定义即可确定其项数与次数.解:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,其中最高次数为2+4=6.故选:B.小提示:本题考查了对多项式的项和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.6、如图所示的图案是用长度相同的木条按一定规律摆成的.摆第1个图案需8根木条,摆第2个图案需15根木条,摆第3个图案需22根木条,…,按此规律摆第n个图案需要木条( )A.(6n+2)根B.(7n+1)根C.(7n−1)根D.8n根答案:B分析:根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.解:由图可得,图案①有:1+7=8根小木棒,图案②有:1+7×2=15根小木棒,图案③有:1+7×3=22根小木棒,…则第n个图案有:(7n+1)根小木棒,故选:B.小提示:本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.7、下列各选项中,不是同类项的是()A.3a2b和−5ba2B.12x2y和12xy2C.6和23D.5x n和−3x n4答案:B分析:根据同类项的概念求解即可.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.解:A、3a2b和−5ba2是同类项,不符合题意;B、12x2y和12xy2不是同类项,符合题意;C、6和23是同类项,不符合题意;D、5x n和−3x n4是同类项,不符合题意.故选:B.小提示:此题考查了同类项的概念,解题的关键是熟练掌握同类项的概念.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.8、下列各组数中,是同类项的是()A.−2x2y与13yx2B.−0.5xy2与0.5x2y C.xyz与xyc D.3x与2y答案:A分析:根据同类项的概念求解.解:A.−2x2y与13yx2,字母相同,相同字母的指数也相同,是同类项,符合题意;B.−0.5xy2与0.5x2y,字母相同,相同字母的指数不相同,不是同类项不符合题意;C.xyz与xyc,字母不同,不是同类项,不符合题意;D. 3x与2y,字母不同,不是同类项,不符合题意;故选A.小提示:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.9、下列关于“代数式4x+2y”的意义叙述正确的有()个.①x的4倍与y的2倍的和是4x+2y;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(4x+2y)元.A.3B.2C.1D.0答案:B分析:根据代数式4x+2y的意义分别对三个叙述进行判断即可.解:①x的4倍与y的2倍的和是4x+2y,正确;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米,正确;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(2x+4y)元,错误;故正确的有2个故选:B.小提示:此题考查了代数式的问题,解题的关键是掌握代数式的意义以及性质.10、若3x3m y n-1与−x3y是同类项,则m-2n的值为()A.1B.0C.-1D.-3答案:D分析:根据同类项的定义:含有相同字母,并且相同字母的指数也相同的项叫做同类项.可得得出m、n的值,代入m-2n即可求解.解:因为3x3m y n-1与−x3y是同类项,所以3m=3,n−1=1,所以m=1,n=2.所以m-2n=1−2×2=−3.故选:D小提示:本题考查同类项的定义,代数式的求值,理解同类项的定义,根据相同字母的指数相同求出m、n的值是解题的关键.填空题+cd的值是_________.11、若a、b互为相反数,c、d互为倒数,m是(−3)的相反数,则m+a+b9答案:4分析:利用相反数、倒数的定义,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.解:根据题意得:a+b=0,cd=1,m=3,原式=3+0+1=4.所以答案是:4.小提示:本题主要考查了有理数的混合运算,相反数、倒数的定义,根据题意得出a+b=0,cd=1,m=3,是解本题的关键.12、已知m﹣n=2,mn=﹣5,则3(mn﹣n)﹣(mn﹣3m)的值为 _____.答案:﹣4分析:原式去括号,合并同类项进行化简,然后利用整体思想代入求值.解:原式=3mn﹣3n﹣mn+3m=3m﹣3n+2mn,∵m﹣n=2,mn=﹣5,∴原式=3(m﹣n)+2mn=3×2+2×(﹣5)=6﹣10=﹣4,所以答案是:﹣4.小提示:本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想求值是解题关键.13、若一个多项式加上3xy+2y2−8,结果得2xy+3y2−5,则这个多项式为___________.答案:y2−xy+3分析:设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,求解即可.设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,∴A=(2xy+3y2−5)−(3xy+2y2−8)=2xy+3y2−5−3xy−2y2+8=y2−xy+3,所以答案是:y2−xy+3.小提示:本题考查了整式的加减,准确理解题意,列出方程是解题的关键.14、实数a、b、c在数轴上的位置如图所示,√a2+|a−c|−|c−b|化简的结果是______.答案:-b分析:根据数轴上点的位置得到c<a<0<b,得到a-c>0,c-b<0,由此化简绝对值及算术平方根,再计算即可.解:由数轴得c<a<0<b,∴a-c>0,c-b<0,∴√a2+|a−c|−|c−b|=-a+a-c-(b-c)=-c-b+c=-b,所以答案是:-b.小提示:此题考查了根据数轴上点的位置判断式子的符号,化简绝对值,计算算术平方根,正确理解数轴上点的位置得到式子的符号是解题的关键.15、按照列代数式的规范要求重新书写:a×a×2−b÷3,应写成_________.答案:2a2-b3分析:根据代数式的书写要求填空..解:应写成:2a2-b3.所以答案是:2a2-b3小提示:本题考查了代数式的书写要求.解题的关键是掌握代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.解答题16、已知A=3a3﹣ab+b2,B=﹣a3﹣ab+4b2(1)求A﹣B;(2)当a、b满足(a+1)2+|2﹣b|=0时,求A﹣B的值.答案:(1)4a3﹣3b2(2)-16分析:(1)直接利用整式的加减计算即可;(2)根据绝对值和乘方的非负性求得a和b的值,再代入计算即可.(1)A﹣B=3a3﹣ab+b2﹣(﹣a3﹣ab+4b2)=3a3﹣ab+b2+a3+ab﹣4b2=4a3﹣3b2.(2)∵a、b满足(a+1)2+|2﹣b|=0∴a=﹣1,b=2,当a=﹣1,b=2时,A﹣B=4a3﹣3b2=4×(﹣1)3﹣3×22=﹣4﹣12=﹣16.小提示:本题考查整式的加减,绝对值和乘方的非负性.(1)中需注意去括号时不要搞错符号;(2)中理解两个非负数(式)的和为0,那么这两个非负数(式)都为0是解题关键.17、东坡区某学校举办“传承三苏家国情怀弘扬中华传统文化”的校园演讲比赛,设立了一、二、三等奖,根倍少1件,各奖品单价如表所示.若二等奖据设奖情况买了36件奖品,且一等奖奖品数比二等奖奖品数的12奖品买了a件,全部奖品的总价是b元.a的代数式表示b,并化简;(2)当a=8时,买一等奖奖品和三等奖奖品分别花费了多少元?(3)若买二等奖奖品花费504元,则买全部奖品花费了多少元?答案:(1)12a−1;37−32a;b=42a +680(2)买一等奖奖品花费180元,买三等奖奖品花费500元(3)1184元分析:(1)利用题干中的数量关系即可表示出一等奖的件数,用总数减去一、二奖的奖品数量即可得到三等奖的奖品数量;利用表格中的信息分别计算三种奖品的费用再相加即可得出结论;(2)利用费用=件数×单价分别列出代数式,再将a=8代入计算即可得出结论;(3)利用已知条件求得a值,再将a值代入(1)中的代数式b=42a+680,计算即可得出结论.(1)一等奖奖品12a−1(件),三等奖奖品36-a-(12a−1)=37−32a(件)所以答案是:12a−1;37−32a.用含有a的代数式表示b是:b=(12a−1)×60+42a+(37−32a)×20=30a-60+42a +740-30a=42a +680;即b=42a +680.(2)当a=8时,买一等奖奖品花费(12×8−1)×60=180(元)买三等奖奖品花费(37−32×8)×20=25×20=500(元)答:当a=8时,买一等奖奖品花费180元,买三等奖奖品花费500元.(3)买二等奖奖品花费504元,则二等奖奖品买了504÷42=12(件),即a=12,又(1)可知b=42a +680,故买全部奖奖品花费了42×12+680=1184(元)答:若买二等奖奖品花费504元,则买全部奖奖品花费了1184元.小提示:本题主要考查了列代数式,求代数式的值,利用公式:费用=件数×单价解答是解题的关键.18、化简:(1)4xy-(3x2-3xy)-2y+2x2(2)(a+b)-2(2a-3b)+3(a-2b)答案:(1)-x2+7xy-2y;(2)b-3a.分析:(1)去括号,根据合并同类项法则计算;(2)去括号,根据整式的加减混合运算法则计算.(1)解:4xy-(3x2-3xy)-2y+2x2=4xy-3x2+3xy-2y+2x2=-x2+7xy-2y;(2)解:(a+b)-2(2a-3b)+3(-2b)=a+b-4a+6b-6b=b-3a.小提示:本题考查的是整式的加减,掌握整式的加减运算法则是解题的关键.。

人教版七年级(上)第二章《整式的加减》知识点

人教版七年级(上)第二章《整式的加减》知识点

人教版七年级(上)数学 第二章<整式的加减>知识点姓名一、整式1. 代数式:用基本的运算符号把 和表示 连接起来的式子叫做代数式,单独的一个数或一个字母也是代数式。

2. 代数式的值:一般地,用 代替代数式里的字母,按照代数式的运算关系计算得出的结果,叫做代数式的值。

注意:(1)当数与字母相乘时,乘号通常简写为“ ”或 ,并且数在 ,字母在 ,若数字是带分数,要化为 。

(2)字母与字母相乘时,乘号通常省略不写或者写为“· ”。

(3)除法写成 的形式。

3.单项式:如100t 、6a 2b 、2.5x 、vt 、-n ,它们都是数或字母的积,像这样的式子叫做 ,单独的一个数或一个字母也是 。

4.单项式的系数:单项式中的 叫做这个单项式的系数。

例如:单项式100t 、6a 2b 、2.5x 、vt 、-n 的系数分别是 、 、 、 、 。

5. 单项式的次数:一个单项式中, 叫做这个单项式的次数。

例如:单项式100t 、6a 2b 、2.5x 、vt 、-n 的次数分别是 、 、 、 、 。

6.多项式:如2x-3,3x+5y+2z ,21ab-πr 2,它们都可以看作几个单项式的和,像这样 叫做多项式。

其中 叫做多项式的项,不含字母的项叫做 项。

例如:在多项式2x-3中,2x 和-3是它的项,其中-3是常数项。

7.多项式的次数:多项式里 次数,叫做这个多项式的次数。

例如:在多项式2x-3中,次数最高的项是一次项2x ,这个多项式的次数是1;在多项式x 2+2x+18中,次数最高的项是二次项x 2,这个多项式的次数是2。

注意:(1)多项式的次数取决于多项式中次数最高项的次数。

(2)多项式的每一项都包括它前面的符号。

(3)多项式的次数不是所有项的次数之和。

(4)多项式中含有几项,就是几项式,最高次数是几,就是几次式。

(5)多项式没有系数的概念,但对多项式中的每一项来说都有系数。

(6)判断一个代数式是不是多项式,关键是代数式能不能写成单项式的和。

人教版七年级数学上册整式的加减知识点总结及题型汇总(无答案)

人教版七年级数学上册整式的加减知识点总结及题型汇总(无答案)

人教版七年级数学上册整式的加减知识点总结及题型汇总(无答案)整式的加减知识点总结及题型汇总整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值. 13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略; ②数字与字母、字母与字母相除,要把它写成分数的形式; ③如果字母前面的数字是带分数,要把它写成假分数。

人教版(2024数学七年级上册 第四章 《整式的加减》专题

人教版(2024数学七年级上册 第四章 《整式的加减》专题

B. -2x + 6y = -2(x - 6y)
C. a - b = +(a - b)
D. x - y - 1 = x - (y - 1)
4. 添括号: (1) (x + y)2 - 10x - 10y + 25 = (x + y)2 - 10( x + y ) + 25. (2) (a - b + c - d)(a + b - c + d)
a-b+c
添括号 去括号
a - (b - c)
相互检验正误
例3 在各式的括号中填上适当的项,使等式成立. (1) 2x + 3y - 4z + 5t
= -( -2x - 3y + 4z - 5t ) = +( 2x + 3y - 4z + 5t ) = 2x - ( - 3y + 4z - 5t ) = 2x + 3y - ( 4z - 5t );
= [a - ( b - c + d )][a + ( b - c + d )].
◆类型四 整体代入 例4 (赣州期末) 阅读材料: 我们知道,2x + 3x - x = (2 + 3 - 1)x = 4x,类似地,我们 把 (a + b) 看成一个整体,则 2(a + b) + 3(a + b) - (a + b) = (2+3-1)(a + b) = 4(a + b). “整体思想” 是中学数学解 题中的一种重要的思想方法,它在多项式的化简与求值 中应用极为广泛.
= 3a2 - 6ab - 3a2 + 2b - 2ab - 2b

七年级数学上册第二章整式的加减高频考点知识梳理

七年级数学上册第二章整式的加减高频考点知识梳理

(名师选题)七年级数学上册第二章整式的加减高频考点知识梳理单选题1、如果代数式2x−3y+2的值为5,那么代数式5+6y−4x的值为()A.−1B.11C.7D.−3答案:A分析:先根据题意得到2x−3y=3,然后整体代入到5+6y−4x=5−2(2x−3y)中进行求解即可.解:∵代数式2x−3y+2的值为5,∴2x−3y+2=5,∴2x−3y=3,∴5+6y−4x=5−2(2x−3y)=5−2×3=−1,故选A.小提示:本题主要考查了代数式求值,正确得到2x−3y=3是解题的关键.2、单项式−3xy34的系数是()A.3B.4C.−3D.−34答案:D分析:根据单项式的系数的概念解答即可.解:单项式-3xy 34的系数是-34.故选:D.小提示:本题考查的是单项式的系数的概念,单项式中的数字因数叫做单项式的系数,理解单项式的系数的概念是解答关键.3、如果单项式−12x m+3y与2x4y n+3的差是单项式,那么(m+n)2021的值为()A.-1B.0C.1D.2021答案:A分析:单项式−12x m+3y与2x4y n+3的差是单项式,得到单项式−12x m+3y与2x4y n+3是同类项,得到m+3=4,n+3=1,从而得到m+n=-1,从而到(m+n)2021= -1,判断即可.∵单项式−12x m+3y与2x4y n+3的差是单项式,∴单项式−12x m+3y与2x4y n+3是同类项,∴m+3=4,n+3=1,∴m+n=-1,∴(m+n)2021= -1,故选A.小提示:本题考查了同类项的定义即含有的字母相同且相同字母的指数相同,熟练掌握定义是解题的关键.4、等号左右两边一定相等的一组是()A.−(a+b)=−a+b B.a3=a+a+a C.−2(a+b)=−2a−2b D.−(a−b)=−a−b答案:C分析:利用去括号法则与正整数幂的概念判断即可.解:对于A,−(a+b)=−a−b,A错误,不符合题意;对于B,a3=a⋅a⋅a,B错误,不符合题意;对于C,−2(a+b)=−2a−2b,C正确,符合题意;对于D,−(a−b)=−a+b,D错误,不符合题意.故选:C.小提示:本题考查了去括号法则,以及正整数幂的概念,熟练掌握相关定义与运算法则是解题的关键.5、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)=−5xy+52y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.4x2−5y B.2y−x C.5x D.4x2答案:D分析:根据题意易得(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2,然后进行求解即可.解:由题意得:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2=−x2+3xy−12y2+5x2−8xy+3y2+5xy−52y2 =4x2故选:D.小提示:本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.6、下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为()A.135B.153C.170D.189答案:C分析:由观察发现每个正方形内有:2×2=4,2×3=6,2×4=8,可求解b,从而得到a,再利用a,b,x之间的关系求解x即可.解:由观察分析:每个正方形内有:2×2=4,2×3=6,2×4=8,∴2b=18,∴b=9,由观察发现:a=8,又每个正方形内有:2×4+1=9,3×6+2=20,4×8+3=35,∴18b+a=x,∴x=18×9+8=170.故选C.小提示:本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.7、一台饮水机成本价为a元,销售价比成本价高22%,因库存积压需降价促销,按销售价的80%出售,则每台实际售价为( )A.(1+22%)(1+80%)a元B.(1+22%)a·80%元C.(1+22%)(1-80%)a元D.(1+22%+80%)a元答案:B分析:先表示出销售价为(1+22%)a,再根据按销售价的80%出售可得实际售价.解:由题意得,实际售价为:(1+22%)a·80%元.故选:B.小提示:本题考查了列代数式,解题的关键是读懂题意,找到关键描述语列出代数式.8、古希腊著名的毕达哥拉斯学派把1、3、6、10…,这样的数称为“三角形数”,而把1、4、9、16…,这样的数称为“正方形数”.则第5个“三角形数”与第5个“正方形数”的和是()A.35B.40C.45D.50答案:B分析:分别探究“三角形数”与“正方形数”的存在规律,求出第5个“三角形数”与第5个“正方形数”,再求第5个“三角形数”与第5个“正方形数”的和.第1个“三角形数”:1,第2个“三角形数”:1+2=3,第3个“三角形数”:1+2+3=6,第4个“三角形数”:1+2+3+3=10,第5个“三角形数”:1+2+3+4+5=15,第1个“正方形数”:1,第2个“正方形数”:22=4,第3个“正方形数”:32=9,第4个“正方形数”:42=16,第5个“正方形数”:52=25,∴15+25=40.故选:B.小提示:本题主要考查了“三角形数”与“正方形数”,解决问题的关键是探究“三角形数”与“正方形数”的规律,运用规律求数.9、如图所示的图案是用长度相同的木条按一定规律摆成的.摆第1个图案需8根木条,摆第2个图案需15根木条,摆第3个图案需22根木条,…,按此规律摆第n个图案需要木条( )A.(6n+2)根B.(7n+1)根C.(7n−1)根D.8n根答案:B分析:根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.解:由图可得,图案①有:1+7=8根小木棒,图案②有:1+7×2=15根小木棒,图案③有:1+7×3=22根小木棒,…则第n个图案有:(7n+1)根小木棒,故选:B.小提示:本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.10、将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12答案:B分析:列举每个图形中H的个数,找到规律即可得出答案.解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.小提示:本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.填空题11、已知a+b=2,则2a+2b−5=______.答案:−1分析:先添括号把2a+2b−5化为2(a+b)−5,然后将a+b=2整体代入即可求解.解:∵a+b=2,∴2a+2b−5=2(a+b)−5=2×2−5=−1,所以答案是:−1.小提示:本题考查了代数式求值,熟练掌握添括号法则和整体代入思想是解题关键.12、已知|x|=8,|y|=5,且xy<0,则x+y的值等于 _____.答案:±3分析:根据绝对值的意义,求得x,y的值,进而根据xy<0,确定x,y的值,进而求得代数式的值.解:∵|x|=8,|y|=5,∴x=±8,y=±5,又∵xy<0,∴x=8,y=﹣5或x=﹣8,y=5,当x=8,y=﹣5时,原式=8+(﹣5)=3,当x=﹣8,y=5时,原式=﹣8+5=﹣3,综上,x+y的值为±3,所以答案是:±3.小提示:本题考查了绝对值的意义,代数式求值,注意分类讨论是解题的关键.13、若a、b互为相反数,c、d互为倒数,m是(−3)的相反数,则m+a+b9+cd的值是_________.答案:4分析:利用相反数、倒数的定义,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.解:根据题意得:a+b=0,cd=1,m=3,原式=3+0+1=4.所以答案是:4.小提示:本题主要考查了有理数的混合运算,相反数、倒数的定义,根据题意得出a+b=0,cd=1,m=3,是解本题的关键.14、将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)a×a×2−b×13,应写成______;(4)143x, 应写成______.答案: 5a st 2a2−b37x3分析:(1)根据代数式书写规范将数字因数写在代数式前省略乘号即可得到结果.(2)根据代数式书写规范将除法算式写成分数形式即可得到结果.(3)根据代数式书写规范将数字因数写在代数式前省略乘号,同时将相同字母的乘积写成乘方形式即可得到结果.(4)根据代数式书写规范将数字因数的带分数化为假分数即可得到结果.解:(1)a×5=5a,故答案为∶5a;(2)S÷t=st,故答案为∶st;(3)a×a×2−b×13=2a2−b3,故答案为∶2a2−b3;(4)143x=73x故答案为∶7x3.小提示:本题考查代数式书写规范,熟知代数式的书写规范要求是解题关键.15、若一个多项式加上3xy+2y2−8,结果得2xy+3y2−5,则这个多项式为___________.答案:y2−xy+3分析:设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,求解即可.设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,∴A=(2xy+3y2−5)−(3xy+2y2−8)=2xy+3y2−5−3xy−2y2+8=y2−xy+3,所以答案是:y2−xy+3.小提示:本题考查了整式的加减,准确理解题意,列出方程是解题的关键.解答题16、老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式形式如下:+2(a2−4ab+4b2)=3a2+2b2(1)求所捂的多项式;(2)若a,b满足:(a+1)2+|b−12|=0,请求出所捂的多项式的值.答案:(1)a2+8ab−6b2(2)−92分析:(1)根据题意可得捂住部分为:(3a2+2b2)﹣2(a2﹣4ab+4b2),利用整式的加减的法则进行求解即可;(2)由非负数的性质可求得a,b的值,再代入运算即可.(1)解:根据题意得:(3a2+2b2)−2(a2−4ab+4b2)=3a2+2b2−2(a2−4ab+4b2)=3a2+2b2−2a2+8ab−8b2=a2+8ab−6b2;(2)解:∵(a+1)2+|b−12|=0∴a=−1.b=12代入a2+8ab−6b2=1−4−32=−92.小提示:本题主要考查整式的加减,非负数的性质,解答的关键是对相应的运算法则的掌握.17、图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的阴影部分的正方形的边长等于______.(2)请用两种不同的方法求图b中阴影部分的面积.(3)观察图b,你能写出以下三个代数式之间的等量关系吗?代数式:(m+n)2,(m−n)2,mn.(4)若x,y都是有理数,x−y=4,xy=5,求x+y的值.答案:(1)m−n;(2)S阴=(m−n)2,S阴=(m+n)−4mn;(3)能,(m−n)2=(m+n)2−4mn;(4)x+y=±6分析:(1)观察得到长为m,宽为n的长方形的长宽之差即为阴影部分的正方形的边长;(2)可以用大正方形的面积减去4个长方形的面积得到图2中的阴影部分的正方形面积;也可以直接利用正方形的面积公式得到;(3)利用(2)中图2中的阴影部分的正方形面积得到(m+n)2-4mn=(m-n)2;(4)根据(3)的结论得到(x-y)2=(x+y)2-4xy,然后把x-y=4,xy=5代入计算.解:(1)由题意得:图b中的阴影部分的正方形的边长等于m−n.所以答案是:m−n;(2)由题意得:S阴=(m−n)2,S阴=(m+n)2−4mn;(3)观察图b,可得三个代数式之间的等量关系为:(m−n)2=(m+n)2−4mn.(4)∵x−y=4,xy=5,∴(x+y)2=(x−y)2+4xy=42+4×5=36,∴x+y=±6.小提示:本题主要考查了完全平方公式在几何图形中的应用,解题的关键在于能够熟练掌握完全平方公式.18、化简:(1)4xy-(3x2-3xy)-2y+2x2(2)(a+b)-2(2a-3b)+3(a-2b)答案:(1)-x2+7xy-2y;(2)b-3a.分析:(1)去括号,根据合并同类项法则计算;(2)去括号,根据整式的加减混合运算法则计算.(1)解:4xy-(3x2-3xy)-2y+2x2=4xy-3x2+3xy-2y+2x2=-x2+7xy-2y;(2)解:(a+b)-2(2a-3b)+3(-2b)=a+b-4a+6b-6b=b-3a.小提示:本题考查的是整式的加减,掌握整式的加减运算法则是解题的关键.。

七年级上册数学整式的加减法知识点归纳

七年级上册数学整式的加减法知识点归纳

整式的加减法是初中数学中的重要知识点,掌握好整式的加减法对于学生来说非常关键。

在七年级上册数学教学中,学生们将接触整式的加减法,并且在以后的学习中会不断用到这些知识。

我们有必要对七年级上册数学整式的加减法知识点进行归纳和总结。

一、整式的概念整式是指由常数、变量及其指数和次数有限次加、减、乘、除运算得到的代数和。

一般表示为a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0,其中a_n、a_{n-1}、...、a_1、a_0为常数,x为变量,n为自然数。

二、整式的加法1. 同类项的加法同类项是指它们具有相同的字母和字母的指数相同的项。

在进行整式的加法时,首先要将同类项合并,然后将它们的系数相加。

例如:3x^2y+2xy^2-5x^2y-3xy^2= 3x^2y-5x^2y+2xy^2-3xy^2= -2x^2y-xy^22. 不同类项的加法对于不同类项的加法,直接将它们按照位置进行相加即可。

例如:2x^2y+3xy^2+4xy-5y+ 3x^2y+6xy^2-2xy+8y= 5x^2y+9xy^2+2xy+3y三、整式的减法整式的减法与加法相似,只是减法需要将被减数取相反数,然后按照加法的规则进行计算。

例如:2x^2y-3xy+4y-5- (x^2y+2xy-3y+6)= 2x^2y-3xy+4y-5-x^2y-2xy+3y-6= x^2y-5xy+7y-11四、综合运用在实际运用整式的加减法时,需要综合运用多种运算法则。

例如:(3x^2y+5xy^2-2xy+7y) - (2x^2y-3xy+4y-5)= 3x^2y+5xy^2-2xy+7y-2x^2y+3xy-4y+5= x^2y+5xy^2-5xy+3y+2五、练习题1. 计算:(2x^2y-3xy+4y-5) + (x^2y+2xy-3y+6)2. 计算:(3x^2y+5xy^2-2xy+7y) - (2x^2y-3xy+4y-5)3. 计算:2x^2y+3xy^2+4xy-5y - (3x^2y+6xy^2-2xy+8y)4. 计算:(3x^2y+2xy^2-5x^2y-3xy^2) + (4x^2y-xy^2+2x^2y+3xy^2)六、总结与思考整式的加减法是基础中的基础,对学生来说需要理解清楚,并且在反复练习中掌握。

七年级数学上册整式知识点(实用7篇)

七年级数学上册整式知识点(实用7篇)

七年级数学上册整式知识点(实用7篇)七年级数学上册整式知识点第1篇一、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉。

括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉。

括号里各项都改变符号。

二、合并同类项:同类项的系数相加,所得的结果作为系数。

字母和字母的指数不变。

同类项合并的依据:乘法分配律。

三、整式运算的法则:1.整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接2.整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式。

相同字母相乘(除)要用到同底数幂的运算性质:多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加3.整式的乘方单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式单项式的乘方要用到幂的乘方性质与积的乘方性质:七年级数学上册整式知识点第2篇1、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.2、系数单项式中的数字因数叫做这个单项式的系数.3、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.4、升幂排列把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.5、整式单项式和多项式统称整式。

6、同类项所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.7、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.8、去括号法则括号前是"+"号,把括号和它前面的"+"号去掉,括号里各项都不变符号;括号前是"-"号,把括号和它前面的"-"号去掉,括号里各项都改变符号.例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法则添括号后,括号前面是"+"号,括到括号里的各项都不变符号;添括号后,括号前面是"-"号,括到括号里的各项都改变符号.例:m+2x-y+z-5=m+(2x-y)-(-z+5)9、整式的加减整式加减的一般步骤:1.如果遇到括号,按去括号法则先去括号;2.合并同类项.10、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.七年级数学上册整式知识点第3篇代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。

七年级上册数学整式的加减全章知识点总结

七年级上册数学整式的加减全章知识点总结

千里之行,始于足下。

七年级上册数学整式的加减全章知识点总结
以下是七年级上册数学整式的加减的知识点总结:
1. 整式的定义:整数之间的加减运算所得到的代数式。

2. 恒等式:两个整式相等。

例如:2x + 3y = 5x - 7
3. 加法的基本性质:加法满足交换律、结合律和存在零元素的性质。

4. 减法的基本性质:减法是加法的逆运算。

a - b = a + (-b)。

5. 合并同类项:将同类项合并在一起,系数相加。

例如:2x + 3x = 5x。

6. 按照字母的次数从高到低排列整理整式。

7. 相反数的性质:两个数的和为0,互为相反数,例如a + (-a) = 0。

8. 移项和合并同类项:将含有未知数的项移到等式的一侧,常数项移到另一侧。

9. 因式分解:将一个整式拆分为乘积的形式。

10. 对数项进行运算:将系数相乘,指数相加。

以上是七年级上册数学整式的加减的知识点总结,希望对你有帮助!
第1页/共1页。

七年级数学上册整式的加减知识点及题型总结

七年级数学上册整式的加减知识点及题型总结

第二单元(整式的加减)【考点一】用字母表示数(1)用字母表示数时,数字与字母,字母与字母相乘,中间的( )可以忽略不写,或用( )表示。

(2)数字与字母相乘时,数字应写在( )前(3)系数是带分数时,带分数要化成( )(4)出现除式时,用( )表示(5)结果含加减运算的,单位前加( )例1:下列各式:①x 411; ②2•3 ; ③20%x ; ④c b a ÷-; ⑤3n m - ;⑥5-x 千克 其中符合书写要求的有( )A. 5个B. 4个C. 3个D. 2个 例2:用式子表示:a 的2倍与3的和,下列表示正确的是( )A.32-aB. 32+aC. )3(2-aD. )3(2+a例3:某种苹果的单价是x 元/ kg(x <10),用50元买5kg 这种苹果,应找回 元. 例4:用不同的方法表示出阴影部分的面积。

(至少写出两种)【考点二】单项式(1)单个数,单个字母,数和字母的乘积,字母和字母的乘积,都是单项式,数与字母相乘通常把数写在前面。

例如:1,a ,a 4,ab 都是单项式(2)单项式的系数:单项式的数字因数叫做这个单项式的系数,例如:单项式ab 100的系数是100,a 的是1(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数,例如a 100次数为1,b a 2100次数为3例题1:判断下列代数式是否为单项式,如果是,请写出它的系数和次数,0 ,1- xy -, 3a , x -3, x 1, 21x -, ab π31, 22yz x -, b例题2:如果15--m xy 为四次单项式,则=m ( ) 例题3:当21-=x ,2=y 时,求y x 42-的值。

例3:已知单项式426y x 与2231+-m z y 的次数相同,求m 的值.【考点三】多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,在多项式里,次数最高项的次数,叫做这个多项式的次数。

人教版数学七年级上册 整式的加减

人教版数学七年级上册   整式的加减

整式的加减(一)——合并同类项(基础)【要点梳理】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.【典型例题】类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8举一反三:【变式】下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥2.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n 的值.类型二、合并同类项3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5举一反三:【变式】(2015•玉林)下列运算中,正确的是( )A. 3a+2b=5abB. 2a 3+3a 2=5a 5C. 3a 2b ﹣3ba 2=0D. 5a 2﹣4a 2=14.已知35414527m n ab pa b a b ++-=-,求m+n -p 的值.举一反三: 【变式】若223m a b 与40.5n a b -的和是单项式,则m = ,n = .类型三、化简求值5. 当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--举一反三:【变式】先化简,再求值:(1)2323381231x x x x x -+--+,其中2x =;(2)222242923x xy y x xy y ++--+,其中2x =,1y =.类型四、“无关”与“不含”型问题6.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理.【巩固练习】一、选择题1.判断下列各组是同类项的有 ( ) .(1)0.2x 2y 和0.2xy 2;(2)4abc 和4ac ;(3)-130和15;(4)-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组2.下列运算正确的是( ).A .2x 2+3x 2=5x 4B .2x 2-3x 2=-x 2C .6a 3+4a 4=10a 7D .8ab 2-8ba 2=03.(2015•柳州)在下列单项式中,与2xy 是同类项的是( )A .2x 2y 2B .3yC .xyD .4x4.在下列各组单项式中,不是同类项的是( ).A .212x y -和2yx - B .-3和100 C .2x yz -和2xy z - D .abc -和52abc 5.如果xy ≠0,22103xy axy +=,那么a 的值为( ). A .0 B .3 C .-3 D .13- 6. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.A .47m n +B .28mnC .74m n +D .11mn 7.计算a 2+3a 2的结果是( ).A .3a 2B .4a 2C .3a 4D .4a 4 二、填空题8.写出325x y -的一个同类项 .9. 已知多项式ax bx +合并后的结果为零,则a b 与的关系为: .10.若3m n x y 与312xy -是同类项,则______,_______m n ==. 11. 合并同类项22381073x x x x ---++,得 .12.在22226345xy x x y yx x ---+中没有同类项的项是 .13.100252100(________)___t t t t t -+==;223(______)ab b a +=-.14(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= .三、解答题15. (2014秋•嘉禾县校级期末)若单项式a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.16.化简下列各式:(1)22226547a b ab b a a b +--(2)22223232x y x y xy xy -++-(3)2222630.835m n mn mn n m mn n m --+--(4)33331()2()()0.5()3a b a b b a a b +-+-+-+17. 已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.。

数学七年级上册整式的加减知识点

数学七年级上册整式的加减知识点

数学七年级上册整式的加减知识点数学七年级上册整式的加减知识点主要包括以下内容:1. 整式的加法和减法:整式是由常数和字母按照乘法运算符号连接起来的表达式。

整式的加法和减法是指将同类项相加或相减,并保留结果中的同类项。

例如,对于整式3x^2 + 2xy + 5和2x^2 - 3xy + 6,进行加法运算时,将同类项相加得到:(3x^2 + 2xy + 5) + (2x^2 - 3xy + 6) = 5x^2 - xy + 11。

2. 合并同类项:在整式中,有时会出现相同的字母的幂次相同的项,这些项叫做同类项。

进行整式的加减运算时,需要将同类项合并,即将同类项的系数相加或相减,并保留相同的字母和幂次。

例如,对于整式2x^2 + 3x^2 + 4x^2,将同类项合并得到:2x^2 + 3x^2 + 4x^2 = 9x^2。

3. 去括号:在整式的加减运算中,如果遇到括号,需要先去括号。

可以使用分配律进行括号的去除。

例如,对于整式2(x + y) - 3x(x - y),可以先去括号得到:2(x + y) = 2x + 2y,-3x(x - y) = -3x^2 + 3xy,然后再进行合并同类项或简化运算。

4. 提取公因式:在整式的加减运算中,如果遇到相同的公因式,可以将公因式提取出来。

公因式是指能够整除所有同类项的因式。

例如,对于整式4x^2 + 6xy,可以提取公因式2得到:4x^2 + 6xy = 2(2x^2 + 3xy)。

5. 消去同类项:在整式的加减运算中,如果遇到相反数的同类项,可以互相消去。

相反数是指具有相同绝对值但符号相反的数。

例如,对于整式5x + 2y - 3x - 2y,可以将同类项5x和-3x互相消去,将2y和-2y互相消去,最终得到:5x + 2y - 3x - 2y = 2x。

七年级数学上《整式的加减》期末复习知识点+检测试卷

七年级数学上《整式的加减》期末复习知识点+检测试卷

2016-2017学年度七年级上期末复习(整式的加减)知识点1:列代数式 知识回顾:(1)数学中的式子指的是用运算符号把数与字母连接而成的算式,单独的一个数或字母也叫是式子。

可以用式子把数量关系简明地表示出来。

(2)在含有字母的式子中如果出现乘号,通常将乘号写作“⋅”或省略不写。

例如,100×t 可以写成100⋅t 或100t 。

巩固练习: 1.(2015-2016北京市海淀区七上期末)某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x 件,那么这4名工人此月实际人均工作量 为 件.(用含x 的式子表示) 2.(2015-2016清远市连州市七上期末)a 与b 的平方的和可表示为( )A .(a+b)2;B .a 2+b 2;C .a 2+b ;D .a+b 2。

3.(2015-2016衡阳市耒阳市七上期末)a 的2倍与b 的和,用代数式表示为( )A .2a+b ;B .a 2+b ; C .2(a+b); D .a+2b 。

4.(2015-2016北京市西城区七上期末)用含a 的式子表示: (1)比a 的6倍小5的数: ;(2)如果北京某天的最低气温为a ℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为 ℃. 5.(2015-2016潍坊市寿光市七上期末)甲数为x ,乙数为y ,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为( ) A .y 3x y x 3-+; B .y 3x y x 3+-; C .y x 3y 3x +-; D .yx 3y3x -+。

6.(2015-2016深圳市龙华新区七上期末)小明每个月收集废电池a 个,小亮比小明多收集20%,则小亮每个月收集的废电池数为( ) A .(a+20%)个; B .a (1+20%)个; C .%201a -个; D .%201a-个。

7.(2015-2016吕梁市孝义市七上期末)一个三位数,个位数是a ,十位数是b ,百位数是c ,这个三位数是( )A .a+b+c ;B .abc ;C .100a+10b+c ;D .100c+10b+a 。

人教版七年级上册数学整式的加减复习

人教版七年级上册数学整式的加减复习

整式的加减专题5一、基础知识(一)概念1、单项式:由与的乘积..式子称为单项式。

单独一个数或一个字母也是单项式,如a ,5。

·单项式的系数:单式项里的叫做单项式的系数。

·单项式的次数:单项式中叫做单项式的次数。

2、多项式:几个的和叫做多项式。

其中,每个单项式叫做多项式的,不含字母的项叫做。

·多项式的次数:多项式里的次数,叫做多项式的次数。

·多项式的命名:一个多项式含有几项,就叫几项式。

所以我们就根据多项式的项数和次数来命名一个多项式。

如:3n4-2n2+1是一个四次三项式。

3、整式:______和______统称整式。

4、同类项——必须同时具备的两个条件(缺一不可):①所含的相同;②相同也相同。

(二)方法法则1、合并同类项,就是把多项式中的同类项合并成一项。

方法:把各项的相加,而不变。

步骤:①找②移③合2、去括号法则法则1.括号外的因数是正数,去括号后原括号内各项的符号与原来的符号;法则2.括号外的因数是负数,去括号后原括号内各项的符号与原来的符号.口诀:去括号,看符号;是正号,不变号;是负号,全变号。

注意:1、要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.2、去括号时应将括号前的符号连同括号一起去掉.3、括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.4、括号前是数字因数时,要将数与括号内的各项分别相乘,不能只乘括号里的第一项.5、遇到多层括号一般由里到外,逐层去括号。

3、整式的加减整式的加减的过程就是。

如遇到括号,则先,再,合并到为止。

(三)本章需要注意的几个问题①整式(既单项式和多项式)中,分母一律不能含有字母。

②π不是字母,而是一个数字,③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算。

④去括号时,要特别注意括号前面的因数。

二、类型题(一)概念类1、在3222112,3,1,,,,4,,43xy x x y m n x ab x x --+---+,π2b 中,单项式有: 多项式有: 。

北师大数学七年级上册第三章 整式的加减经典总结

北师大数学七年级上册第三章 整式的加减经典总结

第02讲_整式的加减知识图谱整式的加减知识精讲概念像100t与252t-,23x与22x,9ab与12ab这样,如果两个单项式所含字母相同,并且相同字母的次数也相同,就称这两个单项式为同类项.定义把同类项合并成一项的运算,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.例如:()22222312631263ab ab ab ab ab-+=-+=-.易错点(1)几个常数项也是同类项.例如:()2593⎛⎫-++-⎪⎝⎭,表示3个常数项合并同类项.(2)222342x x x+--合并同类项后得4,而不是204x+.三.整式的加减去括号去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号.如()a b c a b c++-=+-,()a b c a b c-+-=--+.添括号添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变符号;所添括号前面是“-”号,括到括号里的各项都改变符号.如()a b c a b c+-=++-,()a b c a b c--+=-+-.易错点①拆开括号时要根据乘法分配律,将括号内的每一项分别乘以括号前的系数;②括号前没有其他数字,根据符号把系数看做1或1-;③括号外的系数是正数时,去括号后每一项系数的符号不变;④括号外的系数是负数时,去括号后每一项系数的符号与原符号相反;⑤对于多层括号,一般由里向外逐层去括号,有时也可根据“奇负偶正”的原则化简多重符号.整式的加减整式加减运算顺序:先去括号,再合并同类项,最后按要求排序.数字问题考察多位数的代数式表示、整除问题表示一个两位数,设十位是A,个位是B,则这个三位数可表示为:10A+B表示一个三位数,设百位是A,十位是B,个数是C,则这个三位数可表示为:100A+10B+C多位数以此类推……各数字乘它所在的数位然后相加例:用式子表示十位上的数是a,个位上的数是b的两位数,再把这个两位数的十位上的数与个位上的数交换位置,计算所得数与原数的和,所得数与原数的和能被11整除吗?分析:原来的两位数为10a+b,新的两位数为10b+a,则两个数的和为10a+b+10b+a1010111111()a b b a a b a b+++=+=+故所得数与原数的和能被11整除.误看问题已知多项式A、B,计算A+B.某同学做此题时误将A+B看成了A-B,求得其结果为A-B=2325m m--,若B=2232m m--,请你帮助他求得正确答案分析:现根据其看错的式子计算出另一个未知的多项式,即2222237 325253525A mm m B mm m m m----=-=-+=+--再进行原式的计算即可222557+327892A B mm m mm m+=----=--或通过观察我们发现“误将A+B看成了A-B”可以理解为原式A+B多减去了2个B,所以我们进行逆运算A+B=(A-B)+2B就可以直接算出原式了22222)23252(232)325464789A B A B Bm m m mm m m mm m+=-+=--+--=--+--=--(其他实际问题客车上原有(2a-b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a-5b)人,问上车乘客人数是多少?分析:下车一半后车上还剩11(2)()22a b a b-=-人现在车上的乘客数-上车之前的人数=上车人数119(85)()857222a b a b a b a b a b---=--+=-故上车人数为9(7)2a b-人三点剖析一.考点:同类项的概念,整式的加减二.重难点:合并同类项三.易错点:1.去括号时出现错误.去括号时,括号前面是“-”,去括号时常忘记改变括号内每一项的符号,出现错误;或括号前有数字因数,去括号时没有把数字因数与括号内的每一项相乘,出现漏乘的现象.2.多项式含某项无关与含某字母项无关是不相同的;如多项式不含 项和多项式与 无关是不一样的.同类项例题1、 下列单项式中,与a 2b 是同类项的是( ) A.2a 2b B.a 2b 2 C.ab 2 D.3ab 【答案】 A【解析】 A 、2a 2b 与a 2b 所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确; B 、a 2b 2与a 2b 所含字母相同,但相同字母b 的指数不相同,不是同类项,故本选项错误; C 、ab 2与a 2b 所含字母相同,但相同字母a 的指数不相同,不是同类项,本选项错误; D 、3ab 与a 2b 所含字母相同,但相同字母a 的指数不相同,不是同类项,本选项错误. 例题2、 若﹣3x 2m y 3与2x 4y n 是同类项,那么m ﹣n=( )A.0B.1C.﹣1D.﹣2 【答案】 C【解析】 ∵﹣3x 2m y 3与2x 4y n 是同类项, ∴2m=4,n=3, 解得:m=2,n=3, ∴m ﹣n=﹣1. 例题3、 若312m x y +-与432n x y +是同类项,则(m +n )2017=________. 【答案】 -1 【解析】 ∵312m x y +-与2x 4y n +3是同类项, ∴m +3=4,n +3=1, ∴m =1,n =-2,∴(m +n )2017=(1-2)2017=-1,例题4、 已知单项式3a 2b m -1与3a n b 的和仍为单项式,则m +n =________. 【答案】 4【解析】 ∵单项式3a 2b m -1与3a n b 的和仍为单项式, ∴3a 2b m -1与3a n b 为同类项, ∴n =2,m -1=1, ∴m =2,n =2, ∴m +n =4.随练1、 若代数式-5x 6y 3与2x 2n y 3是同类项,则常数n 的值( ) A.2 B.3 C.4 D.6 【答案】 B【解析】 暂无解析合并同类项例题1、 计算:22223232x y xy xy x y -++- 【答案】 2255x y xy -+【解析】 22223232x y xy xy x y -++-()()22223223x y x y xy xy =--++2255x y xy =-+例题2、 下列运算中,正确的是( )A.3a +2b =5abB.2a 3+3a 2=5a 5C.4a 2b -3ba 2=a 2bD.5a 2-4a 2=1 【答案】 C【解析】 A 、不是同类项不能合并,故A 不符合题意; B 、不是同类项不能合并,故B 不符合题意; C 、系数相加字母及指数不变,故C 符合题意; D 、系数相加字母及指数不变,故D 不符合题意;随练1、 (2013初一上期中清华大学附属中学)下面计算正确的是( ) A.2233x x -= B.235325a a a +=C.33x x +=D.10.2504ab ba -+= 【答案】 D【解析】 该题考查的是整式的计算.A 项中,22232x x x -=,故A 项错误;B 项中,23a 和32a 不是同类项,不能合并,故B 项错误;C 项中,3和x 不是同类项,不能合并,故C 项错误;D 项中,10.2504ab ba -+=,故D 项正确;故选D .随练2、 与()a b c --+相等的结果是( ) A.()a b c -++ B.()a b c -+-C.()a b c --+D.()a b c ---【答案】 B【解析】 该题考察的是去括号法则. 括号前面是+号,去掉括号,里面各项不变号,括号前面是-号,去掉括号,里面各项均变号.()()a b c a b c a b c --+=-+-=-+-,故选B .随练3、 已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( ) A.51x -- B.51x +C.131x -D.26131x x +-【答案】 A【解析】 该题考查的是多项式的加减.根据题意得出所求多项式为两多项式之差,所以所求多项式为()()223x 413x 951x x x +--+=--. 所以本题的答案是A .随练4、 一个整式减去a 2﹣b 2后所得的结果是﹣a 2﹣b 2,则这个整式是( ) A.﹣2a 2 B.﹣2b 2 C.2a 2 D.2b 2 【答案】 B【解析】 根据题意列出关系式,去括号合并即可得到结果. 解:根据题意列得:(﹣a 2﹣b 2)+(a 2﹣b 2)=﹣a 2﹣b 2+a 2﹣b 2=﹣2b 2 随练5、 计算:22323624452x x x x x x x +-+-+--+ 【答案】 3-52x x ++【解析】 22323624452x x x x x x x +-+-+--+()()()32223252446x x x x x x x =-++------352x x =-++去括号、添括号例题1、 计算﹣3(x ﹣2y )+4(x ﹣2y )的结果是( ) A.x ﹣2y B.x+2y C.﹣x ﹣2y D.﹣x+2y【答案】 A【解析】 原式=﹣3x+6y+4x ﹣8y=x ﹣2y 例题2、 去括号与添括号:(1)去括号:()2x y z +-=_________________,()23a b c d -+-=_________________ (2)添括号:()2221696116a b b a ++-=-()()()()232322x y z x y z x x +--+=+-⎡⎤⎡⎤⎣⎦⎣⎦【答案】 (1)22x y z +-;2333a b c d --+(2)2961b b --+;3y z -;3y z -【解析】 (1)去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号;(2)添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变符号;所添括号前面是“-”号,括到括号里的各项都改变符号例题3、 计算:()()()22222232x xy x xy x x xy y ⎡⎤------+⎣⎦【答案】 2xy y +例题4、 下列去括号、添括号的结果中,正确的是( ) A.22m n 3mn m n 3mn -+-+=-++() B.224mn 4n m 2mn 4mn 4n m 2mn +--=+-+() C.a b c d a c b d -+-+=--++()()D.b b25a 3b 32b 5a -+-=-+--()()()【答案】 B【解析】 A 、﹣m +(﹣n 2+3mn )=﹣m ﹣n 2+3mn ,故不对; B 、正确;C 、a b c d a c b d -+-+=-+++()(),故不对; D 、b b25a 3b 32b 5a -+-=----()()(),故不对 随练1、 化简(1)224(1)2(21)2x x x x ++--- (2)115(23)(23)(32)236x y x y y x ---+- 【答案】 (1)226x +(2)423x y -+【解析】 该题考查的是整式的加减.(1)原式22444422x x x x =++-+- 226x =+(2)原式32552323x y x y y x =--++-423x y =-+整式的加减例题1、 一个多项式减去3a 的差是2a 2-3a -4,则这个多项式是( ) A.2a 2-4 B.-2a 2+4 C.-2a 2+6a +4 D.2a 2-6a -4 【答案】 A【解析】 暂无解析例题2、 张华在一次测验中计算一个多项式加上532xy yz xz -+时,误认为减去此式,计算出错误的结果为26xy yz xz -+,试求出正确答案.【答案】 正确答案为12125xy yz xz -+【解析】 由题意不难发现,正确结果与错误的结果相差()2532xy yz xz -+,因此正确答案应该为()26253212125xy yz xz xy yz xz xy yz xz -++-+=-+例题3、 一个多项式加上-x 2-13x +11得3x 2-6x +5,则这个多项式应为________。

七年级上册数学整式的加减全章知识点总结

七年级上册数学整式的加减全章知识点总结

七年级上册数学整式的加减全章知识点总结第二章整式的加减知识点1:单项式的概念单项式是由数或字母的积组成的式子。

它只包含一种运算,即乘法,不能有加、减、除等运算符号。

单项式可以分为三种类型:数字与字母相乘组成的式子,如2ab;字母与字母组成的式子,如xy;单独的一个数或字母,如2,-a,m。

知识点2:单项式的系数单项式中的数字因数叫做这个单项式的系数。

系数可以是整数、分数或小数,并且可以是正数或负数。

对于只含有字母因素的单项式,其系数是1或-1,不能认为是0.表示圆周率的π,在单项式中应将其作为系数的一部分,而不能当成字母。

知识点3:单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。

计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

单项式是一个单独字母时,它的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。

单项式的指数只和字母的指数有关,与系数的指数无关。

知识点4:多项式的有关概念多项式是由几个单项式相加组成的式子。

多项式中的每个单项式叫做多项式的项。

不含字母的项叫做常数项。

多项式里次数最高项的次数叫做多项式的次数。

单项式与多项式统称整式。

B、一个多项式中的每一项都包含符号,例如多项式-2xy+6a-9共有三项,分别是-2xy,6a,-9.一个多项式中包含几个单项式,就称这个多项式为几项式,例如-332xy3+6a-9就是一个三项式。

C、多项式的次数不是所有项的次数之和,也不是各项字母的指数和,而是组成这个多项式的单项式中次数最高的那个单项式的次数。

例如多项式-2xy+6a-9由三个单项式-2xy,6a,-9组成,其中-2xy的次数最高,为4次,因此这个多项式的次数就是4.它是一个四次三项式。

对于一个多项式而言,没有系数这一说法。

1)书写含乘法运算的式子时,要注意省略乘号,数字与字母相乘时,数字必须写在字母的前面。

带分数要化成假分数。

2)书写含除法运算的式子时,结果一般用分数线表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式加减
一.知识框架
二、知识要点
1、单项式
(1)、都是数或字母的积的式子叫做单项式。

(单独的一个数或一个字母也是单项式。


如:2,2bc,3m,a,都是单项式。

(2)、单项式中的数字因数叫做这个单项式的系数。

如:2ab中2是这个单项式的系数。

(3)、单项式系数应注意的问题:
① 单项式表示数字与字母相乘时,通常把数字写在前面;
② 当单项式的系数是带分数时,要把带分数化成假分数;
③ 当单项式的系数是1或-1时,“1”通常省略不写;
④ 圆周率π是常数;
⑤ 单项式的系数应包括它前面的“正”、“负”符号。

(4)、一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如:xy2,这个单项式的次数是 3 次,而不是2次。

(单独的一个数的次数是0.)
2、多项式
(1)、几个单项的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式的每一项都包含它前面的符号。

如:2a2+3b-5 是一个多项式,2a2,3b,-5是这个多项式项,-5是常数项。

(2)、多项式里次数最高项的次数,叫做这个多项式的次数。

如:2a2+3b-5的次数是2.
(3)、单项式与多项式统称整式。

3、合并同类项
(1)、所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

如:2a+3a-a+3a2中2a,3a,a是同类项,而2a,3a2则不是同类项。

(2)、把多项式里的同类项合并成一项,叫做合并同类项。

(3)、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

如:2a+3a-a 合并同类项得:4a,数字相加或相减,字母不变。

4、去括号
(1)、去括号法则:
① 如果括号外的因数是正数,去括号后括号内每一项的符号都不变。

(“+”不变)
如:(2a+5)去括号后不变:2a+5
② 如果括号外的因数是负数,去括号后括号内每一项的符号都变。

(“-”全变)
如:-(2a+5)去括号后变成:-2a-5
(2)、去括号应注意:
① 去括号应考虑括号内的每一项的符号,做的要变都变,要不变都不变;
② 括号内原来有几项,去掉括号后仍有几项,同时括号前的符号也要去掉。

(3)、当括号前的因数是1或-1时:
① 先把数字与括号内的每一项相乘; ② 再根据去括号法则去括号。

(4)、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项
初中整式乘法、因式分解
一. 教学内容:
幂的运算和整式乘法
二. 学习要点:
1. 掌握幂的三种运算,并能灵活运用其解决一些数学问题。

2. 掌握进行整式乘法的方法。

三. 知识讲解:
(一)幂的运算
1. 同底数幂的乘法
同底数幂相乘,底数不变,指数相加。

(m 、n 为正整数); n m n m a a a ⋅=+。

推广:(m 、n 、p 为正整数)
2. 幂的乘方
幂的乘方底数不变,指数相乘。

(m 、n 为正整数);n m mn a a )(=
推广:(m 、n 、p 为正整数)
3. 积的乘方
积的乘方是把积中每一个因式分别乘方,然后把所得的幂相乘。

(m 为正整数);m m m ab b a )(=
推广:(m 为正整数)
(二)整式的乘法
1. 单项式与单项式相乘
单项式与单项式相乘,用它们系数的积作为积的系数,相同字母的幂相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。

2. 单项式乘以多项式
单项式乘以多项式就用这个单项式去乘以多项式的每一项,再把所得的积相加,如。

3. 多项式乘以多项式
多项式与多项式相乘,先用多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。

如:
(三)乘法公式
重点:理解掌握平方差公式,两数和的完全平方公式的结构特征,正确地应用公式。

1. 平方差公式:
它的结构特征是:①左边是两个二项式相乘,这两个二项式中有一个完全相同,另一个互为相反数。

②右边是乘式中两个项的平方差。

③公式中的a ,b 可以是任意一个整式(数、字母、单项式或多项式) 2. 两数和的完全平方公式:
两数差的完全平方公式:
它们的结构特征是:
①左边是两个相同的二项式相乘。

②右边是二次三项式,首尾两项分别是二项式两项的平方,中间一项是二项式中两项积的2倍。

③式中的a ,b 可以是数,单项式或多项式。

(四)因式分解
重点:理解因式分解的含义,会用提公因式法和公式法进行因式分解。

1. 因式分解
把一个多项式化为几个整式的乘积形式,就是因式分解。

因式分解与整式乘法互为逆运算。

2. 提公因式法
多项式ma +mb +mc 中的每一项都含有一个相同的因式m ,我们称之为公因式。

把公因式提出来,多项式ma +mb +mc 就可以分解为两个因式m 和(a +b +c )的乘积了,像这样因式分解的方法,叫提公因式法。

注意:⑴ 提公因式时,必须是所有项的因式。

⑵ 公因式的系数是多项式中各因式系数的最大公约数。

⑶ 公因式中字母的指数应是各因式中相同字母的指数的最低次。

3. 公式法
利用乘法公式对多项式进行因式分解的方法,叫公式法。

注意:⑴ 总项数(三项、两项)、以及平方项的系数符号(同号、异号)
⑵ 平方数 培养数感:能认出题中的平方数(1,4,9,
41……) ⑶ 分清公式中的a 、b (可以是数,单项式或多项式)
4. 分组分解法
要把多项式am +an +bm +bn 分解因式,没有公因式可提,也不能直接运用公式,如果先把前两项分成一组,并提出公因式a ,把它的后两项分成另一组,提出公因式b ,从而得到,这时又有公因式,于是提出,从而得到
,这种方法叫分组分解法。

注意:⑴ 总项数(四项或四项以上)
⑵ 常见题多为四项,
二四分:两两分组,再提公因式。

一三分:一个三项一组(用完全平方公式),另一个一项一组(平方项),这 两组再用平方公式。

5. 十字相乘:
对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab=q ,a+b=p 的a ,b ,如 有,则);)((2b x a x q px x ++=++对于一般的二次三项式),0(2≠++a c bx ax 寻找满足 a 1a 2=a ,c 1c 2=c,a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)((22112c x a c x a c bx ax ++=++
6. 分解的步骤一般是:(一提、二套、三检查)
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止.
【典型例题】
例1. 分解因式
(1)
(2)
(3)
分析:(1)先提公因式5x ,提公因式后另一个因式为
,仍可用平方差公式继续分解。

解:
分析:(2)可直接用平方差公式 解:
分析:(3)各项都含有公因式a ,应先提公因式,再用完全平方公式继续分解。

解:
例2. 下列式子中,总能成立的是( )
A.
B.
C.
D.
分析:根据平方差公式和完全平方公式的结构特征,
,,故A、B、C均不正确;D中将化为,符合平方差公式的结构特征。

答案:D
方法提炼:例题是让同学们把握平方差公式与两数和的完全平方公式的项和结构特征,能正确地应用公式,同时提醒只有符合公式的特征,才能运用公式,不可滥用公式。

难点:正确的应用公式进行简便计算:注意有的学生容易把平方差公式:
与完全平方公式:混淆,这两个公式左边不一样,完全平方公式的左边是两个相同的二项式,而平方差公式左边两个二项式不一样,里面有一项相同,另一项互为相反数。

相关文档
最新文档