圆柱、圆锥、圆台
圆柱、圆锥、圆台
情境引入
情境引入
情境引入
圆柱、圆锥、圆台
圆柱、圆锥、 圆柱、圆锥、圆台
名称 圆柱 圆锥 圆台
图形
h h l
l
h
r
l
r
r
以直角三角形一直 角边所在直线为轴, 其余各边旋转而成 的曲面所围成的几 何体 轴截面是全等等腰 三角形
R
以直角梯形垂直于 底边的腰所在直线 为轴,其余各边旋 转而成的曲面所围 成的几何体 轴截面是全等等腰 梯形
定义
以矩形一边所在 直线为轴,其余 各边旋转而成的 曲面所围成的几 何体。 轴截面是全等的 矩形
轴截面
圆柱、圆锥、圆台之间的关系
底面 圆柱 圆锥 圆台 平行于底面 轴截面 的截面
有两个、平 与两底面全 矩形 行且相等 等 只有一个 与底面相似 等腰三角形
有两个平行 与两底面相 等腰梯形 且相似 似
1、下列命题正确的是(D ) ⑴、在圆柱的上下地面各取一点,则这两点的连线是圆柱的母线。 ⑵、圆锥顶点与底面圆周上任意一点的连线是圆锥的母线。 ⑶ 、在圆周上下底面圆上各取一点,则这两点的连线是圆台的母线。 ⑷、圆柱的任意两条母线所在的直线都是互相平行的。 A 、⑴ ⑵ B 、⑵ ⑶ C、⑴⑶ D、⑵⑷
o1 r
l
ቤተ መጻሕፍቲ ባይዱ
o R
Q R = r + a = 2r
∴r = a
∴ R = 2a
2、下列说法正确的是(C) A直角三角形绕一边旋转得到的旋转体是圆锥 B夹在圆柱两个平行截面间的几何体还是圆柱 C圆锥截去一个小圆锥后剩余部分是圆台 D通过圆台侧面上一点,有无数条母线 3、一个圆柱的母线长为5,底面圆半径为2,则圆柱的轴截面积为:(C ) A、10 B、15 C、20 D、40
圆柱、圆锥、圆台和球
似三角形的性质得
3 r 3 l 4r
解得l=9.
所以,圆台的母线长为9cm.
例2. 我国首都北京靠近北纬40度。
求北纬40度纬线的长度约为多少千米 (地球半径约为6370千米)?
解:如图,设A是北纬40°圈上一点,AK 是它的半径,所以 OK⊥AK,
设c是北纬40°的纬线长, 因为∠OAK= ∠AOB = 40°,
3.表示方法:用表示它的轴的字母表示, 如圆柱OO’ .
4.有关性质: (1)用平行于底面的平面去截,截面都 是圆。 (2)圆柱、圆锥、圆台的轴截面分别是 全等的矩形、全等的等腰三角形、全等的 等腰梯形;
5.侧面展开图:
(1)圆柱的侧面展开图是矩形。 (2)圆锥的侧面展开图是扇形. (3)圆台的侧面展开图是扇环.
所以 c=2π·AK=2π·OA·cos∠OAK =2π·OA·cos40° ≈2×3.1416×6370×0.7660 ≈3.066×104(km),
即北纬40°的纬线长约为3.066×104km.
练习: 1、圆柱的轴截面是正方形,它的面
h
积为9 ,求圆柱的高与底面的周长。
(h=3, c=2πr=3π)
即O到截面圆心O1的距离;
(4)大圆与小圆:球面被经过球心的平面截 得的圆叫做球的大圆, 被不经过球心的平面截得的圆叫做球 的
小圆;
5.球面距离:在球面
上,两点之间的最短距
离就是经过这两点的大
A
圆在这两点间的一段劣
弧的长度。这个弧长叫 B
做两点的球面距离。
O
三.旋转体的概念
由一个平面图形绕着一条直线旋转产生的 曲面所围成的几何体叫做旋转体,这条直线 叫做旋转体的轴。比如常见的旋转体有圆柱、 圆锥、圆台和球.
圆柱圆锥圆台PPT课件
一、素质教育目标
(一)知识教学点
1.圆柱、圆锥、圆台的概念和性质。
2.圆柱、圆锥、圆台的直观图的画法。
3.圆柱、圆锥、圆台的侧面积。
(二)能力训练点
1.理解圆柱、圆锥、圆台的概念,掌握它们的性质,能利用它们之间的内在联 系进行转化,不断提高学生分析问题的能力。
2.通过它们直观图画法的教学,使学生掌握正等测法的作图,进一步提高学生 作图及识图能力。
3.掌握它们侧面积的计算公式,能综合应用这些公式计算有关图形的面积, 提高学生综合应用知识的能力。
完整版课件
1
(三)德育渗透点
1.圆柱、圆锥、圆台的形成是通过平面图形的旋转而得到,即通过运动的 形式来给出定义.教学过程要结合实际注意培养学生掌握运用运动变化的观 点来分析问题.
2.圆柱、圆锥及圆台的共同属性是,都由平面多边形旋转而得到,因此平 面图形之间的关系决定了它们之间的关系.教学过程要注意培养学生抓住它 们的内在联系来把握它们的变化,帮助学生树立联系变化的辩证唯物主义观 点.
生:有,应该加上全等两个字.
(教师肯定学生的答案后,板书出两条性质.)
师:性质2.给出了圆柱、圆锥、圆台的本质特征.今后有关三个几何 体的计算问题只要在它们轴截面上作文章,甚至今后分析有关问题可直 接在其轴截面上进行而不必画出它们的实际图形.另外有了性质1.我们 可以认为圆台是一个圆锥截掉一个小圆锥后余下的部分,所以有关圆台 的问题就可以转化为圆锥的问题来解决.
性质2给出了圆柱圆锥圆台的本质特征今后有关三个几何体的计算问题只要在它们轴截面上作文章甚至今后分析有关问题可直接在其轴截面上进行而不必画出它们的实际图形另外有了性质1我们可以认为圆台是一个圆锥截掉一个小圆锥后余下的部分所以有关圆台的问题就可以转化为圆锥的问题来解决例1把一个圆锥截成圆台已知圆台的上下底面半径是14母线长是10cm求圆锥的母线长分析
高中数学 必修2(人教版)8.3.2圆柱、圆锥、圆台、球的表面积和体积
圆 台
上底半径为r,下底半径为R,高为h,V=
1 3
π(r2+rR+R2)h
球
V=43πR3
状元随笔 (1)求旋转体的表面积时,要清楚常见旋转体的侧 面展开图是什么,关键是求其母线长与上、下底面的半径.
(2)柱体、锥体、台体体积之间的关系 柱体、锥体、台体的关系如下:
(3)两个结论 ①两个球的体积之比等于这两个球的半径之比的立方. ②两个球的表面积之比等于这两个球的半径之比的平方.
易错警示
易错原因
纠错心得
球心所在的截面位置判断错误, 对多面体及外接球的几何特点理
解模糊,基本量之间的关系不 清.
解决此类问题要确定球心的位置 及其所在的截面,在截面中寻找 球半径与多面体基本量的关系.
×2×1×r×2+
ห้องสมุดไป่ตู้
1 3
×
1 2
×1×1×r+
1 3
×12× 2× 答案:4π
5-12×r,解得r=14. 故内切球的表面积为4πr2=π4.
方法归纳
对于正四面体,有以下结论:
(1)正四面体的外接球与内切球的球心重合;
(2)棱长为a的正四面体的高为
6 3
a,其外接球的半径为
6 4
a,
内切球的半径为
解析:设球的半径为R,则圆柱的底面半径为R,高为2R. ∵V球=43πR3,V圆柱=πR2·2R=2πR3, ∴V球:V圆柱=43πR3:2πR3=23. 答案:2:3
易错辨析 对球的“切、接”的结构特点认识模糊致错 例5 设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点在 一个球面上,则该球的表面积为( ) A.πa2 B.73πa2 C.74πa2 D.5πa2
解析:在三棱锥P - ABC中,PA,PB,PC两两垂直,则以 PA,PB,PC为邻边作一长方体,所以三棱锥P - ABC的外接球即
圆柱、圆锥、圆台的概念和性质
完整版ppt
1
(三)德育渗透点
1.圆柱、圆锥、圆台的形成是通过平面图形的旋转而得到,即通过运动的 形式来给出定义.教学过程要结合实际注意培养学生掌握运用运动变化的观 点来分析问题.
2.圆柱、圆锥及圆台的共同属性是,都由平面多边形旋转而得到,因此平 面图形之间的关系决定了它们之间的关系.教学过程要注意培养学生抓住它 们的内在联系来把握它们的变化,帮助学生树立联系变化的辩证唯物主义观 点.
二、教学重点、难点、疑点及解决办法
1.教学重点:圆柱、圆锥、圆台的概念、性质及侧面积公式.
2.教学难点:圆柱、圆锥、圆台的直观图的画法.
3.教学疑点:直观图为什么用正等测法,而不用斜二测法,通过比较让学 生明白用正等测法的便利.
三、课时安排
2课时.
完整版ppt
2
四、教与学的过程设计
第一课时 圆柱、圆锥、圆台的概念、性质及直观图的画法
完整版ppt
6
例1 把一个圆锥截成圆台,已知圆台的上、下底面半径是1∶4,母线长 是10cm,求圆锥的母线长.
分析:如图2-28,△O'OA是圆锥轴截面的一半,则直角梯形COAB是圆台 轴截面的一半,由BC∥AO易得O'B∶O'A=BC∶AO=1∶4
(具体解答请同学们阅读课本)
师:(小结).注意“还台于锥”以及利用平行式相似来解决问题.
的任意一对相垂直的直径变为椭圆的一对直径(它们称为椭圆的共扼直
径).既然圆的直观图是椭圆,为方便起见,今后我们可以直接用椭圆模板或
椭圆的近似画法来画.
完整版ppt
8
例3 一个圆锥的底面半径是1.6cm,在它的内部有一个底面半径为0.7cm, 高为1.5cm的内接圆柱,画出它们的直观图.
1.1.3 圆柱、圆锥、圆台和球
组合体
简单组合体
日常生活中我们常用到的日用品,比如:消毒液、 暖瓶、洗洁精等的主要几何结构特征是什么? 由柱、锥、台、球组成了一些简单的组合体.认 识它们的结构特征要注意整体与部分的关系.
圆柱
圆台
圆柱
简单组合体
走在街上会看到一些物体,它们的主要几何结构特 征是什么?
简单组合体
一些螺母、带盖螺母又是有什么主要的几何结构特 征呢?
90° 60° 66.5°北极圈
40°
20° 30° 0° 20° 40° 60° 90° 60° 90° 120° 150° 赤道 23.5° 南回归线 23.5° 北回归线
南极圈 66.5°
P地的纬度就是经过 P点的球半径和赤道 平面所成的线面角 ∠POA的度数
北极
G
r R
P
O
A
南极
球面离
简单组合体
蒙古大草原上遍布蒙古包,那么蒙古包的主要几 何结构特征是什么?
简单组合体
居民的住宅又有什么主要几何结构特征?
简单组合体
下图是著名的中央电视塔和天坛,你能说说它们的 主要几何结构特征吗?
你能从旋转体的概念说说它们是由什么图形旋转而 成的吗?
旋转体
你能想象这条曲线绕轴旋转而成的几何图形吗?
O S
O
2、表示:如圆锥SO。
圆台
O1 O
用一个平行于圆锥底面的平面去截 圆锥,底面与截面之间的部分是圆台.
思考:圆柱、圆锥和圆台都是旋转体,当 底面发生变化时,它们能否互相转化?
上底扩大 上底缩小
思考:圆柱、圆锥、圆台过轴的截面分 别是什么图形?
例1. 用一个平行圆锥底面的平面截这个 圆 锥,截得圆台上下底面半径的比是1:4,截 去的圆锥的母线长是3cm,求圆台的母线长。
圆柱、圆锥、圆台和球
课堂小结
KE TANG XIAO JIE
1.知识清单: (1)圆柱、圆锥、圆台的结构特征. (2)球的结构特征. (3)复杂空间图形的结构特征. 2.方法归纳:分类讨论、转化与化归. 3.常见误区:同一平面图形以不同的轴旋转形成的旋转体一般是不 同的.
4 课时对点练
PART FOUR
基础巩固
√B.圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都
可以构成直角三角形 C.在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线
√D.圆柱的任意两条母线所在的直线是互相平行的
解析 由圆柱、圆锥、圆台的定义及母线的性质可知BD正确,AC错误.
二、复杂的空间图形的结构特征
例2 请描述如图所示的空间图形是如何形成的.
知识点二 球
球
定义
相关概念
图形及表示
半圆绕着它的直径所在 的直线旋转一周所形成 球心:半圆的 圆心, 球 的曲面叫作球面,球面 半径:半圆的 半径, 围成的空间图形叫作球 直径:半圆的_直__径__
如图可记作:球O 体,简称球
知识点三 旋转面与旋转体
一条平面曲线绕它所在平面内的 一条定直线 旋转所形成的曲面叫作旋 转面,封闭的旋转面围成的空间图形称为 旋转体 .圆柱、圆锥、圆台和 球都是特殊的旋转体.
反思 感悟
(1)判断简单旋转体结构特征的方法 ①明确由哪个平面图形旋转而成; ②明确旋转轴是哪条直线. (2)简单旋转体的轴截面及其应用 ①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋 转体结构特征的关键量; ②在轴截面中解决简单旋转体问题体现了化空间图形为平面图 形的转化思想.
跟踪训练1 (多选)下列说法,正确的是 A.圆柱的母线与它的轴可以不平行
9.13 圆柱圆锥与圆台
二、圆柱、圆锥与圆台的性质 名称
平行于底面的截面
圆 全等的矩形 等腰三角形 等腰梯形
轴截面
侧面积
S圆柱侧=cl 2rl
1 S 侧 cl r l 2
1 1 V圆锥= Sh r 2 h 3 3
1 S 侧 (c c' )l (r r ' ) l 2
全面积
体积
画法:第一步:以点o作为原点,按正等轴侧画法画出x轴、y轴、 z轴. z
o x y
第二步:画底面.以原点o作为圆心,在原来的圆上画上一些与直径 平行的弦,相应地画一些与y轴平行的线段,其长度等于对应的弦长,而 且使x轴平分这些弦.然后把这些弦的端点用一条光滑曲线联结起来,便 得到圆锥的底面的直观图.
9.13 圆柱、圆锥与圆台
一、概念:
1.圆柱的概念
• 圆柱:以矩形的一边所在的直线为轴,其余三边绕 这根轴旋转一周形成的曲面所围成的几何体叫圆柱.
2.圆锥的概念
圆锥:以直角三角形的一条直角边所在的直线为轴,其 余两边绕这根轴旋转一周形成的曲面所围成的几何体叫圆 锥.
3.圆台的概念
圆台:直角梯形垂直于底边的腰所在直线为轴,其余三 边绕这根轴旋转一周形成的曲面所围成的几何体叫圆台.
第三步:在z轴上取一点S使 so 2.5cm
第四步:从点S作圆锥侧面的左右现两条对称的母线,如图.
z
s
s
o
o
x y
第五步:把看得见的线用实线,被遮档的线挡的线改为虚线,把x轴、y 轴、z轴在圆锥外面的部分擦掉.
课堂练习:
课堂小结:
P178 1、2
1. 旋转体的概念 2. 旋转体的主要性质 3. 用正等轴测画法画旋转体的 直观图.
1.1.3圆柱、圆锥、圆台和球1
五.旋转体的概念 由一个平面图形绕着一条直线旋转产生 旋转体, 的曲面所围成的几何体叫做旋转体 的曲面所围成的几何体叫做旋转体,这条 直线叫做旋转体的轴 直线叫做旋转体的轴.比如常见的旋转体 圆柱,圆锥,圆台和球. 有圆柱,圆锥,圆台和球.
六.组合体 由柱, 由柱,锥,台,球等基本几何体组合而 成的几何体称为组合体.组合体可以通过 成的几何体称为组合体. 把它们分解为一些基本几何体来研究
h
h
l
l
(l = 3 + (5 1) = 5)
2 2
例2. 我国首都北京靠近北纬40度. 我国首都北京靠近北纬40度 求北纬40度纬线的长度约为多少千米 求北纬40度纬线的长度约为多少千米 (地球半径约为6370千米)? 地球半径约为6370千米 千米)
解:如图,设A是北纬40°圈上一点, 是北纬40°圈上一点, 如图, AK是它的半径,所以 OK⊥AK, AK是它的半径, OK⊥AK, 是它的半径 设c是北纬40°的纬线长, 是北纬40°的纬线长, 因为∠AOK= OAK=40° 因为∠AOK=∠OAK=40°, 所以 c=2πAK=2πOAcos∠OAK =2πAK=2πOAcos∠ =2π OAcos40° =2πOAcos40° ≈2×3.1416×6370× ≈2×3.1416×6370×0.7660 ≈3.066×104(km), ≈3.066×104(km), 即北纬40°的纬线长约为3.066× 即北纬40°的纬线长约为3.066×104km.
上底面 侧面
母线 母线 轴
下底面
3.圆台的表示方法:用表示它的轴的字 圆台的表示方法: 母表示,如圆台OO' 母表示,如圆台OO'.
4.圆台具有以下性质: 圆台具有以下性质: 圆台的底面是两个半径不等的圆, 底面是两个半径不等的圆 (1)圆台的底面是两个半径不等的圆,两圆 所在的平面互相平行又都和轴垂直; 所在的平面互相平行又都和轴垂直; 平行于底面的截面是圆 截面是圆; (2)平行于底面的截面是圆; 通过轴的各个截面是轴截面 轴截面, (3)通过轴的各个截面是轴截面,各轴截面 是全等的等腰梯形 是全等的等腰梯形; 等腰梯形; 任意两条母线 它们延长后会相交 母线( 延长后会相交) (4)任意两条母线(它们延长后会相交)确 定的平面,截圆台所得的截面是等腰梯形; 定的平面,截圆台所得的截面是等腰梯形; 母线都相等,各母线延长后都相交于一 (5)母线都相等,各母线延长后都相交于一 点.
圆柱、圆锥、圆台、球的表面积和体积
8. 3.2 圆柱、圆锥、圆台、球的表面积和体积 学习指导核心素养1.知道圆柱、圆锥、圆台、球的表面积和体积公式.2.能用表面积和体积公式解决简单的实际问题.直观想象、数学运算:利用公式计算圆柱、圆锥、圆台、球的表面积与体积.[学生用书P75]1.圆柱、圆锥、圆台的表面积圆柱底面积:S 底=πr 2侧面积:S 侧=2πrl 表面积:S =2πr (r +l ) 圆锥底面积:S 底=πr 2侧面积:S 侧=πrl 表面积:S =πr (r +l ) 圆台上底面面积:S 上底=πr ′2 下底面面积:S 下底=πr 2侧面积:S 侧=πl (r +r ′)表面积: S =π(r ′2+r 2+r ′l +rl )2.圆柱、圆锥、圆台的体积 V 圆柱=πr 2h (r 是底面半径,h 是高), V 圆锥=13πr 2h (r 是底面半径,h 是高),V 圆台=13 πh (r ′2+r ′r +r 2)(r ′,r 分别是上、下底面半径,h 是高).3.球的表面积和体积 表面积:S =4πR 2. 体积:V =43πR 3.1.圆柱、圆锥、圆台的侧面积公式之间有什么关系? 提示:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 2.球面能展开成平面图形吗? 提示:不能展开成平面图形.1.判断正误(正确的打“√”,错误的打“×”) (1)圆柱的侧面面积等于底面面积与高的积.( )(2)圆柱、圆锥、圆台的展开图分别是一个矩形、扇形、扇环.( ) (3)决定球的大小的因素是球的半径.( )(4)球面被经过球心的平面截得的圆的半径等于球的半径.( ) 答案:(1)× (2)× (3)√ (4)√2.若圆锥的底面半径为3 ,高为1,则圆锥的体积为( ) A .π3B .π2C .πD .2π答案:C3.若一个球的直径为 2,则此球的表面积为( ) A .2π B .16π C .8π D .4π解析:选D .因为球的直径为 2,所以球的半径为 1,所以球的表面积 S =4πR 2=4π.4.圆柱的侧面展开图是长 12 cm ,宽 8 cm 的矩形,则这个圆柱的体积为( ) A .288π cm 3B .192πcm 3C .288π cm 3或192π cm 3D .192π cm 3解析:选 C .当圆柱的高为 8 cm 时, V =π×⎝⎛⎭⎫122π 2×8=288π (cm 3),当圆柱的高为 12 cm 时,V =π×⎝⎛⎭⎫82π 2×12=192π(cm 3). [学生用书P75]探究点1 圆柱、圆锥、圆台的表面积 [问题探究]求圆柱、圆锥、圆台的表面积时,关键是什么?探究感悟:求圆柱、圆锥的表面积时,关键是求其母线长与底面的半径;求圆台的表面积时,关键是求其母线长与上、下底面的半径.(1)若圆锥的高为3,底面半径为4,则此圆锥的表面积为( ) A .40π B .36π C .26πD .20π(2)圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( ) A .81π B .100π C .168πD .169π【解析】 (1)圆锥的母线l =32+42 =5,所以圆锥的表面积为π×42+π×4×5=36π.故选B.(2)圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,则它的母线长为l =h 2+(R -r )2 =(4r )2+(3r )2 =5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π×(8+2)×10=100π,S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.故选C.【答案】 (1)B (2)C圆柱、圆锥、圆台的表面积的求解步骤解决圆柱、圆锥、圆台的表面积问题,要利用好旋转体的轴截面及侧面展开图,借助于平面几何知识,求得所需几何要素,代入公式求解即可,基本步骤如下:(1)得到空间几何体的展开图; (2)依次求出各个平面图形的面积; (3)将各平面图形的面积相加.1.若一个圆柱的轴截面是面积为9的正方形,则这个圆柱的侧面积为( ) A .9π B .12π C .272πD .454π解析:选A.由于圆柱的轴截面是面积为9的正方形,则h =2r =3,所以圆柱的侧面积为2πr ·h =9π.2.如图,已知直角梯形ABCD ,BC ∥AD ,∠ABC =90°,AB =5,BC =16,AD =4,求以BC 所在直线为轴旋转一周所得几何体的表面积.解:以BC 所在直线为轴旋转一周所得几何体是圆柱和圆锥的组合体,如图.其中圆锥的高为16-4=12,圆柱的母线长为AD =4,圆锥的母线长CD =13,故该几何体的表面积为2π×5×4+π×52+π×5×13=130π.探究点2 圆柱、圆椎、圆台的体积(2021·贵州安顺高二期末)若一个圆锥的侧面展开图是半径为3,圆心角为120°的扇形,求该圆锥的体积.【解】 设圆锥底面半径为r ,则由题意得2πr =120180·π·3,解得r =1.所以底面面积为S =πr 2=π. 又圆锥的高h =32-12 =22 ,故圆锥的体积V =13 Sh =13 ×π×22 =223π.求圆柱、圆锥、圆台的体积问题,一是要牢记公式,然后观察空间图形的构成,是单一的旋转体,还是组合体;二是注意旋转体的构成,以及圆柱、圆锥、圆台轴截面的性质,从而找出公式中需要的各个量,代入公式计算.1.圆台上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是( ) A .233 πB .2 3C .736πD .733π解析:选D.S 1=π,S 2=4π,所以r =1,R =2,S 侧=6π=π(r +R )l ,所以l =2,所以h=3 .所以V =13 π(1+4+2)×3 =733π.故选D.2.若一圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积的比值为( )A .1B .12C .32D .34解析:选D.设圆柱底面圆半径为R ,圆锥底面圆半径为r ,高都为h ,由已知得2Rh =rh ,所以r =2R ,所以V 柱∶V 锥=πR 2h ∶13πr 2h =3∶4,故选D.探究点3 球的表面积与体积 [问题探究]用一个平面去截球体,截面是什么形状?该截面的几何量与球的半径之间有什么关系? 探究感悟:用一个平面去截球体,截面是圆面.在不过球心的截面图中,截面圆与球的轴截面的关系如图所示.其关系为R 2=d 2+r 2.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为( ) A .8π3B .32π3C .8πD .82π3【解析】 设球的半径为R ,则截面圆的半径为R 2-1 ,所以截面圆的面积为S =π(R 2-1 )2=(R 2-1)π=π,所以R 2=2,所以球的表面积S =4πR 2=8π.故选C. 【答案】 C(1)球的表面积和体积的求解关键因为球的表面积和体积都与球的半径有关,所以在解答这类问题时,设法求出球的半径是解题的关键.(2)球的截面问题的解题技巧①有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题. ②解题时要注意借助球半径R 、截面圆半径r 、球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.1.(2021·江苏徐州高一期中)一个球的表面积是16π,那么这个球的体积为( ) A .163 πB .323 πC .643πD .2563π解析:选B.设这个球的半径为R ,则4πR 2=16π,解得R =2,所以这个球的体积V =43 πR 3=323π.故选B. 2.两个球的半径相差 1,表面积之差为 28π,则它们的体积之和为________. 解析:设大、小两球半径分别为 R ,r ,则⎩⎪⎨⎪⎧R -r =1,4πR 2-4πr 2=28π,所以⎩⎪⎨⎪⎧R =4,r =3.所以体积之和为 43 πR 3+43 πr 3=364π3 .答案:364π3探究点4 与球有关的切、接问题(1)一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为 1,2,3,则此球的表面积为________.(2)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.【解析】 (1)长方体外接球直径长等于长方体体对角线长,即 2R =12+22+32 =14 ,所以球的表面积 S =4πR 2=14π.(2)设球O 的半径为r ,则圆柱的底面半径为r ,高为2r ,所以V 1V 2 =πr 2·2r 43πr 3 =32.【答案】 (1)14π (2)32(1)常见几何体与球的切、接问题的解题策略①处理有关几何体外接球或内切球的相关问题时,要注意球心的位置与几何体的关系.一般情况下,由于球的对称性,球心总在特殊位置,比如中心、对角线的中点等.②解决此类问题的实质就是根据几何体的相关数据求球的直径或半径,关键是根据“切点”和“接点”作出轴截面图,把空间问题转化为平面问题来计算.(2)几个常用结论①球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径. ②球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. ③球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径.将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )A .4π3B .2π3C .3π2D .π6解析:选A.由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43 ×π×13=4π3.[学生用书P77]1.已知圆柱的底面半径r =1,母线长l 与底面的直径相等,则该圆柱的表面积为( ) A .6π B .8π C .9πD .10π解析:选A.因为圆柱的表面积为2πr 2+2πrl ,r =1,l =2,所以圆柱的表面积为6π.故选A.2.若球的大圆面积扩大为原来的2倍,球的体积扩大为原来的( ) A .8倍 B .4倍 C .22 倍D .2倍解析:选C.球的大圆面积扩大为原来的2倍,则球的半径扩大为原来的2 倍,所以球的体积扩大为原来的22 倍.3.设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B .73 πa 2C .113πa 2D .5πa 2解析:选B.由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23 ×32 a =33 a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝⎛⎭⎫33a 2 +⎝⎛⎭⎫12a 2=712 a 2,故 S 球=4πR 2=73 πa 2.4.已知圆台上、下底面半径分别为1,2,高为3,则圆台的体积为__________. 解析:由公式知V 圆台=13 π(1+2+4)×3=7π.答案:7π5.如图所示,在边长为4的正三角形ABC 中,E ,F 分别是AB ,AC 的中点,AD ⊥BC ,EH ⊥BC ,FG ⊥BC ,D ,H ,G 为垂足,若将正三角形ABC 绕AD 旋转180°,求阴影部分形成的几何体的体积.解:由题意知,旋转后几何体是一个圆锥,从下面挖去一个圆柱,且圆锥的底面半径为2,高为23 ,圆柱的底面半径为1,高为3 .所求旋转体的体积为大圆锥的体积减去里面小圆柱的体积,即V 旋转体=13 ×π×22×23 -π×12×3 =533 π,故所求旋转体的体积为533π. [学生用书P217(单独成册)][A 基础达标]1.在△ABC 中,AB =4,BC =3,AC =5,现以AB 所在直线为轴旋转一周,则所得几何体的表面积为( )A .24πB .21πC .33πD .39π解析:选A.因为在△ABC 中,AB =4,BC =3,AC =5,所以△ABC 是以∠B 为直角的直角三角形,故以AB 所在直线为轴旋转一周得到的几何体为圆锥,所以圆锥的底面半径为3,母线长为5,所以底面周长为6π,侧面积为12 ×6π×5=15π,所以几何体的表面积为15π+π×32=24π.故选A.2.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3 B .4∶9 C .2 ∶3D .8 ∶27解析:选B.设两个球的半径分别为r ,R ,则⎝⎛⎭⎫43πr 3 ∶⎝⎛⎭⎫43πR 3 =r 3∶R 3=8∶27, 所以r ∶R =2∶3,所以S 1∶S 2=r 2∶R 2=4∶9.3.(多选)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R 相等,则下列结论正确的是( )A .圆柱的侧面积为2πR 2B .圆锥的侧面积为2πR 2C .圆柱的侧面积与球面面积相等D .圆柱、圆锥、球的体积之比为3∶1∶2解析:选CD.依题意得球的半径为R ,则圆柱的侧面积为2πR ×2R =4πR 2,所以A 错误;圆锥的侧面积为πR ×5 ·R =5 πR 2,所以B 错误;球面面积为4πR 2,因为圆柱的侧面积为4πR 2,所以C 正确;因为V 圆柱=πR 2·2R =2πR 3,V 圆锥=13 πR 2·2R =23 πR 3,V 球=43 πR 3,所以V 圆柱∶V 圆锥∶V 球=2πR 3∶23 πR 3∶43πR 3=3∶1∶2,所以D 正确.故选CD.4.将半径为R 的半圆卷成一个圆锥,则它的体积是( ) A .524 πR 3 B .58 πR 3 C .324πR 3 D .38πR 3 解析:选C.设圆锥的底面半径为r ,则2πr =πR ,所以r =R2 .所以圆锥的高h =R 2-r 2 =32R . 所以圆锥的体积V =13 πr 2×h =13 π(R 2 )2×32 R =324πR 3.故选C.5.若两球的体积之和是 12π,经过两球球心的截面圆周长之和为 6π,则两球的半径之差为( )A .1B .2C .3D .4解析:选 A .设两球的半径分别为 R ,r (R >r ),则由题意得⎩⎪⎨⎪⎧4π3R 3+4π3r 3=12π,2πR +2πr =6π,解得⎩⎪⎨⎪⎧R =2,r =1.故 R -r =1. 6.一个高为2的圆柱,底面周长为2π,该圆柱的表面积为________.解析:由底面周长为2π可得底面半径为1.S 底=πr 2=π,S 侧=2πr ·h =4π,所以S 表=2S底+S 侧=6π.答案:6π7.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 解析:设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr .解得r =1,即圆锥的底面直径为2.答案:28.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的铁球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的铁球(如图所示),则铁球的半径是________cm.解析:设铁球的半径为x cm ,由题意得πx 2×8=πx 2×6x -43 πx 3×3,解得x =4.答案:49.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π, 该组合体的体积V =43 πr 3+πr 2l =43 π×13+π×12×3=13π3.10.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱. (1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大?解:(1)作圆锥的轴截面,如图所示.因为rR =H -x H,所以r =R -RH x ,所以S 圆柱侧=2πrx =2πRx -2πR Hx 2(0<x <H ). (2)因为-2πRH<0,所以当x =2πR 4πR H=H2 时,S 圆柱侧最大.故当x =H2时,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.[B 能力提升]11.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为323 π,那么这个正三棱柱的体积是( )A .963B .163C .243D .483解析:选D.由题意可知正三棱柱的高等于球的直径,从棱柱中间平行棱柱底面截得球的大圆内切于正三角形,正三角形与棱柱底面三角形全等,设三角形边长为a ,球半径为r ,由V 球=43 πr 3=323 π,得r =2.由S 柱底=12 a ×r ×3=34 a 2,得a =23 r =43 ,所以V 柱=S柱底·2r =483 .12.如图,一个盛满溶液的玻璃杯,其形状为一个倒置的圆锥,现放一个球状物体完全浸没于杯中,球面与圆锥侧面相切,且与玻璃杯口所在平面相切,则溢出溶液的体积为( )A .8327 πB .4327 πC .16327πD .32327π解析:选D.由题意,设球的半径为r ,作出玻璃杯的轴截面,可得一个半径为r 的圆内切于一个边长为4的等边三角形,此等边三角形的高h =23 .根据中心(重心)的性质可得,球的半径r =13 h =233 ,所以球的体积V =43 πr 3=43 π×⎝⎛⎭⎫233 3 =32327 π.即溢出溶液的体积为32327π,故选D.13.(多选)如图所示,△ABC 的三边长分别是AC =3,BC =4,AB =5,过点C 作CD ⊥AB ,垂足为D ,下列说法正确的是( )A .以BC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为15πB .以BC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为36π C .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为25πD .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为16π解析:选AD.以BC 所在直线为轴旋转时,所得旋转体为底面半径为3,母线长为5,高为4的圆锥,所以侧面积为π×3×5=15π,体积为13 ×π×32×4=12π,所以A 正确,B 错误;以AC 所在直线为轴旋转时,所得旋转体为底面半径为4,母线长为5,高为3的圆锥,侧面积为π×4×5=20π,体积为13×π×42×3=16π,所以C 错误;D 正确.故选AD.14.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,过A 1,C 1,B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1,这个几何体的体积为403.(1)求棱AA 1的长;(2)求经过A 1,C 1,B ,D 四点的球的表面积和体积.解:(1)设AA 1=x ,依题意可得403 =2×2·x -13 ×12 ×2×2·x ,解得x =4,故棱AA 1的长为4.(2)依题意可知, 经过A 1,C 1,B ,D 四点的球就是长方体ABCD -A 1B 1C 1D 1的外接球,这个球的直径就是长方体的体对角线,所以球的直径2R =22+22+42 =26 ,解得R =6 .故所求球的表面积为4πR 2=24π,体积为43·πR 3=86 π.[C 拓展探究]15.如图,用一边长为2 的正方形硬纸,按各边中点垂直折起4个小三角形,做成一个“底座”,将体积为4π3 的球放入其中,“底座”形状保持不变,则球的最高点与“底座”底面的距离为( )A .62 +32 B .32C .22 +32D .32 +32解析:选D.由题意,可得“底座”的底面是边长为1的正方形,则经过4个小三角形的顶点截球所得的截面圆的直径为1.因为球的体积为4π3 ,所以球的半径为1,所以球心到截面圆的距离为1-⎝⎛⎭⎫122 =32 ,因为垂直折起的4个小直角三角形斜边上的高为12,所以球的最高点与“底座”底面的距离为32 +1+12 =32 +32.故选D. 16.如图,四边形ABCD 是正方形,BD ︵是以 A 为圆心、AB 为半径的弧,将正方形 ABCD 以 AB 为轴旋转一周,求图中 Ⅰ,Ⅱ,Ⅲ 三部分经旋转所得几何体的体积之比.解:Ⅰ生成圆锥,Ⅱ生成的是半球去掉Ⅰ生成的圆锥,Ⅲ生成的是圆柱去掉扇形 ABD 生成的半球.设正方形的边长为 a ,则Ⅰ,Ⅱ,Ⅲ 三部分经旋转所得几何体的体积分别为 V Ⅰ,V Ⅱ,V Ⅲ,则 V Ⅰ=13 πa 3,V Ⅱ=12 ×43 πa 3-13 πa 3=13 πa 3,V Ⅲ=πa 3-12 ×43 πa 3=13πa 3.所以三部分经旋转所得几何体的体积之比为1∶1∶1.。
圆柱、圆锥、圆台、球的表面积和体积
(二)基本知能小试
1.判断正误
(1)圆柱、圆锥、圆台的侧面展开图的面积就是它们的表面
积.
()
(2)圆锥、圆台的侧面展开图中的所有弧线都与相应底面的
周长有关.
()
答案:(1)× (2)√
2.已知一个圆柱的侧面展开图是一个正方形,则这个圆柱的
表面积与侧面积的比值是
()
1+2π A. 2π
1+4π B. 4π
题型三 球的表面积和体积
[学透用活]
[典例 3] (1)设三棱柱的侧棱垂直于底面,所有棱的长都
为 a,顶点都在一个球面上,则该球的表面积为 ( )
A.πa2
B.73πa2
C.131πa2
D.5πa2
(2)若球的一个内接圆锥满足:球心到该圆锥底面的距离是
球半径的一半,则该圆锥的体积和此球体积的比值为
解:设圆锥的底面半径为 R,圆柱的底面半径为 r,表面积为 S.则 R=OC=2,AC=4,AO= 42-22=2 3. 如图所示,易知△AEB∽△AOC,∴AAOE=OEBC,即2 33=2r,∴ r=1. ∴S 底=2πr2=2π,S 侧=2πr·h=2 3π. ∴S=S 底+S 侧=2π+2 3π=(2+2 3)π.
[对点练清] 1.[圆柱的侧面积]一个圆柱的底面面积是 S,其侧面积展开图
是正方形,那么该圆柱的侧面积为_________. 解析:设圆柱的底面半径为 R,
则 S=πR2,R= Sπ, 底面周长 c=2πR. 故圆柱的侧面积为 S 圆柱侧=c2=(2πR)2=4π2·Sπ=4πS. 答案:4πS
2.[圆锥的表面积]如图,在底面半径为 2,母线长为 4 的 圆锥中内接一个高为 3的圆柱,求圆柱的表面积.
圆柱、圆锥、圆台的几何特征课件
底面
圆锥的底部是一个圆面, 称为底面。
圆锥的定义与基本元素
01
02
03
04
侧面
连接底面和顶点的曲面,称为 侧面。
母线
连接底面和顶点的线段,称为 母线。
轴
通过底面的圆心与顶点连接的 直线,称为轴。
顶点
圆锥顶部的点,称为顶点。
圆锥的侧面展开图
侧面展开图是一个扇形,扇形的半径 等于圆锥的母线长,扇形的弧长等于 圆锥底面的周长。
认为圆柱、圆锥、圆台的定义只是简 单地描述了它们的形状,而忽略了它 们是由平面曲线(圆)绕固定直线 (轴)旋转而成的立体几何图形。
误区二
对于圆柱、圆锥、圆台的定义中涉及 的术语理解不准确,如“母线”、“ 轴”、“底面”等。
关于公式应用的误区
误区一
在应用圆柱、圆锥、圆台的表面积和体积公式时3
圆台的几何特征
圆台的定义与基本元素
定义
圆台是由一个大的圆平面(下底)和一个小的 圆平面(上底)以及连接两圆的侧面所围成的
几何体。
01
下底
较大的圆形平面。
03
高
上底和下底之间的垂直距离。
05
02
上底
较小的圆形平面。
04
侧面
连接上底和下底的曲面。
06
母线
连接上底和下底边缘的线段。
圆台的侧面展开图
圆柱的体积公式
V = πr^2h,其中r为底面半径,h为高。 体积等于底面积乘以高。
典型例题解析
例题1
已知圆柱的底面半径为3,高为4,求圆柱的表面积和体积。
解析
根据公式S = 2πr^2 + 2πrh和V = πr^2h,代入r = 3,h = 4,即可求出表面积和体积。
圆柱、圆锥、圆台
垂直于侧棱并与每条 侧棱都相交的截面 经过旋转轴的截面 过高的中点平行于 底面的截面
轴截面
中截面
棱柱、棱锥、棱台 圆柱、圆锥、圆台
七、小结
一、常见旋转体—圆柱、圆锥、圆台由来及相关概念
用表示轴的字母来表示 二、圆柱、圆锥、圆台的表示法:
三、圆柱、圆锥、圆台的性质: 性质1:平行于底面的截面都是圆 性质2:圆柱的轴截面是全等的矩形 圆锥的轴截面是全等的等腰三角形 圆锥的轴截面是全等的等腰梯形
说明:在解题过程中,如果问题都集中在某个截 面上,为了直观起见,不妨将该截面移出来单独研究, 这种将立体问题转化为平面问题的方法在今后应用极为 广泛,必须牢牢掌握并能熟练运用。
回顾小结
•
•
(1)圆柱、圆锥、圆台和球的概念
(2)运动变化、类比联想的观点
•
(3)分解复杂的组合体
课外作业
1.请同学们课后找一找生活中具有圆柱、圆锥、 圆台和球几何结构特征的实物.
O S
O’
O
O
O
记作:
记作:
记作:
圆柱O’O
圆锥SO
圆台O’O
四、圆柱、圆锥、圆台的性质
性质1: 平行于底面的截面都是圆,
过旋转轴的截面 称为旋转体的轴截面 定 义:
性质2:圆柱的轴截面是 全等的 矩形 圆锥的轴截面是 全等的 等腰三角形 圆台的轴截面是 全等的 等腰梯形 S
O’
O’
O
O
O
建构数学
∵⊙O’ ∥ ⊙O ∴O’A’ ∥OA
= ∴⊿ O’SA’O’ A’ ︰OA SA’ ︰SA (∴ ∽⊿ SAO )
即: x :4x = (y-10)︰ y 4 (y-10) = y y =
圆柱、圆锥,圆台的表面积与体积
r O
O
圆柱的侧面展开图是一个矩形,
S圆柱表面积 2r 2 2rl 2r(r l ).
新知探究
6π
1.已知一个高为 2 的圆柱,底面周长为 2π.该圆柱的表面积为________.
解析:由底面周长为2π可得底面半径为1.S底=2πr2=2π,S侧=2πr·h=4π,所以S表=S底
7
为574π,则圆台较小的底面半径为________.
解析:设圆台较小的底面半径为r,那么较大的底面半径为3r,由已知得π(r+3r)×3
+πr2+9πr2=574π,解得r=7.
新知探究
1. 圆柱、圆锥、圆台的表面积
圆柱
圆锥
S
• O'
r' • O'
l
l
l
r •O
圆台
2πr
S圆柱 2 r (r l )
3
1
的底面积分别为S1,S2 , ,Sn则小锥体的体积分别为V1 S1R,
3
1
1
V2 S2 R, ,Vn S n R,
3
3
1
1
1
V球 V1 V2 Vn S1R S2 R S n R
3
3
3
1
1
1
(S1 S2 Sn)R S球 R 4 R 2 • R
各面面积之和
柱体、锥体、台体的体积
棱柱
棱锥
棱台
的体
积
棱柱
V Sh
棱台
1
V ( S S S S )h
3
棱锥
1
V Sh
3
新知探究
高中数学必修二课件:圆柱、圆锥、圆台的表面积和体积
题型二 圆柱、圆锥、圆台的体积
例2 (1)若圆柱的侧面展开图是边长为2和4的矩形,则该圆柱的体积是
(D)
2
4
A.π
B.π
8 C.π
D.π4 或π8
【解析】 由题知圆柱的侧面展开图是边长为2与4的矩形,则分两种情 况:
∴S表=π·AD2+π(CE+AD)·CD+π·CE·BC =24π+12 2π, V=π3 (CE2+CE·AD+AD2)·AE+π3 CE2·BE=1034π.
探究3 几何体的表面积是各个面的面积之和,因此求组合体的表面积时切 忌直接套用柱体、锥体、台体的表面积公式,而应先分析该几何体由几部分组 成,几何体各个面间有无重叠,再结合相应几何体选择公式求解.
S底=πr2 S侧=πrl S表=πr(r+l)
S上底=πr′2,S下底=πr2 S侧=πl(r′+r)
S表=π(r′2+r2+r′l+rl)
要点2 圆柱、圆锥、圆台的体积
几何体
体积
柱体
V柱体=Sh(S为底面面积,h为高),V圆柱=πr2h(r为底面半径,h为高)
锥体
V锥体=13Sh(S为底面面积,h为高),V圆锥=13πr2h(r为底面半径,h为高)
1.空间几何体的表面积的求法技巧 (1)多面体的表面积是各个面的面积之和. (2)组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平 面图形计算,而表面积是侧面积与底面圆的面积之和.
2.求组合体的表面积与体积的方法 (1)分析结构特征.弄清组合体的组成形式,找准有关简单几何体的关键 量. (2)设计计算方法.根据组成形式,设计计算方法,特别要注意“拼接面” 面积的处理.利用“切割”“补形”的方法求体积. (3)计算求值.根据设计的计算方法求值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
得求圆圆台台上的、母下线底长面. 的面积之比为1:16,原来圆B锥的母线长O 是16cm,A
六、应用举例
2、轴截面问题
• 1、一个圆柱的母线长为5,底面半径为2,求圆柱的轴截面 的面积.
• 2、一个圆锥的母线长20cm,母线与轴的夹角为 300 ,求圆 锥的高.
• 3、一个圆台的母线长为5,上底面和下底面直径分别为2和 8,求圆台的高.
2020年6月17日
一、复习引入
前面我们学习了几个常见的多面体,棱柱、棱 锥和棱台。明确了它们的定义及相关概念。
棱柱、棱锥和棱台的特征,三者之间有什么联系?
一、复习引入
1.棱柱的面至少有___5__个. 2.棱柱的侧面是 平行四边 形,棱锥的侧面
是 三角 形,棱台的侧面是__ 梯 _形。
二、提
用图展示出来
五、拓展延伸
平行于底面的截面是什么样的图形?
平行于底面的截面都是圆
圆柱、圆锥、圆台.gsp
五、拓展延伸
过轴的截面——轴截面
圆柱的轴截面是 全等的 矩形 圆锥的轴截面是 全等的等腰三角形 圆台的轴截面是 全等的等腰梯形
观看演示轴截面.gsp
请欣赏下面几幅图片
二、提出问题
请欣赏下面几幅图片
圆柱
圆锥
圆台
二、提出问题
问题1.下面的几何体与多面体不同,仔细观察这些 几何体,它们有什么共同特点或生成规律?
它们可以由一个平面图形通过旋转而生成
观看演示
三、概念形成
圆柱、圆锥、圆台的生成过程
分别以矩形一边、直角三角形的直角边、 直角梯形垂直于底边的腰所在的直线为旋转轴, 其余各边旋转而成的曲面所围成的几何体, 分 别叫做圆柱,圆锥,圆台。
圆柱
圆锥
圆台
概念检测
1、判断下列几何体是否是圆柱、圆锥、圆台
×
(1)
×
(2)
×
(3)
概念检测
2、有以下命题:
(1)以直角三角形一边为旋转轴,旋转所得的旋
转体是圆锥;(2)以直角梯形的一条腰所在直线
为旋转轴,旋转所得的几何体是圆台;(3)圆柱、
圆锥、圆台的底面都是圆;(4)分别以矩形两条
不同的边所在直线为旋转轴,将矩形旋转,所得
决的转化思想 • (4)运动变化、类比联想的观点
课外作业
1.请同学们课后找一找生活中具有圆柱、圆锥、 圆台几何结构特征的实物. 2.观察生活中的一些组合体可以分割成我们学 习过的哪些简单的几何体 .
课后思考
将下列平面图形绕直线AB旋转一周,所
的连线是圆柱的母线。
()
(2)通过圆台侧面上一点,有无数条母线.( )
(3)圆台所有的轴截面是全等的等腰梯形. ( ) (4)与圆锥的轴平行的截面是等腰三角形(. )
深化检测
2、下列命题中,正确命题的个数是____4_ __.
①圆柱的轴经过上、下底面的圆心,并且垂直于底 面; ②圆柱的母线长都相等,并且都等于圆柱的高; ③平行于圆柱底面的平面截圆柱所得的截面是和底 面全等的圆; ④经过圆柱轴的平面截圆柱所得的截面是矩形,这 个矩形的一组对边是母线,另一组对边是底面圆的 直径.
么样的平面图形?
点击这里进行演示
圆柱、圆锥、圆台的侧面展开图
沿着任意一条母线剪开
r O
l 2r
O
2r
l
r
O
r' O
’
r
O
六、应用举例
1、平行截面问题
例1.用一个平行于圆锥底面的平面截这个圆锥,
截得圆台的上下底面半径的比是1:4,截去的圆
锥母线长为10cm,求圆台的母线长。
S
S
O' A'
O' A'
O
七 1.下列图形中是圆柱体的是( )
、
当
堂 检 测
A
B
2.圆锥的侧面展开图是(
A 三角形
B 长方形
C )
C圆
D D 扇形
3.将直角三角形绕它的一边旋转一周,形成的几何体一定是( )
A 圆锥
B 圆柱
C 圆台
D 以上均不正确
4.用一张6×8的矩形纸卷成一个圆柱,其轴截面的面积是( )
5.把图形与对应的图形名称用线连结起来
五、拓展延伸 表示方法:
s
o
o
o'
圆柱oo'
o'
圆锥so'
o'
圆台oo'
五、拓展延伸
对圆柱、圆锥、圆台思考以下问题
重点讨论:
1、平行于底面的截面是什么样的图形?
合
用图展示出来
作 2、过轴的截面分别是什么样的图形?
探 究
用图展示出来
3、圆柱、圆锥、圆台之间的关系?
4、圆柱、圆锥、圆台分别去掉底面,沿着任
A
B
C
D
E
三棱柱
圆锥
三棱锥
圆柱
长方体
6.圆台的上下底面的直径分别是2cm, 10cm, 高为3cm,
求圆台的母线长。
7. 一个圆锥的高是2,母线与轴的夹角为30°,求圆锥的母线长以及圆
锥的轴截面的面积。
回顾小结
• (1)圆柱、圆锥、圆台的概念 • (2)圆柱、圆锥、圆台的结构特征 • (3)立体几何问题转化为平面问题解
• 4、圆锥的轴截面是正三角形,它的面积是 3 ,则圆锥的高
与母线的长分别为?
方法感悟
(1)研究圆柱、圆锥、圆台等问题的主要方法是 研究它们的轴截面,这是因为在轴截面中,集 中反映了旋转体的各主要元素之间的位置、数 量关系. (2)将圆柱、圆锥、圆台的侧面展开是把立体几 何问题转化为平面几何问题处理的重要方法之 一. (3)圆(棱)台问题有时需要将圆(棱)台还原为 圆(棱)锥来解决.
的两个圆柱可能是两个不同的圆柱.
其中正确的个数是( A )
A.1
B.2
C.3
D.4
四、概念延伸
轴 底面
母线
圆柱
圆锥
圆台
轴: 旋转前不动的一边所在的直线.
底面: 垂直于轴的边旋转所成的圆面.
侧面: 不垂直于轴的边旋转所成的曲面.
母线: 不垂直于轴的边.
深化检测
1、判断题:
(1)在圆柱的上下底面上各取一点,这两点
五、拓展延伸 想 一 如何把圆柱变成圆锥? 想 ?
将圆柱的一个底面向中心收缩成一点
五、拓展延伸
想
如何从圆锥变成圆台?
一
想
?
O′ O
五、拓展延伸
圆柱、圆锥、圆台的关系
圆 柱
上底面变小 上底面扩大到
圆 台
上底面缩小到一个点 圆
上底面扩大
锥
与下底面相等
五、拓展延伸
思考:圆柱、圆锥、圆台的侧面展开图是什
A
O
A
例1.用一个平行于圆锥底面的平面截这个圆锥,
截得圆台的上下底面半径的比是1:4,截去的圆
锥母线长为10cm,求圆台的母线长。
S
解:
设圆锥的母线长为 y ,则有
D
O A
10 = 1 y4
B
O
A
y 40(cm)
圆锥的母线长为40cm.
S
10cm
答:圆台的母线长为 30cm
O
跟踪训练:用一个平行于圆锥底面的平面截这个圆D 锥,截